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Abstract

Semi-supervised learning (SSL) digs unlabeled data through pseudo-labeling when labeled
data is limited. Despite various auxiliary strategies to enhance SSL training, the main
challenge lies in how to determine reliable pseudo labels with a robust thresholding algorithm
based on quality indicators (e.g., confidence scores). However, the latest methods for
distinguishing low or high-quality labels require complex-designed thresholding strategies
but still fail to guarantee robust and efficient selection. Empirically, we group the quality
indicators of pseudo labels into three clusters (easy, semi-hard, and hard) and statistically
reveal the real bottleneck of threshold selection lying in the sensitivity of separating semi-
hard samples. To this end, we propose an adaptive Grouping and Transporting for Robust
thresholding (dubbed as GTR) that efficiently selects semi-hard samples with test-time
augmentations and consistency constraints while saving the selection budgets of easy and
hard samples. Our proposed GTR can effectively determine high-quality data when applied
to existing SSL methods while reducing redundant selection costs. Extensive experiments
on eleven SSL benchmarks across three modalities verify that GTR achieves significant
performance gains and speedups over Pseudo Label, FixMatch, and FlexMatch.

1 Introduction
Over the past decades, deep learning (DL) has made significant strides across diverse applications and
modalities (He et al., 2016; Devlin et al., 2018; Dong et al., 2018). However, the majority of tasks operate
under supervised learning (SL), which necessitates manual data labeling that is constrained by limited
quantity and resource-intensive efforts. To overcome these limitations and leverage extensive unlabeled data,
semi-supervised learning (SSL) has emerged as a promising solution. Holistically, SSL exploits information
from both unlabeled and limited labeled data (Tarvainen & Valpola, 2017; Sohn et al., 2020) within the
self-training paradigm of pseudo-labeling (Lee et al., 2013), where models are designed to be trained using
unlabeled data and pseudo-labels assigned by their own predictions.

As SSL continues to develop, a crucial avenue for advancing mainstream methods lies in establishing a
well-designed selection method (Zhang et al., 2021) or a robust quality indicator (Li et al., 2024) for more
accurate pseudo label selection. Existing approaches predominantly rely on threshold-based pseudo-labeling
strategies (Sohn et al., 2020; Kim et al., 2022) based on confidence scores (Lee et al., 2013), designing
refined class-wise thresholding schemes (Wang et al., 2022b) or dynamic thresholding policies throughout
the whole training process (Zhang et al., 2021). However, these thresholding methods, with their complex
thresholding values or schedules, are still linear classification algorithms to separate whether the pseudo
labels are reliable and thereby exhibit instability, which requires substantial manual intervention but fail to
leverage the inherent distributions of indicators. Taking FlexMatch (Zhang et al., 2021) as an example, the
density estimation in Figure 1(a) demonstrates that training leads to instability and a lack of distinct class
differentiation. The overlapping confidence distributions also indicate the model’s struggle to distinguish
between classes both before and after training clearly. Recent methods such as FreeMatch (Wang et al.,
2022b) and SoftMatch (Chen et al., 2022b) also face similar challenges. These methods focus on sample level
but employ a simple mean threshold that only captures the inter-class properties of labels, making them
sensitive to threshold variations and thus leading to instability.
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(a) Confidence distributions by class (FlexMatch)
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(b) Reward score distributions (GTR)

Figure 1: Distribution of pseudo-label indicators and selection boundaries on CIFAR-100 (400 labels). (a)
In FlexMatch, confidence score distributions show slight changes before and after training, with separation
boundaries (yellow lines) located at density peaks, making it difficult to distinguish classes effectively. (b)
In GTR, leveraging intra-class properties for pseudo-label selection, separation boundaries are placed at
low-density regions. The grouping of three types of samples (red lines) captures essential label characteristics.
Combining grouping with transporting significantly enhances distribution separability, addressing the insta-
bility issues seen in existing methods.

Table 1: Characteristics of the pseudo-label selection process, comparing typical SSL algorithms and the
proposed GTR. The compared characteristics or strategies include Robust τ (the thresholding guarantees
robustness or not), Speedup (boosting the convergence or not), Gain (improving performance or not), and
Thresholding (the method of filtering pseudo labels). G&T denotes the proposed Grouping and Transporting
as a robust thresholding way.

Method Pseudo Labeling FixMatch FlexMatch FreeMatch SemiReward GTR
Robust τ ✗ ✗ ✗ ✗ ✗ ✓
Speedup ✗ ✓ ✗ ✓ ✓ ✓
Gain ✗ ✗ ✓ ✓ ✓ ✓

Thresholding None Hard Dynamic Adaptive Mean G&T

Our study addresses these challenges at once by constructing a robust thresholding mechanism, termed
Grouping and Transporting Robust thresholding (GTR), tailored for SSL. Unlike traditional methods that
solely rely on inter-class separation, our GTR leverages the inherent properties of the indicator distribution
through unsupervised clustering. As shown in Figure 1(b), GTR mitigates the threshold sensitivity by
focusing on the intra-class properties, particularly in those semi-hard groups. This innovative grouping design
enables effective pseudo-label selection, enhanced by the transportation method, which refines the indicator
distribution. Table 1 compares existing schemes and their characteristics, finding Grouping and Transporting
mechanism in GTR ensures effective pseudo-label thresholding, leading to improved convergence speed and
performance gains, setting it apart as a superior approach for SSL tasks. We further conduct a detailed
analysis with grouping to gain an in-depth understanding of the intrinsic characteristics of the entire SSL
training pipeline from a data perspective.

Empirical research and statistical analysis show that the proposed GTR can accelerate model training
and achieve excellent results with fast convergence and no extra computations. Based on the popular USB
benchmarks (Wang et al., 2022a), we selected representative SSL methods to conduct comparative experiments
for verifying the versatility and robustness of our GTR method. Our main contributions are threefold:

• We empirically reveal that the impediment of existing thresholding techniques lies in their inability to
separate the semi-hard group of the indicator when selecting high-quality pseudo labels. This insight
highlights the need for a specially designed method to address the issue.
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• We design a transporting method tailored for three groups of samples: easy, semi-hard, and hard. By
employing kernel density estimation, we analyze the SSL training pipeline and leverage the inherent
nature of indicator distribution to elucidate how our method promotes the semi-hard group towards a
better-optimized distribution, such as that of the easy group.

• We seamlessly integrate GTR into existing SSL algorithms without incurring any additional overhead.
Extensive experiments across eleven SSL benchmarks further validate the reliability and effectiveness of
GTR, showcasing its applicability over diverse SSL modalities.

2 Problem Definition

Notations. Semi-Supervised Learning (SSL) extends Supervised Learning (SL) by using a small labeled
dataset DL = {(xl

i, yl
i)}NL

i=1 and a large unlabeled dataset DU = {xu
i }NU

i=1 with NL ≪ NU . For a given
classification task, the model prediction fS(x) = y ∈ RC , where C is the label dimension. The SSL training
involves three processes: (i) pseudo-label generation produces pseudo labels yu = fT (xu) by a trained
teacher model fT on DL and converts them to one-hot encoding; (ii) pseudo-label filtering selects high-
quality pseudo-labels ŷu using a pseudo-label quality indicator I(·) and thresholds, e.g., ŷu = I(yu) > τ with
a single threshold τ ; (iii) learning objectives are computed by the sum of supervised and unsupervised
losses, L = Ls + Lu.

LS = 1
BL

BL∑
i=1

H
(

yl
i, fS

(
ω(xi)

))
, (1)

where ω(·) denotes weak data augmentations, and H(·, ·) is the loss function for SL tasks (e.g., cross-entropy,
ℓ1 loss). For a mini-batch of BU unlabeled data, the unsupervised loss is:

LU = 1
BU

BU∑
i=1

I(pu
i , τ)H

(
ŷu

i , fS

(
Ω(xu

i )
))

, (2)

where Ω(xu
i ) denotes strong augmentations. Consistency regularization typically involves updating fS

parameters to fT via copying or exponential moving average (EMA) and requires predicted classification
confidence to identify reliable labels.
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(a) Thresholding by Confidence
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(c) Grouping by Reward Scores

Figure 2: Pseudo-label selection with 100-epoch training on CIFAR-100 (400 labels) with FixMatch. (a)
Changing trend of confidence threshold for each class of five randomly selected classes. (b) The variation
trend of mean and variance statistics for three groups clustered on the confidence scores. (c) The variation
trend of mean and variance statistics of three groups clustered on the reward indicators.

The Devil Lies in Thresholding. In SSL frameworks, the pseudo-label filtering process is the most
crucial part (Arazo et al., 2020; Zhang et al., 2021), which can be regarded as a binary classification task: a
thresholding algorithm predicts whether the pseudo label yu is reliable (as positive) or inaccurate (as negative)
according to the quality indicator I(yu). With two widely employed indicators (confidence scores (Lee et al.,
2013; Xie et al., 2020a) and reward scores (Li et al., 2024)), existing SSL methods designed numerous
thresholding strategies. However, no matter how adaptive or fine-grained thresholds are adopted (Wang
et al., 2022b), existing thresholding algorithms are equal to linear classifiers and neglect the intrinsic binary
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distributions of distinguishing two types of pseudo labels. As shown in Figure 1(a) (right), it is difficult
to separate the Gaussian-like indicator distributions by linear decision boundaries at the densest locations
(i.e., the yellow lines), which will cause instability filtering issues in the existing thresholding methods with
class confidences shown in Figure 2(a). To reveal the cause of instabilities, we first cluster the indicator
distributions into three consistent groups by a clustering algorithm (Reynolds et al., 2009) to investigate
the properties of the thresholding task. As indicated in Figure 1(b) (left) or 4(a), we found that both the
indicator values of unreliable and reliable pseudo labels are clustered into two distinct distributions (dubbed
as hard and easy groups), while the middle group (dubbed as semi-hard) is similar to both the hard and easy
groups. The semi-hard distribution nearly corresponds to the dense region of original indicator distributions,
which can be hard to separate and cause instabilities during the entire SSL training as shown in Figure 2.

3 Robust Grouping and Thresholding for Unlabeled Data

To address the instability and poor class differentiation discussed in Section 2, we introduce GTR, which
employs robust thresholding through grouping and transporting. Unlike traditional methods that use simple
linear thresholds, GTR clusters pseudo-labels into distinct groups, effectively filtering high-quality labels.
This approach mitigates the instability caused by overlapping indicator distributions, ensuring more accurate
and stable pseudo-label selection and improving SSL task performance.

3.1 Grouping: Indicator-based Property Mining

Within a single epoch, each unlabeled sample is selected by an evaluation criterion, such as quality indicators
like confidence scores. We employ the unsupervised Gaussian Mixture Model (GMM) (Reynolds et al., 2009)
to divide samples into three clusters and calculate related statistics (µ, σ), resulting in the distribution of
three types of samples: DU =

{
X u

α , X u
β , X u

γ

}
, corresponding to easy, semi-hard, and hard groups, respectively.

The size of each group in a mini-batch is denoted as A, B, Γ. We define the probability of each data point
belonging to each cluster as Pα(xi|θα), Pβ(xi|θβ), Pγ(xi|θγ). In this probability distribution, each data
point has associated probabilities of belonging to the easy, semi-hard, and hard groups, summing up to 1.
Thus, we accomplish sample-level grouping. The choice of the GMM method is due to its effectiveness in
forming non-spherical clusters with ambiguous points, allowing better modeling of elongated clusters. As
shown in Figure 2, compared to class-level grouping, the variations among groups obtained through this
method are relatively stable and align with the intuition of modeling the label space, which typically involves
both intra-class and inter-class modeling. Figure 1(a) illustrates that class-level grouping mainly considers
inter-class attributes, reflecting only part of the properties. Different samples within the same class can have
varying difficulty levels, leading to more uncertainty during thresholding. Whether using a hard, class-level, or
adaptive threshold, traditional methods essentially separate labels below a threshold under limited modeling.
The grouping method avoids this rigid thresholding and includes the nature of intra-class properties, making
the preparation for thresholding more comprehensive. Meanwhile, using more robust indicators like a reward
score ri = R(xu

i , yp
i ) (Li et al., 2024) further enhances the stability in Figure 2(c).

3.2 Transporting: Promoting Semi-hard to Esay

Building upon the foundation of the grouping method, we further contemplate how to utilize the properties
from the label space to achieve more robust processing. Hence, we introduce the transporting method. As
shown in Figure 3, grouping can capture the intrinsic properties of indicator distributions, reflecting that
the semi-hard group is sensitive to thresholds during SSL training, and easy/hard groups are robust and
determined. Statistically, we also introduced the Pearson correlation coefficient (Cohen et al., 2009) to derive
the characteristics of each group further. First, we collected the accuracy data corresponding to the three
groups after different filtering times as follows:

r = n(
∑

XY ) − (
∑

X)(
∑

Y )√
[n

∑
X2 − (

∑
X)2][n

∑
Y 2 − (

∑
Y )2]

, (3)

where n is the maximum number of filterings, X represents the vector X = {1, 2, 3. . . , 9, 10} corresponding
to the filtering number array. Y is the accuracy rate of each group after the corresponding filtering times.
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Figure 3: The average quality indicator for each group is calculated on CIFAR-100 (400 labels) after grouping
the unlabeled data. The number of filters applied and resulting changes in the quality indicator are mapped
out. Thresholds are set as the mean for each group. After filtering, samples are scored and re-grouped.

The result calculation can be obtained as Pα = 0.189, Pβ = 1.415 × 10−7, Pγ = 0.067. Observing Pβ , a
notable P < 0.01 is evident within the semi-hard group, underscoring a pronounced association between
semi-hard samples and the thresholding frequency. This implies the sensitivity of semi-hard samples to
filtering. Consequently, the advanced threshold design is a great way to improve the SSL method.
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(a) Without Transporting

0.0 0.5 1.0
Reward

0

1

2

3

4

5

D
en

si
ty

Cluster Type
semihard
easy
hard

0.00 0.25 0.50 0.75 1.00
Reward

0

1

2

3

4

5

D
en

si
ty

Cluster Type
hard
semihard
easy

Hard
Semi-hard
Easy

Hard
Semi-hard
Easy

(b) With Transporting
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(c) Indicator Change by Epochs

Figure 4: Illustration of the sample pseudo-label quality indicator kernel density estimation and compares
the difference in the sample pseudo-label quality indicator kernel density distribution obtained before and
after training. The abscissa denotes the reward score, which is the indicator we selected, and the ordinate is
the density distribution of the quality indicator for each sample after kernel density estimation. (a) Before
and after distribution without transporting. (b) The figure on the left is the result before transporting, and
the figure on the right is the result after transporting. (c) When t > T , Changes are distributed in two
adjacent epochs.

Transporting leverages the intrinsic properties of pseudo-label indicators. Our approach consists of three steps:
(i) Accepting easy samples: Easy samples are likely to produce high-quality pseudo-labels, which we use to
compute LU . (ii) Addressing semi-hard samples: We aim to align the distribution of semi-hard samples
with that of easy samples during the transporting step. This group exhibits high sensitivity, fluctuating
between high and low quality with input variations. To address this, we propose multiple selection and
consistency constraints to reduce uncertainty and enhance pseudo-label accuracy. By leveraging Test-Time
Augmentation (TTA) (Shanmugam et al., 2021), we generate multiple augmented samples for the student
model and select pseudo-labels above a certain threshold for LU . The augmented samples also serve as
regularization. Using the highest-scoring pseudo-label as the target, we compute a consistency loss to align all
augmented data to the distribution of high-quality samples. This method extracts high-quality pseudo-labels,
enhancing the efficiency and robustness of semi-hard samples. For TTA, we randomly apply horizontal and
vertical flipping. (iii) Addressing hard samples: In each iteration, we discard half of the pseudo-labels in
this group. Using the mean indicator score of the hard group as a threshold, we retain samples above the
threshold and transfer them to the semi-hard group for the next iteration.

Overall, the final equation of unlabeled loss is written as:
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LU = 1
BU

BU∑
i=1

I(qu
i , τβ , τγ)H

(
ŷu

i , fS

(
Ω(xu

i )
))

+

1
B

B∑
i=1

H
(

ŷu,β
i , fS

(
T(xu,β

i )
))

,

(4)

where B denotes the size of semi-hard group in mini-batch, and T represents TTA. Also, qu
i is the quality

indicator corresponding to each unlabeled sample, τβ is the filtering threshold of the semi-hard group, whose
value is (X̄ u

α + X̄ u
β )/2, τγ is threshold of hard group equivalent to X̄ u

γ .

3.3 Essential Characteristics of SSL Training

As mentioned in Sec. 2, most SSL methods focus on constructing appropriate quality indicators (metrics)
and designing methods based on these indicators. Previous research has established suitable indicators but
lacks an analysis from the perspective of the entire SSL training process. Meanwhile, it is essential to explore
the related properties of the grouping and transporting pipeline to ensure reliability and robustness. To
accurately map input samples to the label space, it is essential to use appropriate methods for identifying
intrinsic properties for effective thresholding. In the process of empirical experiments, we find the label space
distribution is typically elongated. Grouping methods, such as GMM, can identify these properties. We use a
GMM to group pseudo-labels by quality indicators z ∈ Rd:

p(z) =
K∑

k=1
πkN (z|µk, Σk), (5)

where K is the number of components, πk is the mixture weight, µk and Σk denote the mean and the
covariance matrix. Parameters are estimated via EM algorithm (MacQueen et al., 1967). The Mahalanobis
distance dM (zi, µki

) assesses pseudo-label fit to find high distances indicate lower reliability, which guides
thresholding decisions:

dM (zi, µki
) =

√
(zi − µki

)T Σ−1
ki

(zi − µki
). (6)

In our training pipeline, the key issue is to monitor the changes in the indicator distributions. Without
performing transporting, although the overall quality indicator trend is upward, the changes in the semi-hard
group are negligible, as shown in Figure 4(a). Since SSL training is a process from easy to hard, there
inevitably exists uncertainty in the student model in the early stages. Previous methods attribute these
changes to inter-class sample properties and ignore the presence of key samples. Therefore, they may not
effectively capture the subtle differences required for performance improvement. In contrast, GTR can model
the intra-class distribution through grouping, associate relevant features, and fully utilize transporting for
targeted processing.

Through transport-driven alignment (Figure 4(b)), the semi-hard group distribution converges to the easy
group manifold via epoch-wise updates governed by adaptive threshold τβ,t from Eq. 4. The Phase I operation
(t < T ) implements sample pruning through X u

α,t−1 → X u
α,tI(ru

i > τβ,t−1), eliminating low-confidence samples
(ru

i ≤ τβ,t−1) while boundary stabilization occurs through transport. Phase II (t ≥ T ) enables stochastic
merging via X u

α,t → X u
α,t+1(xu

i ∈ X u
β,t)I(ri > τβ,t), ultimately achieving equilibrium convergence characterized

by X u
α,t+N ∼ X u

β,t+N with X̄ u
α,t+N ≈ X̄ u

β,t+N – manifested as mirrored inter-epoch quality distributions in
Figure 4(c).

4 Experiments

4.1 Experimental Setup

Comparison Methods for Tasks. To unveil the efficiency of GTR, we conduct a comprehensive comparison
with mainstream SSL algorithms, including FlexMatch, FixMatch, and Pseudo Label (Lee et al., 2013; Arazo
et al., 2020), which establish performance baselines. The essential differences between these methods are
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Table 2: Top-1 error rate (%), performance gain (%), and training speedup times on nine classification
datasets across CV, NLP, and Audio modalities in various label settings. R.GTR denotes GTR with the
reward indicator, and its gains and speedup times are calculated upon baselines (Base).

Domain Dataset (Setting)
Pseudo Label FlexMatch Average

Base +SR R.GTR Base +SR R.GTR Gain Speed.

Audio

ESC-50 (250) 38.42±0.8533.33±0.9732.12±0.19 36.83±0.5132.58±0.5130.11±1.04 +6.51 ×2.62
ESC-50 (500) 28.92±0.2427.65±0.3226.91±0.61 27.75±0.4125.92±0.3125.11±0.21 +2.33 ×2.46

FSDnoisy18k (1773) 34.60±0.5533.24±0.8231.10±0.88 26.29±0.1725.63±0.2825.10±0.18 +2.35 ×1.39
UrbanSound8k (100) 37.74±0.9636.47±0.6536.11±0.32 37.88±0.4636.06±0.9335.17±0.92 +2.17 ×3.13
UrbanSound8k (400) 27.45±0.9625.27±0.6524.01±0.71 23.78±0.4623.45±0.9321.02±0.54 +3.10 ×1.37

NLP

AG News (40) 13.89±0.1112.63±0.2111.32±0.52 11.11±1.1910.60±0.6910.23±0.70 +1.73 ×5.09
AG News (200) 13.10±0.3912.10±0.5811.24±0.51 13.27±0.1311.05±0.1410.11±0.29 +2.15 ×2.64

Yahoo! Answer (500) 34.87±0.5035.08±0.4033.41±0.51 34.73±0.0933.64±0.7331.03±0.61 +2.58 ×1.53
Yahoo! Answer (2000) 33.14±0.7032.50±0.4231.33±0.18 31.06±0.3229.97±0.1029.21±0.09 +1.83 ×6.41

Yelp Review (250) 46.09±0.1542.99±0.1442.43±0.66 46.09±0.1542.76±0.3342.32±0.44 +3.72 ×1.31
Yelp Review (1000) 44.06±0.1442.08±0.1538.96±0.64 40.38±0.3337.58±0.1936.21±0.34 +4.64 ×1.47

CV

CIFAR-100 (200) 32.78±0.2031.94±0.5730.17±0.27 25.72±0.3523.74±1.3922.61±0.97 +2.86 ×1.27
CIFAR-100 (400) 25.16±0.6723.84±0.2021.41±0.52 17.80±0.5717.59±0.3516.03±0.36 +2.76 ×1.29

STL-10 (40) 20.53±0.1217.37±0.4716.31±0.95 11.82±0.5110.20±1.11 9.83±0.52 +3.11 ×1.82
STL-10 (100) 11.25±0.8110.88±1.48 9.05±0.27 7.13±0.20 7.59±0.57 7.02±0.69 +1.16 ×2.73

Euro-SAT (20) 25.25±0.7223.65±0.4122.11±0.52 5.54±0.16 4.86±1.00 4.09±0.43 +2.30 ×1.64
Euro-SAT (40) 12.82±0.81 8.33±0.33 7.69±0.82 4.51±0.24 3.88±0.69 3.69±0.32 +2.98 ×1.52

Semi Aves 3959 (3959) 40.35±0.3037.93±0.4537.15±0.76 32.48±0.1531.23±0.0930.75±0.41 +2.47 ×2.21

explained in Table 1. Our evaluation initially focuses on assessing the algorithms’ performance regarding
classification error rate and training convergence speed, undertaking a two-fold comparison. Firstly, we
introduce FlexMatch and Pseudo Label as baselines, SemiReward as one of the comparison objects, and then
use GTR based on the reward indicator as our method for comparative analysis. Secondly, when confidence
scores or reward scores served as the indicator, we introduce confidence-based and reward-based GTR for
further analysis.

Task Configurations. Our experiments cover eleven SSL datasets across three popular modalities, each
with specific settings outlined below. Details of datasets and experiment configurations are provided in
Appendix A.1.

(i) For CV tasks, we investigate challenging datasets including CIFAR-100 (Krizhevsky et al., 2009), STL-
10 (Coates et al., 2011), EuroSAT (Helber et al., 2019), and ImageNet (Deng et al., 2009). The backbone
architectures used were the ImageNet pre-trained Vision Transformers (ViT) (Dosovitskiy et al., 2021) or
randomly initialized ResNet-50 (He et al., 2016).

(ii) In NLP, we consider three datasets: AG News (Zhang et al., 2015), Yahoo! Answers (Chang et al., 2008),
and Yelp Review (yel, 2014). The backbone encoder for these tasks is the self-supervised pre-trained
BERT (Devlin et al., 2018).

(iii) In audio tasks, our study covers three datasets: UrbanSound8k (Salamon et al., 2014), ESC-50 (Piczak,
2015), and FSDNoisy18k (Fonseca et al., 2019). The pre-trained backbone adopts HuBERT (Hsu et al.,
2021).

Implementations. GTR does not require tunable hyperparameters except for using GMM for the grouping
step, which follows the default setting given by (Reynolds et al., 2009). As for the quality indicators of
confidence and reward scores in the baselines, we follow the official hyper-parameters and training settings in
FixMatch and SemiReward. More specific training and hyperparameter settings are provided in Appendix A.2.
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Table 3: Top-1 error rate (%), performance gain (%), and training speedup times on SSL classification
datasets with CV in various label settings under FixMatch. C.GTR refers to confidence indicator-based GTR,
while R.GTR denotes reward indicator-based GTR. Performance gain and speedup times for R.GTR are
compared to the baseline (Base).

Dataset (Setting)
FixMatch Average

Base +C.GTR +SR +R.GTR Gain Speed.
CIFAR-100 (200) 29.6±0.90 28.72±2.44 28.42±0.56 26.14±1.09 +3.46 ×2.12
CIFAR-100 (400) 19.56±0.52 19.04±0.10 18.21±0.25 17.79±0.55 +1.77 ×1.67

STL-10 (40) 16.15±1.89 14.97±1.07 12.92±0.71 11.80±0.74 +4.35 ×1.98
STL-10 (100) 8.11±0.68 7.68±0.48 7.72±0.41 7.22±0.46 +0.89 ×1.51

Euro-SAT (20) 13.44±3.53 11.56±0.21 10.69±0.26 9.36±0.80 +4.08 ×1.93
Euro-SAT (40) 5.91±2.02 5.13±0.28 4.91±0.17 4.35±0.57 +1.56 ×2.13

4.2 Comparison Results on Semi-supervised Benchmarks

Table 2 illustrates the significant performance improvements achieved by integrating reward indicator-based
GTR with two representative SSL algorithms, significantly improving training efficiency and final performance.
Notably, GTR exhibits an average performance gain of 6.51% on ESC-50 with 250 labels. Relative to
SemiReward, GTR also performs well on fine-grained data sets. The GTR method further promotes the
convergence of the model training process, as can be seen from the reduction in training time, as detailed in
Appendix B. Table 3 illustrates that GTR based on confidence continues to exhibit a positive impact on
model convergence. Using FixMatch as the baseline, we conducted comparisons by introducing SemiReward
and employing confidence indicator-based GTR and reward indicator-based GTR to highlight their respective
effects. Notably, GTR based on confidence, as discussed in Sec. 3.1, exhibits a smooth grouping strategy with
a commendable promotional effect. On CIFAR-100, confidence indicator-based GTR achieves a comparable
effect to SemiReward but with lower overhead, omitting additional gradient calculations. In contrast, reward
indicator-based GTR incurs no extra overhead while reducing the number of student model forwards. Our
approach thus achieves improved convergence and acceleration outcomes efficiently and robustly. Sec. 3.3 has
explained such results and further demonstrated the superiority of GTR through these experiments.

Moreover, on the large-scale SSL benchmark ImageNet, as shown in Table 4, GTR noticeably reduces training
time and achieves lower error rates, e.g., FlexMatch+GTR outperforms previous SOTA methods Freematch
and Softmatch. The basic method FixMatch also significantly benefits from combining with GTR and
outperforms FixMatch simply combined with SemiReward.

4.3 Analysis and Ablation

This section provides an empirical analysis of the proposed modules, verifies their functionalities, and examines
the key issues in the SSL training process, evaluating the impact of the proposed GTR.

Resource-Friendly SSL Training. Existing SSL training pipelines, like in SemiReward, require multiple
forwards of the student model to generate pseudo-label candidates (e.g., 6 times), leading to increased resource
consumption in each iteration. GTR can dramatically optimizes the training process. Assuming k student
model forwards per batch and denoting the proportions of easy, semi-hard, and hard samples as α, β, γ,
respectively, easy and hard samples do not need multiple forwards, while semi-hard samples only need one
additional forward with TTA. Thus, the total forwards per batch reduce to 2 while the computational cost of
re-grouping after each epoch is also negliectable.

Confirmation of Group Filtering Thresholds. As described in Sec. 3.2, we screened samples from the
semi-hard and hard groups during training. The hard group is less sensitive to filtering than the semi-hard
group, but it still impacts training due to clustering updates each epoch. For semi-hard samples, we aim to
align their distribution with the easy group, using the mean of both groups as an indicator. To test this,
we conducted ablation experiments. Table ?? shows results for different thresholds: τ1 (average of means
of easy and semi-hard groups), τ2 (geometric mean of means), and τ3 (mean within semi-hard group). For
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Table 4: Top-1 error rate, performance gain, and
training speedup times on ImageNet with 100 labels
per class. GTR utilizes reward scores.

Method Top-1 (%) Gain (%) Speedup
FixMatch 43.66 +0.00 ×1.00
FixMatch+SR 41.72 +1.94 ×1.98
FixMatch+GTR 41.12 +2.54 ×2.58
FlexMatch 41.85 +0.00 ×0.00
FreeMatch 40.57 +1.28 ×1.50
SoftMatch 40.52 +1.33 ×1.46
FlexMatch+GTR 39.72 +1.49 ×2.95

Table 5: Ablation of various clustering methods for
the Grouping step on CIFAR-100 (400 labels). The
classification accuracy (%) and the total training
iterations are reported. HC denotes Hierarchical
Clustering.

Types Acc. Iterations
GMM Kambhatla & Leen (1994) 84.01 108544 iters
K-means MacQueen et al. (1967) 83.25 139263 iters
HC Eppstein (2000) 83.21 145408 iters
DBSCAN Ester et al. (1996) 82.31 77824 iters

the hard group, we evaluated the training impact. The results show that using the geometric mean as the
threshold increases time cost, likely due to first-order distance separability. Notably, using the mean within
the group slows convergence and reduces accuracy. Hard sample screening does not significantly affect final
performance but does influence convergence speed.

Selection of Clustering Methods and Grouping Numbers. As discussed in Sec. 3.1, we use GMM
due to the linear distribution of our clustered data, which enables non-spherical clusters and handles fuzzy
points better. We also tested alternative unsupervised methods for a clearer illustration. Figure 5 shows the
indicator data distribution on CIFAR-100, highlighting that GMM effectively models the flat and narrow
distribution, which is difficult for other methods. Experiments on CIFAR-100 with 400 labels further validate
the necessity of GMM.

Table 6: Error (%) for different group
numbers. Setting on Flexmatch with
GTR using the reward indicator.

Group Number Error
3 group 16.03±0.36
2 group 17.64±0.61
4 group 15.97±0.42
5 group 16.09±0.18

Table 5 shows these results, with GMM achieving the highest ac-
curacy (84.01%), demonstrating its effectiveness in capturing the
probability distribution of such data and confirming it as the most
suitable unsupervised method. Moreover, we conduct further analy-
sis of the number of groups. Since the semi-hard labels are likely to
become easy with further training, they help improve label quality
progressively. As shown in Table 6, using only two groups (easy and
hard) would result in high misclassification at the decision bound-
ary, destabilizing training, while more than three groups introduce
unnecessary complexity without more performance gains.

Rethinking GTR Thresholding. Sec. 3.3 explores the SSL training process using the GTR method. Also,
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Figure 5: Illustration of the distribution
of the quality indicator on CIFAR-100,
which is distributed in a narrower rather
than a hyperellipse pattern.

Figure 5 visually depicts the distribution of quality indicators
on CIFAR-100, revealing that the data tends to cluster within a
more constrained, non-elliptical region rather than conforming to
a conventional hyperellipsoidal structure. This distinctive pattern
renders traditional unsupervised techniques—such as K-means
clustering—less effective, as they often assume broader, more sym-
metric distributions. In contrast, our GMM-based methodology
adaptively identifies high-density regions within the data, over-
coming key limitations of prior class-wise approaches and enabling
more refined data-centric analyses. By capturing subtle variations
in pseudo-label quality, our method provides a deeper, more inter-
pretable framework for SSL, ultimately enhancing model training
through improved label reliability. Looking ahead, future research
will explore the extension of this approach to more complex and
heterogeneous data distributions, as well as its integration with
complementary SSL strategies to further boost performance.
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5 Related Work

Pseudo Label (Lee et al., 2013) pioneered generating synthetic labels for unlabeled data using a model trained
on labeled data, laying the foundation for semi-supervised learning (SSL). Consistency regularization (Samuli
& Timo, 2017) followed, ensuring consistent predictions for diverse perspectives of the same data. Subsequent
SSL advancements focus on (i) refining high-quality pseudo-label identification and (ii) developing robust
thresholding methodologies. Incorporating curriculum learning further enhances deep learning training by
structuring data into a curriculum and integrating grouping concepts (Bengio et al., 2009a; Elman, 1993b).

Thresholding High-Quality Pseudo Labels. Confidence-based SSL methods have designed numerous
thresholding as pivotal strategies (Xie et al., 2020a; Sohn et al., 2020; Zheng et al., 2022), developing from
predefined single threshold (Lee et al., 2013) to considering class-wise adaptive thresholds changing during the
SSL training process (Zhang et al., 2021; Yang et al., 2023). FlexMatch (Zhang et al., 2021) introduces class-
level thresholds to alleviate the class imbalance in FixMatch (Sohn et al., 2020). SoftMatch (Chen et al., 2022b)
balances the quantity and quality of pseudo-labels using a truncated Gaussian function. FreeMatch (Wang
et al., 2022b) dynamically adjusts thresholds based on the model’s learning state. ShrinkMatch (Yang
et al., 2023) and SimMatch (Zheng et al., 2022) integrate self-supervised contrastive learning principles.
However, these methods often lack generality and may require extensive tuning for specific tasks or datasets.
CR-Match (Fan et al., 2021) introduces FeatDistLoss for regression tasks but falls short. In contrast, the
proposed GTR allows for multiple rounds of selection and feedback evaluation by dividing pseudo labels into
groups based on kernel density, improving pseudo-label quality.
Curriculum Learning. Curriculum learning enhances deep neural network (DNN) training by structuring
data into a progressively challenging curriculum (Bengio et al., 2009b; Elman, 1993a). Initially, models are
exposed to simpler samples, gradually introducing more complex ones. Various strategies classify "easy"
and "hard" samples (Cascante-Bonilla et al., 2021; Castells et al., 2020; Dogan et al., 2020; Hacohen &
Weinshall, 2019; Sinha et al., 2020) based on loss, label, feature space, or using fixed or dynamic curricula.
Loss-based curricula sequence data using teacher or student network confidence (Hacohen & Weinshall, 2019).
Label-based curricula manipulate labels for imbalanced data or increased usage (Zhang et al., 2021; Wang
et al., 2019). Feature-based curricula leverage feature density for training from clean to noisy examples (Guo
et al., 2018). Fixed curricula employ strategies like EMA of loss (Kong et al., 2021) or reducing contrastive
loss weight (Peng et al., 2021). Dynamic curricula use adjustable parameters (Saxena et al., 2019; Li & Gong,
2017), and SuperLoss de-emphasizes high-loss samples (Castells et al., 2020).

6 Conclusion

This paper introduces GTR, a versatile method tailored for SSL scenarios with the aim of enhancing robust
thresholding to improve overall performance and convergence speed. Through a comprehensive analysis of the
SSL training process and evolving data distributions, we devised the Grouping and Transporting methods,
enabling targeted processing for each distinct group. Extensive experiments across diverse classification
and regression datasets demonstrate that integrating GTR with popular SSL algorithms yields substantial
performance improvements and accelerates convergence. Our approach, grounded in a data-centric perspective
and the inherent characteristics of data, not only presents an effective technique for SSL but also holds the
potential for broader applicability across various areas.
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Appendix

The appendix is structured as follows:

(A) In Appendix A, we provide implementation details, including dataset settings, hyperparameter settings,
and training schedule.

(B) In Appendix B, we provide additional experimental results, including detailed training time statistics
across different datasets and settings.

(C) In Appendix C, we describe the extensive background of semi-supervised learning methods from three
aspects.

A Implementation Details

A.1 Dataset Setting

For a fair comparison, we train and evaluate all methods with the same ViT backbones and hyperparameters
in Table A2 based on USB (Wang et al., 2022a). As for CV, we evaluate SemiReward on common benchmarks:
CIFAR-100 (Krizhevsky et al., 2009), Euro-SAT (Helber et al., 2019), STL-10 (Coates et al., 2011), and
ImageNet (Deng et al., 2009) for image modality. Euro-SAT contains Sentinel-2 satellite images covering 13
spectral bands, which is not a natural image dataset as the other three. As for NLP, AG News (Zhang et al.,
2015) (news topic material), Yahoo! Answer (Chang et al., 2008) (topic classification), and Yelp Review (yel,
2014) (sentiment classification) to evaluate SSL algorithms on more fine-grained sentiment NLP classification
tasks. For audio classification, we choose UrbanSound8k (Salamon et al., 2014) with a maximum length of
4 seconds, ESC-50 (Piczak, 2015) with a maximum length of 5 seconds, and FSDNoisy18k (Fonseca et al.,
2019) with the length between 3 seconds and 30 seconds.

Table A1: Settings and details classification datasets in various modalities.
Domain Dataset #Label per class #Training data #Validation data #Test data #Class

CIFAR-100 2 / 4 50,000 - 10,000 100
CV STL-10 4 / 10 5,000 / 100,000 - 8,000 10

EuroSat 2 / 4 16,200 - 5,400 10
ImageNet 100 1,28,167 - 5,0000 1000

Yelp Review 50 / 200 250,000 25,000 50,000 5
NLP AG News 10 / 50 100,000 10,000 7,600 4

Yahoo! Answer 50 / 200 500,000 50,000 60,000 10
ESC-50 5 / 10 1,200 400 400 50

Audio UrbanSound8k 10 / 40 7,079 816 837 10
FSDnoisy18k 52-171 1,772 / 15,813 - 947 20

A.2 Hyperparameter and Training Settings

Basic Settings. As for classification tasks, regarding hyperparameter settings of SSL classification bench-
marks constructed in USB (Wang et al., 2022a), we adopted the original settings with pre-trained Transformers
as the backbone and made a few adjustments to adapt to SemiReward, as shown in Table A2. The total
training iterations are set to 220, and an early stop technique is used for calculating the convergence times.
Meanwhile, we use the full experimental settings in FlexMatch (Zhang et al., 2021) for ImageNet, which
uses 100 classes per class with ResNet-50 as the backbone. All methods are trained from scratch by SGD
(Loshchilov & Hutter, 2016) optimizer with a momentum of 0.9, a basic learning rate of 0.03, and a cosine
learning rate decay as USB. Note that Semi-AVES (Su & Maji, 2020) uses 224 × 224 input resolutions and
ViT-S-P16-224 with the labeled and unlabeled batch size of 32, and other settings are the same as STL-10.
We apply ℓ1 loss as the basic regression loss. All experiments are implemented with PyTorch and run on
NVIDIA A100 GPUs, using 4GPUs training by default.
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Table A2: Hyper-parameters and training schemes of SSL classification tasks based on USB.
Domain CV NLP Audio
Dataset CIFAR-100 STL-10 Euro-SAT AG News Yahoo! Answer Yelp-5 UrbanSound8k FSDNoisy ESC-50
Image Size 32 96 32 − −
Max Length − 512 4.0 5.0 5.0
Sampling Rate − − 16,000
Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 BERT-Base HuBERT-Base
Weight Decay 5e-4 1e-4 5e-4
Labeled Batch size 16 4 8
Unlabeled Batch size 16 4 8
Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-4 5e-5 5e-5 5e-4 1e-4
Layer Decay Rate 0.5 0.95 1.0 0.65 0.65 0.75 0.75 0.75 0.85
Scheduler η = η0 cos( 7πk

16K )
Model EMA 0.999
Eval EMA 0.999
Weak Augmentation Random Crop, Random Horizontal Flip − Random Sub-sample
Strong Augmentation RandAugment(Cubuk et al., 2018) Back-Translation (Xie et al., 2020a) Random Sub-sample, Gain, Pitch, Speed

Table A3: Top-1 error rate (%), performance gain, and training speedup times on nine SSL classification
datasets with CV, NLP, and Audio modalities in various label settings. R.GTR refers to Reward-based GTR.
Performance gains and training speedup times with R.GTR are compared to the baseline (Base).

Domain Dataset (Setting)
Pseudo Label FlexMatch Avg. SpeedupBase +SR R.GTR Base +SR R.GTR

Audio

ESC-50 (250) 5.700 7.125 5.500 10.053 3.142 2.395 ×2.617
ESC-50 (500) 6.750 3.214 3.014 10.806 4.912 4.026 ×2.462

FSDnoisy18k (1773) 7.467 8.297 7.267 12.133 8.089 6.954 ×1.386
UrbanSound8k (100) 5.250 5.833 5.050 4.728 1.525 0.905 ×3.131
UrbanSound8k (400) 4.217 6.024 4.017 2.833 2.361 1.676 ×1.370

NLP

AG News (40) 2.400 1.714 1.514 6.267 1.333 0.728 ×5.095
AG News (200) 2.889 1.699 1.499 3.556 1.693 1.060 ×2.641

Yahoo! Answer (500) 0.178 0.445 0.222 8.711 5.807 3.851 ×1.532
Yahoo! Answer (2000) 8.689 1.889 1.689 8.122 1.692 1.059 ×6.406

Yelp Review (250) 22.400 22.400 22.200 20.066 20.066 12.393 ×1.314
Yelp Review (1000) 1.822 4.673 1.622 21.411 16.470 11.742 ×1.473

CV

CIFAR-100 (200) 9.320 11.314 9.120 54.280 49.345 35.977 ×1.265
CIFAR-100 (400) 14.920 13.564 13.364 100.240 94.044 68.929 ×1.285

STL-10 (20) 0.528 1.320 0.328 11.760 8.400 5.792 ×1.820
STL-10 (40) 0.268 0.693 0.068 9.556 7.351 6.274 ×2.732

Euro-SAT (20) 1.196 5.980 0.996 14.320 17.900 6.887 ×1.640
Euro-SAT (40) 1.092 5.460 0.892 21.040 23.378 11.572 ×1.521

Semi Aves 3959 (3959) 19.212 16.720 9.375 82.064 71.248 35.922 ×2.167

Settings of GTR with SemiReward. We provide detailed hyper-parameters and settings for SemiReward
training. The two-stage online training of the rewarder R and generator G is trained by Adam (Kingma & Ba,
2014) optimizer with a learning rate of 0.0005 for all tasks, independent of the student model’s optimization.
For each training step after T iterations, R infers once and selects high-quality pseudo labels for the student
with the average reward score as the threshold τ . The generator G utilizes a 4-layer MLP (only containing
FC layers and ReLU) with 256, 128, and 64 hidden dimensions.

B Extensive Experiment Results

B.1 Details in Speedup

In Sec. 4, we give the average speed gain but not the specific training time. Table A3 gives the different
training times corresponding to the nine sets of data sets in the three modes in the main text. We stipulate
that the calculation is on a single NVIDIA A100 GPU to carry out relevant statistics, and the reported unit
is the total hours.
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C Extensive Related Work

C.1 Self-training

In semi-supervised learning (SSL), self-training frameworks (Rosenberg et al., 2005; Grandvalet & Bengio,
2004; Yarowsky, 1995) play a very important role in unlabeled data utilization. Then, pseudo-labeling (Lee
et al., 2013), as one of the classic self-training ways, pioneered the generation of artificial labels for unlabeled
data. However, this embodiment faces the need for high-quality labels due to the problem of confirmation
bias (Arazo et al., 2020). Subsequent work will mainly address this problem from two perspectives: one is to
design a class or combine multiple methods to improve the quality of pseudo-label generation and application,
and the other is to consider enhancing the network’s acceptance of pseudo-labels, that is, a small number of
low-quality pseudo-labels will not affect the overall prediction of the network.

Consistency Regularization. Temporal Ensembling (Samuli & Timo, 2017) first proposed consistency
regularization to ensure consistent predictions for similar data points, which has become a basic method
for generating high-quality pseudo labels. Based on this, MixMatch (Berthelot et al., 2019b) and its
variants (Berthelot et al., 2019a; Liu et al., 2023) performs data augmentation on unlabeled data, inputs
multiple data into the same classifier, obtains different predicted classification probabilities, and uses a class
method to make the average variance of multiple probability distributions smaller. UDA (Xie et al., 2020a)
goes a step further and starts to use two branches of weak and strong augmented samples and regards the
predictions of the weak augmentation branch as the target of the strong augmentation branch to improve
the consistency of the pseudo-label and predictions. Then, ReMixMatch (Berthelot et al., 2019a) uses the
distribution alignment method to encourage the marginal distribution of predictions for unlabeled data
to be close to the marginal distribution of ground truth labels. Fixmatch (Sohn et al., 2020) designs a
fixed confidence threshold to filter pseudo labels so that the high-quality pseudo-labels can be used in the
SSL training process. The following works, like FlexMatch (Zhang et al., 2021), deeply explore the idea of
confidence thresholds and propose curriculum learning to dynamically adjust the thresholds generated by
pseudo labels based on the training process. Additionally, softmatch (Chen et al., 2022b) shows the trade-off
between the quantity and quality of pseudo labels and also derives a truncated Gaussian function to weight
sample confidence. Freematch (Wang et al., 2022b) proposes a free matching method that adaptively adjusts
confidence thresholds based on the model’s learning state. The above methods essentially follow the strategy
of training teacher-student distillation. Even the most advanced methods still rely on the manual design of
confidence thresholds for screening. Although Meta Pseudo Labels (Pham et al., 2021) proposes to generate
more accurate pseudo labels with a meta learner through bi-level optimization, it doubles training times and
requires large-scale teacher models.

Tolerance to Inaccurate Pseudo Labels. Early SSL models have a certain sensitivity to low-quality
pseudo labels. Then, another aspect of work starts by improving the model’s tolerance to errors or low-quality
labels. Π-Model (Rasmus et al., 2015) adds two different perturbations to an input sample, inputs the network
twice to get the result, and then compares the consistency of the two results. This weakens the impact of
low-quality labels but may be less efficient since two forward propagations are required to calculate the loss.
Based on this, Temporal Ensembling (Samuli & Timo, 2017) maintains an EMA of label predictions on each
training example and penalizes predictions that are inconsistent with this goal. Mean Teacher (Tarvainen
& Valpola, 2017) further averages model weights instead of label predictions. This allows the use of fewer
labels than sequential integration during training and also improves the accuracy of testing. Meanwhile,
another branch of research assumes the labeled datasets are noisy and designs robust training or ad-hoc label
selection policies to discriminate inaccurate labels (Xu et al., 2021; Li et al., 2019a; Tan et al., 2021).

C.2 Disagreement-Based Models

From the view of disagreement SSL, it is required to train two or three different networks simultaneously and
label unlabeled samples with each other (Zhou & Li, 2010) so that they are less affected by model assumptions
and loss functions. Co-training (Blum & Mitchell, 1998) assumes that each data point has two different and
complementary views, and each view is sufficient to train a good classifier. Noisy Student (Xie et al., 2020b)
is assigned pseudo-labels by a fixed teacher from the previous round, while (Yalniz et al., 2019) scales up this
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training paradigm to billion-scale unlabeled datasets. MMT (Ge et al., 2019), DivideMix (Li et al., 2019a)
learn through multiple models or classifiers through online mutual teaching. Multi-head Tri-training (Ruder &
Plank, 2018) uses training to learn three classifiers from three different training sets obtained using bootstrap
sampling. In these methods, each classifier head is still trained using potentially incorrect pseudo-labels
generated by other heads. Afterward, the classifier for pseudo-labels generated by DST (Chen et al., 2022a)
is trained with unused pseudo-labels, thus having better tolerance to inaccurate pseudo-labels.

C.3 Self-supervised Learning for SSL

Self-supervised contrastive learning (CL) approaches (Chen et al., 2020) are also applied to SSL, such
as CoMatch (Li et al., 2021) that first introduced CL to the consistency regularization framework.
ShrinkMatch (Yang et al., 2023) allows the model to search for contracted class space adaptively. In
detail, for each uncertain sample, ShrinkMatch dynamically defines a shrunk class space, including the original
top-1 class and less likely classes. Similarly, SimMatch (Zheng et al., 2022) uses semantic and instance
similarity for mutual calibration. It uses the labeled data to train a semantic classifier and uses this classifier
to generate pseudo labels for the unlabeled data. Meanwhile, ReMixMatch (Berthelot et al., 2019a) and
CR-Match (Fan et al., 2021) utilize rotation prediction as the auxiliary task for SSL. Moreover, fine-tuning
a pre-trained model on labeled datasets is a widely adopted form of transfer learning (TL), and several
recent works (Li et al., 2018; 2019b; You et al., 2020; Ximei et al., 2021) like Self-Tuning (Ximei et al., 2021)
combining TL with SSL methods. Self-Tuning (Ximei et al., 2021) and HCR (Tan et al., 2022) introduce CL
pre-trained models as the regularization to mitigate confirmation bias in TL.

C.4 Adversarial Training for SSL

In the realm of SSL, innovative approaches have emerged that utilize adversarial training. One approach
involves generating synthetic data (Odena, 2016; Dai et al., 2017) using a generator network and assigning it to
a new "generated" class. The goal is to make the discriminator network provide class labels for these synthetic
samples. Another line of research creates adversarial examples through techniques like VAT (Miyato et al.,
2018), which adds noise to input data; VAdD (Park et al., 2018), introducing an adversarial exit layer into the
model’s architecture; and RAT (Suzuki & Sato, 2020), extending the concept of noise to input transformations.
These methods aim to impose local smoothness constraints on the model’s learned representations without
relying on pseudo-labels during training. These advancements enhance model robustness and generalization,
particularly in data-scarce scenarios, by utilizing latent data distribution structures for more effective learning.
This research contributes significantly to improving SSL algorithms, addressing challenges in leveraging
unlabeled data to enhance the applicability and performance of machine learning models in real-world
applications. These innovative adversarial training approaches are poised to advance SSL.
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