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Abstract

Semi-supervised learning (SSL) digs unlabeled data through pseudo-labeling when labeled data
is limited. Despite various auxiliary strategies to enhance SSL training, the main challenge lies
in how to determine reliable pseudo labels with a robust thresholding algorithm based on quality
indicators (e.g., confidence scores). However, the latest methods for distinguishing low or high-quality
labels require complex-designed thresholding strategies but still fail to guarantee robust and efficient
selection. Empirically, we group the quality indicators of pseudo labels into three clusters (easy,
semi-hard, and hard) and statistically reveal the real bottleneck of threshold selection lying in the
sensitivity of separating semi-hard samples. To this end, we propose an adaptive Grouping and
Transporting for Robust thresholding (dubbed as GTR) that efficiently selects semi-hard samples
with test-time augmentations and consistency constraints while saving the selection budgets of easy
and hard samples. Our proposed GTR can effectively determine high-quality data when applied to
existing SSL methods while reducing redundant selection costs. Extensive experiments on eleven
SSL benchmarks across three modalities verify that GTR achieves significant performance gains and
speedups over Pseudo Label, FixMatch, and FlexMatch.

1 Introduction

Over the past decades, deep learning (DL) has made significant strides across diverse applications and modalities (He
et al., 2016; Devlin et al., 2018; Dong et al., 2018). However, the majority of tasks operate under supervised learning
(SL), which necessitates manual data labeling that is constrained by limited quantity and resource-intensive efforts. To
overcome these limitations and leverage extensive unlabeled data, semi-supervised learning (SSL) has emerged as a
promising solution. Holistically, SSL exploits information from both unlabeled and limited labeled data (Tarvainen &
Valpola, 2017; Sohn et al., 2020) within the self-training paradigm of pseudo-labeling (Lee et al., 2013), where models
are designed to be trained using unlabeled data and pseudo-labels assigned by their own predictions.

As SSL continues to develop, a crucial avenue for advancing mainstream methods lies in establishing a well-designed
selection method (Zhang et al., 2021) or a robust quality indicator (Li et al., 2024) for more accurate pseudo label
selection. Existing approaches predominantly rely on threshold-based pseudo-labeling strategies (Sohn et al., 2020; Kim
et al., 2022) based on confidence scores (Lee et al., 2013), designing refined class-wise thresholding schemes (Wang
et al., 2022b) or dynamic thresholding policies throughout the whole training process (Zhang et al., 2021). However,
these thresholding methods, with their complex thresholding values or schedules, are still linear classification algorithms
to separate whether the pseudo labels are reliable and thereby exhibit instability, which requires substantial manual
intervention but fail to leverage the inherent distributions of indicators. Taking FlexMatch (Zhang et al., 2021) as an
example, the density estimation in Figure 1(a) demonstrates that training leads to instability and a lack of distinct class
differentiation. The overlapping confidence distributions also indicate the model’s struggle to distinguish between classes
both before and after training clearly. Recent methods such as FreeMatch (Wang et al., 2022b) and SoftMatch (Chen
et al., 2022b) also face similar challenges. These methods focus on sample level but employ a simple mean threshold
that only captures the inter-class properties of labels, making them sensitive to threshold variations and thus leading to
instability.

Our study addresses these challenges at once by constructing a robust thresholding mechanism, termed Grouping and
Transporting Robust thresholding (GTR), tailored for SSL. Unlike traditional methods that solely rely on inter-class
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Figure 1: Distribution of pseudo-label indicators and selection boundaries on CIFAR-100 (400 labels). (a) In FlexMatch, confidence
score distributions show slight changes before and after training, with separation boundaries (yellow lines) located at density
peaks, making it difficult to distinguish classes effectively. (b) In GTR, leveraging intra-class properties for pseudo-label selection,
separation boundaries are placed at low-density regions. The grouping of three types of samples (red lines) captures essential label
characteristics. Combining grouping with transporting significantly enhances distribution separability, addressing the instability
issues seen in existing methods.

Table 1: Characteristics of the pseudo-label selection process, comparing typical SSL algorithms and the proposed GTR. The
compared characteristics or strategies include Robust 7 (the thresholding guarantees robustness or not), Speedup (boosting the
convergence or not), Gain (improving performance or not), and Thresholding (the method of filtering pseudo labels). G&T denotes
the proposed Grouping and Transporting as a robust thresholding way.

Method Pseudo Labeling FixMatch FlexMatch FreeMatch SemiReward GTR
Robust 7 X X X X X 4
Speedup X v X 4 v v
Gain X X 4 4 v v
Thresholding None Hard Dynamic Adaptive Mean G&T

separation, our GTR leverages the inherent properties of the indicator distribution through unsupervised clustering. As
shown in Figure 1(b), GTR mitigates the threshold sensitivity by focusing on the intra-class properties, particularly
in those semi-hard groups. This innovative grouping design enables effective pseudo-label selection, enhanced by
the transportation method, which refines the indicator distribution. Table 1 compares existing schemes and their
characteristics, finding Grouping and Transporting mechanism in GTR ensures effective pseudo-label thresholding,
leading to improved convergence speed and performance gains, setting it apart as a superior approach for SSL tasks.
We further conduct a detailed analysis with grouping to gain an in-depth understanding of the intrinsic characteristics of
the entire SSL training pipeline from a data perspective.

Empirical research and statistical analysis show that the proposed GTR can accelerate model training and achieve
excellent results with fast convergence and no extra computations. Based on the popular USB benchmarks (Wang et al.,
2022a), we selected representative SSL methods to conduct comparative experiments for verifying the versatility and
robustness of our GTR method. Our main contributions are threefold:

» We empirically reveal that the impediment of existing thresholding techniques lies in their inability to separate the
semi-hard group of the indicator when selecting high-quality pseudo labels. This insight highlights the need for a
specially designed method to address the issue.

* We design a transporting method tailored for three groups of samples: easy, semi-hard, and hard. By employing
kernel density estimation, we analyze the SSL training pipeline and leverage the inherent nature of indicator
distribution to elucidate how our method promotes the semi-hard group towards a better-optimized distribution,
such as that of the easy group.
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* We seamlessly integrate GTR into existing SSL algorithms without incurring any additional overhead. Extensive
experiments across eleven SSL benchmarks further validate the reliability and effectiveness of GTR, showcasing its
applicability over diverse SSL modalities.

2 Problem Definition

Notations. Semi-Supervised Learning (SSL) extends Supervised Learning (SL) by using a small labeled dataset
Dy, = {(z},y))}Y" and a large unlabeled dataset Dy = {z¥}YY, with N, < Nys. For a given classification task,
the student model fg produces prediction logits fs(x) = y € R®, where C is the label dimension. The SSL training
involves three processes: (i) pseudo-label generation produces pseudo labels §* by a trained teacher model fr(z*) on
Dy, which are then converted to one-hot encoding; (ii) pseudo-label filtering selects samples for the loss calculation by
evaluating their pseudo-label quality. This is done using a quality score p(-) and a threshold 7, retaining only samples
whose scores exceed the threshold; (iii) learning objectives are computed by the sum of the supervised loss £ and
unsupervised loss £, L = L + L.

By,
L= ;H(yf,fs(wm))), M

where w(-) denotes weak data augmentations, and 7{(-, -) is the loss function for SL tasks (e.g., cross-entropy, ¢1 loss).
For a mini-batch of By unlabeled data, the unsupervised loss is:

By
Ly = B% ;w > ) (i £ (1)), *

where Q(z}") denotes strong augmentations, p¥* is the quality score (e.g., max confidence) for the pseudo-label §¥*, T is
a predefined threshold, and I(-) is the indicator function. Consistency regularization typically involves updating the
student model’s (fs) parameters to the teacher model (fr) via copying or exponential moving average (EMA) and
requires predicted classification confidence to identify reliable labels.
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Figure 2: Pseudo-label selection with 100-epoch training on CIFAR-100 (400 labels) with FixMatch. (a) Changing trend of
confidence threshold for each of the five randomly selected classes. (b) The variation trend of mean and variance statistics for three
groups clustered on the confidence scores. (c) The variation trend of mean and variance statistics of the three groups clustered on the
reward indicators.

The Devil Lies in Thresholding. In SSL frameworks, the pseudo-label filtering process is the most crucial part
(Arazo et al., 2020; Zhang et al., 2021), which can be regarded as a binary classification task: a thresholding algorithm
predicts whether the pseudo label y* is reliable (as positive) or inaccurate (as negative) according to its quality score
p(y*). With two widely employed quality scores (confidence scores (Lee et al., 2013; Xie et al., 2020a) and reward
scores (Li et al., 2024)), existing SSL methods have designed numerous thresholding strategies. However, no matter
how adaptive or fine-grained thresholds are adopted (Wang et al., 2022b), existing thresholding algorithms are equal to
linear classifiers and neglect the intrinsic binary distributions of distinguishing between two types of pseudo labels. As
shown in Figure 1(a) (right), it is difficult to separate the overlapping, Gaussian-like quality-score distributions by linear
decision boundaries at the densest locations (i.e., the yellow lines), which will cause poor separability in the existing
thresholding methods with class confidences shown in Figure 2(a). To reveal the cause of this poor separability, we first
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cluster the quality scores into three consistent groups by a clustering algorithm (Reynolds et al., 2009) to investigate the
properties of the thresholding task. As indicated in Figure 1(b) (left) or 4(a), we found that both the scores of unreliable
and reliable pseudo labels are clustered into two distinct distributions (dubbed as hard and easy groups), while the
middle group (dubbed as semi-hard) is similar to both the hard and easy groups. The semi-hard distribution nearly
corresponds to the dense region of original quality score distributions, which can be hard to separate and cause issues
with separability during the entire SSL training as shown in Figure 2.

3 Robust Grouping and Thresholding for Unlabeled Data

To address the poor separability discussed in Section 2, we introduce GTR, which employs robust thresholding through
grouping and transporting. Unlike traditional methods that use simple linear thresholds, GTR clusters pseudo-labels
into distinct groups, effectively filtering high-quality labels. This approach mitigates the separability issues caused by
overlapping quality score distributions, ensuring more accurate and stable pseudo-label selection and improving SSL
task performance.

3.1 Grouping: Indicator-based Property Mining

At each training step, for each sample in an unlabeled mini-batch, we compute its quality score (e.g., confidence).
We then employ the unsupervised Gaussian Mixture Model (GMM) (Reynolds et al., 2009) to divide the samples
in the mini-batch into three clusters based on their univariate quality scores. After fitting, the GMM components
are labeled according to their mean quality score: the cluster with the highest mean is designated "easy’ (X},), the
lowest is "hard’ (X)), and the middle one is ’semi-hard’ (X3). This results in the distribution of three types of samples:

Dy = {ng, Xy, X,’Y‘} The size of each group in a mini-batch is denoted as A, B, I". The posterior probability that a

sample z; belongs to a cluster k € {«, 3,7}, given the GMM parameters 6, is denoted P(k|x;, ). In this probability
distribution, each data point has associated probabilities of belonging to the easy, semi-hard, and hard groups, summing
up to 1. Thus, we accomplish sample-level grouping. The choice of the GMM method is due to its effectiveness
in modeling complex, multi-modal 1D distributions, which methods like K-means may struggle with. As shown in
Figure 2, compared to class-level grouping, the variations among groups obtained through this method are relatively
well-separated and align with the intuition of modeling the label space, which typically involves both intra-class and
inter-class modeling. Figure 1(a) illustrates that class-level grouping mainly considers inter-class attributes, reflecting
only part of the properties. Different samples within the same class can have varying difficulty levels, leading to more
uncertainty during thresholding. Whether using a hard, class-level, or adaptive threshold, traditional methods essentially
separate labels below a threshold under limited modeling. The grouping method avoids this rigid thresholding and
includes the nature of intra-class properties, making the preparation for thresholding more comprehensive. Meanwhile,
using more robust quality scores like a reward score ; = R(z¥,y?) (Li et al., 2024) further enhances the separability
in Figure 2(c).
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Figure 3: The average quality indicator for each group is calculated on CIFAR-100 (400 labels) after grouping the unlabeled data.
The number of filters applied and resulting changes in the quality indicator are mapped out. Thresholds are set as the mean for each
group. After filtering, samples are scored and re-grouped.
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3.2 Transporting: Promoting Semi-hard to Easy

Motivation. Building upon the grouping method, we aim to design distinct processing strategies for each group. To
understand the properties of these groups, we conducted a motivating analysis. Using a trained model, we took the
unlabeled dataset (where true labels are known for analysis but unused in training) and repeatedly filtered the samples
based on their group’s mean quality score. We then measured the pseudo-label accuracy against the true labels. As
shown in Figure 3, the accuracy of the semi-hard group improves steadily with more filtering. To quantify this, we used
the Pearson correlation coefficient (Cohen et al., 2009) to measure the association between the number of filtering steps
(vector X = {1, ...,10}) and the pseudo-label accuracy (vector ') for each group.

_ n(XY) - . X)Y)
VInZ X2 = (S XA Y - (ZY)F

3)

The results showed a strong, statistically significant correlation for the semi-hard group (pg = 1.415 x 10~7), while
the easy (p, = 0.189) and hard (p., = 0.067) groups were less sensitive. This implies that the semi-hard samples are
the most malleable and that designing a targeted process for them is key to improving SSL performance.

Transporting Procedure. Based on this insight, we designed the following three-part transporting method for each
mini-batch: (i) Accepting Easy Samples: Samples in the easy group (X,,) are considered reliable and are used directly
to compute the standard unsupervised consistency loss L. (ii) Addressing Semi-hard Samples: This group (Xj3) is
highly sensitive. To enhance robustness, we apply an additional consistency objective. For each semi-hard sample,
besides the standard loss on a strongly augmented view Q(x%), we apply one additional Test-Time Augmentation
(TTA) (Shanmugam et al., 2021) and compute a TTA-based consistency loss against the same pseudo-label. This
encourages the model to produce stable predictions for these samples under different augmentation policies. For TTA,
we randomly apply horizontal and vertical flipping. (iii) Addressing Hard Samples: For the hard group (X, ), we filter
out the least reliable samples. We compute the median quality score of this group. Samples with scores below the
median are discarded and do not contribute to the loss in the current iteration. The retained half remains in the unlabeled
pool and is subject to re-grouping in subsequent training steps. The overall unsupervised loss is the sum of the standard
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Figure 4: Illustration of the sample pseudo-label quality indicator kernel density estimation and compares the difference in the sample
pseudo-label quality indicator kernel density distribution obtained before and after training. The abscissa denotes the reward score,
which is the indicator we selected, and the ordinate is the density distribution of the quality indicator for each sample after kernel
density estimation. (a) Before and after distribution without transporting. (b) The figure on the left is the result before transporting,
and the figure on the right is the result after transporting. (c) When ¢ > 7', Changes are distributed in two adjacent epochs.

consistency loss on easy and semi-hard samples, and a TTA-based consistency loss for semi-hard samples:

3 H(yl, Q) )))+A|B | ZH(%, (@), @

i€Bau

Ly =
|Bauﬁ|

where B,, and Bg are the sets of easy and semi-hard samples in the mini-batch, respectively. T (-) represents the TTA
function, and X is a hyperparameter balancing the two loss terms. The complete GTR process is outlined in Algorithm 1.
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Algorithm 1 GTR Training Step

1: Input: Labeled minibatch {z;, y;}, Unlabeled minibatch {z, }

2: Input: Student model fg, Teacher model f7, Quality score function p(-)

3: Input: Strong aug Q(-), Weak aug w(-), TTA aug T(-), weight A

4: // Supervised Loss

s Ls & ey X o, fs(w(@)

6: // Unsupervised Processing

7: Initialize score list P < [|, pseudo-label list ¥ < ||

8: for each z¥' in {x, } do

9: pi < p(fr(w(z}))) > Get quality score from teacher
10: §; « one-hot(argmax( fr(w(z¥)))) > Get pseudo-label
11: Append p; to P, §; to Y

12: end for

13: // 1. Grouping

14: Fit a 3-component GMM on the scores P.

15: Partition {x,, } into easy (B,), semi-hard (Bg), and hard (B.,) sets based on GMM cluster means.
16: // 2. Transporting and Loss Calculation

17: EU,std 0, ACU,tta ~0

18: for each sample z; in B, U Bg do

190 Lysia + Lusta + H(Gi, f5(2(2:)))
20: end for
21: for each sample x; in Bg do
22 Lutta < Lutta + H(Gi, fs(T(x:)))
23: end for
24: // Hard samples in B are filtered by median and do not contribute to the loss
2 Lu 4 iy + A

26: Liotal < Ls + Ly

27: Update fs using Liotqi-
28: Update fr using EMA of fg.

3.3 Essential Characteristics of SSL Training

As mentioned in Sec. 2, most SSL methods focus on constructing appropriate quality scores and designing filtering
mechanisms based on them. While previous research has established effective scores, a deeper analysis of their
distributional dynamics throughout the training process is often lacking. Our work aims to fill this gap by exploring the
properties of our grouping and transporting pipeline to ensure its reliability and robustness.

A key empirical finding is that the distribution of the univariate quality scores is typically not a simple unimodal shape
but is often elongated and multi-modal. This complex structure makes simple thresholding ineffective. To properly
model these properties, we employ a Gaussian Mixture Model (GMM). For a given univariate quality score z € R, the
GMM is defined as:

K
p(z) = N (2|, o), ©)

k=1

where K = 3 is the number of components (easy, semi-hard, hard), 7, is the mixture weight, and p;, and o,% denote
the mean and the variance of each one-dimensional Gaussian component, respectively. The model parameters are
estimated via the Expectation-Maximization (EM) algorithm (MacQueen et al., 1967). The assignment of each sample
to a specific group is then determined by the highest posterior probability, as detailed in Sec. 3.1.

In our training pipeline, monitoring the changes in these quality score distributions is crucial. As shown in Figure 4(a),
without the transporting mechanism, the semi-hard group’s distribution remains largely stagnant, even as the overall
score trend moves upward. This highlights the limitations of methods that do not specifically address these challenging
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Table 2: Top-1 error rate (%), performance gain (%), and training speedup times on nine classification datasets across CV, NLP,
and Audio modalities in various label settings. R.GTR denotes GTR with the reward indicator, and its gains and speedup times are

calculated upon baselines (Base).

Domain|  Dataset (Seting) Pseudo Label FlexMatch Average
Base +SR R.GTR | Base +SR R.GTR | Gain |Speed.
ESC-50 (250) 38.42+0.8533.33+0.9732.12+0.19(36.83+0.5132.58+0.51 30.11+£1.04| +6.51 | x2.62
ESC-50 (500) 28.92+0.2427.65+0.3226.91+0.61/27.75+0.4125.92+0.3125.11+0.21| +2.33 | x2.46
Audio | FSDnoisy18k (1773) {34.60+0.5533.24+0.8231.10+0.88(26.29+0.1725.63+0.28 25.10+0.18| +2.35 | x1.39
UrbanSound8k (100) (37.7440.9636.47+0.6536.11+0.32/37.88+0.46 36.06+0.9335.17 +0.92| +2.17 | x3.13
UrbanSound8k 00y [27.45+0.9625.27+0.6524.01+0.71123.78+0.4623.45+0.9321.02+0.54) +3.10 | x1.37
AG News (40) 13.89+0.1112.63+0.2111.32+0.52{11.11+1.1910.60+0.6910.23+0.70{ +1.73 | x5.09
AG News (200 13.10+03912.10+0.58 11.24+0.51{13.27+0.1311.05+0.1410.11+0.29| +2.15 | x2.64
NLP Yahoo! Answer (500) [34.87+0.5035.08+0.4033.41+0.51134.73+0.0933.64+0.7331.03+0.61) +2.58 | x1.53
Yahoo! Answer (2000)(33.14+0.7032.50+0.4231.33+0.18/31.06+0.3229.97+0.1029.21 +0.09| +1.83 | x 6.41
Yelp Review 250) [46.09+0.1542.99+0.1442.43+0.66{46.09+0.1542.76+0.3342.32+0.44| +3.72 | x1.31
Yelp Review (1000) [44.06+0.1442.08+0.1538.96+0.6440.38+0.3337.58+0.1936.21+0.34| +4.64 | x1.47
CIFAR-100 200) |32.78+0.2031.94+0.5730.17+0.27125.72+0.3523.74+1.3922.61+0.97| +2.86 | x1.27
CIFAR-100 400) |25.16+0.6723.84+0.2021.41+0.52/17.80+0.5717.59+0.3516.03+0.36| +2.76 | x1.29
STL-10 0) 20.53+0.1217.37+0.4716.31+0.95/11.82+0.5110.20+1.11 9.83+0.52 | +3.11 | x1.82
CV STL-10 (100) 11.25+0.8110.88+1.48 9.05+0.27 | 7.13+020 7.59+057 7.02+0.69 | +1.16 | <2.73
Euro-SAT (20 25.25+0.7223.65+04122.11+0.52| 5.54+0.16 4.86+1.00 4.09+0.43 | +2.30 | < 1.64
Euro-SAT (40) 12.82+0.81 8.33+033 7.69+0.82|4.51+024 3.88+069 3.69+0.32 | +2.98 | x1.52
Semi Aves 3959 (3959)/40.35+0.3037.93+0.4537.15+0.76/32.48 +0.1531.23+0.00 30.75+0.41| +2.47 | x2.21

samples. In contrast, GTR’s grouping models the intra-class difficulty distribution, and the transporting mechanism
provides a targeted tool for refinement.

Through this transport-driven alignment (Figure 4(b)), the semi-hard group’s distribution is encouraged to converge
towards the easy group’s manifold. This is governed by our proposed loss in Eq. 4. The core idea is that through targeted
processing, the semi-hard group’s distribution is gradually refined, ultimately achieving an equilibrium where its quality
is comparable to the easy group, as manifested by the mirrored inter-epoch quality distributions in Figure 4(c).

4 Experiments

4.1 Experimental Setup

Comparison Methods for Tasks. To unveil the efficiency of GTR, we conduct a comprehensive comparison with
mainstream SSL algorithms, including FlexMatch, FixMatch, and Pseudo Label (Lee et al., 2013; Arazo et al., 2020),
which establish performance baselines. The essential differences between these methods are explained in Table 1. Our
evaluation initially focuses on assessing the algorithms’ performance regarding classification error rate and training
convergence speed, undertaking a two-fold comparison. Firstly, we introduce FlexMatch and Pseudo Label as baselines,
SemiReward as one of the comparison objects, and then use GTR based on the reward indicator as our method for
comparative analysis. Secondly, when confidence scores or reward scores served as the indicator, we introduced
confidence-based and reward-based GTR for further analysis.

Task Configurations. Our experiments cover eleven SSL datasets across three popular modalities, each with specific
settings outlined below. Details of datasets and experiment configurations are provided in Appendix A.1.

(1) For CV tasks, we investigate challenging datasets including CIFAR-100 (Krizhevsky et al., 2009), STL-10 (Coates
et al., 2011), EuroSAT (Helber et al., 2019), and ImageNet (Deng et al., 2009). The backbone architectures
used were the ImageNet pre-trained Vision Transformers (ViT) (Dosovitskiy et al., 2021) or randomly initialized
ResNet-50 (He et al., 2016).
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Table 3: Top-1 error rate (%), performance gain (%), and training speedup times on SSL classification datasets with CV in various
label settings under FixMatch. C.GTR refers to confidence indicator-based GTR, while R.GTR denotes reward indicator-based GTR.
Performance gain and speedup times for R.GTR are compared to the baseline (Base).

FixMatch Average

Base +C.GTR +SR +R.GTR | Gain | Speed.
CIFAR-100 200) | 29.6+090 28.72+2.44 28.42+056 26.14+1.09 | +3.46 | x2.12
CIFAR-100 @00y | 19.56+052 19.04+0.10 18.21+025 17.79+055 | +1.77 | x1.67
STL-10 (o) 16.15+180 14.97+1.07 12.92+071 11.80+0.74 | +4.35 | x1.98
STL-10 (100 8.11+068 7.68+048 7.72+041 7.22+046 | +0.89 | x1.51
Euro-SAT 0) | 13.444353 11.56+0.21 10.69+026 9.36+080 | +4.08 | x1.93
Euro-SAT @0y | 591+202 5.13+028 4.91+017 4.35+057 | +1.56 | x2.13

Dataset (Setting)

(i) In NLP, we consider three datasets: AG News (Zhang et al., 2015), Yahoo! Answers (Chang et al., 2008), and Yelp
Review (yel, 2014). The backbone encoder for these tasks is the self-supervised pre-trained BERT (Devlin et al.,
2018).

(iii) In audio tasks, our study covers three datasets: UrbanSound8k (Salamon et al., 2014), ESC-50 (Piczak, 2015), and
FSDNoisy18k (Fonseca et al., 2019). The pre-trained backbone adopts HuBERT (Hsu et al., 2021).

Implementations. GTR does not require tunable hyperparameters except for using GMM for the grouping step,
which follows the default setting given by (Reynolds et al., 2009). As for the quality indicators of confidence and reward
scores in the baselines, we follow the official hyper-parameters and training settings in FixMatch and SemiReward.
More specific training and hyperparameter settings are provided in Appendix A.2.

4.2 Comparison Results on Semi-supervised Benchmarks

Table 2 illustrates the significant performance improvements achieved by integrating reward indicator-based GTR with
two representative SSL algorithms, significantly improving training efficiency and final performance. Notably, GTR
exhibits an average performance gain of 6.51% on ESC-50 with 250 labels. Relative to SemiReward, GTR also performs
well on fine-grained data sets. The GTR method further promotes the convergence of the model training process, as
can be seen from the reduction in training time, as detailed in Appendix B. Table 3 illustrates that GTR based on
confidence continues to exhibit a positive impact on model convergence. Using FixMatch as the baseline, we conducted
comparisons by introducing SemiReward and employing confidence indicator-based GTR and reward indicator-based
GTR to highlight their respective effects. Notably, GTR based on confidence, as discussed in Sec. 3.1, exhibits a
smooth grouping strategy with a commendable promotional effect. On CIFAR-100, confidence indicator-based GTR
achieves a comparable effect to SemiReward but with lower overhead, omitting additional gradient calculations. In
contrast, reward indicator-based GTR incurs no extra overhead while reducing the number of student model forwards.
Our approach thus achieves improved convergence and acceleration outcomes efficiently and robustly. Sec. 3.3 has
explained such results and further demonstrated the superiority of GTR through these experiments.

Moreover, on the large-scale SSL benchmark ImageNet, as shown in Table 4, GTR noticeably reduces training time
and achieves lower error rates, e.g., FlexMatch+GTR outperforms previous SOTA methods, Freematch and Softmatch.
The basic method, FixMatch, also significantly benefits from combining with GTR and outperforms FixMatch simply
combined with SemiReward.

4.3 Analysis and Ablation

This section provides an empirical analysis of the proposed modules, verifies their functionalities, and examines the key
issues in the SSL training process, evaluating the impact of the proposed GTR.

Resource-Friendly SSL Training. Existing SSL training pipelines, like in SemiReward, require multiple forwards of
the student model to generate pseudo-label candidates (e.g., 6 times), leading to increased resource consumption in each
iteration. GTR can dramatically optimize the training process. Assuming % student models forwards per batch and
denoting the proportions of easy, semi-hard, and hard samples as «, (3, 7y, respectively, easy and hard samples do not
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need multiple forwards, while semi-hard samples only need one additional forward with TTA. Thus, the total forwards
per batch reduces to 2 while the computational cost of re-grouping after each epoch is also negligible.

Table 4: Top-1 error rate, performance gain, and training Table 5: Ablation of various clustering methods for the Group-
speedup times on ImageNet with 100 labels per class. GTR ing step on CIFAR-100 (400 labels). The classification accuracy
utilizes reward scores. (%) and the total training iterations are reported. HC denotes

Hierarchical Clustering.

Method Top-1 (%) Gain (%) Speedup

FixMatch 43.66 +0.00  x1.00 Types | Acc. | Iterations
FixMatch+SR 41.72 +1.94 %1.98 GMM Kambhatla & Leen (1994) | 84.01 | 108544 iters
FixMatch+GTR 41.12 +2.54 %2.58 K-means MacQueen et al. (1967)|83.25 | 139263 iters
FlexMatch 41.85 +0.00  x0.00 HC Eppstein (2000) 83.21 | 145408 iters
FreeMatch 40.57 +1.28 «1.50 DBSCAN Ester et al. (1996) 82.31| 77824 iters
SoftMatch 40.52 +1.33 x1.46

FlexMatch+GTR | 39.72 +1.49 x2.95

Confirmation of Group Filtering Thresholds. As described in Sec. 3.2, we screened samples from the semi-hard
and hard groups during training. The hard group is less sensitive to filtering than the semi-hard group, but it still impacts
training due to clustering updates each epoch. For semi-hard samples, we aim to align their distribution with the easy
group, using the mean of both groups as an indicator. To test this, we conducted ablation experiments. Table 6 shows
results for different thresholds: 7; (average of means of easy and semi-hard groups), 7o (geometric mean of means), and
73 (mean within semi-hard group). For the hard group, we evaluated the training impact. The results show that using
the geometric mean as the threshold increases time cost, likely due to first-order distance separability. Notably, using
the mean within the group slows convergence and reduces accuracy. Hard sample screening does not significantly affect
final performance but does influence convergence speed.

Table 6: Ablation experiments for two groups of thresholds on Semihard and Hard groups with FlexMatch on CIFAR-100 (400
labels). Top-1 accuracy (%) and training iterations are reported.

Group |[SemiHard| Acc. Iterations
1 84.01 108544 iters
Threshold To 83.95 165888 iters
T3 83.21 139263 iters
Group Hard | Acc. Iterations
v 84.01 108544 iters
Threshold| 3 18382 165888 iters

Selection of Clustering Methods and Grouping Numbers. As discussed in Sec. 3.1, we use GMM due to the
linear distribution of our clustered data, which enables non-spherical clusters and handles fuzzy points better. We also
tested alternative unsupervised methods for a clearer illustration. Figure 5 shows the indicator data distribution on
CIFAR-100, highlighting that GMM effectively models the flat and narrow distribution, which is difficult for other
methods. Experiments on CIFAR-100 with 400 labels further validate the necessity of GMM.

Table 7: Error (%) for different group numbers.  Table 5 shows these results, with GMM achieving the highest accuracy
Setting on Flexmatch with GTR using the re- (84 019%), demonstrating its effectiveness in capturing the probability dis-
ward indicator. tribution of such data and confirming it as the most suitable unsupervised
method. Moreover, we conduct further analysis of the number of groups.

Group Number | _ Error Since the semi-hard labels are likely to become easy with further training,
3 group 16.03+036 they help improve label quality progressively. As shown in Table 7, using
2 group 17.64+0.61 only two groups (easy and hard) would result in high misclassification at
4 group 15.97+042 the decision boundary, destabilizing training, while more than three groups
5 group 16.09+0.18 introduce unnecessary complexity without more performance gains.

Rethinking GTR Thresholding. Sec. 3.3 explores the SSL training process using the GTR method. Also,

9
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Figure 5 visually depicts the distribution of quality indicators on CIFAR-
100, revealing that the data tends to cluster within a more constrained,
non-elliptical region rather than conforming to a conventional hyper-
ellipsoidal structure. This distinctive pattern renders traditional unsu-
pervised techniques—such as K-means clustering—Iless effective, as
they often assume broader, more symmetric distributions. In contrast,
our GMM-based methodology adaptively identifies high-density re-
gions within the data, overcoming key limitations of prior class-wise
approaches and enabling more refined data-centric analyses. By cap-
turing subtle variations in pseudo-label quality, our method provides a
deeper, more interpretable framework for SSL, ultimately enhancing
model training through improved label reliability. Looking ahead, future
research will explore the extension of this approach to more complex
and heterogeneous data distributions, as well as its integration with complementary SSL strategies to boost performance
further.

0.6

Figure 5: [lustration df the distribution of the qual-
ity indicator on CIFAR-100, which is distributed
in a narrower rather than a hyperellipse pattern.

5 Related Work

Pseudo Label (Lee et al., 2013) pioneered generating synthetic labels for unlabeled data using a model trained on labeled
data, laying the foundation for semi-supervised learning (SSL). Consistency regularization (Samuli & Timo, 2017)
followed, ensuring consistent predictions for diverse perspectives of the same data. Subsequent SSL advancements
focus on (i) refining high-quality pseudo-label identification and (ii) developing robust thresholding methodologies.
Incorporating curriculum learning further enhances deep learning training by structuring data into a curriculum and
integrating grouping concepts (Bengio et al., 2009a; Elman, 1993b).

Thresholding High-Quality Pseudo Labels. Confidence-based SSL methods have designed numerous thresholding
as pivotal strategies (Xie et al., 2020a; Sohn et al., 2020; Zheng et al., 2022), developing from predefined single thresh-
old (Lee et al., 2013) to considering class-wise adaptive thresholds changing during the SSL training process (Zhang
et al., 2021; Yang et al., 2023). FlexMatch (Zhang et al., 2021) introduces class-level thresholds to alleviate the class
imbalance in FixMatch (Sohn et al., 2020). SoftMatch (Chen et al., 2022b) balances the quantity and quality of
pseudo-labels using a truncated Gaussian function. FreeMatch (Wang et al., 2022b) dynamically adjusts thresholds
based on the model’s learning state. ShrinkMatch (Yang et al., 2023) and SimMatch (Zheng et al., 2022) integrate
self-supervised contrastive learning principles. However, these methods often lack generality and may require extensive
tuning for specific tasks or datasets. CR-Match (Fan et al., 2021) introduces FeatDistLoss for regression tasks but
falls short. In contrast, the proposed GTR allows for multiple rounds of selection and feedback evaluation by dividing

pseudo labels into groups based on kernel density, improving pseudo-label quality.
Curriculum Learning. Curriculum learning enhances deep neural network (DNN) training by structuring data into a

progressively challenging curriculum (Bengio et al., 2009b; Elman, 1993a). Initially, models are exposed to simpler
samples, gradually introducing more complex ones. Various strategies classify "easy" and "hard" samples (Cascante-
Bonilla et al., 2021; Castells et al., 2020; Dogan et al., 2020; Hacohen & Weinshall, 2019; Sinha et al., 2020) based
on loss, label, feature space, or using fixed or dynamic curricula. Loss-based curricula sequence data using teacher or
student network confidence (Hacohen & Weinshall, 2019). Label-based curricula manipulate labels for imbalanced data
or increased usage (Zhang et al., 2021; Wang et al., 2019). Feature-based curricula leverage feature density for training
from clean to noisy examples (Guo et al., 2018). Fixed curricula employ strategies like EMA of loss (Kong et al., 2021)
or reducing contrastive loss weight (Peng et al., 2021). Dynamic curricula use adjustable parameters (Saxena et al.,
2019; Li & Gong, 2017), and SuperLoss de-emphasizes high-loss samples (Castells et al., 2020).

6 Conclusion

This paper introduces GTR, a versatile method tailored for SSL scenarios with the aim of enhancing robust thresholding
to improve overall performance and convergence speed. Through a comprehensive analysis of the SSL training process
and evolving data distributions, we devised the Grouping and Transporting methods, enabling targeted processing
for each distinct group. Extensive experiments across diverse classification and regression datasets demonstrate that
integrating GTR with popular SSL algorithms yields substantial performance improvements and accelerates convergence.

10
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Our approach, grounded in a data-centric perspective and the inherent characteristics of data, not only presents an
effective technique for SSL but also holds the potential for broader applicability across various areas.
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Appendix
The appendix is structured as follows:

(A) In Appendix A, we provide implementation details, including dataset settings, hyperparameter settings, and
training schedule.

(B) In Appendix B, we provide additional experimental results, including detailed training time statistics across
different datasets and settings.

(C) In Appendix C, we describe the extensive background of semi-supervised learning methods from three aspects.

A Implementation Details

A.1 Dataset Setting

For a fair comparison, we train and evaluate all methods with the same ViT backbones and hyperparameters in
Table A2 based on USB (Wang et al., 2022a). As for CV, we evaluate SemiReward on common benchmarks: CIFAR-
100 (Krizhevsky et al., 2009), Euro-SAT (Helber et al., 2019), STL-10 (Coates et al., 2011), and ImageNet (Deng
et al., 2009) for image modality. Euro-SAT contains Sentinel-2 satellite images covering 13 spectral bands, which
is not a natural image dataset like the other three. As for NLP, AG News (Zhang et al., 2015) (news topic material),
Yahoo! Answer (Chang et al., 2008) (topic classification), and Yelp Review (yel, 2014) (sentiment classification) to
evaluate SSL algorithms on more fine-grained sentiment NLP classification tasks. For audio classification, we choose
UrbanSound8k (Salamon et al., 2014) with a maximum length of 4 seconds, ESC-50 (Piczak, 2015) with a maximum
length of 5 seconds, and FSDNoisy18k (Fonseca et al., 2019) with the length between 3 seconds and 30 seconds.

Table A1: Settings and details classification datasets in various modalities.

Domain Dataset #Label per class  #Training data  #Validation data  #Test data  #Class
CIFAR-100 2/4 50,000 - 10,000 100
Cv STL-10 4/10 5,000/ 100,000 - 8,000 10
EuroSat 2/4 16,200 - 5,400 10
ImageNet 100 1,28,167 - 5,0000 1000
Yelp Review 50/200 250,000 25,000 50,000 5
NLP AG News 10/50 100,000 10,000 7,600 4
Yahoo! Answer 50/200 500,000 50,000 60,000 10
ESC-50 5/10 1,200 400 400 50
Audio UrbanSound8k 10/40 7,079 816 837 10
FSDnoisy18k 52-171 1,772/ 15,813 - 947 20

A.2 Hyperparameter and Training Settings

Basic Settings. As for classification tasks, regarding hyperparameter settings of SSL classification benchmarks
constructed in USB (Wang et al., 2022a), we adopted the original settings with pre-trained Transformers as the backbone
and made a few adjustments to adapt to SemiReward, as shown in Table A2. The total training iterations are set to 22°,
and an early stop technique is used for calculating the convergence times. Meanwhile, we use the full experimental
settings in FlexMatch (Zhang et al., 2021) for ImageNet, which uses 100 classes per class with ResNet-50 as the
backbone. All methods are trained from scratch by SGD (Loshchilov & Hutter, 2016) optimizer with a momentum of
0.9, a basic learning rate of 0.03, and a cosine learning rate decay as USB. Note that Semi-AVES (Su & Maji, 2020)
uses 224 x 224 input resolutions and ViT-S-P16-224 with the labeled and unlabeled batch size of 32, and other settings
are the same as STL-10. We apply ¢ loss as the basic regression loss. All experiments are implemented with PyTorch
and run on NVIDIA A100 GPUs, using 4GPUs training by default.
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Table A2: Hyper-parameters and training schemes of SSL classification tasks based on USB.

Domain Ccv NLP Audio

Dataset CIFAR-100  STL-10 Euro-SAT |AG News Yahoo! Answer Yelp-5 |UrbanSound8k FSDNoisy = ESC-50
Image Size 32 96 32 - -

Max Length - 512 4.0 5.0 5.0
Sampling Rate — - 16,000

Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 BERT-Base HuBERT-Base

Weight Decay Se-4 le-4 Se-4

Labeled Batch size 16 4 8

Unlabeled Batch size 16 4 8

Learning Rate Se-4 le-4 Se-5 Se-5 le-4 Se-5 Se-5 Se-4 le-4
Layer Decay Rate 0.5 0.95 1.0 0.65 0.65 0.75 0.75 0.75 0.85
Scheduler n = no cos(LEE)

Model EMA 0.999

Eval EMA 0.999

Weak Augmentation | Random Crop, Random Horizontal Flip — Random Sub-sample
Strong Augmentation| RandAugment(Cubuk et al., 2018)  |Back-Translation (Xie et al., 2020a)|Random Sub-sample, Gain, Pitch, Speed

Table A3: Top-1 error rate (%), performance gain, and training speedup times on nine SSL classification datasets with CV, NLP, and
Audio modalities in various label settings. R.GTR refers to Reward-based GTR. Performance gains and training speedup times with
R.GTR are compared to the baseline (Base).

. Pseudo Label FlexMatch

Domain Dataset (Setting) Base 3SR R.GTR| Base 1SR R.GTR Avg. Speedup

ESC-50 (250 5700 7.125 5.500 | 10.053 3.142 2.395 x2.617

ESC-50 (500) 6.750 3.214 3.014 | 10.806 4912 4.026 x2.462

Audio | FSDnoisy18k (1773) | 7.467 8.297 7.267 | 12.133 8.089 6.954 x1.386

UrbanSound8k (100) | 5.250 5.833 5.050 | 4.728 1.525 0.905 x3.131

UrbanSound8k 00y | 4.217 6.024 4.017 | 2.833 2.361 1.676 x1.370

AG News (40) 2.400 1.714 1.514 | 6.267 1.333 0.728 x5.095

AG News (200) 2.889 1.699 1.499 | 3.556 1.693 1.060 x2.641

NLP Yahoo! Answer s00) | 0.178 0.445 0.222 | 8.711 5.807 3.851 x1.532

Yahoo! Answer 2000)| 8.689 1.889 1.689 | 8.122 1.692 1.059 x6.406

Yelp Review (250) {22.400 22.400 22.200 | 20.066 20.066 12.393 x1.314

Yelp Review (1000) | 1.822 4.673 1.622 | 21.411 16.470 11.742 x1.473

CIFAR-100 2000 |9.320 11.314 9.120 | 54.280 49.345 35.977 x1.265

CIFAR-100 00y |14.920 13.564 13.364 |100.240 94.044 68.929 x1.285

v STL-10 (20) 0.528 1.320 0.328 | 11.760 8.400 5.792 x1.820

STL-10 @4o0) 0.268 0.693 0.068 | 9.556 7.351 6.274 x2.732

Euro-SAT (20) 1.196 5.980 0.996 | 14.320 17.900 6.887 x1.640

Euro-SAT 4o0) 1.092 5.460 0.892 |21.040 23.378 11.572 x1.521

Semi Aves 3959 (3959)[19.212 16.720 9.375 | 82.064 71.248 35.922 x2.167

Settings of GTR with SemiReward. We provide detailed hyper-parameters and settings for SemiReward training.
The two-stage online training of the rewarder R and generator G is trained by Adam (Kingma & Ba, 2014) optimizer
with a learning rate of 0.0005 for all tasks, independent of the student model’s optimization. For each training step
after 7' iterations, R infers once and selects high-quality pseudo labels for the student with the average reward score as
the threshold 7. The generator G utilizes a 4-layer MLP (only containing FC layers and ReLLU) with 256, 128, and 64
hidden dimensions.
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B Extensive Experiment Results

B.1 Details in Speedup

In Sec. 4, we give the average speed gain but not the specific training time. Table A3 gives the different training times
corresponding to the nine sets of data sets in the three modes in the main text. We stipulate that the calculation is on a
single NVIDIA A100 GPU to carry out relevant statistics, and the reported unit is the total hours.

C Extensive Related Work

C.1 Self-training

In semi-supervised learning (SSL), self-training frameworks (Rosenberg et al., 2005; Grandvalet & Bengio, 2004;
Yarowsky, 1995) play a very important role in unlabeled data utilization. Then, pseudo-labeling (Lee et al., 2013),
as one of the classic self-training ways, pioneered the generation of artificial labels for unlabeled data. However,
this embodiment faces the need for high-quality labels due to the problem of confirmation bias (Arazo et al., 2020).
Subsequent work will mainly address this problem from two perspectives: one is to design a class or combine multiple
methods to improve the quality of pseudo-label generation and application, and the other is to consider enhancing the
network’s acceptance of pseudo-labels, that is, a small number of low-quality pseudo-labels will not affect the overall
prediction of the network.

Consistency Regularization. Temporal Ensembling (Samuli & Timo, 2017) first proposed consistency regularization
to ensure consistent predictions for similar data points, which has become a basic method for generating high-quality
pseudo labels. Based on this, MixMatch (Berthelot et al., 2019b) and its variants (Berthelot et al., 2019a; Liu et al., 2023)
performs data augmentation on unlabeled data, inputs multiple data into the same classifier, obtains different predicted
classification probabilities, and uses a class method to make the average variance of multiple probability distributions
smaller. UDA (Xie et al., 2020a) goes a step further and starts to use two branches of weak and strong augmented
samples and regards the predictions of the weak augmentation branch as the target of the strong augmentation branch
to improve the consistency of the pseudo-label and predictions. Then, ReMixMatch (Berthelot et al., 2019a) uses the
distribution alignment method to encourage the marginal distribution of predictions for unlabeled data to be close to
the marginal distribution of ground truth labels. Fixmatch (Sohn et al., 2020) designs a fixed confidence threshold
to filter pseudo labels so that the high-quality pseudo-labels can be used in the SSL training process. The following
works, like FlexMatch (Zhang et al., 2021), deeply explore the idea of confidence thresholds and propose curriculum
learning to dynamically adjust the thresholds generated by pseudo labels based on the training process. Additionally,
softmatch (Chen et al., 2022b) shows the trade-off between the quantity and quality of pseudo labels and also derives a
truncated Gaussian function to weight sample confidence. Freematch (Wang et al., 2022b) proposes a free matching
method that adaptively adjusts confidence thresholds based on the model’s learning state. The above methods essentially
follow the strategy of training teacher-student distillation. Even the most advanced methods still rely on the manual
design of confidence thresholds for screening. Although Meta Pseudo Labels (Pham et al., 2021) proposes to generate
more accurate pseudo labels with a meta learner through bi-level optimization, it doubles training times and requires
large-scale teacher models.

Tolerance to Inaccurate Pseudo Labels. Early SSL models have a certain sensitivity to low-quality pseudo labels.
Then, another aspect of work starts by improving the model’s tolerance to errors or low-quality labels. II-Model (Rasmus
et al., 2015) adds two different perturbations to an input sample, inputs the network twice to get the result, and then
compares the consistency of the two results. This weakens the impact of low-quality labels but may be less efficient
since two forward propagations are required to calculate the loss. Based on this, Temporal Ensembling (Samuli & Timo,
2017) maintains an EMA of label predictions on each training example and penalizes predictions that are inconsistent
with this goal. Mean Teacher (Tarvainen & Valpola, 2017) further averages model weights instead of label predictions.
This allows the use of fewer labels than sequential integration during training and also improves the accuracy of testing.
Meanwhile, another branch of research assumes the labeled datasets are noisy and designs robust training or ad-hoc
label selection policies to discriminate inaccurate labels (Xu et al., 2021; Li et al., 2019a; Tan et al., 2021).
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C.2 Disagreement-Based Models

From the view of disagreement SSL, it is required to train two or three different networks simultaneously and label
unlabeled samples with each other (Zhou & Li, 2010) so that they are less affected by model assumptions and loss
functions. Co-training (Blum & Mitchell, 1998) assumes that each data point has two different and complementary
views, and each view is sufficient to train a good classifier. Noisy Student (Xie et al., 2020b) is assigned pseudo-labels
by a fixed teacher from the previous round, while (Yalniz et al., 2019) scales up this training paradigm to billion-scale
unlabeled datasets. MMT (Ge et al., 2019), DivideMix (Li et al., 2019a) learn through multiple models or classifiers
through online mutual teaching. Multi-head Tri-training (Ruder & Plank, 2018) uses training to learn three classifiers
from three different training sets obtained using bootstrap sampling. In these methods, each classifier head is still
trained using potentially incorrect pseudo-labels generated by other heads. Afterward, the classifier for pseudo-labels
generated by DST (Chen et al., 2022a) is trained with unused pseudo-labels, thus having better tolerance to inaccurate
pseudo-labels.

C.3 Self-supervised Learning for SSL

Self-supervised contrastive learning (CL) approaches (Chen et al., 2020) are also applied to SSL, such as CoMatch (Li
et al., 2021) that first introduced CL to the consistency regularization framework. ShrinkMatch (Yang et al., 2023) allows
the model to search for contracted class space adaptively. In detail, for each uncertain sample, ShrinkMatch dynamically
defines a shrunk class space, including the original top-1 class and less likely classes. Similarly, SimMatch (Zheng et al.,
2022) uses semantic and instance similarity for mutual calibration. It uses the labeled data to train a semantic classifier
and uses this classifier to generate pseudo labels for the unlabeled data. Meanwhile, ReMixMatch (Berthelot et al.,
2019a) and CR-Match (Fan et al., 2021) utilize rotation prediction as the auxiliary task for SSL. Moreover, fine-tuning a
pre-trained model on labeled datasets is a widely adopted form of transfer learning (TL), and several recent works (Li
et al., 2018; 2019b; You et al., 2020; Ximei et al., 2021) like Self-Tuning (Ximei et al., 2021) combining TL with
SSL methods. Self-Tuning (Ximei et al., 2021) and HCR (Tan et al., 2022) introduce CL pre-trained models as the
regularization to mitigate confirmation bias in TL.

C.4 Adversarial Training for SSL

In the realm of SSL, innovative approaches have emerged that utilize adversarial training. One approach involves
generating synthetic data (Odena, 2016; Dai et al., 2017) using a generator network and assigning it to a new "generated"
class. The goal is to make the discriminator network provide class labels for these synthetic samples. Another line of
research creates adversarial examples through techniques like VAT (Miyato et al., 2018), which adds noise to input
data; VAdD (Park et al., 2018), introducing an adversarial exit layer into the model’s architecture; and RAT (Suzuki &
Sato, 2020), extending the concept of noise to input transformations. These methods aim to impose local smoothness
constraints on the model’s learned representations without relying on pseudo-labels during training. These advancements
enhance model robustness and generalization, particularly in data-scarce scenarios, by utilizing latent data distribution
structures for more effective learning. This research contributes significantly to improving SSL algorithms, addressing
challenges in leveraging unlabeled data to enhance the applicability and performance of machine learning models in
real-world applications. These innovative adversarial training approaches are poised to advance SSL.
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