
Under review as a conference paper at ICLR 2024

LEARNING DYNAMICS ON MANIFOLDS WITH NEURAL
ORDINARY DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural ordinary differential equations (Neural ODEs) have garnered significant
attention for their ability to efficiently learn dynamics from data. However, for
high-dimensional systems, capturing dynamics remains to be a challenging task.
Existing methods often rely on learning ODEs on low-dimensional manifolds but
usually require the knowledge of the manifold. Nevertheless, such knowledge is
usually unknown in many scenarios. Therefore, we propose a novel approach to
jointly learn data dynamics and the underlying manifold. Specifically, we employ
an encoder to project the original data into the manifold and leverage the Jacobian
matrix of its corresponding decoder for recovery. Our experimental evaluations
encompass multiple datasets, where we compare the accuracy, number of function
evaluations (NFE), and convergence speed of our model against existing baselines.
Our results demonstrate superior performance, underscoring the effectiveness of
our approach in addressing the challenges of high-dimensional dynamic learning.

1 INTRODUCTION

Understanding and modeling the dynamics of complex systems is a fundamental challenge in var-
ious fields, from physics to biology and engineering. To learn the dynamics, there are two basic
components that need to be considered. The first is to learn a latent representation of the state of the
system, and another is to learn how the latent state representation evolves forward in time (Floryan
& Graham, 2022).

Neural ordinary differential equations (Neural ODEs) (Chen et al., 2018) have emerged as a powerful
framework for learning dynamics from data efficiently. Their continuous-time modeling capabilities
make them particularly suited for interpreting how the latent state representation evolves over time.
The core idea of Neural ODEs is to use a neural network to parameterize a vector field, which
is typically represented by a simple neural network (Haber & Ruthotto, 2017; Chen et al., 2018;
Kidger, 2022). The neural network considers the current state of the system as input and produces
the time derivative of that state as output, which determines how the system will change over time.
By integrating the vector field over time, it is possible to calculate the system’s trajectory and make
predictions about its future behavior.

However, when dealing with high-dimensional spaces and complex, unknown dynamics, captur-
ing accurate representations remains a challenging task. Existing methods often resort to numer-
ical integration techniques (Pal et al., 2021; Daulbaev et al., 2020; Liu et al., 2021) or operate in
higher-dimensional spaces (Dupont et al., 2019), which can either lead to increased computational
complexity or introduce bias into the modeling process. Recent work (Lou et al., 2020) proposes
to implicitly parameterize the original space with fewer parameters in the manifold. However, this
requires the knowledge of the manifold.

One promising avenue to address these challenges lies in the field of manifold learning (Lou et al.,
2020; Floryan & Graham, 2022; Lin & Zha, 2008), a powerful approach that enables us to capture
and represent the underlying structure of high-dimensional data. A key assumption sometimes called
the manifold hypothesis (Fefferman et al., 2016), is that the data lie on or near a low-dimensional
manifold in state space. Manifold learning techniques aim to uncover the intrinsic low-dimensional
manifolds within complex, high-dimensional datasets. By doing so, they provide valuable insights
into the underlying dynamics of systems.

1



Under review as a conference paper at ICLR 2024

Figure 1: The top row of diagrams represents the dynamic learning process of classical Neural
ODEs. The bottom row of diagrams represents the dynamics learning process on manifolds with
Neural ODEs. The solid line represents the dynamics to be learned. The dotted line represents the
dynamics that leaned by classical Neural ODEs and Manifold Neural ODEs with the increase of
iterations.

In this work, we propose an innovative data-driven approach tailored to learning dynamics. By
harnessing the principles of manifold learning, we focus on how the dynamics evolve in the most
representative manifold space. This not only reduces the complexity of dynamic learning but also
ensures the preservation of accuracy, a critical aspect when dealing with real-world data. Our method
leverages a spatial encoder to obtain the latent state representation in manifold space from the origi-
nal space. The Jacobian matrix of the encoder is also obtained and used for mapping back. A Neural
ODE learns how the latent state evolves in the manifold space over time. We derive that the inverse
of the Jacobian matrix can be used to map from the manifold space to the original space. In practice,
the inverse of the Jacobian matrix can be replaced by a Jacobian matrix of the corresponding decoder
of the encoder. A visual example is shown in Figure 1.

Our approach offers a unique solution to the challenges of dynamic learning in high-dimensional
spaces by reducing data to the intrinsic dimensionality of the nonlinear manifold they live on. This
is achieved by combining the rigorous mathematical theory of ordinary different equations in mani-
folds with the universal approximation capability of neural networks.

2 RELATED WORK

Neural ODEs. The basic idea of neural ordinary differential equations was originally considered in
Rico-Martinez et al. (1992); Rico-Martinez & Kevrekidis (1993); Rico-Martinez et al. (1994). After
Chen et al. (2018) specified the architecture of Neural ODEs and led to an explosion of applications
in dynamic learning. For example, image classification (Dupont et al., 2019; Zhu et al., 2021),
time series prediction (Jia & Benson, 2019; Norcliffe et al., 2020; Morrill et al., 2021; Guo et al.,
2023), time series classification (Kidger et al., 2020), and continuous normalizing flows (Du et al.,
2022). According to Chen et al. (2018), the scalar-valued loss with respect to all inputs of any ODE
solver can be computed directly without backpropagating through the operations of the solver. The
intermediate quantities of the forward pass will not need to be stored. It causes the Neural ODEs
can be trained with a constant memory cost.

It is worth noting that the Neural ODEs are not universal approximators as shown by Dupont et al.
(2019); Zhang et al. (2020). They address this limitation by introducing Augmented Neural ODEs,
which add extra dimensions to vector field learning. This approach increases the degrees of freedom
of the trajectory by elevating the dimensionality, thus solving the problem that trajectories cannot be
crossed. However, it also introduces bias in learning the dynamics due to the additional dimensions.

2



Under review as a conference paper at ICLR 2024

Efficiency of Neural ODEs. As a continuous infinite-depth architecture, Neural ODEs will bring
several drawbacks. The obvious drawback is that Neural ODEs have a low training efficiency
(Dupont et al., 2019; Norcliffe et al., 2020; Pal et al., 2021; Daulbaev et al., 2020; Finlay et al.,
2020; Lehtimäki et al., 2022; Djeumou et al., 2022). To accelerate the training speed, several works
have been done. Some works try to improve the efficiency of ODE solvers, such as regularizing the
solver (Pal et al., 2021), using interpolation backward dynamic methods (Daulbaev et al., 2020),
or using second order ODE optimizer (Liu et al., 2021). Some works aim to optimize the objective
function (Kelly et al., 2020; Ghosh et al., 2020; Pal et al., 2021; Xia et al., 2021). Simpler dynamics
can lead to faster convergence and fewer discretization of the solver (Finlay et al., 2020).

One way to optimize the objective function is to take approximations of the learned dynamics.
For example, (Finlay et al., 2020) demonstrated that appropriate regularization of the learned dy-
namics can significantly accelerate training time without degrading performance. However, these
approaches may be less accurate when encountering unsmooth dynamics, such as those with more
oscillations or abrupt changes. Other works are dedicated to optimizing the model structures, such
as compressing the model. For example, Lehtimäki et al. (2022) used model order reduction to ob-
tain a smaller-size NODE model with fewer parameters. However, optimizing the model structure
by compressing the model without considering the characteristics of the data can result in a model
with poor generalization capabilities.

Neural ODEs on Manifolds. Manifold learning is a subfield of machine learning and dimensional-
ity reduction that focuses on discovering the underlying structure or geometry of high-dimensional
data. The central idea behind manifold learning is that many real-world datasets lie on or near lower-
dimensional manifolds within the high-dimensional space (Floryan & Graham, 2022). Lin & Zha
(2008) formulate the dimensionality reduction problem as a classical problem in Riemannian geom-
etry. For dynamic learning, Hairer (2011) describes the differential equation on the manifold. Its
solution evolves on a manifold, and the vector field is often only defined on this manifold. Floryan
& Graham (2022) explores the dynamics learning in the manifold using auto-encoder. Our work
utilizes the Neural ODEs to learn better continuous dynamics.

Other works (Lou et al., 2020; Falorsi & Forré, 2020; Rozen et al., 2021; Gemici et al., 2016; Math-
ieu & Nickel, 2020) also investigate manifold generalization of Neural ODEs. These works calculate
either the change in probability with a Riemannian change of variables, or the change through the
use of charts and Euclidean change of variables. However, they are designed for normalizing flows,
but the classification or regression task still remains to be investigated.

3 PRELIMINARY

3.1 MANIFOLDS

Topological manifolds. A topological space M is a topological manifold of dimension d if it satis-
fies the following conditions: It is a second-countable Hausdorff space, ensuring that points can be
separated by neighborhoods and that the topological structure is not too large. It is locally Euclidean
of dimension d, meaning that at every point on the manifold, there exists a small neighborhood
where the space behaves like Euclidean space. Furthermore, Whitney’s embedding theorem (Whit-
ney, 1936) states that any d-dimensional manifold Md can be embedded in R2d+1. This means that
a space of at most 2d+ 1 dimensions is sufficient to represent a d-dimensional manifold.

Differentiable manifolds. A topological manifold M is referred to as a smooth or differentiable
manifold if it has the property of being continuously differentiable to any order. This implies that
smooth functions can be defined on the manifold, making it suitable for calculus operations.

Definition 3.1 (Smooth mapping). Consider two open sets, U ⊂ Rr and V ⊂ Rs, and let G :
U → V be a function such that for x ∈ U and y ∈ V , G(x) = y. If the function G has finite
first-order partial derivatives, ∂yj

∂xi
, for all i = 1, 2, · · · , r, and all j = 1, 2, . . . , s, then G is said

to be a smooth (or differentiable) mapping on U . We also say that G is a C1-function on U if all
the first-order partial derivatives are continuous. More generally, if G has continuous higher-order
partial derivatives, ∂k1+···+kryj

∂x
k1
1 ···∂xkr

r

, for all j = 1, 2, · · · , s and all non-negative integers k1, k2, · · · , kr
such that k1 + k2 + · · ·+ kr ≤ r, then we say that G is a Cr-function, where r = 1, 2, · · · .

3



Under review as a conference paper at ICLR 2024

Definition 3.2 (Diffeomorphism). If G is a homeomorphism from an open set U to an open set V ,
then G is said to be a Cr diffeomorphism if both G and its inverse G−1 are Cr-functions.
Definition 3.3 (Diffeomorphic). We say that U and V are diffeomorphic if there exists a diffeomor-
phism between them.

Following the Definition 3.1, Definition 3.2, and Definition 3.3, we can straightforwardly extend
these concepts to define diffeomorphism and diffeomorphic in manifolds (Ma & Fu, 2011).
Definition 3.4 (Diffeomorphism in manifolds). If X and Y are both smooth manifolds, a function
G : X → Y is a diffeomorphism if it is a homeomorphism from X to Y and both G and G−1 are
smooth.
Definition 3.5 (Diffeomorphic of manifolds). Smooth manifolds X and Y are diffeomorphic if there
exists a diffeomorphism between them. In this case, X and Y are essentially indistinguishable from
each other.

3.2 NEURAL ODES

Neural ODEs are a family of deep neural network models that can be interpreted as a continuous
version of Residual Networks (He et al., 2016). Recall the formulation of a residual network:

ht+1 − ht = f(ht, θf ), (1)

where the f is the residual block and the θf represents the parameters of f . The left side of Equation
1 can be seen as a denominator of 1, so it can be represented by ht+1−ht

1 = f(ht, θf ). When the
number of layers becomes infinitely large and the step becomes infinitely small, Equation 1 will
become an ordinary differential equation format as shown in Equation 2.

lim
dt→0

ht+dt − ht

dt
=

dh(t)

dt
= f(h(t), t, θf ). (2)

Thus, the Neural ODE will have the same format as an ODE: h′(t) = f(h(t), t, θf ) and h(0) = x0,
where x0 is the input data. Typically, f will be some standard simple neural architecture, such as
an MLP. The θf represents trainable parameters in f . To obtain any final state of h(t) when t = T ,
all that is needed is to solve an ordinary differential equation with initial values, which is called an
initial value problem (IVP):

h(T ) = h(0) +

∫ T

0

f(h(t), t, θf )dt. (3)

Thus, a Neural ODE can transform from h(0) to h(T ) through the solutions to the initial value
problem (IVP) of the ODE. This framework indirectly realizes a functional relationship x → F (x)
as a general neural network.

By the properties of ODEs, Neural ODEs are always invertible; we can reverse the limits of inte-
gration, or alternatively, integrate −f . The Adjoint Sensitivity Method (Pontryagin et al., 1961)
based on reverse-time integration of an expanded ODE, allows for finding gradients of the initial
value problem solutions h(T ) with respect to parameters θf and the initial values h(0). This allows
the training Neural ODE to use gradient descent, which allows them to combine with other neural
network blocks.

4 LEARNING DYNAMICS ON SPHERICAL SPACE WITH NEURAL ODES

Consider a specific scenario where the dynamics unfold within a spherical space with a radius of
R = 1, referred to as S. In this context, it is known that the solution evolves within a submanifold
of R3, and the vector field f is defined on this submanifold. Let G represent a manifold learning
function defined as follows: G : R3 → S ⊂ R3. In simpler terms, G is a function that maps
from three-dimensional Euclidean space to a submanifold S embedded within three-dimensional
Euclidean space. Define h as the state in three-dimensional Euclidean space, represented as h =[

x
y
z

]
∈ R3. On the other hand, l is the state within the submanifold, expressed as l =

[
u
v

]
∈ R2.

4



Under review as a conference paper at ICLR 2024

To establish a connection between the two representations, we can relate u and v to h using the

following equations: h =

[
x
y
z

]
=

[
R · sin(u)cos(v)
R · sin(u)sin(v)

R · cos(u)

]
. The derivative of h with respect to t

represents the rate of change of state h with respect to time:

dh

dt
=

dh

dl
· dl
dt

=

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 · dl
dt

= R ·

[
cos(u)cos(v) −sin(u)sin(v)
cos(u)sin(v) sin(u)cos(v)
−sin(u) 0

]
·
[

du
dt
dv
dt

]
. (4)

Considering dl
dt as the vector field within the manifold, we employ a neural network denoted as

f : l → dl
dt to model this vector field. Function f describes the evolution of the state l within the

manifold. Given an initial state h(0) in the original space, we integrate dh
dt over time to derive the

final state h(T ):

h(T ) = h(0) +

∫ T

0

dh

dt
dt = h(0) +

∫ T

0

R ·

[
cos(u)cos(v) −sin(u)sin(v)
cos(u)sin(v) sin(u)cos(v)
−sin(u) 0

]
· f(l, t, θ)dt.

(5)

The latent state l within the manifold offers a more robust and expressive representation compared to
the latent state h within the original space. The evolution of vector fields is shown in Figure 2. The
vector field learned by the Neural ODEs in manifold makes dynamic more explainable and easier
to converge during learning. The trajectories of these dynamics are visualized in Figure 3. It also
demonstrates the advantages of learning dynamics on manifold.

Figure 2: The vector fields are generated by Neural ODE in three-dimensional Euclidean space and
by Manifold Neural ODE in spherical space. Each one is trained in 200 iterations.

5 LEARNING DYNAMICS ON MANIFOLDS WITH NEURAL ODES

Motivated by the previous case in Section 4, we now introduce a general methodology for learn-
ing dynamics on manifolds with Neural ODEs. As defined in Section 3.1, diffeomorphisms and
diffeomorphic manifolds serve as fundamental constructs for our methodology.

Theorem 1. Let G : Rn → Rm be a manifold learning function, where G is assumed to be invertible,
and G−1 denotes the inverse of function G. Consider two sets of variables h and l, representing
latent states, with h ∈ Rn and l ∈ Rm. Then, the derivative of h with respect to time dh

dt satisfies the
equation: dh

dt = JG−1 · dl
dt , where JG−1 represents the Jacobian matrix of the inverse function G−1.

5



Under review as a conference paper at ICLR 2024

Figure 3: The trajectories learned by Neural ODE and Manifold Neural ODEs. The three different
colors represent the three dimensions in the three-dimensional Euclidean space. The solid and dotted
lines represent the true trajectories and learned trajectories, respectively.

Proof. We begin with the chain rule and obtain: dh
dt = dh

dl ·
dl
dt . Using the property of the composition

of functions and the inverse function, we have: dh
dl = d(G−1◦G(h))

dl = dG−1(l)
dl = JG−1 , where JG−1 is

the Jacobian matrix of function G−1. According to the inverse function theorem (Hamilton, 1982),
the matrix inverse of the Jacobian matrix of an invertible function is the Jacobian matrix of the
inverse function: JG−1 = J−1

G . Thus, we have: dh
dt = J−1

G · dl
dt .

Remark. This theorem provides a method for expressing the derivative of h with respect to time
dh
dt in Rn in terms of the derivative of l with respect to time dl

dt in manifold Rm, where n > m.
It establishes a relationship between the dynamics of h and l, enabling the transfer of information
from the higher-dimensional space to the lower-dimensional manifold.

Similar to classical Neural ODEs, we utilize a neural network f to parameterize the vector field
dl
dt . The key difference is that this vector field exists within the manifold. Then, we derive the
representation of the vector field in the original space as follows:

dh

dt
= J−1

G · f(G(h), t, θ). (6)

Given the initial state h(0), we can easily obtain the solution of the dynamic at time t = T :

h(T ) = h(0) +

∫ T

0

J−1
G · f(G(h), t, θ)dt. (7)

6 NUMERICAL EXPERIMENTS

We will demonstrate the superiority of our methodology in terms of accuracy, the number of function
evaluations (NFEs), and convergence speed. In Section 6.1, we introduce the datasets and environ-
ment settings. In Section 6.2 we show on three real-life image datasets that our model has better
prediction accuracy, fewer NFEs, and faster convergence speed compared to baselines. In Section
6.3, we show the results for three series datasets. All the models were implemented in Python 3.9
and realized in PyTorch. The experiments in Section 6.2 were conducted using a device equipped
with an NVIDIA GeForce GTX 1070, while for the experiments in other sections, an Apple M2
with an 8-core CPU was used.

6.1 EXPERIMENTAL SETUP

Datasets. We evaluated our model with three image classification datasets and three series classi-
fication datasets. For the image classification task, we evaluate our model on the MNIST (Deng,

6



Under review as a conference paper at ICLR 2024

2012), CIFAR-10 (Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011). MNIST is a hand-
written digit database with a training set of 60, 000 samples. The CIFAR-10 training dataset consists
of 60, 000 32 × 32 color images in ten classes. SVHN is a digit classification dataset that contains
600, 000 32 × 32 RGB images of printed digits (from 0 to 9) cropped from pictures of house num-
ber plates. For series datasets, we use BeetleFly, HandOutlines, and ECG200, which come from
(Bagnall et al., 2018). BeetleFly is a dataset that distinguishes between beetles and flies, where the
outline of the original image is mapped to a one-dimensional series at a distance from the center.
HandOutlines is designed to test the efficacy of hand and bone outline detection and whether these
outlines could be helpful in bone age prediction. ECG200 is a binary classification dataset that traces
the electrical activity recorded during one heartbeat. The two classes are a normal heartbeat versus
a myocardial infarction event.

Evaluation metrics and baselines. For the image classification task, we compared our model with
NODEs and ANODEs in terms of training loss, test accuracy, NFEs, and convergence speed. We
also compared ours with the ResNet with 10 residual blocks implemented in (Lin & Jegelka, 2018)
in terms of test accuracy and training loss. For the series classification dataset, we compared our
model with NODEs and ANODEs in terms of training loss, test accuracy, and NFEs. Despite the
good performance, the main dedication of our approach is to provide a methodology that can benefit
more models as a generalized approach, rather than just comparing it to baselines.

Parameter settings. For image datasets, we set the batch size as 32. We use the same vector field
modeling in all continuous models. The vector field is modeled by three convolutional layers. The in
channels and out channels for each layer are set as (Nin, 32), (32, 32), and (32, Nin) respectively,
where the Nin represents the number of channels of the input image. We use the ReLU as the
active function. We use the Adam algorithm as the optimizer with a learning rate of 10−3. To
avoid experimental errors as much as possible, we run them three times for each model and record
the corresponding mean and standard values. We run five epochs for each experiment since the
experiment shows that five epochs are enough to converge. For Res-Net, we model it using 10
residual blocks, and each block is implemented by a two-layer MLP (Lin & Jegelka, 2018). For
series classification tasks, we use the same vector field modeling in all continuous models. The
vector field is implemented by a three-layer MLP with the hidden dimensions as 16. We run the
experiment three times for each model and record the corresponding mean and standard values. We
run 30 epochs for each experiment. For all the continuous models, we set the same tolerance of the
ODE solver, as 10−3. For all the augmented models, we use five extra dimensions. For the manifold
function G, we implement it by two convolutional layers with the size of (Nin, 16), (16, 16), and a
max pool layer which reduces the x-y dimensions by 2.

6.2 IMAGE CLASSIFICATION

Considering images are usually in high dimensions, we apply our method to image classification
tasks. MNIST dataset inherently inhabits a 784-dimensional space (1× 28× 28), and datasets like
CIFAR-10 or SVHN, originally occupying a 3072-dimensional space (3× 32× 32). We employ an
encoder to model the manifold function G and extract the Jacobian matrix from the corresponding
decoder, denoted as J−1

G . Since the encoder and decoder can be automatically trained, we denote
our model as AutoNODE. The AutoNODE learns the dynamics in a manifold space that is 16 (4×4)
times less than the original space. We also test our methodology on the Augmented Neural ODE,
denoted as Aug-AutoNODE.

Test accuracy and training loss curves. We test our methodology on Neural ODEs and Augmented
Neural ODEs. We also compare them with ResNet. The test accuracy is shown in Table 1. The
results show that our model can achieve the lowest training loss, highest test accuracy in the three
datasets. Besides, our model can continue to converge at a stable and fast rate.

Number of function evaluations. Since our methods aim to learn a simpler vector field within
a manifold, they require fewer function evaluations than NODEs and ANODEs. To test this, we
measure the NFEs in both the forward evaluation and backpropagation processes. We visualize the
NFEs in Figure 4. Our models’ NFEs can maintain a relatively stable level whereas the baseline
models’ NFEs will increase rapidly with the training iteration increase. This is also one of the
reasons that the baseline model has a slow convergence rate. We show the average NFEs over three
runs in Table 1.

7



Under review as a conference paper at ICLR 2024

Table 1: Testing Accuracy and Average NFEs in Image Classification
Testing Accuracy Average NFEs

CIFAR-10 MNIST SVHN CIFAR-10 MNIST SVHN

ResNet-10 0.437 ± 0.007 0.978 ± 0.001 0.604 ± 0.017 − − −
NODE 0.512 ± 0.011 0.944 ± 0.005 0.758 ± 0.036 61.07 61.87 82.50

ANODE 0.568 ± 0.008 0.981 ± 0.001 0.568 ± 0.008 70.88 43.76 93.03
AutoNODE (Manifold) 0.663 ± 0.012 0.988 ± 0.002 0.872 ± 0.003 39.89 40.08 47.12

Aug-AutoNODE (Manifold) 0.672 ± 0.003 0.989 ± 0.001 0.874 ± 0.004 39.16 39.92 40.81

Figure 4: The top three plots show the number of function evaluations (NFEs) in the forward evalua-
tion and the bottom three plots show the NFEs in backpropagation processes on CIFAR-10, MNIST,
and SVHN.

Time and convergence speed. To better compare the time and convergence speed, we record the
absolute time for each iteration. We plot the corresponding training loss and test accuracy over time
during the training process. Figure 5 shows the training iteration loss over time. Figure 6 shows the
training epoch loss and test accuracy over time. Our models typically require only 1

3 to 1
2 of the time

of the baseline model. Thus our models have faster convergence speed and require little training
time as well as achieve better test accuracy.

Figure 5: The corresponding training iteration loss for each model over time during the training.
From left to right, CIFAR-10, MNIST, and SVHN are used, respectively.

6.3 SERIES CLASSIFICATION

For series classification tasks, the test accuracy and average NFEs are recorded in Table 2. Since the
dataset is not as complex as the image dataset, the NFEs for all the models are relatively few. The
Augmented AutoNODE has maintained 14 NFEs at all times and thus it needs the least computation
for the dynamics. Our models have the best test accuracy with a more stable and faster training
convergence speed.

8



Under review as a conference paper at ICLR 2024

Figure 6: The corresponding training epoch loss and the test accuracy for each model over time
during the training. From left to right, CIFAR-10, MNIST, and SVHN are used, respectively. Each
experiment runs three times.

Table 2: Testing Accuracy and Average NFEs in Series Classification
Testing Accuracy Average NFEs

BeetleFly HandOut ECG200 BeetleFly HandOut ECG200

NODE 0.800 ± 1.110 0.897 ± 0.007 0.836 ± 0.011 14.00 16.87 14.15
ANODE 0.816 ± 0.023 0.888 ± 0.011 0.836 ± 0.006 14.00 14.44 14.00

AutoNODE (Manifold) 0.867 ± 0.023 0.915 ± 0.003 0.862 ± 0.004 14.00 16.28 14.90
Aug-AutoNODE (Manifold) 0.867 ± 0.023 0.912 ± 0.003 0.849 ± 0.010 14.00 14.00 14.00

7 CONCLUSION

In this work, we introduced a novel approach to address the challenges of learning dynamics in high-
dimensional systems. By integrating manifold learning principles with Neural ODEs, our method
offers an efficient and accurate solution for the dynamic learning. We leveraged the manifold hy-
pothesis and project the original data into the manifold by an encoder, and leverage the Jacobian
matrix of its corresponding decoder for recovery. Our methodology allows us to reduce complexity
while preserving accuracy in dynamic learning. Experimental evaluations across diverse datasets
consistently demonstrated our approach’s superiority, underscoring its potential to advance our un-
derstanding of high-dimensional dynamic systems and improve modeling accuracy.

REFERENCES

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Cichocki, and Ivan
Oseledets. Interpolation technique to speed up gradients propagation in neural odes. Advances in
Neural Information Processing Systems, 33:16689–16700, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

9



Under review as a conference paper at ICLR 2024

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Taylor-lagrange
neural ordinary differential equations: Toward fast training and evaluation of neural odes. arXiv
preprint arXiv:2201.05715, 2022.

Shian Du, Yihong Luo, Wei Chen, Jian Xu, and Delu Zeng. To-flow: Efficient continuous normaliz-
ing flows with temporal optimization adjoint with moving speed. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12570–12580, 2022.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in Neural
Information Processing Systems, 32, 2019.

Luca Falorsi and Patrick Forré. Neural ordinary differential equations on manifolds. arXiv preprint
arXiv:2006.06663, 2020.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train your
neural ode. arXiv preprint arXiv:2002.02798, 2020.

Daniel Floryan and Michael D Graham. Data-driven discovery of intrinsic dynamics. Nature Ma-
chine Intelligence, 4(12):1113–1120, 2022.

Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian man-
ifolds. arXiv preprint arXiv:1611.02304, 2016.

Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer: Simple
temporal regularization for neural ode. Advances in Neural Information Processing Systems, 33:
14831–14843, 2020.

Muhao Guo, Yang Weng, Lili Ye, and Ying Cheng Lai. Continuous variational quantum algorithms
for time series. In 2023 International Joint Conference on Neural Networks (IJCNN), pp. 01–08.
IEEE, 2023.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,
34(1):014004, 2017.

Ernst Hairer. Solving differential equations on manifolds. Lecture notes, 2011.

Richard S Hamilton. The inverse function theorem of nash and moser. Bulletin of the American
Mathematical Society, 7(1):65–222, 1982.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differential
equations that are easy to solve. Advances in Neural Information Processing Systems, 33:4370–
4380, 2020.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Mikko Lehtimäki, Lassi Paunonen, and Marja-Leena Linne. Accelerating neural odes using model
order reduction. IEEE Transactions on Neural Networks and Learning Systems, 2022.

10



Under review as a conference paper at ICLR 2024

Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approxi-
mator. Advances in neural information processing systems, 31, 2018.

Tong Lin and Hongbin Zha. Riemannian manifold learning. IEEE transactions on pattern analysis
and machine intelligence, 30(5):796–809, 2008.

Guan-Horng Liu, Tianrong Chen, and Evangelos Theodorou. Second-order neural ode optimizer.
Advances in Neural Information Processing Systems, 34:25267–25279, 2021.

Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser Nam Lim, and Christo-
pher M De Sa. Neural manifold ordinary differential equations. Advances in Neural Information
Processing Systems, 33:17548–17558, 2020.

Yunqian Ma and Yun Fu. Manifold learning theory and applications. CRC press, 2011.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances in
Neural Information Processing Systems, 33:2503–2515, 2020.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equa-
tions for long time series. In International Conference on Machine Learning, pp. 7829–7838.
PMLR, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second
order behaviour in augmented neural odes. Advances in Neural Information Processing Systems,
33:5911–5921, 2020.

Avik Pal, Yingbo Ma, Viral Shah, and Christopher V Rackauckas. Opening the blackbox: Accel-
erating neural differential equations by regularizing internal solver heuristics. In International
Conference on Machine Learning, pp. 8325–8335. PMLR, 2021.

LS Pontryagin, VG Boltyanskii, RV Gamkrelidze, and EF Mishchenko. Mathematical theory of
optimal processes [in russian], 1961.

R Rico-Martinez, JS Anderson, and IG Kevrekidis. Continuous-time nonlinear signal processing: a
neural network based approach for gray box identification. In Proceedings of IEEE Workshop on
Neural Networks for Signal Processing, pp. 596–605. IEEE, 1994.

Ramiro Rico-Martinez and Ioannis G Kevrekidis. Continuous time modeling of nonlinear systems:
A neural network-based approach. In IEEE International Conference on Neural Networks, pp.
1522–1525. IEEE, 1993.

Ramiro Rico-Martinez, K Krischer, IG Kevrekidis, MC Kube, and JL Hudson. Discrete-vs.
continuous-time nonlinear signal processing of cu electrodissolution data. Chemical Engineering
Communications, 118(1):25–48, 1992.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-
based generative modeling on manifolds. Advances in Neural Information Processing Systems,
34:17669–17680, 2021.

Hassler Whitney. Differentiable manifolds. Annals of Mathematics, pp. 645–680, 1936.

Hedi Xia, Vai Suliafu, Hangjie Ji, Tan Nguyen, Andrea Bertozzi, Stanley Osher, and Bao Wang.
Heavy ball neural ordinary differential equations. Advances in Neural Information Processing
Systems, 34:18646–18659, 2021.

Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation capabilities of neural odes
and invertible residual networks. In International Conference on Machine Learning, pp. 11086–
11095. PMLR, 2020.

Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations. arXiv preprint
arXiv:2102.10801, 2021.

11


	Introduction
	Related Work
	Preliminary
	Manifolds
	Neural ODEs

	Learning Dynamics on Spherical Space with Neural ODEs
	Learning Dynamics on Manifolds with Neural ODEs
	Numerical Experiments
	Experimental Setup
	Image Classification
	Series Classification

	Conclusion

