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ABSTRACT

Large-scale joint training of multimodal models, e.g., CLIP, have demonstrated
great performance in many vision-language tasks. However, pre-training with
image-text pairs limits itself to cover a wide range of unimodal data, where noise
can also be introduced as misaligned pairs during pre-processing. Conversely,
unsupervised training of unimodal models on text or image data alone can achieve
broader coverage of diverse real-world data. This motivates us to propose a method
based on unsupervised pre-trained unimodal models to enhance the zero-shot per-
formance for vision-language tasks. Overall, our method is a multitask fine-tuning
framework initialized from separate unsupervised pre-trained vision and language
encoders, which allows the model to benefit from both the unsupervised pre-training
and a variety of supervised data. Experiments show that our method outperforms
state-of-the-art CLIP-based models by 6.5% (52.3% — 58.8%) on PASCAL-5% and
6.2% (27.2% — 33.4%) on COCO-20° under zero-shot language-guided semantic
segmentation setting respectively. By learning representations of both modalities,
unimodal pre-training offers strong generalization ability, while multitask fine-
tuning shares knowledge across tasks and enhances domain adaptation, resulting in
better performance especially for zero-shot vision-language tasks.

1 INTRODUCTION

Vision-language tasks have attracted much attention, producing excellent results by capitalizing on
language-supervised pre-trained models such as CLIP |Radford et al.| (2021). Motivated by the strong
generalization ability of CLIP, extensive effort has been made to transfer the knowledge in image-text
pair pre-trained models to downstream tasks, e.g., open-vocabulary detection |Gu et al.|(2022b); [Zang
et al.|(2022a) and segmentation Xu et al.| (2022); Ding et al.|(2022); Li et al.| (2022a).

However there are two main limitations of such image-text pair models. One is the limiting size of
image-text pairs that restricts their ability to cover a large distribution of real-world data. The other
limitation is that they require a significant amount of pre-processing, where errors can be introduced
in aligning image and text data which hinder their accuracy. In contrast, unimodal models that are
trained through unsupervised techniques on text or image data alone can achieve a much broader
coverage of the real-world distribution of data, see Figure[I] This is because these models are not
constrained by the requirement that image and text data to be present simultaneously for pair-up.
Unimodal models are often trained on larger datasets with much less pre-processing and no pair-ups,
and thus causing no such errors, making them more flexible in handling different types of data.

On the other hand, current trend of vision-language tasks adopts pretrain-then-finetune paradigm,
where the model is first pre-trained from scratch on large-scale image-text pairs, and then fine-tuned
on specific task. To bridge the gap between the domain of pre-traing datasets and the specific domain
of downstream tasks, another intermediate fine-tuning step is usually introduced before the specific
task fine-tuning. Intermediate fine-tuning is a method of fine-tuning a pre-trained model using an
intermediate task, which includes domain adaption or task adaptation. Fine-tuning on a similar
domain or similar task with relatively large-scale supervised data makes the pre-trained model well
adapted to the specific target domain or task. In this paper, we extend the intermediate fine-tuning to
multitask fine-tuning so as to benefit from the shared knowledge across multiple tasks and datasets
while keeping the adaptation ability for different specific tasks.
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In general, our method, called UniBoost, is a multitask fine-tuning framework based on the unsu-
pervised pre-trained vision and language models. Unimodal pre-trained models can make use of
all available image and text data rather than limited to image-text pairs. Despite the strong general-
ization ability of isolate vision or language models, downstream vision-language tasks require the
alignment or fusion of image and text space. Therefore, we introduce multitask fine-tuning to achieve
the multimodal alignment or fusion. Instead of aligning or fusing the two spaces on an extensive
large-scale image-text pairs such as LAION used in[Li et al|(2023)), we directly align or fuse the
vision and language space on a variety of tasks with supervision. Fine-tuning on multiple tasks with
supervised data allows our framework to achieve both general multimodal alignment or fusion across
diverse data, with the advantage of intermediate fine-tuning for the adaptability to downstream tasks.

From our experiments, we find that our frame- ... :
work, which takes the advantages of unsuper- ‘
vised unimodal pre-training as well as multi-
task fine-tuning, boosts the zero-shot perfor- |

mance for vision-language tasks. In addition, | | mageTextPairs Image-Text Space

our experiments show that unsupervised uni- |

modal pre-training is surprisingly more effec-

tive than supervised pre-training or image-text |

pair supervised pre-training under multitask fine- | Image-Text Pair Pre-training

tuning. Specifically, zero-shot language-guided =~~~
segmentation based on two unimodal pre-trained

weights, namely, MAE He et al.| (2022) and i Image Space
T5 Raffel et al.| (2020), outperforms the mod-

els based on C.L.IP model by more than 5% on Image-Text Space
mloU under similar model capacity.

Compared to unified models |Wang et al.[(2023); Gt i
Lu et al.|(2023)), our method is based on separate

pre-trained image and language models instead | Unsupervised Unimodal Pre-training

of learning the representation from scratch, mak- — ~-------- oo ‘
ing our method easily benefit external latest uni-
modal models. Compared to the models |Li et al.
(2023); |Zou et al.| (2023) with separate vision
and language encoders, our method are directly
fine-tuned on diverse tasks instead of learning
from image-text pairs, making our method eas-
ily adapt to specific downstream task. Overall,
our method encompasses the following contribu-
tions. First, UniBoost is built on separate unsu-
pervised pre-trained unimodal encoders, which
can help leverage the strong generalization abil-
ity from the powerful language or vision models
flexibly. Second, UniBoost can achieve multimodal alignment or fusion, as well as domain and task
adaptation through multitask fine-tuning with diverse supervised data simultaneously, which can help
regularize the model, prevent overfitting and share common knowledge, as the model is exposed to a
wider range of data and tasks during multitask fine-tuning.

Figure 1: The solution space of conventional
vision-language pre-training is restricted to image-
text pairs while unsupervised unimodal models can
be trained on not only image-text pairs, but also
image or text data alone, i.e., a broader range of
data distribution. Our UniBoost, a multitask fine-
tuning framework based on unsupervised unimodal
supervised models, benefits from the general and
robust representations of unsupervised unimodal
models as well as diverse supervised data and thus
boost zero-shot vision-language tasks.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS (VLMS)

Vision-Language Models (VLMs) aim to bridge the gap between visual and textual modalities. VLM
has been intensively investigated recently on various multimodal tasks, e.g., visual question answering
(VQA) Peng et al.|(2020); Hu et al.|(2019)), image/video captioning Pan et al.[|(2004)); Kulkarni et al.
(2013); L1 et al.|(2019); Zhang & Peng|(2019), visual grounding Mao et al.| (2016); |Yu et al.| (2016);
Liu et al|(2017), referring segmentation |Ye et al.| (2019); Feng et al.| (2021); |[Ding et al.| (2021)
and text-to-image generation Reed et al.| (2016); |Gu et al.|(2022a). Recently, vision tasks such as
instance segmentation |Li et al.[(2022a);|Ma et al.| (2022)) and object detection |Gu et al.|(2022b); Du
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Figure 2: Comparisons among existing popular methods Wang et al.| (2023); [Lu et al.| (2023); |Li et al.|
(2023);[Zou et al| (2023) and our UniBoost. ITP is short for image-text pairs.

introduce text embeddings into the model designs to boost performance or implement
open-vocabulary pixel or object classification. Specifically, VLM pre-training [Radford et al.| (2021));
Jia et al.| (2021)); [Yu et al| (2022); [Wang et al| (2022a); [Alayrac et al| (2022); |Li et al.| (2022¢); Bao|
et al.| (2022b)); [Wang et al.| (2023)) has provided strong and effective foundation models for these
multimodal applications. The VLMs are pre-trained to learn rich vision-language correspondences
from large-scale informative image-text pairs supervised by certain vision-language objectives
(2020); Devlin et al.[(2019); Yang et al.| (2022); He et al.|(2022)); Singh et al.|(2022); L1 et al.
(2022c). The pre-trained high-capacity VLMs can perform zero-shot predictions on downstream
applications even without fine-tuning by matching the feature embeddings of images and texts directly.
However, despite their success, existing VLMs are trained on image-text pairs of the intersection of
image and text data. By contrast, we propose to explore the union of image and text data for VLMs,
which is fundamentally and theoretically much larger than the image-text pairs data. Different from
Bao et al.|(2022b); [Wang et al.| (2023) utilizing a multi-way transformer to pre-train on image-text
pair data and image or text data alone from scratch, we directly transfer the knowledge from well
pre-trained unimodal models and learn the multimodal alignment or fusion through intermediate
fine-tuning on in-domain tasks, which is more efficient and flexible.

2.2  UNSUPERVISED PRE-TRAINING (UPT)

Unsupervised Pre-training fuels the progress of VLM foundation models by enabling effective usage
of massive internet data for model pre-training. It significantly reduces the dependency on data
labeling, where the encoder networks are trained with self-supervision by specific pretext tasks. Early
UPT works design special pretext tasks and train the model to predict the corresponding answers,
e.g., context prediction [Doersch et al.|(2015), inpainting [Pathak et al.|(2016)), colorization [Zhang
(2016), jigsaw [Noroozi & Favaro| (2016), visual primitives counting Noroozi et al. (2017), and
rotation prediction Komodakis & Gidaris|(2018). The contrastive learning based UPT [He et al.| (2020);
Chen et al.| (2020); Jia et al.| (2021); Yang et al.| (2022);[Oord et al|(2018)); [Khosla et al.| (2020) trains
the model by learning the prior knowledge distribution of the data itself by making similar instances
closer and dissimilar instances farther apart in the feature space. Recently, the autoencoder-based
masked prediction methods have demonstrated great effectiveness on the large-scale foundation
model pre-training. Such methods He et al.| (2022); Xie et al.| (2022); [Li et al.| (2022d); [Chen et al.
(2022);Singh et al | (2022); [Bao et al.|(2022a); |Luo et al.| (2022)) train the model to recover the masked
image patches from a corrupted input image. Our work is built on unsupervised unimodal pre-trained
models, to fully leverage their generalization ability for boosting VLM tasks.

2.3 MULTITASK FINE-TUNING (MFT)

Task Fine-tuning (TFT) is an essential step to transfer the high-capacity model from the pre-training
domain to specific downstream tasks and applications. TFT techniques involves prompt tuning Zhou

et al.| (2022bfa); Ma et al.|(2023); Derakhshani et al.| (2022); Jia et al.| (2022); Bahng et al.| (2022);|Zang

et al.|(2022b); Shen et al.[(2022); [Khattak et al. (2022); Xing et al.| (2022), feature adaptation Gao et al.
2021); /Zhang et al.|(2021b); Pantazis et al.| (2022); Houlsby et al.| (2019), direct fine-tuning[Wortsman|
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Figure 3: UniBoost is a multitask fine-tuning framework based on unsupervised unimodal encoders.
The input can be image, text or image-text pair depending on the target task during multitask fine-
tuning. The UniBoost-Neck is a multiway multimodal module as shown in Figure

et al.|(2022), and architecture modification Zhou et al.|(2021)). multitask fine-tuning (MTF) extends
the fine-tuning from single task to multitasks, so as to leverage the shared information of multiple
related tasks |Shen et al.|(2022); (Caruanal (1997); Dong et al.|(2019); |Sun et al.|(2019; |2020); Ren &
Lee|(2018) and improve the generalization of all the tasks. MTF can optimize the model on multiple
disjoint datasets, erasing the demanding for the expensive exhaustive labeling and simultaneously
maintaining high performance on all tasks. Despite its benefits such as enhanced data efficiency and
decreased over-fitting, MFT still poses challenges regarding negative transfer and imbalanced dataset
sizes. To address these challenges, a common solution is to weight per-task losses or combine per-task
gradients into a joint update |Chen et al.| (2018)); |Kendall et al.| (2018)); [Liu et al.| (2021); |[Sener &
Koltun/(2018)). However, these works require the MFT model to have at least one forward propagation
on each task so that they can manipulate the overall losses or gradients, but this requirement cannot
be easily satisfied, making these methods not directly applicable. Another solution is task sampling-
based MTL (TS-MTL) in which only one task along with its data point is sampled per iteration.
Task-sampling strategies |Hu & Singh! (2021); Jean et al.| (2019); |Lu et al.| (2020) aims to balance
different tasks, avoiding the over-fitting on data-poor tasks or catastrophic forgetting on data-rich
tasks. However, it is found that TS-MTL often underperforms single ask trained models; it is thus
typically followed by an additional per-task fine-tuning step.

3 UNIBOOST

The pretrain-then-finetune paradigm is very effective which holds the holy grail for modern vision
and vision-language tasks. Recently, intermediate fine-tuning has been inserted before fine-tuning the
pre-trained models on the target task for preventing overfitting and enhancing adaptation. Inspired by
this, our UniBoost, a multitask fine-tuning framework as shown in Figure[3|based on the unsupervised
pre-trained vision and language models that can not only fully leverage the generalization ability
of unsupervised unimodal models, but also make use of multitask supervised data to optimize the
alignment of image and text embedding space, thereby improving the ability of transferring knowledge
to downstream tasks. Note that, the vision and language models we use are already pre-trained on
large-scale image or text data alone, therefore, our method does not require a pre-training step. We
directly learn the multimodal alignment or fusion through multitask fine-tuning.

3.1 MODEL ARCHITECTURE

Our method is a multitask fine-tuning framework based on separate image and text encoders for
extracting image and text embeddings respectively. Considering the framework will be trained on
multiple tasks which require different levels of information, we take multi-layer image features from
the image encoder as well as text embeddings (if any) and send them to the neck. The neck works
bridges the embeddings and the task head, where image and text embeddings are aligned or fused, or
the multi-level information are aggregated. We elaborate the details in the following.
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Figure 4: UniBoost-Neck is a multiway multimodal module which supports different types of vision
tasks or vision-language tasks: (a) vision tasks which require image embedding only; (b) vision-
language tasks which require aligned image and text embeddings, (c) vision-language tasks which
require deep fusion of image and text embeddings.

The neck in UniBoost is a multiway multimodal module supporting different vision tasks or vision-
language tasks: (a) vision tasks which require image embedding only, (b) vision-language tasks which
require aligned image and text embeddings, (c) image-grounded text generation tasks which require
deep fusion of image and text embeddings. Afterward, the unimodal or multimodal representations
are sent to task-specific heads to produce predictions and compute losses. For clarity, let the image and
text embedding extracted from the unimodal encoders are respectively denoted as E; € R7*WxC:
and E;, € R . We use € to represent the trainable parameters used in the UniBoost-Neck.

Vision tasks. Vision tasks such as detection or segmentation usually rely on pyramid features to
provide multi-level information. In this work flow, the neck inherits the conventional feature pyramid
network design, and produces output image embedding E; = Q(E;). Specifically, the neck takes
multi-level features as input, append the pyramid spatial pooled features for enlarging receptive fields,
build a top-down path for propagating high-level information progressively, and apply a conv-bn-relu
block for producing features. Different task heads follow afterwards. For example, in detection, a
fast-rcnn head is applied; in classification, a global average pooling layer is applied.

Image-text alignment tasks. Many conventional detection or segmentation methods are extended
from close set to open set through replacing the fixed-length classification layer with class embeddings.
Specifically, in open-set recognition tasks, we feed the /N queried class names into the text encoder
to extract embeddings E, € RN *C" for all classes. For the text encoder which outputs separate
embedding for each word instead of global embedding, we take the mean value of all the word
embeddings if there are multiple words describing a class such as “dining table”. The image
embedding is enhanced in the same way as that in vision tasks. After obtaining the image and class
embeddings, a projection layer is employed separately to obtain E; € RZ*XW*C and E, € RN*C,
Then we take the dot product of the projected image and text embeddings for producing the logit
S = F; - E]. We treat this logit as the classification result instead of learning a classification layer.

Image-text fusion tasks. Image-text fusion tasks such as visual question answering require the deep
interaction between image embedding and text embedding. To achieve this, we instantiate €2 with a
transformer network on the two embeddings formulated as,

[E;, Ey) = Q([E;, Ey)) (1)

Similarly, we project the image or text embedding into the same dimension first. Then we directly
flatten the image embedding along the height and width dimension and concatenate the flattened
image embedding with text embedding, which are then passed into a transformer network. We treat
both VQA and image captioning as conditional generation tasks. Specifically, we employ a special
self-attention mask which allows visual tokens to attend to each other in both directions among all
image tokens while textual tokens can attend to image tokens and their leftward text tokens. During
training, the model is trained to predict next token based on the visual context and available textual
context with cross entropy loss. We use the prompt “Question: {}, Answer: ” and “a photo of ” as the
text for VQA and captioning task respectively. During inference, we generate the text tokens one by
one in auto-regressive manner. In implementation, we adopt the multimodal transformer Wang et al.
(2023) which consists of self-attention layers and 3 types of FFNs, i.e. V-FFN, L-FFN and VL-FFN
expert in processing different modalities. In each transformer block, the visual and textual tokens
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Table 1: Comparisons for language-guided semantic segmentation on PASCAL-5%.

Image Text

0 1 2 3
Method Encoder | Encoder Shot 5 5 5 5° mean FB-IoU
PFENEet Tian et al.[(2022) - 1-shot [60.5 69.4 544 559 60.1 729
RePRI|Boudiaf et al.[(2021) | RN101 - 1-shot [59.6 68.6 62.2 47.2 59.4 -
HSNet Min et al.| (2021) - I-shot |67.3 72.3 62.0 63.1 66.2 77.6
SPNet |[Xian et al.|(2019) RN101 - zero-shot [ 23.8 17.0 14.1 18.3 183 443
ZS3Net Bucher et al.|(2019) | RN101 - zero-shot | 40.8 39.4 393 336 383 57.7
LSeg|Li et al.| (2022a) ViT-L | CLIP-B | zero-shot |61.3 63.6 43.1 41.0 523 67.0
UniBoost (Ours) MAE-L | CLIP-B | zero-shot | 67.3 65.1 46.7 47.3 56.6 69.4
UniBoost (Ours) MAE-L | T5-S |zero-shot|68.7 67.1 49.0 504 58.8 70.8

will first pass through a shared self-attention layer and separate V-FFN as well as L-FFN respectively.
Afterwards, another shared self-attention layer and a VL-FFN expert are employed.

3.2 MULTITASK FINE-TUNING

Existing vision-language paradigms tend to learn representations for image and text, as well as their
alignment (or fusion) jointly. However, such joint learning restricts the embedding space to the
intersection of images and texts. Differently, we disentangle the representation and alignment (or
fusion) learning. In UniBoost, since the image and text encoders are already initialized from well
pre-trained unsupervised unimodal models, with effective contrastive learning or masked modeling
techniques on large-scale data, the extracted image and text embeddings are generalized and robust
enough for transfer learning. Therefore, we only need to align (or fuse) the isolated image and text
embedding space through multitask in-domain fine-tuning at a relatively low cost.

Data and Multitasking. There are numerous valuable public datasets with annotations which can
contribute to the vision-language learning. For benefiting from them, UniBoost is trained on a
variety of tasks, involving high-level tasks such as classification, detection, pixel-level tasks such as
semantic segmentation, vision-language tasks such as VQA, image captioning. In total, the multitask
fine-tuning is conducted on 12 tasks consisting of 6.5M images. Some datasets are of limited size
which only comprises thousands of images. Before training, we augment those datasets through
cropping and flipping for enriching the samples to alleviate the data imbalance issue. Within each
batch, the data points are all sampled from the same task. During iterations, we follow a sampling
strategy in which each task will be sampled at once within a number of iterations.

Experiment Setup. In UniBoost, we initialize the image encoder and text encoder from well pre-
trained models, such as MAE He et al.|(2022), BEiT Bao et al.|(2022a)) for the image encoder, and
TS5 [Raffel et al.| (2020)) for the text encoder. All image encoders take 16x 16 patch size and the input
resolution is set to a moderate value 480x480. We train UniBoost for 1M iterations with a batch size
of 64 on 8 cards of NVIDIA Tesla V100 with 32GB. We use the AdamW for optimization and a
cosine learning rate schedule with a peak learning rate of 1e-4 and a linear warmup of 5K steps. Note
that the learning rate for encoders is multiplied by a ratio of 0.1 to make the shared parameters across
all tasks updated at a slower rate for stable convergence. The weight decay is 0.01.

4 EXPERIMENTS

We extensively evaluate UniBoost on popular vision-language benchmarks including language-guided
semantic segmentation, language-guided object detection and instance segmentation, visual question
answering, and image captioning.

4.1 LANGUAGE-GUIDED SEMANTIC SEGMENTATION

Language-guided semantic segmentation is a multimodal task using language information for pixel
classification. This task replaces the convectional classification layer with class text embeddings for
zero-shot segmentation. We evaluate our UniBoost under zero-shot setting following method |Li et al.
(2022a) and supervised setting following method |Rao et al.|(2022)). The results for zero-shot setting
are shown in Table[I]and Table[2] Table[3|shows the results under supervised setting.
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Table 2: Comparisons for language-guided semantic segmentation on COCO-20°.

Method Image | Text | g 1200 20! 202 203 mean FB-IoU
Encoder | Encoder
PFENet Tian et al.| (2022) RN101 - 1-shot |36.8 41.8 38.7 36.7 385 63.0
HSNet|Min et al.|(2021) - 1-shot |37.2 44.1 424 413 41.2 69.1
ZS3Net|Xu et al.[(2022) | RN101 - zero-shot | 18.8 20.1 24.8 20.5 21.1 55.1
LSeg|Li et al.| (2022a) ViT-L | CLIP-B | zero-shot | 28.1 27.5 30.0 23.2 27.2 599
UniBoost (Ours) MAE-L | CLIP-B | zero-shot | 30.4 31.8 35.7 33.5 329 619
UniBoost (Ours) MAE-L | T5-S |zero-shot|31.0 33.2 359 33.6 334 623

Table 3: Comparisons for language-guided semantic segmentation on ADE20K.

Method ‘ Image Encoder | Text Encoder | mloU pixAcc
SETR Zheng et al.[(2021) ViT-B - 46.2 -
Semantic FPN [Kirillov et al.| (2019) ViT-B - 49.1 -
BEIiT3|Wang et al.| (2023) + FPN BEiT3-B - 48.4 83.2
DenseCLIP|Rao et al.|(2022) CLIP-ViT-B CLIP-B 50.6 -
UniBoost (Ours) BEIT-B T5-B 52.9 84.6

Dataset. Under the zero-shot setting, we conduct experiments on PASCAL-5¢ and COCO-20¢, which
are popular few-shot segmentation datasets and are usually used in zero-shot segmentation methods
to evaluate the generalization ability from seen classes to unseen classes. Specifically, PASCAL-5°
split 20 classes into 4 folds, with each fold denoted as PASCAL-5%, i € 1,2, 3, 4. In each fold, 5
classes with the responding mask annotations are taken as the novel set in evaluation while the others
form the base set used in training. Similarly, COCO-20" also have 4 folds of 20 classes each. Under
the supervised setting, we train and evaluate UniBoost on ADE20K.

Experiment Setup. For the zero-shot setting, UniBoost is fine-tuned on seen classes in each fold
for 15 epochs with a batch size of 8. Augmentation includes random resized cropping, horizontal
flipping, and color jittering. We use the SGD with a momentum of 0.9 for optimization following Li
et al.[(2022a). We use a linear learning rate schedule with a base learning rate of 5e~®. For the
supervised setting, we fine-tune UniBoost for 80K steps with a batch size of 32. AdamW and a poly
learning rate with the base learning rate as le~* and 1500 warmup steps are used for optimization.

Results. In Table [I] we show the results of UniBoost with different pre-trained image and text
encoders to validate the substantial improvement of unsupervised pre-training over supervised pre-
training or image-text pair supervised pre-training. We find that models with unsupervised pre-trained
weights consistently outperform models with supervised pre-trained weights or image-text pair
supervised pre-trained weights. Specifically, based on the supervised baseline, if we replace the
image encoder of ViT-L Dosovitskiy et al.| (2021} pre-trained on ImageNet-1K with an unsupervised
pre-trained image encoder, i.e., MAE-L He et al.| (2022)), the performance is improved to 56.6%.
Then, if we further apply TS5 |Raffel et al.|(2020) as the pre-trained text encoder, the performance is
boosted to 58.8%. Note that our zero-shot results even out-perform the 1-shot results by HSNet|Min
et al|(2021) in 5°. Table[2] shows the results on COCO-20" dataset. With UniBoost, the performance
is boosted from 27.2% to 33.4%. These experiments demonstrate the effectiveness of UniBoost on
aligning unsupervised pre-trained unimodalities for better performance on zero-shot tasks.

Similar conclusion can be drawn for fully-supervised experiments in Table 3] where we replace the
CLIP-based pre-trained weights by the unsupervised pre-trained weights on more data for both image
encoder and text encoder, improving the performance from 50.6% to 52.9% mloU on ADE20K
under fully supervised setting. This also demonstrates the effectiveness of unsupervised pre-training
compared to image-text pair supervised pre-training.

4.2 LANGUAGE-GUIDED OBJECT DETECTION AND INSTANCE SEGMENTATION

Similar to language-guided semantic segmentation, language-guided object detection or instance
segmentation methods utilize class text embeddings as the classification weight for the detected
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Table 4: Comparisons for language-guided object detection and instance segmentation on COCO.
DenseCLIP with CLIP-RN101 is trained and evaluated with an input size of 1333 x 800 while other
transformer-based models use an input size with maximum side of 800 due to memory limitation.

Method ‘ Image ‘ Text

b b b m m m
Encoder Encoder AP” AP3, AP7; AP™ APZ; AP73

DenseCLIP Rao et al.|(2022) | CLIP-RN101 | CLIP-B |42.6 65.1 46.5 39.6 624 424
DenseCLIP |Rao et al.[{(2022) | CLIP-ViT-B | CLIP-B |41.3 64.1 445 37.8 60.7 39.8
UniBoost (Ours) BEIiT-B T5-B |44.3 67.3 48.8 40.8 63.8 433

Table 5: Comparisons for language-guided object detection on PASCAL VOC 2007. Models under
transductive setting are trained on COCO dataset.

Method ‘ Setting Image Encoder | Text Encoder | mAP
Faster R-CNN Ren et al.[|(2015) Inductive VGG - 73.2
Faster R-CNN Ren et al.[(2015) Inductive RNI101 - 75.2
YOLO v2|Redmon & Farhadil (2017) Inductive Darknet-19 - 78.6
CenterNet |Zhou et al.|(2019) Inductive DLA-34 - 80.7
DenseCLIP |Rao et al.[(2022) Transductive CLIP-ViT-B CLIP-B 74.1
UniBoost (Ours) Transductive BEIT-B T5-B 77.4

objects. We evaluate our UniBoost for language-guided object detection and instance segmentation
on COCO dataset under supervised setting shown in Table ] and transductive setting Table 5]

Experiment Setup. During inference, the maximum side of input image is set to 800 for model with
transformer-based backbones while others adopt 1333 x 800. We train the model for a total of 12
epochs with a batch size of 16. We use the AdamW optimizer and a stepwise learning rate decay
scheduler with a base learning rate of 2e %, which decays in epoch 8 and 11 with a ratio of 0.1.

Results. Table 4| evaluates UniBoost on COCO dataset. Compared to the model with image-text
pair pre-trained weights, our UniBoost with unsupervised pre-trained unimodal BEiT-B and T5
outperforms by 1.7% (42.6%—44.3%) and 1.2% (39.6%—40.8%) box AP and mask AP under
supervised setting, respectively, especially ours adopts a smaller input size.

Additionally, we conduct transductive experiments to evaluate the generalization performance of
our model on object detection. In our transductive experiment, the models are trained on the COCO
dataset, which contains a large number of object detection images with diverse object categories and
backgrounds. We then evaluate the model on the the PASCAL VOC 2007, which contains a different
set of object categories and backgrounds compared to COCO. By evaluating the models on a different
dataset than the one used for training, we can gain insights into how well the models can generalize
to new, unseen examples. This is particularly important in object detection, where the ability to detect
objects accurately in a wide range of scenarios is critical for real-world applications. As shown in
Table 5] our UniBoost achieves larger performance promotion by 3.3% (74.1%—77.4%) compared
to the CLIP-based model and are even comparable with some supervised models.

Table 6: Comparisons for visual question answering on VQA v2.0 benchmark.

Method | # Parameters | Test-dev
VLKD 832M 44.5
Flamingo3B |Alayrac et al.[(2022) 3.2B 49.2
BLIP-2 L1 et al.[(2023) 3.1B 49.7
UniBoost \ 935M | 584

4.3  VISUAL QUESTION ANSWERING

VQA, as the most typical vision-language task, requiring the model to simultaneously understand
the context of images and texts, and thus can be used to evaluate the capability of a vision-language
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model. VQA can be solved by treating it as a close-set multi-choice problem or as open-set answering
generation problem. Here, we consider VQA task as an answer generation problem following L1 et al.
(2023), and evaluate UniBoost on VQA v2.0|Antol et al.|(2015) under zero-shot setting. Note that we
do not perform any specific fine-tuning after multitask fine-tuning. The results are shown in Table[§]

Results. As shown, our UniBoost outperforms Flamingo3B by 9.2% and BLIP-2 by 8.7% with much
fewer parameters, which attributes to unsupervised unimodal pre-training and multitask fine-tuning.

Table 7: Comparisons for image captioning on NoCaps validation set.

Method | #Parameters | CIDEr | SPICE
VinVL [Zhang et al.[(2021a) 345M 105.1 14.4
BLIP|L1i et al.| (2022Db) 446M 113.2 14.8
Flamingo|Alayrac et al.[(2022) 10.6B - -
SimVLM Wang et al.| (2022b) 1.4B 112.2 -
BLIP-2 L1 et al.| (2023) 1.1B 121.0 15.3
CoCa|Yu et al.| (2022) 2.1B 122.4 15.5
UniBoost \ 935M \ 119.1 \ 15.1

4.4 IMAGE CAPTIONING

Image captioning is another task which requires the model to embody a comprehensive understanding
of language and image content. After multitask fine-tuning, following [Yu et al.|(2022) we fine-tune
UniBoost without network modification only on COCO captioning task without CIDEr optimization
and evaluate on the validation set of NoCaps |[Agrawal et al.|(2019). During fine-tuning, we train
UniBoost for 10K steps with a warm-up of 1000 steps. The batch size and learning rate is set to 64
and le-5 respectively.

Results. As shown in Table |7} our UniBoost achieves comparable performance with CoCa but with
much fewer trainable parameters, and also achieve comparable performance with BLIP-2 but with
much less training data, i.e. BLIP-2 requires pre-training on 170M image-text pairs while ours are
trained on 6.5M multitask data.

5 LIMITATION

While our current framework and experiments focus on image and text data, it is important to
note that the latest multimodal models, such as ImageBind (Girdhar et al.| (2023)), include audio
and other modalities in their embedding space. By incorporating other modalities, these models
are able to capture a wider range of contextual information, leading to more different types of
applications. Although our proposed framework has shown promising results in enhancing the
zero-shot performance of vision-language tasks, it is important to continue studying the applicability
of our method to other modalities. We believe that the inclusion of other modalities can further
improve the quality and diversity of pre-training. This can potentially lead to even better performance
in downstream tasks by enabling the model to better understand the complex relationships between
different modalities via our UniBoost framework.

6 CONCLUSION

In this paper, we validate that unsupervised unimodal pre-training can significantly boost the perfor-
mance of zero-shot vision-language tasks, in comparison against supervised pre-training or image-text
pair pre-training. In principle, unsupervised pre-training can make use of not only image-text pair
data or their intersection, but also image and text data on their own, the union of which cover a much
broader and more diverse data distribution compared to image-text pairs. To take this advantage, we
introduce UniBoost, a multitask fine-tuning framework based on unsupervised unimodal encoders.
UniBoost can both leverage the generalization power of unsupervised unimodal embedding and
learn a broader joint image-text solution space by incorporating multitask supervised data, thereby
improving zero-shot performance on downstream tasks.
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