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Abstract

This paper introduces a novel kernel-based formulation of the Equalized Odds (EO)
criterion, denoted as EOk, for fair representation learning (FRL) in supervised
settings. The central goal of FRL is to mitigate discrimination regarding a sensitive
attribute S while preserving prediction accuracy for the target variable Y . Our
proposed criterion enables a rigorous and interpretable quantification of three core
fairness objectives: independence (Ŷ ⊥⊥ S), separation–also known as equalized
odds (Ŷ ⊥⊥ S | Y ), and calibration (Y ⊥⊥ S | Ŷ ). Under both unbiased (Y ⊥⊥ S)
and biased (Y ⊥̸⊥ S) conditions, we show that EOk satisfies both independence and
separation in the former, and uniquely preserves predictive accuracy while lower
bounding independence and calibration in the latter, thereby offering a unified
analytical characterization of the tradeoffs among these fairness criteria. We further
define the empirical counterpart, ÊOk, a kernel-based statistic that can be computed
in quadratic time, with linear-time approximations also available. A concentration
inequality for ÊOk is derived, providing performance guarantees and error bounds,
which serve as practical certificates of fairness compliance. While our focus is on
theoretical development, the results lay essential groundwork for principled and
provably fair algorithmic design in future empirical studies.

1 Introduction

As machine learning becomes increasingly integrated into social decision-making (e.g., hiring,
lending), ensuring algorithmic fairness has emerged as a critical challenge. Consider an input random
variable X (e.g., applicant data), a protected attribute S (e.g., gender, race), and a target variable Y
(e.g., loan default). A naïve approach might exclude S from model training. However, when X and S
are statistically dependent (e.g., due to historical biases in education or employment), models trained
on X alone can still perpetuate discrimination by leveraging proxy features correlated with S.

Fair Representation Learning. Fair Representation Learning (FRL) addresses this issue by con-
structing an intermediate representation Z := f(X) that preserves task-relevant information for
predicting the target attribute Y while mitigating biases tied to the sensitive attribute S. Consider a
binary classification task with target Y ∈ {0, 1} and predictor Ŷ ∼ Bernoulli(h(Z)). Existing ap-
proaches to evaluating discrimination in FRL primarily fall into three categories, each corresponding
to a different statistical independence criterion:
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• Independence (Ŷ ⊥⊥ S) seeks to eliminate the dependence of the protected attribute S from the
predictor, typically measured by Demographic Parity (DP, Dwork et al. [2012]), that is,

DP(h;Z, Y, S) := |Pr(Ŷ = 1 | S = 1)− Pr(Ŷ = 1 | S = 0)|. (1)

• Separation (Ŷ ⊥⊥ S | Y ) requires equal prediction performance conditioned on the true label Y ,
instantiated the by Equalized Odds (EO, Hardt et al. [2016]) constraint, i.e.,

Pr(Ŷ = 1 | Y = y, S = 0) = Pr(Ŷ = 1 | Y = y, S = 1), y ∈ {0, 1}. (2)

• Calibration (Y ⊥⊥ S | Ŷ , Kleinberg [2018]) ensures the scoring function h(Z) is equally
meaningful across groups, demanding

Pr(Y = 1 | h(Z) = t, S = 0) = Pr(Y = 1 | h(Z) = t, S = 1),

which is equivalent to Y ⊥⊥ S | Ŷ (Barocas et al. [2023]). Proposed in Shen et al. [2022], a
quantification of the calibration constraint, denoted as DC(h;Z, Y, S) for predictor h, is given as
follows:
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∑
y∈{0,1}

∫ 1

0

|Pr(Y = y, h(Z) = t | S = 1)− Pr(Y = y, h(Z) = t | S = 0)|dt. (3)

Conflicting Fairness Objectives. Simultaneously satisfying independence, separation, and calibra-
tion is fundamentally infeasible under realistic conditions, even though each fairness constraint is
individually well-justified. As shown in Kleinberg [2018], these criteria can only be satisfied together
in pathological cases: either when the target variable Y is independent of the sensitive attribute S,
or when the predictor achieves perfect accuracy, i.e., Pr(E[Y | Z] ∈ {0, 1}) = 1. Such conditions
are rarely encountered in practice, especially in FRL, where representations are often transferred to
downstream tasks with unknown objectives. Consequently, practitioners are forced to navigate trade-
offs between fairness definitions, often lacking clear guidance on the balance between competing
objectives (Chouldechova [2016], Kleinberg [2018]). Identifying and characterizing these trade-offs
is thus a critical step toward advancing the development of fair and effective representations.

Accuracy Costs of Fairness. Beyond their inherent incompatibility, fairness constraints can impose
significant costs on predictive accuracy, presenting a fundamental trade-off in FRL. The objective
in FRL is to construct representations that preserve task-relevant information for downstream pre-
diction while suppressing dependencies on sensitive attributes. However, different fairness notions
operationalize this objective in conflicting ways, often at the expense of accuracy. For instance,
enforcing independence (Ŷ ⊥⊥ S) removes all information correlated with the sensitive attribute
S, including predictive features, thereby excluding the optimal classifier Ŷ ∗ that achieves perfect
accuracy (Pr(Ŷ ∗ = Y ) = 1, Hardt et al. [2016]) in cases where Y ⊥̸⊥ S. In contrast, the separation
(EO) criteria address this limitation by conditioning fairness on the true label Y , enabling alignment
with Ŷ ∗. Yet, such criteria may violate calibration, leading to systematic discrepancies in predicted
probabilities across groups with the same outcome. These competing demands underscore the need
for a principled and quantitative framework to assess how different fairness constraints interact and
affect predictive performance — a gap this work aims to fill.

1.1 Main Contribution: A Quantification of Fairness–Accuracy Trade-offs

To systematically navigate the trade-offs between incompatible fairness constraints and their im-
plications for predictive accuracy, we propose a kernel-based statistic, i.e., EOk, that quantifies
these tensions within a unified framework. Our approach formalizes the divergence between con-
ditional distributions associated with fairness notions such as independence, separation (EO), and
calibration, allowing for precise measurement of how a given representation deviates from each
criterion. Crucially, our statistic also reflects the extent to which fairness enforcement may distort
task-relevant information, thereby linking fairness violations to potential accuracy degradation in
downstream tasks. This dual role—diagnosing fairness violations while accounting for predictive
utility—distinguishes our approach from existing methods. In what follows, we formally define
the EOk statistic, demonstrate its equivalence to a Maximum Mean Discrepancy (MMD) between
reweighted group distributions, and analyze its theoretical properties—highlighting its expressiveness,
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its ability to quantify fairness–accuracy trade-offs under dataset bias, and its practical computability.
We also derive a generalization bound for its empirical counterpart and show how it can serve as a
provable certificate for fairness-aware representation learning.

Technical Overview of EOk. Specifically, EOk quantifies the maximum violation of the EO
constraint Ŷ ⊥⊥ S | Y across predictors h : Z 7→ [0, 1] derived from an affine map of the unit ball in
a reproducing kernel Hilbert space (RKHS). Let Zs := Z | S = s, and py|s := Pr(Y = y | S = s).
Given a reproducing kernel k : Z × Z → R and its associated RKHS Hk, the EOk metric is defined
as the supremum of class-weighted expectation differences within the unit ball of Hk:

EOk(Z, Y, S) := sup
∥h∥Hk

≤1

∣∣p0|0E[h(Z0 − Z1) | Y = 0] + p1|0E[h(Z0 − Z1) | Y = 1]
∣∣ , (4)

where ∥ · ∥Hk
refers to the norm in RKHS Hk induced from kernel k. Let Zy

s := Z | S = s, Y = y.
The above definition is equivalent to the MMD considering random variables {p0|0Z0

s +p1|0Z
1
s}s=0,1.

As detailed in Lemma 2.2, an affine map of the unit ball in the RKHS formulates a feasible set, i.e.,
H, of predictors h : Z 7→ [0, 1] for the prediction of target variable Y . In other words, EOk measures
the worst-case deviation from the weighted EO constraint across all admissible predictors h ∈ H.

Expressiveness of Unit Ball in RKHS. The affine-transformed RKHS unit ball can be considered as
a feasible set for the downstream task that ensures expressiveness for capturing Y ∈ {0, 1}-dependent
disparities, from the following two aspects:

• Pratical Coverage: By the representer theorem (Schölkopf et al. [2001]), an RKHS contains
hypothesis classes of kernel Support Vector Machines (SVMs), Gaussian processes, and PCA,
which are standard tools in the machine learning context.

• Universal Approximation With c0-univeral kernels (e.g., Gaussian, Laplacian), the RKHS Hk

densely spans the space of continuous functions vanishing at infinity (Sriperumbudur et al. [2010a]).
That is, the elements in Hk can approximate any bounded continuous predictor, including neural
networks, to arbitrary precision.

Formalizing Fairness Trade-offs. Unlike existing frameworks that require heuristic selection among
mutually incompatible criteria—independence (1), EO (2), or calibration (3)—our context-adaptive
EOk automatically adjusts to the underlying dependency between Y and S. Specifically, given a
bounded reproducing kernel, i.e., supz k(z, z) ≤ ν. For simplicity, let ν = 1/4. In distinct Y -S
dependency structures, we have

• Y ⊥⊥ S: When no inherent bias exists (Y independent of S), the minimization of EOk enforces
both the independence (1) and separation (EO) constraints (2). Formally, considering the feasible
set, i.e., H, of predictors for the downstream task, we have (Theorem 2.5)

sup
h∈H

DP(h;Z, Y, S) = EOk(Z, Y, S), (5)

where H is derived from the affine image of the unit ball in an RKHS Hk (Lemma 2.2). To
elaborate, (5) demonstrates that in bias-free regimes (Y ⊥⊥ S), the minimization of EOk enforces
both the EO (2) and the independence constraints (1) universally, ∀h ∈ H. Here, H is the feasible
set for predictors h : Z 7→ [0, 1] implementable in downstream tasks.

• Y ⊥̸⊥ S: In the case of data bias (Y -S dependency), EOk permits a quantifiable accuracy-fairness
trade-off: under mild constraints, there exists a constant c, such that (Theorem 2.5, 2.6)

c sup
h∈H

DC(h;Z, Y, S) ≥ sup
h∈H

DP(h;Z, Y, S) ≥ |p0|0 − p0|1|β − EOk . (6)

This inequality illustrates the incompatibility of fairness criteria: when a representation Z nearly
satisfies the EO constraint (EOk ≈ 0) and retains nontrivial predictive power (β > 0), both
independence (DP) and calibration (DC) constraints must necessarily be violated. Here, the
coefficient |p0|0 − p0|1| is a quantification of the inherent dataset bias, and β represents the optimal
balanced accuracy achievable under S = 1 (Lemma 2.4):

sup
h∈H

1

2
(Pr(Ŷ = 0 | Y = 0, S = 1) + Pr(Ŷ = 1 | Y = 1, S = 1)) ≤ 1 + β

2
.

A value of β > 0 implies that Z supports better-than-random prediction. Moreover, enforcing the
calibration constraint (3) for all downstream predictors h ∈ H entails satisfying independence, thus
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imposing a stricter condition than independence alone. This makes calibration particularly costly
in terms of preserving task-relevant signal. Lastly, since the Bayes-optimal classifier Ŷ ∗—which
achieves perfect accuracy, i.e., Pr(Ŷ ∗ = Y ) = 1—satisfies the EO constraint but violates the DP
constraint (1) (Hardt et al. [2016]), the DP (and hence calibration) constraints are fundamentally at
odds with predictive accuracy in biased settings. In contrast, EO, as quantified by our EOk statistic,
accommodates nontrivial predictive performance while explicitly characterizing fairness–accuracy
trade-offs, making it the most appropriate constraint in such contexts.

Scalable Estimation via MMD. Our EOk statistic admits a closed-form empirical estimator based on
the MMD framework, enabling efficient evaluation. More specifically, let Z̄(s) := p0|0Z

0
s + p1|0Z

1
s

denote the Y -reweighted mixture distribution for group S = s, where s ∈ {0, 1}. Given n0 and n1

i.i.d. samples {z(0)i }n0
i=1 and {z(1)i }n1

i=1 from Z̄(0) and Z̄(1) respectively, the empirical estimator for
EOk is given as follows:

ÊOk :=

√∑m
i ̸=j k(z

(0)
i , z

(0)
j )

n0(n0 − 1)
+

∑n
i ̸=j k(z

(1)
i , z

(0)
j )

n1(n1 − 1)
−

2
∑n0,n1

i,j=1 k(z
(0)
i , z

(1)
j )

n0n1
. (7)

This formulation enables direct integration with Stochastic Gradient Descent (SGD, Briol et al.
[2019], Rychener et al. [2022]) and is evaluable in O(n2) (Gretton et al. [2012]) or even O(n) time
(Zhao and Meng [2015]), where n := n0 + n1 refers to the sample size of for the pairs (X,S, Y ). In
practice, one can implement this i.i.d. sampling requirement via stratified bootstrap resampling.

Generalization Guarantees and Domain Adaptation. Our empirical estimator ÊOk is equipped
with hyperparameter-free convergence when served as a penalty term of the objective function in
FRL, ensuring that the employment of ÊOk can help us justify the achievement for EOk. Specifically,
building upon the uniform MMD error bound from Ni and Huo [2024], we prove a non-asymptotic
error bound that holds uniformly over penalty coefficients and optimization trajectories, guaranteeing
convergence of the empirical estimator to the population-level EOk constraint as sample size increases.
As a representative example, suppose the encoders f ∈ F mapping from the input X to the
representation Z are composed of feed-forward neural networks, ∀δ ∈ (0, 1), we have (Theorem
2.10)

Pr

sup
f∈F

∣∣∣ÊO2

k − EO2
k

∣∣∣ ≤ O

√
log(d) + log(δ−1)

n0 + n1

 ≥ 1− δ,

where n0, n1 refers to the sample sizes for Z̄(0) and Z̄(1), respectively, d refers to the input dimension.
The logarithmic relationship between the deviation bound and the input dimension underscores EO’s
computational edge over traditional Integral Probability Metrics (IPMs) in high-dimensional tasks.
Moreover, in cases where the input X is perturbed via a function transformation g(X), suppose
f ◦ g ∈ F , ∀F , the above upper bound remains valid, revealing the domain adaptation property of
the proposed metric EOk.

1.2 Related Works: The Limits of Achieving Multiple Group Fairness

To address the ambiguity in selecting a fairness criterion, recent works have proposed metrics that
aim to approximate multiple fairness notions simultaneously. For example, it is proposed in Shen
et al. [2022] that the minimization through the following opposing objectives leads to the joint
approximation of group fairness constraints embedded in independence (1), separation (2), and
calibration (3). That is,

max{dTV(Z0, Z1), 1− dTV(Z
0, Z1)},

where Zs := Z | S, Zy := Z | Y = y, dTV refers to the Total Variation Distance (TVD). Similarly,
Jang et al. [2024] design a metric lower bounded by both DP (1) and EO (2) violations.

However, these approaches conflict with fundamental impossibility results (Kleinberg [2018]), which
show that independence, separation, and calibration cannot be satisfied simultaneously except in
degenerate cases (e.g., Y ⊥⊥ S or perfect prediction). In particular, the formulation in Shen et al.
[2022] assumes that the involved conflicting TVD terms, i.e., dTV(Z0, Z1) and dTV(Z

0, Z1)}, can
be simultaneously optimized, despite their inherent trade-off under distributional bias (Y ⊥̸⊥ S),
where the composite metric can never be minimized to zero. Similarly, the metric proposed in Jang
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et al. [2024] fails to account for the structural incompatibility between the DP (1) and EO (2) metric
in biased settings (Y ⊥̸⊥ S). As shown in (6), both criteria can only be simultaneously satisfied
when the target variable becomes unidentifiable in subgroup S = 1. Consequently, to preserve the
prediction accuracy, the lower bound of the proposed metric is determined by the degree of DP, which
remains strictly positive under Y ⊥̸⊥ S.

In contrast, our method acknowledges this conflict and formalizes the trade-offs using a kernel-based
statistic, EOk. It can be observed that our metric EOk preserves the Bayes-optimal predictor in biased
regimes and approximates both independence and EO in the unbiased case, providing a principled
approach to fairness constraint selection based on task-specific trade-offs.

1.3 Preference of MMD in FRL

Adversarial Training Structure in FRL. Adversarial training is an approach widely used in FRL
(Beutel et al. [2017], Madras et al. [2018], Zhao et al. [2019], Kim and Cho [2020]) considering
the accuracy and fairness trade-off. Let an encoder f : X 7→ Z map features X to a representation
Z = f(X). A task head h : Z 7→ [0, 1] predicts the target attribute Ŷ ∼ Bernoulli(h(Z)), while a
discriminator d : Z 7→ [0, 1] tries to recover the protected attribute S from Z. The resulting min-max
problem is

min
f,h

max
d

E
[
LY (h(Z), Y )

]
− λE

[
LS(d(Z), S)

]
, (8)

where LY (e.g., cross-entropy) encourages predictive accuracy, LS (e.g., logistic loss) penalizes
information about S in Z, and λ > 0 controls the trade-off. At equilibrium, Z is approximately
independent of S, thereby approaching DP, i.e., h(Z) ⊥⊥ S, for any downstream prediction model h.
For a comprehensive survey of FRL approaches, readers are referred to Cerrato et al. [2024].

Reducing Computation via IPM penalty. Replacing the adversarial maximization step in (8) with
an Integral Probability Metric (IPM) regularizer has gained wide attention in recent studies (Mary
et al. [2019], Kim et al. [2022], Deka and Sutherland [2023], Kong et al. [2025]). Examples include
TVD (Shen et al. [2022]), MMD (Oneto et al. [2020], Rychener et al. [2022], Deka and Sutherland
[2023]), and the Wasserstein Distance (Gordaliza et al. [2019]). Notably, an IPM is defined as a
supremum over a specified function class F of real-valued functions. Specifically, given a pair of
random variables Z0 and Z1 embedded in set Z , we have

dF (Z0, Z1) := sup
f∈F

|E[f(Z0)]− E[f(Z1)]| ,

which collapses the inner optimization into a single, closed-form loss term, eliminating the full
min-max game and reducing computational overhead. This substitution also yields tighter theoretical
guarantees for DP (Kong et al. [2025]).

From TVD to MMD: A Practical Shift in Fairness Regularization. For binary classifica-
tion, i.e., Y ∈ {0, 1}, TVD is the theoretically ideal IPM for enforcing demographic parity.
Its specified function class FTV := {f : Z → [−1, 1]} is an affine transformation of the set
H[0,1] := {h : Z → [0, 1]} that comprises all probabilistic classifiers for the event Y = 1. Despite
its theoretical appeal, TVD suffers from critical limitations in practice. Most notably, its gradients
vanish when the supports of the conditional distributions do not overlap—stalling optimization in
high-dimensional or imbalanced settings. This makes TVD ill-suited for gradient-based training in
deep representation learning frameworks. These limitations have led to the widespread adoption of
MMD as a computationally efficient and stable alternative.

2 Main Theoretical Results

In the following, we first provide the formal definition of our metric EOk and its technical explanation
in Section 2.1. Given the formal definition, we discuss the relationships between our metric and the
independence and calibration constraints in Section 2.2, showing that in both the biased (Y ⊥⊥ S) and
unbiased (Y ⊥̸⊥ S) cases, our metric is a preferred choice. Regarding the algorithmic implementation,
we provide the empirical estimator of our metric and discuss its convergence rate when served as a
penalty term in the objective function in Section 2.3.
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2.1 Kernel-based EO Constraint

Given a characteristic reproducing kernel (Definition 4.2), from which the derived kernel mean
embeddings are injective, the EO constraint (Ŷ ⊥⊥ S | Y , (2)) in the binary classification setting is
equivalent to the following condition:

µy
0 = µy

1, y ∈ {0, 1},
where µy

s := E[k(·, Zy
s )] stands for the kernel mean embedding of the conditional representation Zy

s ,
s, y ∈ {0, 1}. In the following, instead of computing the MMD for both the (µ0

0, µ
0
1) and (µ1

0, µ
1
1)

pairs, we consider the difference between the following weighted summation conditioned on Y = 0
and Y = 1, i.e.,

p0|0µ
0
s + p1|0µ

1
s,

for s = 0, 1, where py|s := Pr(Y = y|S = s), s, y ∈ {0, 1}. The formal definition is given as
follows:
Definition 2.1 (Weighted Equalized Odds via MMD). Let Hk be an RKHS containing functions
mapping from Z to R, and k : Z ×Z 7→ R be the corresponding reproducing kernel. Suppose k is
characteristic as defined in Definition 4.3, we quantify the separation constraint, i.e., Ŷ ⊥⊥ S | Y ,
through the following expression:

EOk(Z, Y, S) := γk(p0|0Z
0
0 + p1|0Z

1
0 , p0|0Z

0
1 + p1|0Z

1
1 ). (9)

2.2 Accuracy-Fairness Trade-off

We start with the statement that the value of MMD can be considered as the supremum of the balanced
accuracy for a binary classification problem. In the following, we provide the involved function class,
built from an affine map of the unit ball in an RKHS.
Lemma 2.2. Let Hk be an RKHS containing functions mapping from Z to R, and k : Z × Z 7→ R
be the corresponding reproducing kernel. Suppose supz k(z, z) ≤ ν. Let H[0,1] := {h : Z 7→ [0, 1]}
be the set containing all possible classifiers, H := {h | h(z) = (hk(z) + 1)/2, ∥hk∥Hk

≤ ν−1/2},
we have H ⊆ H[0,1].

Proof of the above lemma is given in Appendix 4.2.

The formal definition of the balanced accuracy for a binary classification problem is given as follows:
Definition 2.3 (Balanced Accuracy). Given an input random variable X ∈ X and a binary target
attribute Y ∈ {0, 1}. Let Ŷ ∼ Bernoulli(h(X)) be the prediction derived based on X , where
h : X 7→ [0, 1]. The Balanced Accuracy (BA) of the predictor h is measured by the following
equation:

BA(h;X,Y ) :=
1

2

(
Pr(Ŷ = 0 | Y = 0) + Pr(Ŷ = 1 | Y = 1)

)
.

Considering the aforementioned function set, the following lemma provides the relationship between
the value of MMD and the optimal balanced accuracy.
Lemma 2.4 (MMD and Optimal Balanced Accuracy). Let Hk be an RKHS containing functions
mapping from Z to R, and k : Z × Z 7→ R be the corresponding reproducing kernel. Suppose
supz k(z, z) ≤ ν, let H := {h | h(z) = (hk(z) + 1)/2, ∥hk∥Hk

≤ ν−1/2}. Given a representation
Z embedded in Z , a sensitive attribute S ∈ {0, 1}, and a target attribute Y ∈ {0, 1}. Then, the
MMD between the conditional representation Zy

s corresponds to the optimal balanced accuracy with
respect to the classifiers embedded in G. More specifically, we have

1. Suppose γk(Z0, Z1) ≤ α, then

sup
h∈H

BA(h;Z, S) ≤ 2 + ν−1/2α

4
.

2. Suppose γk(Z
0, Z1) ≥ β, then

sup
h:Z7→[0,1]

BA(h;Z, Y ) ≥ 2 + ν−1/2β

4
.

6



Here, α ≥ 0 and β ≤ 2ν1/2.

Proof of the above lemma is referred to Appendix 4.3.

Observed from the above lemma, it can be concluded that (i) The minimization of MMD over
representation Z conditioned on the sensitive attribute S enforces the statistical indistinguishability
of predictions Ŷ ∼ Bernoulli(h(Z)) across sensitive groups, as quantified by the maximal predictive
leakage of S under optimal balanced accuracy; (ii) To certify non-trivial predictive performance in
downstream tasks, the MMD over representations Z conditioned on the target attribute Y must be
bounded below by a positive constant. This guarantees the existence of a predictor h : Z 7→ [0, 1]

whose induced prediction Ŷ ∼ Bernoulli(h(Z)) can surpass random guessing.

In the following, we analyze the relationship between the independence constraint (1) and the metric
EOk that represents the EO constraint (2), considering the supremum over the possible predictors
h ∈ H, where H is the feasible set induced by the unit ball in an RKHS as given in Lemma 2.2.
Combining the following result and the above observation regarding the relationship between MMD
and prediction accuracy, we conclude that the metric EOk is a preferred choice considering the
fairness-accuracy trade-off.
Theorem 2.5 (Independence and EO). Let Hk be an RKHS containing functions mapping from Z to
R, and k : Z × Z 7→ R be the corresponding reproducing kernel. Suppose supz k(z, z) ≤ ν. Let
H := {h | h(z) = (hk(z) + 1)/2, ∥hk∥Hk

≤ ν−1/2}, DP be given as (1), we have

sup
h∈H

DP(h;Z, Y, S) = (2ν1/2)−1γk(Z0, Z1). (10)

Moreover, denote Pr(Y = y | S = s) as py|s. Let EOk be the weighted equalized odds constraint
given in Definition 2.1. Suppose Y ⊥⊥ S, we have

sup
h∈H

DP(h;Z, Y, S) = (2ν1/2)−1 EOk(Z, Y, S). (11)

In cases where Y ⊥̸⊥ S, we have
sup
h∈H

DP(h;Z, Y, S) ≥ (2ν1/2)−1
∣∣|p0|0 − p0|1|γk(Z0

1 , Z
1
1 )− EOk(Z, Y, S)

∣∣ . (12)

Proof of the above theorem is referred to Appendix 4.4.

This result underscores the inherent incompatibility between independence (DP) and separation (EO)
constraints when Y ⊥̸⊥ S. Formally, if an optimization procedure yields EOk ≈ 0, the following
lower bound holds:

sup
h∈H

DP ≥ (2ν)−1|p0|0 − p0|1|β,

where β := γk(Z
0
1 , Z

1
1 ). Based on Lemma 2.4, γk(Z0

1 , Z
1
1 ) quantifies the maximum achievable

balanced accuracy for predicting Y given S = 1. To ensure non-trivial predictive performance,
i.e., the balanced accuracy is greater than 1/2, we require β > 0, which strictly prohibits perfect
independence, i.e., DP = 0 in the biased setting (Y ⊥̸⊥ S), aligning with the impossibility result
proposed in Hardt et al. [2016], Kleinberg [2018]. In conclusion, we have (i) the minimization of the
metric EOk achieves both the independence and EO constraint simultaneously in the unbiased setting
where Y ⊥⊥ S; (ii) the minimization of EOk is preferred in the biased setting Y ⊥̸⊥ S to ensure the
prediction accuracy regarding the target attribute Y .
Theorem 2.6 (Independence and Calibration). Given characteristic reproducing kernels k : R|Z| ×
R|Z| 7→ R, k[0,1] : [0, 1]× [0, 1] 7→ R, and k{0,1} : {0, 1} × {0, 1} 7→ R. Let H, H[0,1], and H{0,1}
be the corresponding RKHSs. Let H[0,1] ⊗H{0,1} be the tensor product of space H[0,1] and H{0,1},
equipped with a reproducing kernel function k[0,1] ⊗ k{0,1}, where k[0,1] ⊗ k{0,1}((u, y), (u, y

′)) =
k[0,1](u, u

′)k{0,1}(y, y
′), ∀u, u′ ∈ [0, 1], ∀y, y′ ∈ {0, 1}.

Suppose supz k(z, z) ≤ ν, supu k[0,1](u, u) ≤ ν[0,1], supy k{0,1}(y, y) ≤ ν{0,1}, and id ∈ H[0,1],
where id is the identity function. Let H := {h | h(z) = (hk(z) + 1)/2, ∥hk∥Hk

≤ ν−1/2}. We have
sup
h∈G

DC(h, Y, S)

≥ (4ν
1/2
[0,1]ν

1/2
{0,1})

−1 sup
h∈G

γk[0,1]⊗k{0,1}((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1)

≥ (4ν
1/2
[0,1]ν

1/2
{0,1}∥ id ∥H[0,1]

)−1 sup
h∈H

DP(h;Z, Y, S).
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Proof of the above theorem is referred to Appendix 4.5.

As observed from the above theorem, the calibration constraint (DC) is linearly lower bounded by
the independence (DP) constraint. Consequently, in biased regimes (Y ⊥̸⊥ S), achieving calibration
requires suppressing DP below a problem-dependent threshold. This creates a two-fold conflict:

1. Accuracy-Fairness Paradox: An optimal predictor Ŷ ∗, such that Pr(Ŷ ∗ = Y ) = 1, violates the
independence constraint, i.e., DP > 0, leading to the violation for DC constraint.

2. Violation of the EO constraint: Recall the contradiction between the EO and independence
constraint as given in Theorem 2.5. In a biased circumstance (Y ⊥̸⊥ S), requiring DC ≈ 0 leads to
a lower bound for the EO constraint as measured by EOk, corresponding to the fact that given the
target attribute Y , the prediction made by the model relies on the sensitive attribute S.

Thus, in the biased setting Y ⊥̸⊥ S, EOk emerges as the preferred fairness criterion over both DP and
DC.

2.3 Optimization Framework with Convergence Guarantees

Utilizing the aforementioned metric EOk as a regularization constraint, we formulate the supervised
FRL problem as follows:

argmin
h,f

Lsup(h ◦ f) + λÊO
2

k, s.t. Z = f(X), (13)

where Lsup is a given supervised risk such as the cross-entropy in this binary classification setting,
ÊOk refers to the empirical estimate of EOk as given in (7), and the multiplier λ ≥ 0 is a hyperpa-
rameter controlling the relative magnitude of the fairness constraint. Here, to circumvent gradient

instability caused by the square root function contained in the expression of ÊOk, we employ ÊO
2

k
in the constraint instead.

To validate the empirical estimator ÊOk’s efficacy as a penalty term, we provide a uniform deviation
bound between ÊOk and EOk under the following assumptions. First, regarding the encoder set
F containing mappings from X to Z to establish a representation Z, we require that its covering
number is finite.
Assumption 2.7. Let F be a function set mapping from X to Z , where Z ⊆ Rd. ∀ϵ > 0, suppose
the covering number N(ϵ;F , ∥ · ∥∞) < ∞, where ∥ · ∥∞ is a function norm defined as follows:

∥f∥∞ := inf

{
C ≥ 0

∣∣∣∣ sup
x∈X

|f(x)| ≤ C

}
.

The covering number N(ϵ;F , ∥ · ∥) is defined as the minimum cardinality of a set Fϵ, such that
∀f ∈ F , there exists a function fϵ ∈ Fϵ, such that ∥fϵ − f∥ ≤ ϵ.

Second, regarding the reproducing kernel involved in the establishment of the empirical estimator,
we assume it is bounded and Lipschitz.
Assumption 2.8. Let H be an RKHS containing functions mapping from Z to R, and k : Z×Z 7→ R
be the corresponding reproducing kernel. Suppose the reproducing kernel k is built under the
following regularity conditions:

1. (Bounded). ∃ν > 0, s.t., supz∈Z k(z, z) ≤ ν.

2. (Lipschitz). ∃l > 0, s.t., ∀z ∈ Z , the function k(·, z) ∈ H is l-Lipschitz.

In the following, we provide the definition of Gaussian complexity, which will be a quantification
considered in the deviation bound.
Definition 2.9 (Gaussian Complexity). The Gaussian complexity of a set T ⊆ Rn is defined as
follows:

Gn(T ) := Eξ sup
t∈T

[
n∑

i=1

ξiti

]
, (14)

where t = (t1, . . . , tn)
T , ξi

i.i.d.∼ N (0, 1), ∀i.
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Based on Assumption 2.7 and 2.8, the technical statement for the uniform deviation bound is detailed
as follows:
Theorem 2.10 (Uniform Concentration Inequality of MMD, Ni and Huo [2024]). Given an encoder
set F containing mappings from X to Z , where Z ⊆ Rd and Z = f(X) given a specified encoder

f ∈ F . Let f(X)
(s)

:= p0|0f(X)0s + p1|0f(X)1s denote the Y -reweighted mixture distribution

for group S = s, where s ∈ {0, 1}. Given n0 and n1 i.i.d. samples f(X)
(0)

:= {f(xi)
(0)

}n0
i=1

and f(X)
(1)

:= {f(xi)
(1)

}n1
i=1 from f(X)

(0)
and f(X)

(1)
, respectively. Denote n := n0 + n1

,ρ0 := n0/n, and ρ1 := n1/n. Given a reproducing kernel k : Z × Z 7→ R, where Z ∈ Rd.
Let Gnd(F(X)) be the empirical Gaussian complexity defined in (14) regarding the set F(X) :=

{(f(x1)
(0)

, . . . , f(xn0
)
(0)

, f(x0)
(1)

, . . . , f(xn1
)
(0)

}. ∀δ ∈ (0, 1), with probability at least 1− δ, we
have

sup
f∈F

∣∣∣∣ÊO2

k(f(X))− EO2
k(f(X))

∣∣∣∣
≤ 8νmax

{
ρ−1
0 , ρ−1

1

}√
log(2/δ)

n
+

2
√
2πl

n
max

{
1 + ρ−1

0

ρ0
,
1 + ρ−1

1

ρ1

}
E
[
Gnd(F(X))

]
;

Notably, the error bound established in the above theorem relies on the Gaussian complexity of
the involved encoder set, whose computation involved a supremum with respect to f ∈ F . In
the following, we provide an error bound for the empirical estimator we obtained in (13). As a
representative example, we establish the deviation bounds for neural network scenario as discussed in
Proposition 4.7.
Corollary 2.11 (Error Bounds for Empirical MMD). Let F be a function set mapping from X to
Z , where Z ⊆ Rd. Let f∗

n be the empirical estimator obtained in the optimization problem (13),

corresponding to the representation Z = f∗
n(X) and its data matrices f∗

n(X)
(0)

and f∗
n(X)

(0)
,

as defined in Theorem 2.10. Under the Assumption 2.8, there exist constants C1, C2, such that
∀δ ∈ (0, 1), with probability at least 1− δ, we have

EO2
k(f(X)) ≤ ÊO

2

k(f(X)) +
C1

n
E
[
Gnd(F(X))

]
+ C2

√
ln(2/δ)

n
.

Suppose F is a set of feed-forward neural networks as given in Proposition 4.7. ∀δ ∈ (0, 1), with
probability at least 1− δ, we have

EO2
k(f(X)) ≤ÊO

2

k(f(X)) +O
(
n−1/2

(
1 +

√
ln(2/δ)

))
.

Based on the above result, suppose ÊO
2

k(f(X)) ≤ ϵ in the feed-forward neural network scenario, then
∀δ ∈ (0, 1), with probability at least 1− δ, its expected value, i.e., the EOk metric, can be controlled

by is
√
ϵ2 +O

(
n−1/2

(
1 +

√
ln(2/δ)

))
, confirming the convergence rate and the efficacy of the

empirical estimator ÊOk when adopted as a penalty term in FRL.

3 Conclusion

We present a kernel-based statistic, EOk, that quantifies the trade-offs between incompatible fairness
constraints and predictive accuracy in representation learning. Unlike prior work that attempts to
approximate multiple fairness notions simultaneously, our approach acknowledges their inherent
conflict and provides a principled way to measure and navigate it. Our metric EOk admits a scalable
empirical estimator, recovers DP (Independence, Equation (1)) and EO (Separation, Equation (2))
simultaneously in unbiased settings, and serves as the one that preserves the Bayes-optimal predictor
under bias setting when compared to DP and DC (Calibration, Equation (3)) metrics. This framework
offers a practical and theoretically grounded tool for fairness constraint selection in real-world
applications. Our current work is theoretical. However, it lays the foundation for future empirical
studies.
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4 Appendix

In the appendix, we will first provide the preliminaries to prepare for the proofs we will discuss.
More specifically, we first provide Table 1 to give an overview of formal definitions of existing
quantifications for fairness constraints. Then, we provide the formal definition of MMD and RKHS,
and discuss the relationship between MMD and TVD.

Afterwards, we provide the proofs for Lemma 2.2, 2.4, Theorem 2.5, 2.6, and 4.5.

Finally, we present the concentration inequality of Gaussian complexity and its upper bound for
neural networks as supplementary material for our established error bounds.

To begin with, Table 1 provides a quantification of the aforementioned fairness constraints in a binary
classification setting, i.e., Y ∈ {0, 1}.

4.1 Preliminary: RKHS and MMD

We review the basic idea behind MMD, which is to quantify the discrepancy between the two
distributions P and Q in terms of the largest difference in expectation between f(X) and f(Y ), for
X ∼ P and Y ∼ Q, over functions f in the unit ball of a reproducing kernel Hilbert space (RKHS)
defined on X . This is called the maximum mean discrepancy (MMD) between distributions P and
Q, which can be conveniently estimated from the data in terms of the pairwise kernel dissimilarities.
For characteristic kernels, a useful property of the MMD is that it takes value zero if and only if
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Table 1: Existing fairness notions in a binary classification task [Shen et al., 2022, Table 1].
Ŷ ∼ Bernoulli(h(Z)), Y , and S stand for empirical predictor, true label, and sensitive attribute,
respectively.

Category Definition

Ŷ ⊥⊥ S DP(Ŷ , S) = |Pr(Ŷ = 1 | S = 1) − Pr(Ŷ = 1 | S = 0)|

Ŷ ⊥⊥ S | Y
DOpp(Ŷ , Y, S) = |Pr(Ŷ = 1 | Y = 1, S = 1) − Pr(Ŷ = 1 | Y = 1, S = 0)|
DR(Ŷ , Y, S) = |Pr(Ŷ = 1 | Y = 0, S = 1) − Pr(Ŷ = 1 | Y = 0, S = 0)|
DOdds(Ŷ , Y, S) = 1

2 × (DOpp(Ŷ , Y, S) + DR(Ŷ , Y, S))

Y ⊥⊥ S | Ŷ
DPC(h, Y, S) = 1

2

∑
t∈[0,1] |Pr(Y = 1, h(Z) = t | S = 1) − Pr(Y = 1, h(Z) = t | S = 0)|

DNC(h, Y, S) = 1
2

∑
t∈[0,1] |Pr(Y = 0, h(Z) = t | S = 1) − Pr(Y = 0, h(Z) = t | S = 0)|

DC(h, Y, S) = 1
2 × (DPC(h, Y, S) + DNC(h, Y, S))

distributions P and Q are the same. MMD has been used to boost the power of two-sample tests
Chatterjee and Bhattacharya [2025]. We provide the formal definitions of RKHS and MMD, based
on which our metric EOk is built.
Definition 4.1 (Reproducing Kernel Hilbert Space; RKHS). A Hilbert space, H, containing functions
mapping from a set X is called a Reproducing Kernel Hilbert Space (RKHS) if, ∀x ∈ X , there exists
a function φx ∈ H, such that ∀f ∈ H, we have

⟨f, φx⟩H = f(x),

where ⟨·, ·⟩H is the inner product in space H. The reproducing kernel k : X ×X 7→ R of H is defined
as follows:

k(x, y) = ⟨φx, φy⟩H, ∀x, y ∈ X .

Notably, given a pair of random vectors, MMD reflects the RKHS norm of between the kernel mean
embeddings of the involved random vectors, that is,
Definition 4.2 (Kernel Mean Embedding, Sriperumbudur et al. [2011], p. 2390). Let Hk be an
RKHS containing functions mapping from X to R, and k : X × X 7→ R be the corresponding
reproducing kernel. Given the set of all Borel probability measures defined on the topological space
X , a measurable and bounded kernel, k, is said to be characteristic if the following mapping is
injective:

P 7→ µP :=

∫
X
k(·, x)dP (x).

Here, µP ∈ H is called the kernel mean embedding of distribution P .
Definition 4.3 (Maximum Mean Discrepancy; MMD, Gretton et al. [2012], Lemma 4). Let X and Y
be random vectors taking values in X . Given a reproducing kernel k : X × X 7→ R, the Maximum
Mean Discrepancy (MMD) between X and Y is defined as the Integral Probability Metric (IPM)
induced by the unit ball of the associated reproducing kernel Hilbert space H. Formally,

γk(X,Y ) = sup
∥f∥H≤1

|E[f(X)]− E[f(Y )]|,

where ∥ · ∥H denotes the norm in H. Equivalently, let µX := E[k(·, X)] and µY := E[k(·, Y )] be
the kernel mean embeddings of X and Y , respectively. We have

γk(X,Y ) = ∥µX − µY ∥H .

In cases where k is a characteristic kernel as defined in Definition 4.2, γk(X,Y ) = 0 if and only if
the involved probability distributions are the same.
Theorem 4.4 (Upper bound of γk via TVD, Sriperumbudur et al. [2010b]). Assume supx k(x, x) ≤
ν < ∞, where k is measurable on M . Then for any probability metrics P and Q embedded in set M ,
let X ∼ P and Y ∼ Q, we have

γk(X,Y ) ≤ 2
√
νdTV(X,Y ),

where dTV denotes the TVD.
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4.2 Proof of Lemma 2.2

Proof of Lemma 2.2. Given the specified reproducing kernel k as mentioned in the above lemma, let
H be the corresponding reproducing kernel Hilbert space. Suppose h ∈ H and ∥h∥H ≤ ν−1/2, let
⟨·, ·⟩H be the inner product defined for the RKHS H, and ∥ · ∥H be the norm defined based on the
inner product. Then, based on the definition of reproducing kernel, we have

∥h∥∞ = sup
z∈R|Z|

|h(z)|

= sup
z∈R|Z|

|⟨h, k(z, ·)⟩H|

Cauchy Schwarz’s
≤ sup

z∈R|Z|
∥h∥H∥k(z, ·)∥H

= ∥h∥H sup
z∈R|Z|

√
k(z, z)

sup
z∈R|Z| k(z,z)≤ν

≤ ∥h∥H
√
ν

≤ 1.

That is, the map of h is contained within [−1, 1]. Consequently, the map of (h+ 1)/2 is contained
within [0, 1].

4.3 Proof of Lemma 2.4

Proof of Lemma 2.4. Suppose γk(Z0, Z1) ≤ α, then, based on Definition 4.3, we have

sup
∥h∥H≤1

|E [h(Z0)]− E [h(Z1)]| ≤ α.

Consequently, we have

sup
∥h∥H≤ν−1/2

|E [h(Z0)]− E [h(Z1)]| ≤ ν−1/2α,

⇔ sup
∥h∥H≤ν−1/2

∣∣∣∣E [
h+ 1

2
(Z0)

]
− E

[
h+ 1

2
(Z1)

]∣∣∣∣ ≤ ν−1/2

2
α,

That is,

|E [g(Z0)]− E [g(Z1)]| ≤
ν−1/2α

2
, ∀g ∈ G.

Since Ŝ ∼ Bernoulli(g(Z)), we have∣∣∣Pr(Ŝ = 1|S = 0)− Pr(Ŝ = 1|S = 1)
∣∣∣ ≤ ν−1/2α

2
, ∀g ∈ G.

Let Ŝ∗ be the optimal predictor with respective to the sensitive attribute S, based on the set G, then
we have∣∣∣Pr(Ŝ∗ = 1|S = 0)− Pr(Ŝ∗ = 1|S = 1)

∣∣∣ = ∣∣∣Pr(Ŝ∗ = 1|S = 1) + Pr(Ŝ∗ = 0|S = 0)− 1
∣∣∣

=

∣∣∣∣2 sup
h∈H

BA(h;Z, S)− 1

∣∣∣∣ .
Consequently, suph∈H BA(h;Z, S) ≤ (2 + ν−1/2α)/4.

On the other hand, suppose the representation Z is β-discriminative with respect to MMD, then we
have γk(Z

0, Z1) ≥ β. Based on Theorem 4.4, we have dTV(Z
0, Z1) ≥ 1

2ν
−1/2β. Then, based on

[Shen et al., 2022, Proposition 2], we have supg:Z7→[0,1] BA(h;Z, Y ) ≥ 2+ν−1/2β
4 . Moreover, since

dTV ≤ 1, we have β ≤ 2ν1/2.
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4.4 Proof of Theorem 2.5

Proof of Theorem 2.5. Suppose the feasible set of the classifiers is given as the function set G as
defined in Lemma 2.4, i.e., G = {g = (h+1)/2 | h ∈ H, ∥h∥H ≤ ν−1/2}, where ((h+1)/2)(z) =
(h(z) + 1)/2, ∀z, then we can rewrite the possible maximal value of the involved fairness notions as
follows:

Independence. To begin with, based on Bayes’ law, Zs = Pr(Y = 0 | S = s)Z0
s + Pr(Y = 1 |

S = s)Z1
s , s = 0, 1.

sup
h∈H

DP(Ŷg, S) = sup
h∈H

∣∣∣Pr(Ŷg = 1 | S = 1)− Pr(Ŷg = 1 | S = 0)
∣∣∣

= sup
h∈H

∣∣∣E[Ŷg | S = 1]− E[Ŷg | S = 0]
∣∣∣

= sup
h∈H

|E[g(Z1)]− E[g(Z0)]|

= sup
∥h∥H≤ν−1/2

∣∣∣∣E [
h+ 1

2
(Z1)

]
− E

[
h+ 1

2
(Z0)

]∣∣∣∣
=

1

2
sup

∥h∥H≤ν−1/2

|E [h(Z1)]− E [h(Z0)]|

= (2ν1/2)−1 sup
∥h∥H≤1

|E[h(Z1)]− E[h(Z0)]|

= (2ν1/2)−1γk(Z0, Z1).

Separation.

sup
h∈H

DOpp(h;Z, Y, S) = sup
h∈H

∣∣∣Pr(Ŷ = 1 | Y = 1, S = 1)− Pr(Ŷ = 1 | Y = 1, S = 0)
∣∣∣

= sup
h∈H

∣∣E [
g(Z1

1 )
]
− E

[
g(Z1

0 )
]∣∣

=
1

2
sup

∥h∥H≤ν−1/2

∣∣E [
h(Z1

1 )
]
− E

[
h(Z1

0 )
]∣∣

= (2ν1/2)−1γk(Z
1
1 , Z

1
0 ).

Similarly, we have suph∈H DR(h;Z, Y, S) = (2ν1/2)−1γk(Z
0
1 , Z

1
0 ). Based on the upper bounds

for suph∈H DOpp and suph∈H DR, we have suph∈H DOdds ≤ suph∈H DOpp+ suph∈H DR =

(2ν1/2)−1(γk(Z
1
1 , Z

1
0 ) + γk(Z

0
1 , Z

0
0 )).

Lower and upper bounds. Recall Definition 4.2, we have

∥µ0 − µ1∥H
=

∥∥p0|0µ0
0 + p1|0µ

1
0 − p0|1µ

0
1 − p1|1µ

1
1

∥∥
H

=
∥∥p0|0µ0

0 + (1− p0|0)µ
1
0 − p0|1µ

0
1 − (1− p0|1)µ

1
1

∥∥
H

=
∥∥p0|0(µ0

0 − µ0
1) + (1− p0|0)(µ

1
0 − µ1

1) + (p0|0 − p0|1)(µ
0
1 − µ1

1)
∥∥
H .

In cases where Y ⊥⊥ S, we have p0|0 = p0|1. Consequently, ∥µ0 − µ1∥H =∥∥p0|0(µ0
0 − µ0

1) + (1− p0|0)(µ
1
0 − µ1

1)
∥∥
H. Based on the triangle’s inequality, we have

∥µ0−µ1∥H ≥
∣∣p0|0γk(Z0

0 , Z
0
1 )− p1|0γk(Z

1
0 , Z

1
1 )
∣∣ , and ∥µ0−µ1∥H ≤ p0|0γk(Z

0
0 , Z

0
1 )+p1|0γk(Z

1
0 , Z

1
1 ).

Suppose p0|0 ̸= p0|1, we have

∥µ0 − µ1∥H ≥
∣∣∥∥p0|0(µ0

0 − µ0
1) + (1− p0|0)(µ

1
0 − µ1

1)
∥∥
H − |p0|0 − p0|1|

∥∥µ0
1 − µ1

1

∥∥
H

∣∣ .
4.5 Proof of Theorem 2.6

Proof of Theorem 2.6. We start with the following lemma, whose proof is referred to Appendix 4.6.
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Lemma 4.5 (Calibration and TVD). Considering the calibration notions, i.e, DPC, DNC, and DC,
proposed in Shen et al. [2022] (Table 1). We have

dTV ((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1) = 2DC(h, Y, S),

dTV ((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1) ≥ DPC(h, Y, S), and
dTV ((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1) ≥ DNC(h, Y, S).

Return to the proof of Theorem 2.6. Since supu k[0,1](u, u) ≤ ν[0,1] and supy k{0,1}(y, y) ≤ ν{0,1},
we have

sup
(u,y)

k[0,1] ⊗ k{0,1}((u, y), (u, y)) = sup
(u,y)

k[0,1](u, u)k{0,1}(y, y)

= sup
u

k[0,1](u, u) sup
y

k{0,1}(y, y)

= ν[0,1]ν{0,1}.

Note that DC(h, Y, S)) = 1
2dTV ((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1). Based on Theorem 4.4,

we have

dTV ((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1)

≥ 1

2
(ν[0,1]ν{0,1})

−1/2γk[0,1]⊗k{0,1}((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1).

Consequently, we have

DC(h, Y, S)) ≥ 1

4
(ν[0,1]ν{0,1})

−1/2γk[0,1]⊗k{0,1}((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1).

From the definition of MMD (Definition 4.3), we have

γk[0,1]⊗k{0,1}((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1)

= sup
∥f∥H[0,1]⊗H{0,1}≤1

|E[f(Y, h(Z)) | S = 0]− E[f(Y, h(Z)) | S = 1]| .

Consider the function set F :=
{
f | f(y, u) = g̃(u), ∥g̃∥H[0,1]

≤ 1
}

. Let 1 be a constant function
that maps every input to 1. ∀f ∈ F , based on the property of the tensor product RKHS Szabó and
Sriperumbudur [2018], we have

∥f∥H[0,1]⊗H{0,1} = ∥1∥H{0,1}∥g̃∥H[0,1]

≤ ∥1∥H{0,1} .

Note that {0, 1} is a finite space. Let K := (k{0,1}(i, j))i,j∈{0,1} be the Gram’s matrix. Consider the
vector α = (α1, α2)

T , s.t., 1 = (k{0,1}(0, ·), k{0,1}(1, ·))α. It can be observed that Kα = (1, 1)T .
For simplicity, denote k{0,1}(i, j) as ki,j . We have

∥1∥H{0,1} =
√
αTKα

=
√
(1, 1)K−1(1, 1)T

=

√
k0,0 + k1,1 − 2k0,1

|K|
= 1.

Consequently, we have ∥f∥H[0,1]⊗H{0,1} ≤ 1, ∀f ∈ F . That is, F ⊂ {h | ∥h∥H[0,1]⊗H{0,1} ≤ 1}.
Combining the above results, we have

γk[0,1]⊗k{0,1}((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1)

≥ sup
f∈F

|E[f(Y, h(Z)) | S = 0]− E[f(Y, h(Z)) | S = 1]|

= sup
∥g̃∥H[0,1]

≤1

|E[g̃ ◦ h(Z) | S = 0]− E[g̃ ◦ h(Z) | S = 1]| .
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Let id be the identity map embedded in [0, 1]. Suppose id ∈ H[0,1]. Considering every possible
predicting function h ∈ G, we have

sup
∥g̃∥H[0,1]

≤1,h∈G
|E[g̃ ◦ h(Z) | S = 0]− E[g̃ ◦ h(Z) | S = 1]|

= sup
∥g̃∥H[0,1]

≤1,∥h∥H≤ν−1/2

|E[g̃((h(Z) + 1)/2) | S = 0]− E[g̃((h(Z) + 1)/2) | S = 1]|

= ∥ id ∥−1
H[0,1]

sup
∥g̃∥H[0,1]

≤∥ id ∥H[0,1]
,∥h∥H≤ν−1/2

|E[g̃((h(Z) + 1)/2) | S = 0]− E[g̃((h(Z) + 1)/2) | S = 1]|

≥ ∥ id ∥−1
H[0,1]

sup
∥h∥H≤ν−1/2

|E[id((h(Z) + 1)/2) | S = 0]− E[id((h(Z) + 1)/2) | S = 1]|

= (2∥ id ∥H[0,1]
)−1 sup

∥h∥H≤ν−1/2

|E[h(Z) | S = 0]− E[h(Z) | S = 1]|

= (2∥ id ∥H[0,1]
)−1ν−1/2 sup

∥h∥H≤1

|E[h(Z) | S = 0]− E[h(Z) | S = 1]|

= (2∥ id ∥H[0,1]
)−1ν−1/2γk(Z0, Z1)

= ∥ id ∥−1
H[0,1]

sup
h∈H

DP(h;Z, Y, S).

4.6 Proof of Lemma 4.5

Proof of Lemma 4.5. Recall the notions for calibration, i.e., DPC, DNC, and DC, proposed in Shen
et al. [2022] (Table 1):

DPC(h, Y, S) =
1

2

∑
t∈[0,1]

|Pr(Y = 1, h(Z) = t | S = 1)− Pr(Y = 1, h(Z) = t | S = 0)|,

DNC(h, Y, S) =
1

2

∑
t∈[0,1]

|Pr(Y = 0, h(Z) = t | S = 1)− Pr(Y = 0, h(Z) = t | S = 0)|,

DC(h, Y, S) =
1

2
(DPC(h, Y, S) + DNC(h, Y, S)).

Based on the expressions listed above, we have

dTV ((Y, h(Z)) | S = 0, (Y, h(Z)) | S = 1)

=
1

2

∑
t∈[0,1]

[|Pr(Y = 1, h(Z) = t | S = 0)− Pr(Y = 1, h(Z) = t | S = 1)|

+ |Pr(Y = 0, h(Z) = t | S = 0)− Pr(Y = 0, h(Z) = t | S = 1)|]
= DPC(h, Y, S) + DNC(h, Y, S)

= 2DC(h, Y, S).

Since 2DC = DPC+DNC, the next two inequalities can be derived.

4.7 Supplementary for Gaussian Complexity

In the following, we provide a concentration inequality for the Gaussian complexity, revealing that it
can be empirically estimated from a realization, simplifying its computation.
Proposition 4.6 (Concentration of Gaussian Complexity). Given a function class F := {h : X 7→
Z}, where Z ⊆ Rd. Denote the set {f(x) | f ∈ F , x ∈ X} in Z as F(X ). Let F(X) be a set in Zn

defined as F(X) := {(f(X1), . . . , f(Xn)) | f ∈ F}. Let D(F(X )) := supz,z′∈F(X ) ∥z − z′∥ be
the Euclidean width of the set F(X ), Gnd(F(X)) be the Gaussian complexity of the set F(X) as
defined in (14). Then ∀δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣∣∣supf∈F

n∑
i=1

⟨ξi, f(Xi)⟩ −Gnd(F(X))

∣∣∣∣∣ ≤ D(F(X ))

√
n log

(
2

δ

)
,
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where ξi
i.i.d.∼ N (0d, Id), ∀i. Moreover, we have

|Gnd(F(X))− E[Gnd(F(X))]| ≤ D(F(X ))

√
nd

2
log

(
2

δ

)
.

Considering the case where the feasible set of the encoders is formulated by neural networks, which
is a common scenario in FRL, its covering number is finite, as shown in Theorem 2 of Shen [2023],
corresponding to the satisfaction of Assumption 2.7. In the following, we provide an upper bound for
its Gaussian complexity in the following proposition.

Proposition 4.7 (Gaussian Complexities of Feed-Forward Neural Networks, Ni and Huo [2024],
Proposition 18). Consider a feed-forward neural network with depth ι, which is given by the function
f ι
nn : Rd 7→ R defined as follows

f (ι)
nn(x) := l(ι) ◦ · · · ◦ l(1)(x) ≡ l(ι)

(
· · · l(2)

(
l(1)(x)

)
· · ·

)
,

where d0 = d, dι = 1, and l(ι) := W (ι)x for a specified matrix R1×dι−1 . Here, for k = 1, . . . , ι− 1,
l(k) : Rdk−1 7→ Rdk is the k-th hidden layer consists of a coordinate-wise composition of an
activation function σ : R 7→ R and an affine map, namely, l(k)(x) := ϕ(W (k)x) for an given
interaction matrix W (k) ∈ Rdk×dk−1 . Let the interaction matrices be the parameters to be tuned, the
corresponding class of neural networks is given as follows:

F :=

{
f (ι)
nn(x)

∣∣∣∣ ∥∥∥W (k)
∥∥∥
1,∞

≤ ω,∀k
}
,

where for a given matrix W , the ∥ · ∥1,∞ norm is defined as ∥W∥1,∞ = maxi
∑

j |Wi,j |. Suppose
the activation function σ is λ-Lipschitz, let X := (X1, . . . , Xn)

T ∈ Rn×d0 , we have

G(F(X)) ≤ (2ω)ιλι−1
√

2 log(2d0)max
k

√√√√ n∑
i=1

X2
i,k.
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important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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