
Earth Observation Satellite Scheduling with Graph
Neural Networks

Antoine Jacquet
Jolibrain

Toulouse, France

Guillaume Infantes
Jolibrain

Toulouse, France

Nicolas Meuleau
Jolibrain

Toulouse, France

Emmanuel Benazera
Jolibrain

Toulouse, France

Stéphanie Roussel
Onera

Université de Toulouse
Toulouse, France

Vincent Baudoui
Airbus DS

Toulouse, France

Jonathan Guerra
Airbus DS

Toulouse, France

Abstract

The Earth Observation Satellite Planning (EOSP) is a difficult optimization prob-
lem with considerable practical interest. A set of requested observations must
be scheduled on an agile Earth observation satellite while respecting constraints
on their visibility window, as well as maneuver constraints that impose varying
delays between successive observations. In addition, the problem is largely over-
subscribed: there are much more candidate observations than what can possibly
be achieved. Therefore, one must select the set of observations that will be per-
formed while maximizing their weighted cumulative benefit, and propose a feasi-
ble schedule for these observations. As previous work mostly focused on heuristic
and iterative search algorithms, this paper presents a new technique for selecting
and scheduling observations based on Graph Neural Networks (GNNs) and Deep
Reinforcement Learning (DRL). GNNs are used to extract relevant information
from the graphs representing instances of the EOSP, and DRL drives the search
for optimal schedules. Our simulations show that it is able to learn on small prob-
lem instances and generalize to larger real-world instances, with very competitive
performance compared to traditional approaches.

1 Introduction

An Earth observation satellite (EOS) must acquire photographs of various locations on the surface
of Earth to satisfy user requests. An agile EOS has degrees of freedom allowing it to target locations
that are not exactly at its vertical in an earth-bound referential (“nadir”). The satellite we consider is
in low orbit; as a consequence, each observation is available in a visible time window (VTW) that is
significantly larger than its acquisition duration. Maneuvering the satellite between two observations
consists of modifying its pitch, yawn and roll triple—also called its attitude—and thus implies
delays that depend on the start and end observation, as well as on the time of the transition [18]. In
addition, an agile EOS is typically oversubscribed: there is more observations to be performed that
can possibly be achieved in the given time of operation. As different acquisitions may be associated
with different priorities or utilities, the Earth observation satellite planning problem (EOSP) consists
in selecting a set of acquisitions that maximize their weighted cumulative values, and designing a
schedule for acquiring these observations while respecting the operational constraints.

The most complex instances of the EOSP involve several satellites orbiting Earth over multiple
orbits, and dependencies between targets [22]. For instance, an acquisition may consist of sev-
eral pictures of the same earth-bound location to be taken by different satellites, and/or in different

17th European Workshop on Reinforcement Learning (EWRL 2024).

time-windows [19]. In this paper, we limit our study to single-satellite, single-orbit, and single-shot
problems, where there is only one satellite to control over a single orbit, and each acquisition is made
of a single picture to be taken in its given VTW. Nevertheless, the problem is NP-complete [13], and
there is no practical solution to compute optimal schedules for problems of realistic size which con-
tain a few thousands of candidate acquisitions, thus focusing previous work towards approximate,
heuristic and random search algorithms [22]. Variants of the greedy randomized adaptive search
procedure (GRASP) [6] are commonly deployed in practical applications. At the same time, the
field of combinatorial optimization is currently the subject of an accrued interest from researchers
in deep learning. In particular, Deep Reinforcement Learning (DRL) offers a framework to learn
heuristics for NP-complete problems that has been successfully applied to a wide range of problems
[24]. Following this trend, we build on previous work using a state-of-the-art combination of graph
neural networks (GNN) and DRL. This approach code-named Wheatley was developed to address
Job Shop Scheduling Problems with duration uncertainty [11]. Here we adapt it to the EOSP and
prove its efficiency in solving deterministic but largely over-subscribed problems. Our simulation
results show that we outperform the currently deployed techniques.

Our main contributions are threefold: (1) propose a graph search representation of the problem
without discretizing time; (2) use deep reinforcement learning to solve the problem; (3) use directly
graph representation as observations thanks to graph neural networks. The main outcomes are: (1)
very competitive results compared to baselines; (2) good generalization abilities allowing to train on
small instances an solve efficiently large instances.

The paper is organized as follows. First we give a quick survey of previous work using deep learning
to solve the EOSP. Then, in Section 3 ,we introduce the problem and discuss various representations
used in this work. Section 4 is dedicated to the description of the machine learning architecture used
for optimization. We provide simulation results on large size real-world instances of the problem in
Section 5. We conclude and discuss further research directions in Section 6.

2 Related Work

The EOSP has been subject to a large body of research, from communities as varied as aerospace and
engineering, operational research, computer science, remote sensing and multipliscinary sciences.
We refer the reader to [22] for a survey of non-machine learning approaches to the problem, and we
focus our attention on DRL based approaches to the EOSP. Note that we address the time-dependent
EOSP, where the duration of a transition between two observations varies with time. This contrasts
with most of previous literature that assumes constant, time-independent transition duration.

Peng et al. [14] address a slightly different problem where observations are scheduled on board.
A LSTM-based encoding network is used to extract features, and a classification network is used
to make the a decision. Dalin et al. [4] solve multi-satellite instances by modeling them as a
Multi-Agent Markov Decision Processes, then use a DRL actor-critic architecture. The actor is
decentralized, each satellite using a relatively shallow network to select its action. The critic is
centralized and implemented as a large recurrent network taking input from all satellites. Hermann
et al. [9] also address the multi-satellite problem: a policy is trained in a single satellite environment
on a fixed number of imaging targets, and then deployed in a multi-satellite scenario where each
spacecraft has its own list of imaging targets. Local policies are learned using a combination of
Monte Carlo Tree Search (MCTS) to produce trajectories, and supervised learning to learn Q-values
using the trajectories produced by MCTS as training examples. Finally, Chun et al. [3] present a very
similar approach; the main difference is that the transitions durations approximated during training
phase instead of being precisely computed on discrete dates before training.

3 Problem Representation

An instance of the EOSP is defined by a set of candidate observations, or acquisitions, and a time-
horizon τ (in this work, the duration of an orbit). Each observation i is associated with its fixed
duration di and its VTW [ei; li] such that li ≤ τ . The transition duration between two acquisitions i
and j is a function ∆i,j(ti) of the starting time ti of the first observation. A schedule is a sequence of
observations with associated starting time. It is represented as a single mapping that associates with
each candidate observation i its starting time ti, such that ti = −1 for all observations i not included

2

Figure 1: Discrete graph for 4 candidate acquisitions. Corresp. continuous graph is a 4-node clique.

in the schedule. A schedule is feasible if: (i) each scheduled observation starts and ends within its
VTW: ti ∈ [ei; li − di];(ii) the time-gap between two successive observations is greater or equal to
the transition delay: ∀i, j such that ti ̸= −1, tj ̸= −1 and ti ≤ tj then tj − ti ≥ di +∆i,j(ti)

Each observation is associated with a utility value ui in R+. The goal is then to find a feasible sched-
ule that maximizes the cumulative utility of the observations it includes: maximize

(∑
i:ti ̸=−1 ui

)
.

3.1 Classical Approach : Time Discretization

In the EOSP, the start time ti of each observation is a continuous value, and the transition durations
∆i,j(ti) are continuous functions of continuous variables. Therefore, the EOSP is not a completely
discrete problem. However, it is often re-framed as such, either by making assumptions on the
start time of transitions (for instance, every transition starts as soon as it is available), or by crudely
discretizing the time variable.

In this work, the problem is provided under the form a very large time-discretized graph that repre-
sents the EOSP as a sequential decision problem. In this graph—later called the "discrete graph"—
every candidate acquisition is represented once for each possible (discrete) start time. A node is typ-
ically denoted (i, ti) and represents starting observation i at time ti ∈ [ei, li − di]. An edge between
two nodes is present if the end observation is a possible immediate successor of the start observa-
tion. The acquisition and transition durations are accounted for while defining the edges: an edge
between (i, ti) and (j, tj) is such that tj is the smallest discrete time satisfying ti+di+∆ij(ti) ≤ tj
and tj ≥ ej . Note that there is an (implicit) mutual exclusion between two nodes (i, ti) and (i, t′i),
ti ̸= t′i, to indicate that observation i must not be performed twice. Finally, some edges are pruned
using considerations of optimality: if an observation k can be inserted between (i, ti) and (j, tj)
without breaking the constraints of the problem (that is, the transition delays), then the edge be-
tween (i, ti) and (j, tj) is removed. In this case, every path between the two nodes must go through
one node (k, tk). The reasoning is that every optimal solution that includes both (i, ti) and (j, tj)
would also include observation k. Therefore, (j, tj) should not be an immediate successor of (i, ti).
Figure 1 provides an example of discrete graph for a problem containing 4 candidate acquisitions.

The discrete graph is convenient for a typical state-space approach such as using an implicit enu-
meration algorithm (Dikstra, A*). A schedule can be built by starting from a node representing the
origin of the graph and following the edges to add observations in chronological order (the earliest
are added to the scheduled before the latest). Let m denote the last node scheduled. When a new
node n = (i, ti) is scheduled, the graph is updated in the following way: (1) all edges outgoing
from node m are removed, except the one leading to the newly scheduled node n; (2) all other nodes
candidate for observation i (nodes (i, t′i) with t′i ̸= ti) are deleted; (3) all nodes that have become
unreachable from the origin node are removed.

3

3.2 Our Approach : Continuous-Time Graph

Although convenient for state-space approaches, the discrete graph has the drawback of quickly
becoming huge as the number of candidate acquisition grows, making it unsuitable as an input to
a GNN. For this reason, we derive from the discrete graph a (much) more compact graph that we
call the "continuous graph". In this graph, each candidate observation is represented exactly once,
with no mention of its exact starting time. A node is simply defined by a candidate observation i.
An edge (i, j) is present in the continuous graph if and only if there is an edge ((i, ti), (j, tj)) in
the discrete graph. Note that this may lead to two nodes pointing at each other, if the corresponding
observations may be performed in any order.

At each iteration of our algorithm, the agent is fed with the compact continuous graph and selects the
next acquisition to be inserted in the schedule. To track which candidate observations are disallowed
by this decision, and what are the possible next actions, we implement this decision in the discrete
graph by assuming the selected observation is started at its earliest possible (discrete) time. The
discrete graph is updated as described above, and these changes are reflected in the continuous
graph. The resulting continuous graph is fed to the GNN at the next iteration. At each step, the set
of candidate acquisitions that can be added to the current schedule is the set of immediate successors
of the last node scheduled in the discrete graph. The learning algorithm is responsible for selecting
one particular acquisition among them, using the procedure detailed later.

As stated above, in this work, we rely on the discrete graph. We use it both for building the continu-
ous graph, and as a simulator of the built strategy. Pre-building this discrete graph could be avoided
by building directly the continuous graph from the problem data, and using a satellite simulator to
get the attitudes and transition times on-the-fly, without significant change in our approach. At the
time of writing, the discrete graph is precomputed by calling a closed-source proprietary satellite
simulator, and there is no simple legal way to switch to the “on-the-fly” approach.

3.3 Sequential Decision Model

Our solution technique is based on representing the process of building an optimal schedule for an
instance of EOSP as a reinforcement learning problem, then using DRL algorithms to solve it. Re-
inforcement learning is concerned with learning the solution of a Markov Decision Process (MDP),
which is a discrete-time sequential decision model. An MDP is defined as a tuple (S,A, T,R) where
S is a state space, A the action space, T the transition matrix, and R the reward function [15]. The
definition of these elements flows directly from the representation of the EOSP as a discrete graph:

• A state s ∈ S is a discrete EOSP graph as defined before. It can be either the initial
graph where no task has been selected yet, or an intermediate graph where some nodes and
edges have been selected to account for the fact that the beginning of the schedule has been
decided;

• Given a state s, the set of available actions a is the set of all possible successors of the last
selected node in s (thus leading to chronological insertions);

• MDPs naturally handle uncertainty in the problem. I the general case, it is represented in
the transition matrix: T (s, a, s′) = Pr(s(t + 1) = s′ | s(t) = s, a(t) = a). However, our
formulation of the EOSP is deterministic, therefore, the MDP we derive contains no uncer-
tainty. Given an initial state s (discrete graph) and selected action a (the next observation
to add to the schedule), the transition matrix gives probability 1 to the state s′ representing
the discrete graph after the addition of a to the schedule, following the update procedure
described in the previous section.

• As every inserted observation is feasible by definition, we use as immediate reward the
utility value associated with the selected observation ie R(s, a, s′) = ua. The aim is to
maximize the undiscounted sum of immediate rewards.

While these components define a fully observable MDP, we do not provide a perfect description of
the state s to the deep network. As explained above, we do not feed the huge discrete graph to the
neural network. Instead, we use a continuous graph that is not a perfectly accurate representation of
the problem, because transition duration are not reported exactly (see section 4.2). Therefore, the
learner solves partially-observable MDP (POMDP) [12], where partial observability concerns only
the transition durations, and thus plays a minor role.

4

Graph
Rewirer

Node
Embedder

Edge
Embedder

GNN

Value
Estimator

Action
Selector

graph
logit

nodes
logits

Agent

Discrete and Continuous Graphs Update

Simulator

Action
(next

acquisition)

Partial
schedule

(continuous
graph)

PPO

update parameters

reward

value

Figure 2: General Architecture

4 Solution

Following [11], we use a reinforcement learning setup where the agent receives continuous graphs
representing partial schedules as input, selects the next observations to schedule, and updates its
parameters based on the reward representing the cumulative utility of the schedules it produces. For
a given problem, a simulator is in charge of managing the different graphs and feeding the learner
with the appropriate data. The learner implements a policy, that is, a stochastic mapping from states
s to actions a as defined above. It learns a policy that maximizes the reward function over a base of
real-world problems used as training set. The policy has to be able to generalize to test problems,
that is, exhibit good performances without further learning on a set of instances not seen before.

An overview of the architecture is shown in Fig. 2. The graphs provided as input are processed by
several elements. First, the graph is transformed in order to allow bidirectional message-passing by
the GNN, then simple networks produce node and edge embeddings. Next the graph is processed
through a Message-Passing Graph Neural Network (MP-GNN) to extract features capturing relevant
information, and produce action probabilities. Finally, the RL algorithm updates the parameters of
the whole system, embedders and GNN, based on the rewards received. For ease of presentation,
we first discuss the RL algorithm, then the embedders and GNN.

4.1 Reinforcement Learning

As our core algorithm, we use the Proximal Policy Optimization (PPO) algorithm [16] with action
masking [10].

A peculiar aspect of the EOSP instances we have to solve is that the utility of different acquisitions
may vary by up to 8 degree of magnitude. In fact, acquisitions are grouped in 7 priority classes
with utility value ranging from 1 to 108. The utility of the observations within a class of priority
is equal to the value of that class, plus a small term depending on the predicted cloud coverage at
the location of the acquisition (in order to favor acquisitions that are likely to happen with a clear
sky). This generates instability in DRL algorithms (and in MDPs in general), as the low priority
observations provide a reward that might be difficult to distinguish form the noise in the algorithm.
In addition, the critic must learn very large values, starting from very low values at initialization,
and following tiny gradient steps. This makes learning slow and inefficient.

We tried several approaches to handle this, including using a logarithmic scale and 2-hot encoding
[7]. In our current implementation, we simply divide each individual reward by the average utility
of all candidates observations in the problem. This is a simple way to remedy the issue of having
to learn very large values, but it does not fix the problem of the discrepancy between rewards (un-
less some extreme priority classes are not represented in the problem instance). We are currently
examining optimization with lexicographic preferences [17].

5

4.2 GNN Implementation

Node attributes: To inform the learner, we label each node of the continuous graph with the
window of visibility of the corresponding observation. We note that the continuous graph still does
not contain any information about the transitions duration, so the learner would be blind to them.
To compensate for this, each node i of the continuous graph is labeled with information about the
satellite attitude while performing observation i, namely, the min, max and average pitch and roll
of the satellite over the observation VTW. Although this information is not sufficient to recover the
exact duration of transitions, it allows the learner inferring them closely enough to perform well, as
shown in our simulation results.

Graph rewiring: A Message-Passing Graph Neural Network (MP-GNN) [23] uses a graph struc-
ture as a computational lattice. It propagates information, represented as messages, along the ori-
ented graph edges only. In our case, if an MP-GNN uses only the EOSP continuous graph edges,
then we explicitly forbid information to flow from future acquisitions to the present choice of the
next acquisition. This is definitely not what we want: we want the agent to choose the next observa-
tion to schedule based on its effect on the on future conflicts. In other words, we want information
to go from future to present tasks. Therefore, we have to edit the input graph before it can used by
the MP-GNN. This is known in the MP-GNN literature as “graph rewiring”.

For every (precedence) edge in the continuous graph, a link pointing in the other direction is added
to the rewired graph (reverse-precedence). Different edge types are defined for precedence and
reverse-precedence edges, to enable the learned operators to differentiate between chronological
and reverse-chronological links. The systems learns to pass information in a forward and backward
way, depending on what is found useful during learning.

Embeddings: A graph embedder builds the rewired graph by adding edges. It embeds node at-
tributes (VTW, attitude stats) using a learnable MLP, and edge attributes (type of edge) using a learn-
able embedding. The output dimension of embeddings is an open hyper-parameter hidden_dim. We
found a size of 64 being good in our experiments.

Graph pooling: A node is added and connected to every other node to allow collecting global
information about the entire graph, as opposed to the local information associated with the nodes of
the original graph. It is used by the critic to estimate the value of the graph as a whole. It is also used
by the actor, where the global graph encoding is concatenated to each node embedding. Indeed,
messages are passed by the MP-GNN algorithm only between immediate neighbors. Therefore,
a network of depth n_layers is able to anticipate only n_layers observations ahead. Having the
global node embedding concatenated to each node embedding compensates for this, allowing the
current decision to take into account the entire graph.1

GNN: As a message passing GNN, we use EGATConv from the DGL library [21], which enriches
GATv2 graph convolutions [2] with edges attributes. We used 4 attention heads, leading to an output
of size 4×hidden_dim. This dimension is reduced to hidden_dim using learnable MLPs, before
being passed to next layer (in the spirit of feed-forward networks used in transformers [20]). The
output of a layer can be summed with its input using residual connections [8]. For most of our
experiments, we used 10 such layers. The message-passing GNN yields a value for every node, and
a global value for the graph (from the graph pooling node).

Action selection: Action selection aims at computing action probabilities given the node values
(logits) output by the GNN. We can either use the logits output from the last layer of the GNN, or
use a concatenation of the logits output from every layer. We chose to concatenate the global graph
logits of every layer, leading to a data size of ((n_layers + 1)×hidden_dim) × 2 per node, where
hidden_dim is the dimension of the embeddings (see next section). This dimension is reduced to 1
using a learnable linear combination, that is, a minimal case of a Multi-Layer Perceptron (MLP).
We did not find using a larger MLP to be useful. Finally, a distribution is built upon these logits by
normalizing them, and using action masks to remove actions that are not feasible in the current state.
As node numbers correspond to action/acquisition numbers, we directly have the action identifier
when drawing a value from the distribution.

1Adding such kind of node to the graph is equivalent to learning a custom graph pooling operator.

6

Dealing with different problem sizes: The GNN outputs a logit per node, and there is a one-to-
one mapping between nodes and actions whatever the number of nodes/actions. Learning the best
action boils down to node regression, with target values being given by the reinforcement learning
loop. Internally, the message passing scheme collects messages from all neighbors, making the
whole pipeline agnostic to the number of nodes.

Connecting to PPO: In most generic PPO implementation, the actor (policy) consists of a feature
extractor whose structure depends on the data type of the observation, followed by a MLP whose
output dimension matches the number of actions. The same holds for the critic (value estimator),
with the difference that the output dimension is 1. Some layers can be shared (the feature extractor
and first layers of the MLPs). In our case, we do not want to use such a generic structure because
we have a one-to-one matching from the number of nodes to the actions. We thus always keep the
number of nodes as a dimension of the data tensors.

5 Experiments

We use a set of real-life problems provided by an industrial partner who owns Earth observation
satellites. As explained in Section 3, problems are given in the form of a discrete-time graph. The
simulator uses this graph to compute and maintain the continuous-time graph. To provide intuition
on the difficulty of the problem, Table 1 shows some statistics on a few test problems and their
representation as graphs.

Nodes # Edges

Acquisitions Discrete graph Continuous graph Ratio Discrete Continuous Ratio

106 10297 106 97 835566 9273 90
308 52020 308 169 12598738 81244 155
508 46589 508 92 14842035 225398 66
809 59583 809 74 28015753 447945 63
1074 94071 1074 88 58343397 741634 79

Table 1: Exemple problem sizes

We compare our DRL approach to two solutions currently being used for operating such satellites.

Greedy algorithm: It is the algorithm that is currently used for real-world operations. It greedily
selects acquisitions to add to the schedule based on the utility, and inserts them in the plan if possible.
Previously selected tasks may be slightly postponed, but never canceled.

RAMP: [1] It is an implementation of a Dijkstra search algorithm in the discrete graph. Although
based on an admissible algorithm (Dijkstra), RAMP is not guaranteed to find the absolute optimal
schedule. This is due to the exclusion links between nodes of the discrete graph that represents
the same task started at different times. Nevertheless, RAMP constantly provides the best known
schedules on real problems. Unfortunately, its complexity prevents using it for real-time operations.
Therefore, it is used as a reference in these simulation results.

5.1 Unitary Score

First, we compare our approach to baselines on a relaxed problem: we try to maximize the number
of acquisitions scheduled, irrespectively of their priority or utility. This measure of performance is
insensitive to the large gaps in acquisitions utility discussed in Section 4.1. We run two experiments:

Single problem: First, we want to measure if our models and algorithms can possibly achieve
competitive performance on a given problem. We train our learner on a single problem with a total
of 106 acquisitions and let it overfit as much as it needs, as long as it achieves great performance.
As illustrated in Fig. 3-left, we observe that it is indeed able to beat both the greedy algorithm and
RAMP scores. This result shows that our architecture is able to implement very powerful policies.
In the next set of experiments, we put it to the challenge of realistic learning environment.

7

0 20 40 60 80 100
Training steps

25

30

35

40

45

50

55

Nu
m

be
r o

f a
cq

ui
sit

io
ns

Wheatley
Ramp
Greedy

0 200 400 600 800 1000 1200 1400
Training steps

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Nu
m

be
r o

f a
cq

ui
sit

io
ns

Wheatley
Ramp
Greedy

Figure 3: Unitary scores. Left: Training on a single problem of 106 acquisitions. Right: Test
performance on 31 unseen problems, after training on 128 different problems.

0 200 400 600 800 1000 1200 1400
Training steps

0

5

10

15

20

25

30

Nu
m

be
r o

f p
ro

bl
em

s

Wheatley above
Wheatley below
Wheatley equal

0 200 400 600 800 1000 1200 1400
Training steps

0

5

10

15

20

25

30

Nu
m

be
r o

f p
ro

bl
em

s

Wheatley above
Wheatley below
Wheatley equal

Figure 4: Unitary scores for Wheatley vs. Greedy (left) and vs; Ramp (right) on 31 test problems.

Generalization: To measure the ability to transfer knowledge from one task to another, we train
on 128 problems of about 100 acquisitions and test on 31 unseen problems of similar size. The
learning curve of Fig. 3-right shows the evolution of the performance on the test set, as learning
progresses. We also measure the number of times where Wheatley’s performances are above, below
or equal to the greedy algorithm and RAMP (Fig. 4) on the test problems. This shows that our
system is able to generalize to unseen problems, outperforming the currently deployed solution.

5.2 General Utility

In our second sets of experiments, we take into account the utility of observations and aim at max-
imizing the cumulative utility of all the observations included in the final schedule, as in the full-
fledged MDP framework presented in Section 7. As before, we perform two sets of experiments:
one where the learner is free to overfit on a single problem to reach its best performances, and one
aiming at measuring its ability to generalize.

Single Problem: Our test on single problem with a total of 88 candidate acquisitions shows that
our system is able to outperform the greedy algorithm and reach the score of RAMP (Figure 5-left).
This proves the suitability of the architecture for the full MDP set up.

Generalization: We train on 639 problems of about 100 acquisitions and test on 27 unseen prob-
lems of similar size. The learning curves are displayed in Figure 5-right and show that the learner is
able to generalize. The plot showing the number of times where Wheatley is above, below or equal
to the greedy solution and RAMP are presented in Fig. 6. We see that Wheatley outperforms the
deployed solution and approaches the best known performances, in a realistic set-up where problems

0 20 40 60 80 100
Training steps

3.0

3.5

4.0

4.5

5.0

5.5

Op
er

at
io

na
l s

co
re

1e9

Wheatley
Ramp
Greedy

0 200 400 600 800 1000 1200
Training steps

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Op
er

at
io

na
l s

co
re

1e8

Wheatley
Ramp
Greedy

Figure 5: Utilities obtained when training on a single problem with 88 acquisitions (left) and aver-
aged on 27 unseen problems, after a training on 639 different problems (right).

8

0 200 400 600 800 1000 1200
Training steps

0

5

10

15

20

25

Nu
m

be
r o

f p
ro

bl
em

s

Wheatley above
Wheatley below
Wheatley equal

0 200 400 600 800 1000 1200
Training steps

0

5

10

15

20

25

Nu
m

be
r o

f p
ro

bl
em

s

Wheatley above
Wheatley below
Wheatley equal

Figure 6: Utilities for Wheatley vs. Greedy (left) and vs. Ramp (right) on 27 test problems.

30 20 10 0 10
Psi x angle (°)

02:33

02:34

02:35

02:36

02:37

Da
te

2020-Feb-21

Greedy
Wheatley

Figure 7: Trajectories found by Wheatley and Greedy approaches on a 87 acquisitions instance.

Instances Set Average Utility Score Avg. Scores Ratios

#Acq. #Instances Wheatley Greedy Ramp Wheatley
Greedy

Wheatley
Ramp

100 27 605,732,913 510,488,439 605,894,711 1.1788 0.9901
300 30 239,934,939 202,565,994 263,514,132 1.2560 0.9420
508 1 221,226 142,487 308,355 1.5526 0.7174
809 1 52,000,039 49,000,279 59,000,286 1.0612 0.8814

1074 1 2,910,000,156 2,225,103,224 4,124,116,197 1.3078 0.7056
1591 1 220,734 307,159 393,214 0.7186 0.5614

100 10 689,578,101 688,941,262 678,921,586 0.9996 1.0115
Table 2: Average scores obtained when generalizing on different instances sets.

are not known in advance. Fig. 7 shows examples of solutions produced by Greedy and Wheatley.
We can see that Wheatley finds a smoother and more efficient trajectory for the satellite.

Table 2 shows comprehensive results for the agent trained on problems of size 100, evaluated on
different sizes of problems with operational scores. The last line is an evaluation on instances with
many conflicts, where RAMP performs worse than the greedy algorithm. Results show that Wheat-
ley performs very well on not too large instances but is quite outperformed by the greedy approach
on the largest instance. However, it is quite competitive in the case of highly conflictual instances,
which is promising for future works.

6 Conclusion

We showed that DL-based approaches to the EOSP are challenging some of the best known tech-
niques. There are several perspectives we are currently exploring to extend this work. First, as
stated before, we are trying to take advantage of the large discrepancy in acquisition utility by using
lexicographic RL algorithms such as [17]. Scheduling tasks by decreasing priority would provide
stronger guarantees to find the optimal schedule. To achieve this, schedules must be built in a non-
chronological order, which is not the case in our current implementation. Currently, we choose the
next acquisition to insert just after the last inserted one, using some foresight given by the GNN.
This foresight is limited by the number of layers of the GNN. As we said, the discrete-time graph
is tailored for state-space search and chronological insertion. Future work will consider developing
an alternative continuous-tine graph representation of the EOSP where observations can be added
to the schedule in any order, using Simple Temporal Networks [5]. Such work will open promising
avenues for using lexicographic preferences.

9

References
[1] Pierre Blanc-Pâques. (US. PATENT US10392133B2) Method for planning the acquisition of

images of areas of the earth by a spacecraft, august 2019.

[2] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? CoRR,
abs/2105.14491, 2021.

[3] Jie Chun, Wenyuan Yang, Xiaolu Liu, Guohua Wu, Lei He, and Lining Xing. Deep rein-
forcement learning for the agile earth observation satellite scheduling problem. Mathematics,
11(19), 2023.

[4] Li Dalin, Wang Haijiao, Yang Zhen, Gu Yanfeng, and Shen Shi. An online distributed satellite
cooperative observation scheduling algorithm based on multiagent deep reinforcement learn-
ing. IEEE Geoscience and Remote Sensing Letters, 18(11):1901–1905, 2021.

[5] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelli-
gence, 49(1):61–95, 1991.

[6] T.A. Feo and M.G.C Resende. Greedy randomized adaptive search procedures. Journal of
Globlal Optimization, 6:109–133, 1995.

[7] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse do-
mains through world models, 2024.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[9] Adam Herrmann and Hanspeter Schaub. Reinforcement learning for the agile earth-observing
satellite scheduling problem. IEEE Transactions on Aerospace and Electronic Systems, PP:1–
13, 01 2023.

[10] Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy
gradient algorithms. The International FLAIRS Conference Proceedings, 35, may 2022.

[11] Guillaume Infantes, Stéphanie Roussel, Pierre Pereira, Antoine Jacquet, and Emmanuel Benaz-
era. Learning to solve job shop scheduling under uncertainty. In 21th International Conference
on Integration of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR), 2024.

[12] Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[13] Michel Lemaître, Gérard Verfaillie, Frank Jouhaud, Jean-Michel Lachiver, and Nicolas
Bataille. Selecting and scheduling observations of agile satellites. Aerospace Science and
Technology, 6(5):367–381, 2002.

[14] Shuang Peng, Hao Chen, Chun Du, Jun Li, and Ning Jing. Onboard observation task planning
for an autonomous earth observation satellite using long short-term memory. IEEE Access,
6:65118–65129, 2018.

[15] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[17] Joar Skalse, Lewis Hammond, Charlie Griffin, and Alessandro Abate. Lexicographic multi-
objective reinforcement learning. In Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, IJCAI-2022. International Joint Conferences on Artificial
Intelligence Organization, July 2022.

10

[18] Samuel Squillaci, Cédric Pralet, and Stéphanie Roussel. Comparison of time-dependent and
time-independent scheduling approaches for a constellation of earth observing satellites. In
Proceedings of the Thirteenth International Workshop on Planning and Scheduling for Space,
pages 96–104, 2023.

[19] Samuel Squillaci, Cédric Pralet, and Stéphanie Roussel. Scheduling complex observation re-
quests for a constellation of satellites: Large neighborhood search approaches. In International
Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, pages 443–459. Springer, 2023.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[21] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang
Li, Alexander J. Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable
deep learning on graphs. CoRR, abs/1909.01315, 2019.

[22] Xinwei Wang, Guohua Wu, Lining Xing, and Witold Pedrycz. Agile earth observation satel-
lite scheduling over 20 years: Formulations, methods, and future directions. IEEE Systems
Journal, 15(3):3881–3892, 2021.

[23] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[24] Xinyi Yang, Ziyi Wang, Hengxi Zhang, Nan Ma, Ning Yang, Hualin Liu, Haifeng Zhang, and
Lei Yang. A review: Machine learning for combinatorial optimization problems in energy
areas. Algorithms, 15(6), 2022.

11

	Introduction
	Related Work
	Problem Representation
	Classical Approach : Time Discretization
	Our Approach : Continuous-Time Graph
	Sequential Decision Model

	Solution
	Reinforcement Learning
	GNN Implementation

	Experiments
	Unitary Score
	General Utility

	Conclusion

