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ABSTRACT

Contrastive learning is a self-supervised representation learning framework, where two positive
views generated through data augmentation are made similar by an attraction force in a data
representation space, while a repulsive force makes them far from negative examples. Non-
contrastive learning, represented by BYOL and SimSiam, further gets rid of negative examples
and improves computational efficiency. While learned representations may collapse into a single
point due to the lack of the repulsive force at first sight, [TCG21] revealed through the learning
dynamics analysis that the representations can avoid collapse if data augmentation is sufficiently
stronger than regularization. However, their analysis does not take into account commonly-used
feature normalization, a normalizer before measuring the similarity of representations, and
hence excessively strong regularization may collapse the dynamics, which is an unnatural
behavior under the presence of feature normalization. Therefore, we extend the previous theory
based on the L2 loss by considering the cosine loss, which involves feature normalization. We
show that the cosine loss induces sixth-order dynamics (while the L2 loss induces a third-order
one), in which a stable equilibrium dynamically emerges even if there are only collapsed
solutions with given initial parameters. Thus, we offer a new understanding that feature
normalization plays an important role in robustly preventing the dynamics collapse.

1 INTRODUCTION

Modern machine learning often owes to the success of self-supervised representation learning, which
attempts to capture the underlying data structure useful for downstream tasks by solving an auxiliary
learning task. Among self-supervised learning, contrastive learning is a popular framework, in which
data augmentation generates two positive views from the original data and their encoded features
are contrasted with background negative samples [CHL05, vdOLV18]. In particular, [CKNH20]
conducted large-scale contrastive learning with 10K+ negative samples to establish comparable
downstream classification performance even to supervised vision learners. The benefit of large-scale
negative samples has been observed both theoretically [NS21, BNN22] and empirically [CH21,
TBM+22], but it is disadvantageous in terms of computational efficiency.

By contrast, non-contrastive learning trains a feature encoder with only positive views, leveraging
additional implementation tricks. The seminal work [GSA+20] proposed BYOL (Bootstrap Your
Own Latent) to introduce the momentum encoder and apply gradient stopping for one encoder branch
only. The follow-up work [CH21] showed that gradient stopping brings success into non-contrastive
learning via a simplified architecture SimSiam (Simple Siamese representation learning). Despite
their empirical successes, non-contrastive learning lacks the repulsive force induced by negative
samples and learned representations may trivially collapse to a constant with only the attractive force
between positive views. According to folklore, the success is attributed to asymmetric architectures
between the two branches [WFT+22]. [TCG21] first tackled the question why non-contrastive
learning does not collapse, by specifically studying the learning dynamics of BYOL. They tracked
the eigenmodes of the encoder parameters and found that the eigenmode dynamics have non-trivial
equilibriums unless the regularization is overly strong. To put it differently, the balance between data
augmentation and regularization controls the existence of non-trivial solutions. However, this analysis
dismisses feature normalization practically added to normalize the encoded positive views before
computing their similarity. As feature normalization blows up when encoded features approach zero,
the analysis of [TCG21] may fail to explain the behavior of the non-contrastive learning dynamics
with strong regularization. Indeed, our pilot study (Fig. 1) reveals that SimSiam learning dynamics
remains to stabilize with much heavier regularization than the default strength ρ = 10−4.
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Figure 1: Linear probing accuracy of SimSiam
representations of the CIFAR-10 dataset [Kri09]
is indifferent to the weight decay intensity ρ. The
vertical axis indicates fine-tuning epochs of the
linear classifier. For non-contrastive pre-training,
we used the ResNet-18 model [HZRS16] with the
initial learning rate 5 × 10−6, 500 epochs, and
different weight decay intensities (ρ) indicated in
the legends. Other parameters and setup were in-
herited from the official implementation [CH21].

Therefore, we study the non-contrastive learning dy-
namics with feature normalization: an encoded fea-
ture Φx for an input x ∈ Rd and encoder Φ ∈ Rh×d
is normalized as Φx/ ∥Φx∥2. The main challenge
is that the normalization yields a highly nonlin-
ear dynamics because parameter norms appear in
the denominator of a loss. This is a major reason
why the existing studies on non-contrastive learning
sticks to the L2-loss dynamics without the normaliza-
tion [TCG21, WCDT21, PTLR22, WL22, LLUT23,
TGR+23]. Instead, we consider the high-dimensional
limit d, h→ ∞, where the feature norm ∥Φx∥2 con-
centrates around a constant with proper initializa-
tion. In this way, we can analyze the learning dynam-
ics with feature normalization. Under the setup of
synthetic data, we derive the learning dynamics of
encoder parameters (Section 4), and disentangle it
into the eigenmode dynamics with further assump-
tions (Section 5.1). The eigenmode dynamics is sixth-
order, and we find that a stable equilibrium emerges

even if there is no stable equilibrium with the initial parametrization and regularization strength (Sec-
tion 5.2). This dynamics behavior is in contrast to the third-order dynamics of [TCG21], compared in
Section 5.3. We further observe the above findings in numerical simulation (Section 5.4). Overall, we
demonstrate how feature normalization prevents the collapse using a synthetic model. We believe
that our techniques open a new direction to understanding self-supervised representation learning.

2 RELATED WORK

Recent advances in contrastive learning can be attributed to the InfoNCE loss [vdOLV18], which
can be regarded as a multi-sample mutual information estimator between the two views [POvdO+19,
SE20]. [CKNH20] showed that large-scale contrastive representation learning can potentially perform
comparably to supervised vision learners. This empirical success owes to a huge number of negative
samples, forming a repulsive force in contrastive learning. Follow-up studies confirmed that larger
negative samples are generally beneficial for downstream performance [CH21, TBM+22], and the
phenomenon has been verified through theoretical analysis of the downstream classification error
[NS21, WZW+22, BNN22, ADK22], whereas larger negative samples require heavier computation.

Non-contrastive learning is yet another stream of contrastive learning, without requiring any negative
samples. Although it may fail due to lack of the repulsive force, additional tricks in architectures
assist the learned representation avoiding a trivial solution. BYOL [GSA+20] is the initial attempt by
introducing the momentum encoder and gradient stopping to make two encoder branches asymmetric.
Later, SimSiam [CH21] revealed that gradient stopping is dominant. Both BYOL and SimSiam
emphasize the importance of asymmetric architectures. Other recent approaches to non-contrastive
learning are to conduct representation learning and clustering iteratively (e.g., SwAV [CMM+20] and
TCR [LCLS22]), to impose regularization on the representation covariance matrix (e.g., Barlow Twins
[ZJM+21], Whitening MSE [ESSS21], and VICReg [BPL22]), and to leverage knowledge distillation
(e.g., DINO [CTM+21]). While these methods empirically succeed, theoretical understanding of the
mechanism of non-contrastive learning still falls behind. In particular, we need to answer why the
non-contrastive dynamics does not collapse without the repulsive force, and what the non-contrastive
dynamics learns. For the latter question, recent studies revealed that it implicitly learns a subspace
[WCDT21], sparse signals [WL21], a permutation matrix over latent variables [PTLR22], and a
low-pass filter of parameter spectra [ZWMW23]. Besides, contrastive supervision is theoretically
useful for downstream classification under a simplified setup [BNS18, BSX+22].

Why does non-contrastive dynamics remain stable? The seminal work [TCG21] analyzed the
BYOL/SimSiam dynamics with a two-layer network and found that data augmentation behaves as
a repulsive force to prevent eigenmodes of network parameters from collapsing if augmentation is
sufficiently stronger than regularization. We closely follow this analysis to delineate that feature
normalization serves as another repulsive force and regularization may not destroy the dynamics. Our
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focus is to understand how a non-trivial equilibrium emerges in self-supervised learning dynamics,
whereas several prior studies revealed the importance of normalization for supervised learning by
investigating when and how fast general gradient descent dynamics with weight normalization con-
verges [DGM20, WZZS21] and how normalization prevents rank collapse of nonlinear MLPs at the
infinite-depth limit via isometry [JDB23]. Further, [WL22] analyzed the SimSiam dynamics with a
trainable prediction head to reveal the conditions preventing representation collapse. [TGR+23] in-
vestigated the same phenomenon in a reinforcement learning setup. While we have less understanding
of other non-contrastive dynamics, [LLUT23] showed that some non-contrastive dynamics including
VICReg may cause dimensional collapse. Notably, a concurrent work [HLZ23] studied implicit bias
of non-contrastive learning with the cosine loss and showed that the non-zero eigenmodes converges
closely to each other, whereas how the complete collapse is avoided remains unclear.

3 MODEL AND LOSS FUNCTIONS

Notations. The n-dimensional Euclidean space and hypersphere are denoted by Rn and Sn−1,
respectively. The L2, Frobenius, and spectral norms are denoted by ∥·∥2, ∥·∥F, and ∥·∥, respectively.
The n × n identity matrix is denoted by In, or by I whenever clear from the context. For two
vectors u,v ∈ Rn, ⟨u,v⟩ = u⊤v denotes the inner product. For two matrices A,B ∈ Rn1×n2 ,
⟨A,B⟩F =

∑
i,j Ai,jBi,j denotes the Frobenius inner product. For a time-dependent matrix A

(such as network parameters), we make the time dependency explicitly by A(t) if necessary. The
Moore–Penrose inverse of a matrix A is denoted by A†. The set of n × n symmetric matrices is
denoted by Symn :=

{
A ∈ Rn×n|A = A⊤}. The upper and lower asymptotic orders are denoted

by O(·) and Ω(·), respectively. The little-o and little-ω are denoted in the same way. The stochastic
orders of boundedness and convergence indexed by h are denoted by OP(·) and oP(·), respectively.

Model. In this work, we focus on the SimSiam model [CH21] as a non-contrastive learner and
consider the following two-layer linear network, following the analysis of [TCG21]. We first sample
a d-dimensional input feature x0 ∼ D as an anchor and apply a data augmentation to obtain two
views x,x′ ∼ Daug

x0
, where Daug

x0
is the augmentation distribution. While affine transforms or

random maskings of input images are common as data augmentation [CKNH20, HCX+22], we
assume the isotropic Gaussian augmentation distribution Daug

x0
= N (x0, σ

2I) to simplify and let σ2

represent the augmentation intensity. For the input distribution, we suppose the multivariate Gaussian
D = N (0,Σ) to devote ourselves to understanding dynamics, as in [SMG14, TCG21].

Our neural network encoder consists of two linear layers without biases: representation net Φ ∈
Rh×d and projection head W ∈ Rh×h as the first and second layers, respectively, where h is the
representation dimension. For the two views x,x′, we obtain online representation Φx ∈ Rh and
target representation Φx′ ∈ Rh, and predict the target from the online representation by WΦx ∈ Rh.
Here, we use the same representation parameters Φ for both views without the exponential moving
average [GSA+20] as this ablation reportedly works comparably in SimSiam [CH21].

Loss functions. BYOL/SimSiam introduce asymmetry of the two branches with the stop gradient op-
erator, denoted by StopGrad(·), where parameters are regarded as constants during backpropagation
[CH21]. [TCG21] used the following L2 loss to describe non-contrastive dynamics:

Lsq(Φ,W) :=
1

2
E
x0

E
x,x′|x0

[∥WΦx− StopGrad(Φx′)∥22], (1)

where the expectations are taken over x,x′ ∼ Daug
x0

and x0 ∼ D. Thanks to the simple closed-form
solution, the L2 loss has been used in most of the existing analyses of self-supervised learning
dynamics [WCDT21, TGR+23, ZWMW23].

We instead focus on the following cosine loss to take feature normalization into account, which is a
key factor in the success of contrastive representation learning [WI20]:

Lcos(Φ,W) := E
x0

E
x,x′|x0

[
− ⟨WΦx,StopGrad(Φx′)⟩
∥WΦx∥2 ∥StopGrad(Φx′)∥2

]
. (2)

Importantly, the cosine loss has been used in most practical implementations [GSA+20, CH21],
including a reproductive research [HMW22] of simulations in [TCG21]. Subsequently, the weight
decay R(Φ,W) := ρ

2 (∥Φ∥2F + ∥W∥2F) is added with a regularization strength ρ > 0.
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4 NON-CONTRASTIVE DYNAMICS IN THERMODYNAMICAL LIMIT

Let us focus on the cosine loss and derive its non-contrastive dynamics via the gradient flow. See
Appendix B for the proofs of lemmas provided subsequently. As the continuous limit of the gradient
descent where learning rates are taken to be infinitesimal [SMG14], we characterize time evolution
of the network parameters by the following simultaneous ordinal differential equation:

Φ̇ = −∇Φ{Lcos(Φ,W) +R(Φ,W)}, Ẇ = −∇W{Lcos(Φ,W) +R(Φ,W)}. (3)

To derive the dynamics, several assumptions are imposed.
Assumption 1 (Symmetric projection). W ∈ Symh holds during time evolution.
Assumption 2 (Input distribution). Σ = I, namely, D = N (0, I).
Assumption 3 (Thermodynamical limit). d, h→ ∞, and d/h→ α for some α ∈ (0, 1).

Assumption 4 (Parameter initialization). Φ is initialized with
√
d ·Φ(0)ij ∼ N (0, 1) for i ∈ [h], j ∈

[d]. W is initialized with
√
h ·W(0)ij ∼ N (0, 1) for i, j ∈ [h].

Assumptions 1 and 2 are borrowed from [TCG21] and simplify subsequent analyses. We empirically
verify that the non-contrastive dynamics maintains the symmetry of W during the training later
(Section 5.4). Assumption 3 is a cornerstone to our analysis: the high-dimensional limit makes
Gaussian random vectors concentrate on a sphere, which leads to a closed-form solution for the cosine
loss dynamics. We suppose that the common hidden unit size h = 512 (used in SimSiam) is sufficient
to bring into the high-dimensional limit—though the high-dimensional regime of representations
would be arguable with the low-dimensional manifold assumption being in one’s mind. Assumption 4
is a standard initialization scale empirically in the He initialization [HZRS15] and theoretically in
the neural tangent kernel regime [JGH18]. This initialization scale maintains norms of the random
matrices Φ and WΦ without vanishing or exploding under the thermodynamical limit.
Lemma 1. Parameter matrices W and Φ evolve as follows:

W⊤Ẇ = H− ρWW⊤,

Φ̇Φ⊤W⊤ = W⊤H− ρΦΦ⊤W⊤,
(4)

where H := E[z′ω⊤ − (ω⊤z′)ωω⊤], z := Φx′/ ∥Φx′∥2, and ω := WΦx/ ∥WΦx∥2. The
expectation in H is taken over x0,x, and x′.

We will analyze Eq. (4) to see when the dynamics stably converges to a non-trivial solution. To solve it,
we need to evaluate H first. This involves expectations with z′ and ω, which are normalized Gaussian
vectors and cannot be straightforwardly evaluated. Here, we take a step further by considering the
thermodynamical limit (Assumption 3), where norms of Gaussian vectors are concentrated. This
regime allows us to directly evaluate Gaussian random vectors instead of the normalized ones.
Lemma 2. Under Assumptions 1 to 4, for a fixed x0, the norms of Φx and WΦx (as well as Φx′

and WΦx′) are concentrated:∥∥∥ 1√
hσ2

Φx
∥∥∥2
2
=
∥∥∥ 1√

h
Φ
∥∥∥2
F
+
∥∥∥ 1√

hσ2
Φx0

∥∥∥2
2
+ oP(1),∥∥∥ 1√

h2σ2
WΦx

∥∥∥2
2
=
∥∥∥ 1√

h2
WΦ

∥∥∥2
F
+
∥∥∥ 1√

h2σ2
WΦx0

∥∥∥2
2
+ oP(1).

Lemma 3. Under Assumptions 1 to 4, the following concentrations are established:∥∥∥ 1√
hσ2

Φx0

∥∥∥
2
=
∥∥∥ 1√

hσ2
Φ
∥∥∥
F
+ oP(1),

∥∥∥ 1√
h2σ2

WΦx0

∥∥∥
2
=
∥∥∥ 1√

h2σ2
WΦx0

∥∥∥
F
+ oP(1).

Lemmas 2 and 3 are based on the Hanson–Wright inequality [Ver18, Theorem 6.3.2], a concentration
inequality for order-2 Gaussian chaos, with an additional effort to control norms of random matrices
W and Φ. By combining Lemmas 2 and 3, we can express normalizers ∥Φx′∥−1

2 and ∥WΦx∥−1
2 in

H into simpler forms, and obtain a concise expression of H consequently.
Lemma 4. Let Ψ := WΦ. Assume that ∥Φ∥F and ∥Ψ∥F are bounded away from zero. Under
Assumptions 1 to 4, H can be expressed as follows:

H =
1

1 + σ2

{
Φ̃Ψ̃⊤ − 2Ψ̃Φ̃⊤Ψ̃Ψ̃⊤ − tr(Φ̃⊤Ψ̃)Ψ̃Ψ̃⊤

}
+ oP(1),

where Φ̃ := Φ/ ∥Φ∥F and Ψ̃ := Ψ/ ∥Ψ∥F.
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5 ANALYSIS OF NON-CONTRASTIVE DYNAMICS

To analyze the dynamics (4), the main obstacle is the normalizers ∥Φ∥−1
F and ∥Ψ∥−1

F in H, which
makes the dynamics highly nonlinear and challenging to solve directly. Instead, we consider the
equilibrium state ∥Φ∥F → NΦ and ∥Ψ∥F → NΨ with NΦ, NΨ > 0. This allows us to focus on the
parameter values W and Φ at equilibrium. We impose the next assumption.

Assumption 5 (Norms remain stable). ∥Φ∥F ≡ NΦ, ∥Ψ∥F ≡ NΨ, and tr(Φ̃⊤Ψ̃) ≡ N× for
sufficiently long time.

In Section 5.4, we will numerically see that the three quantities may not drastically change during
time evolution. Indeed, learning dynamics analysis of weight normalization often posits a similar one
so that parameter norms remain the same globally [vL17]. We conjecture that this assumption can be
replaced with the local stability as in the previous convergence analysis of weight-norm dynamics
[WZZS21]; nevertheless, we choose to assume the global stability for simplicity to concentrate on
the equilibrium analysis. Under Assumption 5, H can be expressed as follows:

H =
1

1 + σ2

(
FW

NΦNΨ
− 2WFWFW

NΦN3
Ψ

− N×WFW

NΦNΨ

)
(=: Ĥ), (5)

where F := ΦΦ⊤ and we drop the negligible term oP(1) for simplicity.

5.1 EIGENMODE DECOMPOSITION OF DYNAMICS

To analyze the stability of the dynamics (4), we disentangle it into the eigenmodes. We first show
the condition where the eigenspaces of W and F align with each other. Note that two commuting
matrices can be simultaneously diagonalized.

Proposition 1. Suppose W is non-singular. Under the dynamics (4) with H = Ĥ, the commutator
L(t) := [F,W] := FW −WF satisfies dvec(L(t))

dt = −K(t)vec(L(t)), where

K(t) := 2
W ⊕WFW +W2(FW ⊕ Id)

(1 + σ2)NΦN3
Ψ

+
(W−1)⊕ F− (W −N×W

2)⊕ Id
(1 + σ2)NΦNΨ

+ 3ρId,

and A⊕B := A⊗B+B⊗A denotes the sum of the two Kronecker products.

If inft≥0 λmin(K(t)) ≥ λ0 > 0 for some λ0 > 0, then ∥L(t)∥F → 0 as t→ ∞.

Proposition 1 is a variant of [TCG21, Theorem 3] for the dynamics (4). Consequently, we see that
W and F are simultaneously diagonalizable at the equilibrium ∥L(t)∥F = ∥[F,W]∥F = 0. We then
approximately deal with the dynamics (4).
Assumption 6 (Always commutative). ∥[F,W]∥F ≡ 0 for ∀t ≥ 0.

We verify the validity of the assumption in Section 5.4, where we see that the commutator remains to
be nearly zero.

Let U be the common eigenvectors of F and W, then W = UΛWU⊤ and F = UΛFU
⊤, where

ΛW = diag[p1, p2, . . . , pd] and ΛF = diag[s1, s2, . . . , sd]. By extending the discussion of [TCG21,
Appendix B.1], we can show that U would not change over time.

Proposition 2. Suppose W is non-singular. Under the dynamics (4) with H = Ĥ, we have U̇ = O.

With Assumptions 5 and 6 and Proposition 2, we decompose (4) with H = Ĥ into the eigenmodes.

ṗj = − 1

(1 + σ2)NΦNΨ

(
2

N2
Ψ

s2jp
2
j +N×sjpj − sj

)
− ρpj ,

ṡj = − 2

(1 + σ2)NΦNΨ

(
2

N2
Ψ

s2jp
3
j +N×sjp

2
j − sjpj

)
− 2ρsj .

(6)

The eigenmode dynamics (6) is far more interpretable than the matrix dynamics (4) and amenable to
further understanding. Subsequently, we analyze the eigenmode dynamics to investigate the number
of equilibrium points and their stability.
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Figure 2: Numerical illustrations of the dynamics Eq. (8) with different values of (ρ,NΦ, NΨ), where vertical
and horizontal axes denote pj and ṗj , respectively. The left two columns are illustrated for ρ = 0.5, while right
two columns for ρ = 0.1. Red ▼ and green ▲ indicate stable (namely, ṗj < 0) and unstable equilibrium (namely,
ṗj > 0) points, respectively [HSD12]. For other parameters, we chose N× = 1 and σ2 = 0.1 for illustration.

5.2 EQUILIBRIUM ANALYSIS OF EIGENMODE DYNAMICS

We are interested in how the eigenmode avoids collapse with feature normalization. For this purpose,
we investigate the equilibrium points of the eigenmode dynamics (6).

Invariant parabola. By simple algebra, ṡj − 2pj ṗj = −2ρ(sj − p2j ). Noting that d
dt (sj − p2j ) =

ṡj − 2pj ṗj and integrating both ends, we encounter the following relation:

sj(t) = p2j (t) + cj exp(−2ρt), (7)

where cj := sj(0) − p2j (0) is the initial condition. Equation (7) elucidates that the dynamics of
(pj(t), sj(t)) asymptotically converges to the parabola sj(t) = p2j (t) as t→ ∞ when regularization
ρ > 0 exists. The information of initialization cj shall be forgotten. Stronger regularization yields
faster convergence to the parabola. We reasonably expect that this exponential convergence is much
faster than the drifts of ∥Φ∥F, ∥Ψ∥F, and tr(Φ̃⊤Ψ) so that Assumption 5 holds.

Dynamics on invariant parabola. We now focus on the dynamics on the invariant parabola.
Substituting sj(t) = p2j (t) into pj-dynamics in Eq. (6) yields the following dynamics:

ṗj = − 2

(1 + σ2)NΦN3
Ψ

p6j −
N×

(1 + σ2)NΦNΨ
p3j +

1

(1 + σ2)NΦNΨ
p2j − ρpj . (8)

We illustrate the dynamics (8) with different parameter values in Fig. 2. This dynamics always has
pj = 0 as an equilibrium point, and the number of equilibrium points varies between two and four.
Notably, Eq. (8) is a sixth-order non-linear ODE (in pj), whereas the L2 loss dynamics [TCG21,
Eq. (16)] induces a third-order non-linear eigenmode dynamics, as we will recap in Section 5.3. From
Fig. 2, we can classify into three regimes (refer to Fig. 3 together; more formally, confer Appendix C):

• (Collapse) When all of ρ, NΦ, NΨ are large, the dynamics only has two equilibrium points.
See the plots with (ρ,NΦ, NΨ) ∈ {(0.5, 1.0, 1.0), (0.5, 1.0, 0.5), (0.5, 0.5, 1.0)}. In this regime,
pj = 0 is the only stable equilibrium, causing the collapsed dynamics. This regime is brittle
because the stable equilibrium pj = 0 blows up the normalizers ∥Φ∥−1

F and ∥Ψ∥−1
F in the original

cosine loss dynamics. As pj shrinks, the values NΦ and NΨ shrink together, too, which brings the
dynamics into the next two regimes.
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Figure 3: Schema of Collapse, Acute, and Stable regimes of the eigenmode dynamics Eq. (8). Red ▼ and green
▲ indicate stable (namely, ṗj < 0) and unstable equilibrium (namely, ṗj > 0) points, respectively. The black
♦ denotes the saddle point. Red , gray , and blue backgrounds indicate ranges where the eigenmode will
diverge to −∞, collapse to 0, and converge to the stable equilibrium, respectively. As NΦ and NΨ become
smaller, the regime shifts in the direction «Collapse → Acute → Stable», and as NΦ and NΨ become larger, the
regime shifts in the opposite direction «Stable → Acute → Collapse».

• (Acute) When ρ, NΦ, and NΨ become smaller than those in Collapse, two new equilibrium points
emerge and the number of equilibrium points is four in total. See the plots with (ρ,NΦ, NΨ) ∈
{(0.5, 0.5, 0.5), (0.5, 0.25, 1.0), (0.1, 1.0, 1.0)}. Let p(−)

▲ , p(0)▼ (= 0), p(+)
▲ , and p(+)

▼ denote the
equilibrium points from smaller to larger ones, respectively, namely, p(−)

▲ < p
(0)
▼ = 0 < p

(+)
▲ <

p
(+)
▼ (see Fig. 3). Note that pj = p

(−)
▲ , p

(+)
▲ are unstable and pj = p

(0)
▼ , p

(+)
▼ are stable [HSD12].

In this regime, the eigenmode initialized larger than p(+)
▲ converge to non-degenerate point p(+)

▼ .
However, the eigenmode degenerates to p(0)▼ if initialization is in the range [p

(−)
▲ , p

(+)
▲ ] (close to

zero), and diverges if initialization has large negative value < p
(−)
▲ . If the eigenmode degenerates,

the values NΦ and NΨ further shrink and then the regime enters the final one; if the eigenmode
diverges, NΦ and NΨ inflate and the regime goes back to the previous Collapse.

• (Stable) When ρ, NΦ, and NΨ are further smaller than those in Acute, the middle two equilibrium
points p(0)▼ and p(+)

▲ approaches and form a saddle point. See the plots with (ρ,NΦ, NΨ) ∈
{(0.5, 0.25, 0.5), (0.1, 0.25, 1.0), (0.1, 0.25, 0.5)}. Denote this saddle point by p♦. The dynamics
has a unstable equilibrium p

(−)
▲ , a saddle point p♦, and a stable equilibrium p

(+)
▼ , from smaller to

larger ones. In this regime, the eigenmode stably converges to the non-degenerate point pj = p
(+)
▼

unless the initialization is smaller than p(−)
▲ .

(Remark: p(0)▼ = p
(+)
▲ never occurs because the dynamics diverges as NΦ, NΨ → 0. Nonetheless,

this approximately occurs with realistic parameters such as (ρ,NΦ, NΨ) = (0.1, 0.25, 0.5).)

Three regimes prevent degeneration. We illustrate the relationship among the three regimes
in Fig. 3. As we see in the numerical experiments (Section 5.4), the parameter initialization (As-
sumption 4) hardly makes the initial eigenmode smaller than p(−)

▲ : indeed, we simulated the initial
eigenmode distributions in Fig. 4, which indicates that the eigenmodes are sufficiently larger than
p
(−)
▲ . Therefore, the learning dynamics has stable equilibriums and successfully stabilizes.

Importantly, this cosine loss dynamics stabilizes and would not collapse to zero regardless of the
regularization strength ρ, which is in stark contrast to the L2 loss dynamics, as detailed in Section 5.3.
This observation tells us the importance of feature normalization to prevent representation collapse in
non-contrastive self-supervised learning.

5.3 COMPARISON WITH L2 LOSS DYNAMICS

Whereas we mainly focused on the study of the cosine loss dynamics, [TCG21] (and many earlier
studies) engaged in the L2 loss dynamics, which does not entail feature normalization. Here, we
compare the cosine and L2 loss dynamics to see how feature normalization plays a crucial role.

7
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Figure 4: Numerical simulation of eigenvalue distributions of W. In each figure, we generate W and Φ by the
initialization of Assumption 4, and illustrate the histogram of eigenmodes of W. The vertical line indicates the
value of p(−)

▲ , the negative unstable equilibrium point of pj-dynamics (8), computed by the binary search and
numerical root finding. For parameters, we chose ρ = 0.05, σ2 = 1.0, d = 2048, and h ∈ {64, 256}.
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p
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p
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p
(+)
▲ p
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▼
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4(1+σ2)

p
(0)
▼
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ṗj

Case (c): ρ > 1
4(1+σ2)

No shift× No shift×

Figure 5: Schema of three eigenmode dynamics in the L2 loss case. Each figure illustrates the eigenmode
corresponding fixed regularization strength ρ. The meaning of each mark (▲,▼,♦) and background colors can
be found in the caption of Fig. 3. The figure borrows the illustration of [TCG21, Figure 4].

Let us review the dynamics of [TCG21]. We inherit Assumption 1 (symmetric projector), Assump-
tion 2 (standard normal input), and Assumption 6 (F and W are commutative). Under this setup,
[TCG21] analyzed the non-contrastive dynamics (4) with the L2 loss (1), and revealed that the eigen-
modes of W and F (denoted by pj and sj , respectively) asymptotically converges to the invariant
parabola sj(t) = p2j (t) (see Eq. (7)), where the pj-dynamics reads:

ṗj = p2j{1− (1 + σ2)pj} − ρpj . (9)

Compare the L2-loss dynamics (9) (third-order) and the cosine-loss dynamics (8) (sixth-order). Note
that we omit the exponential moving average of the online representation in BYOL (τ = 1) and use
the same learning rate for the predictor and online nets (α = 1) in [TCG21] for comparison.

The behaviors of the two dynamics are compared in Fig. 3 (cosine loss) and Fig. 5 (L2 loss). One of
the most important differences is that the cosine loss dynamics has the regime shift depending on
evolution of NΦ, NΨ, and N×, while the L2 loss dynamics does not have such a shift. Thus, the
L2 loss dynamics and its time evolution are solely determined by a given regularization strength ρ
(see three plots in Fig. 5). That being said, if the L2 loss dynamics is regularized strongly such that
ρ > 1

4(1+σ2) , there is no hope that the eigenmode stably converges without collapse to zero. On
the contrary, a strong regularization with the cosine loss initially makes the dynamics fall into the
Collapse regime, where no meaningful stable equilibrium exists, but the regime gradually shifts to
Acute as the eigenmode (and the norms NΦ and NΨ accordingly) approaches zero. Such regime shift
owes to feature normalization involved in the cosine loss.

5.4 NUMERICAL EXPERIMENTS

We conducted a simple numerical simulation of the SimSiam model using the official implementation
available at https://github.com/facebookresearch/simsiam. We tested the linear
model setup shown in Section 3, with linear representation net Φ and linear projection head W,
and the representation dimension was set to h = 64. Data are generated from the 512-dimensional
(d = 512) standard multivariate normal (Assumption 2) and data augmentation follows isotropic

8
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Figure 6: Numerical simulation of the SimSiam model. (Left) Time evolution of NΦ, NΨ, and N×. They overall
remain stable (cf. Assumption 5). (Center) Asymmetry of the projection head W (measured by the relative error
of W −W⊤) and non-commutativity of F and W (measured by the relative error of the commutator [F,W]).
The relative errors stay close to zero during time evolution (cf. Assumptions 1 and 6). (Right) The leading
eigenmode of the projection head pj (green line), with background colors illustrating three intervals where
pj diverges , pj collapses , and pj stably converges at each epoch. The regime boundaries are numerically

computed by the binary search and root finding of (8). Each color corresponds to those in Fig. 3. The vertical
black line indicates the shift from Collapse (epoch < 2200) to Acute (epoch > 2200).

Gaussian noise Daug
x0

, with variance σ2 = 1.0. The learning rate of the momentum SGD was initially
set to 0.05 and scheduled by the cosine annealing. The regularization strength was set to ρ = 0.005.
For the other implementation details, we followed the official implementation.

The results are shown in Fig. 6. We first confirm how Assumption 5 is reasonable in practice by
testing the values of NΦ, NΨ, and N× during time evolution. Figure 6 (Left) shows that these three
values, and N× in particular, overall remain stable, with mild shrinkage of NΦ and NΨ. Nevertheless,
NΦ and NΨ occasionally have spikes. To take those behaviors into account, the local norm stability
[WZZS21] would be useful in future analyses. Next, to confirm the validity of Assumptions 1 and 6,
we plot asymmetry of the projection head W and commutativity of F and W in Fig. 6 (Center),
which suggests that the assumptions are reasonable in general. Lastly, we empirically observe the
regime shift in Fig. 6 (Right). The regularization strength ρ = 0.005 used in this experiment is rather
larger than the default SimSiam regularization strength ρ = 10−4, which leads to the Collapse regime
initially (when epoch < 2200) but gradually shifts to the Acute regime (when epoch > 2200). Thus,
we observed how the eigenmode escapes from the Collapse regime. More analyses (together with the
other eigenmodes; additionally, the simulation with ResNet-18 encoder) can be found in Appendix D.

6 CONCLUSION

In this work, we questioned how to describe non-contrastive dynamics without eigenmode collapse.
The existing theory (represented by [TCG21]) leverages the simplicity of the L2 loss to analytically
derive the dynamics of the two-layer non-contrastive learning. However, the regularization severely
affects eigenmode collapse: with too strong regularization, the dynamics has no way to escape
from eigenmode collapse. This may indicate a drawback of the L2 loss analysis, though their
theoretical model is transparent. Alternatively, we focused on the cosine loss, which involves feature
normalization and derived the corresponding eigenmode dynamics. Despite that the dynamics may
fall into the Collapse regime for too strong regularization, the shrinkage of the eigenmodes brings the
regime into non-collapse ones. Thus, we witnessed the importance of feature normalization.

Technically, we leveraged the thermodynamical limit of the feature dimensions, which allows us to
focus on high-dimensional concentrated feature norms. We believe that a similar device may enhance
theoretical models of related learning problems and architectures, including self-supervised learning
based on covariance regularization such as Barlow Twins [ZJM+21] and VICReg [BPL22].

This work is limited to the analysis of dynamics stability and refrains to answer why non-contrastive
learning is appealing for many downstream tasks. While downstream performances of contrastive
learning have been theoretically analyzed through the lens of the learning theoretic viewpoint
[SPA+19, NS21, WZW+22, BNN22] and the smoothness of loss landscapes [LXLM23], we have
far less understanding of non-contrastive learning for the time being. We hope that understanding the
non-contrastive dynamics paves a road to the analysis of downstream tasks.

9
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APPENDIX

ON THE ROLE OF FEATURE NORMALIZATION IN NON-CONTRASTIVE SELF-SUPERVISED LEARNING

A TECHNICAL LEMMAS

A.1 SUB-WEIBULL DISTRIBUTIONS

In this subsection, we give a brief introduction to sub-Weibull distributions [HAYWC19, VGNA20],
which is a generalization of seminal sub-Gaussian and sub-exponential random variables. First, we
define sub-Weibull distributions.
Definition 1 ([HAYWC19]). For β > 0, we define X as a sub-Weibull random variable with the
ψβ-norm if it entails a bounded ψβ-norm, defined as follows:

∥X∥ψβ
:= inf

{
C ∈ (0,∞)

∣∣∣ E[exp(|X|β /Cβ)] ≤ 2
}
.

We occasionally call β-sub-Weibull to specify the corresponding ψβ-norm explicitly. Obviously,
β = 2 and β = 1 recover sub-Gaussian and sub-exponential distributions, respectively. Among
equivalent definitions of sub-Weibull distributions, we often use the following conditions.
Proposition 3 ([VGNA20]). LetX be a sub-Weibull random variable. Then, the following conditions
are equivalent:

1. The tails of X satisfy

∃K1 > 0 such that P {|X| ≥ ε} ≤ 2 exp
(
−(ε/K1)

β
)

for all ε ≥ 0.

2. The moments of X satisfy

∃K2 > 0 such that ∥X∥Lp := {E |X|p}1/p ≤ K2p
1/β for all p ≥ 1.

3. The moment-generating function (MGF) of |X|β is bounded at some point, namely,

∃K3 > 0 such that E exp
(
(|X|/K3)

β
)
≤ 2.

The parameters K1, K2, and K3 differ from each other by at most an absolute constant factor.

We are interested in sub-Weibull distributions because they admit a nice closure property, as shown
below.
Proposition 4 ([VGNA20]). Let X and Y be β-sub-Weibull random variables. Then, XY is
(β/2)-sub-Weibull with ∥XY ∥ψβ/2

≤ ∥X∥ψβ
∥Y ∥ψβ

. In addition, X + Y is β-sub-Weibull with
∥X + Y ∥ψβ

≤ ∥X∥ψβ
+ ∥Y ∥ψβ

.

Note that Proposition 4 does not require the independence of two random variables X and Y . Lastly,
we show a corresponding concentration inequality for the sum of independent sub-Weibull random
variables, which is a generalization of Hoeffding’s and Bernstein’s inequalities for sub-Gaussian and
sub-exponential random variables, respectively.
Proposition 5 ([HAYWC19]). Let X1, . . . , XN be independent β-sub-Weibull random variables
with ∥Xi∥ψβ

≤ K for each i ∈ [N ]. Then, there exists an absolute constant C > 0 only depending
on β such that for any δ ∈ (0, e−2),∣∣∣∣∣

N∑
i=1

Xi − E

[
N∑
i=1

Xi

]∣∣∣∣∣ ≤ CK

(√
N log

1

δ
+

(
log

1

δ

)1/β
)
,

with probability at least 1− δ.
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For the proofs of these propositions, please refer to the corresponding references.

We additionally provide technical lemmas for random matrices whose element is sub-Weibull.

Lemma 5. Let G ∈ Rh×d be a random matrix with each element being β-sub-Weibull such that
∥Gij∥ψβ

= O(K(d, h)) for some β > 0 and any (i, j) ∈ [h]× [d], where K(d, h) may depend on d

and h. Then, 1
d2h2

∥∥G⊤G
∥∥2
F
= OP(K(d, h)/h).

Proof of Lemma 5. Let Gi ∈ Rh denote the i-th column vector of the matrix G. We have the
decomposition

∥∥G⊤G
∥∥2
F
=
∑d
i,j=1 ⟨Gi,Gj⟩2. Let us focus on each ⟨Gi,Gj⟩ for fixed i and j

first. We can decompose into ⟨Gi,Gj⟩ =
∑h
k=1GikGjk, which is the sum of (β/2)-sub-Weibull

random variable GikGjk with ∥GikGjk∥ψβ/2
= O(K(d, h)) (cf. Proposition 4). By using the

closure property under addition (Proposition 4), the sum ⟨Gi,Gj⟩ is (β/2)-sub-Weibull again, with
∥⟨Gi,Gj⟩∥ψβ/2

= O(hK(d, h)).

Now, we move back to evaluation of
∥∥G⊤G

∥∥2
F
=
∑d
i,j=1 ⟨Gi,Gj⟩2. By using the closure property

under multiplication (Proposition 4), ⟨Gi,Gj⟩2 is (β/4)-sub-Weibull with
∥∥∥⟨Gi,Gj⟩2

∥∥∥
ψβ/4

=

O(hK(d, h)). Then, the closure property under addition implies that
∑d
i,j=1 ⟨Gi,Gj⟩2 is (β/4)-

sub-Weibull, with
∥∥∥∑d

i,j=1 ⟨Gi,Gj⟩2
∥∥∥
ψβ/4

= O(d2hK(d, h)). Hence, by using the sub-Weibull

tails in Proposition 3,

∥∥G⊤G
∥∥2
F
=

d∑
i,j=1

⟨Gi,Gj⟩2 = OP(d
2hK(d, h)),

from which we deduce that 1
d2h2

∥∥G⊤G
∥∥2
F
= OP(K(d, h)/h).

Lemma 6. Let G ∈ Rh×d be a random matrix with each element being β-sub-Weibull such that
∥Gij∥ψβ

= O(K(d, h)) for some β > 0 and any i, j ∈ [d], where K(d, h) may depend on d and h.

Then, ∥G∥ = OP((d
1/β + h1/β)K(d, h)).

Proof of Lemma 6. The proof is akin to [Ver18, Theorem 4.4.5], which is a spectral norm deviation
for sub-Gaussian random matrices. We leverage the ε-net argument: Using [Ver18, Corollary
4.2.13], we can find ε-nets Md of Sd−1 with |Md| ≤ 9d and Mh of Sh−1 with |Mh| ≤ 9h, and
∥G∥ ≤ 2maxx∈Md,y∈Mh

⟨Gx,y⟩. Hence, it is sufficient to control the quadratic form ⟨Gx,y⟩ for
fixed (x,y) ∈ Md ×Mh.

The quadratic form ⟨Gx,y⟩ =
∑d
i=1

∑h
j=1Gijxiyj is the sum of β-sub-Weibull random variables.

By the closure property (Proposition 4),

∥⟨Gx,y⟩∥2ψβ
≤
∑
i,j

∥Gijxiyj∥2ψβ
≤ O(K(d, h)) ·

(
d∑
i=1

x2i

) h∑
j=1

y2j

 = O(K(d, h)).

Thus, sub-Weibull tails (Proposition 3) imply P {⟨Gx,y⟩ ≥ u} ≤ 2 exp(−(u/K1)
β) with K1 =

O(K(d, h)). The union bound yields

P
{

max
x∈Md,y∈Mh

⟨Gx,y⟩ ≥ u

}
≤ 9d+h · 2 exp(−(u/K1)

β) ≤ 2 exp(−δβ),

where the last inequality is a consequence of the choice u = CK1(d
1/β + h1/β + δ) with a

sufficiently large absolute constant C. Hence, P {∥G∥ ≥ 2u} ≤ 2 exp(−δβ) holds, namely, ∥G∥ =
2C(d1/β + h1/β + δ) · O(K(d, h)) holds with probability at least 1− 2 exp(−δβ). This completes
the proof.

14



Under review as a conference paper at ICLR 2024

A.2 INTEGRAL INEQUALITY

In this subsection, we briefly introduce the Grönwall–Bellman inequality [Bel43, GBLJ19] to solve
functional inequalities represented by integrals. In subsequent analyses, we heavily use it to control
the norm of certain random matrices during time evolution.
Theorem 1 (Grönwall–Bellman inequality). Let β be a non-negative function and α a non-decreasing
function. Let u be a function defined on an interval I = [0,∞) such that

u(t) ≤ α(t) +

∫ t

0

β(s)u(s)ds, ∀t ∈ I.

Then, we have

u(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
, ∀t ∈ I.

A.3 HELPER LEMMAS

Lemma 7. Under the initialization of Assumption 4, we have the following results:

1. 1
h

∥∥Φ⊤Φ(0)
∥∥ = oP(1).

2. 1
h2

∥∥Φ⊤W⊤WΦ(0)
∥∥ = oP(1).

Proof of Lemma 7. To prove 1, we note that each element of the random matrix
√
dΦ(0) is sub-

Gaussian (namely, 2-sub-Weibull) with the ψ2-norm being O(1), by the assumption on the parameter

initialization (Assumption 4). Then, Lemma 6 implies d
∥∥Φ⊤Φ(0)

∥∥ =
∥∥∥√dΦ(0)

∥∥∥2 = OP(d).

Finally, we have 1
h

∥∥Φ⊤Φ(0)
∥∥ = OP(1/h) = oP(1).

The identity 2 follows similarly. The (i, j)-th element of the random matrix
√
dhWΦ(0) can be

expressed as ⟨wi,Φj⟩, where wi is the i-th row vector of
√
hW(0) and Φj is the j-th column vector

of
√
dΦ(0). Both wi and Φj are h-dimensional vectors with each element being standard normal.

Hence, ⟨wi,Φj⟩ is the sum of h sub-exponential random variables, being sub-exponential with
∥⟨wi,Φj⟩∥ψ1

= O(h) (by using Proposition 4). This indicates that each element of
√
dhWΦ(0)

is sub-exponential (namely, 1-sub-Weibull). Then, Lemma 6 implies dh
∥∥Φ⊤W⊤WΦ(0)

∥∥ =∥∥∥√dhWΦ(0)
∥∥∥2 = OP(d

2). Finally, we have 1
h2

∥∥Φ⊤W⊤WΦ(0)
∥∥ = OP(1/h

2) = oP(1).

Lemma 8. Under the initialization of Assumption 4, we have the following results:

1. 1
h2

∥∥Φ⊤Φ(0)
∥∥2
F
= oP(1).

2. 1
h2

∥∥Φ⊤W⊤WΦ(0)
∥∥2
F
= oP(1).

3. 1
h2 tr(W

⊤W(0))2 = OP(1).

Proof of Lemma 8. Let us prove 1. Again, each element of the random matrix
√
dΦ(0) is 2-

sub-Weibull (see the proof of Lemma 7). Thus, Lemma 5 implies 1
h2

∥∥Φ⊤Φ(0)
∥∥2
F

= 1
d2h2 ·

d2
∥∥Φ⊤Φ(0)

∥∥2
F
= OP(1/h) = oP(1).

The identity 2 follows similarly. Again, each element of the random matrix
√
dhWΦ(0) is 1-sub-

Weibull (see the proof of Lemma 7) so that
√
dhWΦ(0) satisfies the assumption of Lemma 5, from

which we deduce that
1

h2
∥∥Φ⊤W⊤WΦ(0)

∥∥2
F
=

1

h2
· 1

d2h2
· d2h2

∥∥Φ⊤W⊤WΦ(0)
∥∥2
F

=
1

h2
OP(1)

= oP(1).
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To prove 3, we see that h tr(W⊤W(0)) = h ∥W(0)∥2F =
∑h
i,j=1(

√
hW (0)ij)

2 is the sum of sub-

exponential (namely, 1-sub-Weibull) random variables (
√
hW (0)ij)

2 with
∥∥∥√hW (0)ij

∥∥∥
ψ1

= O(1)

for i, j ∈ [h]. Hence, h tr(W⊤W(0)) is 1-sub-Weibull with
∥∥h tr(W⊤W(0))

∥∥
ψ1

= O(h2)

from Proposition 4. By the closure property again, h2 tr(W⊤W(0))2 is 1
2 -sub-Weibull with the

corresponding norm being O(h4). By using sub-Weibull tails in Proposition 3, we deduce that∣∣h2 tr(W⊤W(0))2
∣∣ = OP(h

2). Lastly, we obtain 1
h2 tr(W

⊤W(0))2 = OP(1).

Lemma 9. Under Assumptions 2 and 4, we have the following consequences:

1. 1
h2

∥∥Φ⊤Φ(0)x0

∥∥2
2
= oP(1).

2. 1
h4

∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2
= oP(1).

Proof of Lemma 9. Assumption 2 implies that x0 ∼ N (0, Id), from which we can verify that
∥x0∥22 =

∑d
i=1 x

2
0,i is the sum of d sub-exponential (i.e., 1-sub-Weibull) random variables and∥∥∥∥x0∥22

∥∥∥
ψ1

= O(d) (Proposition 4). By sub-Weibull tails (Proposition 3), ∥x0∥22 = OP(d) entails.

To prove 1, we confirm that each element of hΦ⊤Φ(0) is sub-exponential with the ψ1-norm being
O(1). To see this, we let Φi denote the i-th column vector of

√
hΦ(0). Assumption 4 indicates that Φi

is an h-dimensional standard normal random vector, and E ⟨Φi,Φj⟩ = h · Ji = jK. Thus, Bernstein’s
inequality [Ver18, Corollary 2.8.3] yields |⟨Φi,Φj⟩ − h · Ji = jK| = OP(1) (for sufficiently large
h), which indicates that hΦ⊤Φ(0) − hId satisfies the assumption of Lemma 6 with β = 1 and
K(d, h) = 1. Hence, by Lemma 6,∥∥hΦ⊤Φ(0)

∥∥ ≤
∥∥hΦ⊤Φ(0)− hId

∥∥+ h ∥Id∥ = OP(d) + h.

Combining this with ∥x0∥22 = OP(d), we obtain the following result:

1

h2
∥∥Φ⊤Φ(0)x0

∥∥2
2
≤ 1

h4
·
∥∥hΦ⊤Φ(0)

∥∥2 · ∥x0∥22 =
1

h4
· {OP(d) + h}2 · OP(d) = OP(h

−1),

which completes the proof.

To prove 2, we confirm that each element of h2Φ⊤W⊤WΦ(0) is 1
2 -sub-Weibull with the ψ 1

2
-

norm being O(
√
h). To see this, we let Ψi denote the i-th column vector of hW(0)Φ(0) (for

i ∈ [d]). The k-th element of Ψi (for k ∈ [h]) is Ψ
(k)
i := h

∑h
l=1W (0)klΦ(0)li, which is sub-

exponential and mean zero from Assumption 4 and
∣∣∣Ψ(k)

i

∣∣∣ = ∣∣∣h∑h
l=1W (0)klΦ(0)li

∣∣∣ = OP(1) (for

sufficiently large h) from Bernstein’s inequality. Here, each (i, j)-th element of h2Φ⊤W⊤WΦ(0)

is ⟨Ψi,Ψj⟩ =
∑h
k=1 Ψ

(k)
i Ψ

(k)
j , which is the sum of h products Ψ

(k)
i Ψ

(k)
j . Each Ψ

(k)
i Ψ

(k)
j is

1
2 -sub-Weibull because of the closure property (Proposition 4), and hence the sum ⟨Ψi,Ψj⟩ is 1

2 -sub-
Weibull with ∥⟨Ψi,Ψj⟩∥ψ 1

2

= O(h). Thus, we see the sub-Weibull property of h2Φ⊤W⊤WΦ(0).

Hence, we can apply Lemma 6 to claim
∥∥h2Φ⊤W⊤WΦ(0)

∥∥ = OP(d
2h). Combining this with

∥x0∥22 = OP(d), we obtain the desired result:

1

h4
∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2
≤ 1

h8
·
∥∥h2Φ⊤W⊤WΦ(0)

∥∥2 · ∥x0∥22

=
1

h8
· OP(d

4h2) · OP(d)

= OP(h
−1).

Lemma 10. For any t,
∥∥Φ⊤Φ(t)

∥∥
F
≤ (
∥∥Φ⊤Φ(0)

∥∥
F
+ 4t) exp(2ρt).
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Proof of Lemma 10. First, we use the fundamental theorem of calculus and the triangular inequality
to decompose as follows:∥∥Φ⊤Φ(t)

∥∥
F
=

∥∥∥∥Φ⊤Φ(0) +

∫ t

0

{
Φ̇⊤Φ(τ) +Φ⊤Φ̇(τ)

}
dτ

∥∥∥∥
F

≤
∥∥Φ⊤Φ(0)

∥∥
F
+

∫ t

0

∥∥∥Φ̇⊤Φ(τ)
∥∥∥
F
dτ +

∫ t

0

∥∥∥Φ⊤Φ̇(τ)
∥∥∥
F
dτ

=
∥∥Φ⊤Φ(0)

∥∥
F
+ 2

∫ t

0

∥∥∥Φ̇⊤Φ(τ)
∥∥∥
F
dτ.

(10)

The term Φ̇⊤Φ can be evaluated by using the dynamics derived in Lemma 1 as follows:

Φ̇⊤Φ =
{
W⊤(W⊤Ẇ + ρWW⊤)(W⊤)

†
(Φ⊤)

† − ρΦΦ⊤W⊤(W⊤)
†
(Φ⊤)

†}⊤
Φ

=
{
W⊤W⊤Ẇ(W†)⊤(Φ†)⊤ + ρW⊤W(Φ†)⊤ − ρΦ

}⊤
Φ

= Φ†W†Ẇ⊤W2Φ+ ρΦ†W⊤WΦ− ρΦ⊤Φ

= Φ†W†{E[z′ω⊤ − (ω⊤z′)ωω⊤]− ρWW⊤}WΦ+ ρΦ†W⊤WΦ− ρΦ⊤Φ

= Φ†W† E[z′ω⊤ − (ω⊤z′)ωω⊤]WΦ− ρΦ⊤Φ,

(11)

whose Frobenius norm shall be bounded from above subsequently:∥∥∥Φ̇⊤Φ
∥∥∥
F
≤ E

∥∥Φ†W†(z′ω⊤)WΦ
∥∥
F
+ E

∥∥Φ†W†(ωω⊤)WΦ
∥∥
F
+ ρ

∥∥Φ⊤Φ
∥∥
F
.

Note that we use
∣∣ω⊤z′

∣∣ ≤ 1 because ω, z′ ∈ Sh−1 in this bound. The norm
∥∥Φ†W†(z′ω⊤)WΦ

∥∥
F

is bounded as follows:∥∥Φ†W†(z′ω⊤)WΦ
∥∥2
F
=
〈
Φ†W†(z′ω⊤)WΦ,Φ†W†(z′ω⊤)WΦ

〉
F

= tr(Φ⊤W⊤ω(z′)⊤(W†)⊤(Φ†)⊤Φ†W†z′ω⊤WΦ)

(*)
= tr(ω(z′)⊤(W†)⊤(Φ†)⊤Φ†W†z′ω⊤WΦΦ⊤W⊤)

≤
∣∣tr(ω(z′)⊤)

∣∣ · ∣∣tr((W†)⊤(Φ†)⊤Φ†W†z′ω⊤WΦΦ⊤W⊤)
∣∣

(*)
=
∣∣tr(ω(z′)⊤)

∣∣ · ∣∣tr(z′ω⊤)
∣∣

= ∥ω∥2 ∥z
′∥2 ∥z

′∥2 ∥ω∥2
≤ 1,

(12)

where the cyclic property of the trace tr(ABC) = tr(BCA) is used at the two identities (*).
Because Eq. (12) relies solely on z′,ω ∈ Sh−1, the same reasoning induces the upper bound∥∥Φ†W†(ωω⊤)WΦ

∥∥
F
≤ 1. By plugging everything back to Eq. (10), we obtain the following

integral inequality for the norm
∥∥Φ⊤Φ(t)

∥∥
F

:∥∥Φ⊤Φ(t)
∥∥
F
≤
∥∥Φ⊤Φ(0)

∥∥
F
+ 4t+ 2ρ

∫ t

0

∥∥Φ⊤Φ(τ)
∥∥
F
dτ. (13)

The form of Eq. (13) satisfies the assumption of the Grönwall–Bellman inequality (Theorem 1) with
which the norm upper bound

∥∥Φ⊤Φ(t)
∥∥
F
≤ (
∥∥Φ⊤Φ(0)

∥∥
F
+ 4t) exp(2ρt) is derived.

Lemma 11. For any t, ∥Φ(t)∥ ≤
√
(∥Φ⊤Φ(0)∥+ 4t) exp(2ρt).

Proof of Lemma 11. We evaluate
∥∥Φ⊤Φ(t)

∥∥ = ∥Φ(t)∥2. By the fundamental theorem of calculus,
we obtain the following decomposition:∥∥Φ⊤Φ(t)

∥∥ ≤
∥∥Φ⊤Φ(0)

∥∥+ 2

∫ t

0

∥∥∥Φ̇⊤Φ(τ)
∥∥∥ dτ.

By following the same derivation as the proof of Lemma 10, it is not difficult to see
∥∥∥Φ̇⊤Φ

∥∥∥ ≤

2+ρ
∥∥Φ⊤Φ

∥∥. Then,
∥∥Φ⊤Φ(t)

∥∥ ≤
∥∥Φ⊤Φ(0)

∥∥+4t+2ρ
∫ t
0

∥∥Φ⊤Φ(τ)
∥∥dτ . This integral inequality

can be solved via Theorem 1, and we have
∥∥Φ⊤Φ(t)

∥∥ ≤ (
∥∥Φ⊤Φ(0)

∥∥+ 4t) exp(2ρt).
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Lemma 12. For W ∈ Symh, for any t, tr(W⊤W(t)) ≤ (tr(W⊤W(0)) + 4t) exp(2ρt).

Proof of Lemma 12. By the fundamental theorem of calculus, we obtain the following decomposition:

tr(W⊤W(t)) ≤ tr(W⊤W(0)) + 2

∫ t

0

tr(W⊤Ẇ(τ))dτ.

By using the dynamics in Lemma 1, we further obtain the bound of tr(W⊤Ẇ):

tr(W⊤Ẇ) = tr
(
E[z′ω⊤ − (ω⊤z′)ωω⊤]− ρWW⊤)

≤ E tr(z′ω⊤) + E tr(ωω⊤) + ρ tr(WW⊤)

≤ 2 + ρ tr(W⊤W),

where the trace evaluation of rank-1 matrices and the symmetry of W are used. Hence, we obtain the
following integral inequality:

tr(W⊤W(t)) ≤ tr(W⊤W(0)) + 4t+ 2ρ

∫ t

0

tr(W⊤W(τ))dτ,

which is the same form as the integral inequality in Eq. (13), and can be solved in the same way.

Lemma 13. For any t,
∥∥Φ⊤Φ(t)x0

∥∥2
2
≤ (
∥∥Φ⊤Φ(0)x0

∥∥2
2
+ 4 ∥x0∥22 t) exp(2ρt).

Proof of Lemma 13. First, we obtain∥∥Φ⊤Φ(t)x0

∥∥2
2
≤
∥∥Φ⊤Φ(0)x0

∥∥2
2
+

∫ t

0

∥∥∥Φ̇⊤Φ(τ)x0

∥∥∥2
2
dτ +

∫ t

0

∥∥∥Φ⊤Φ̇(τ)x0

∥∥∥2
2
dτ,

which is obtained in the same manner as Eq. (10) (in the proof of Lemma 10). We substitute the

dynamics (Lemma 1), or Eq. (11) in the proof of Lemma 10, and simplify
∥∥∥Φ̇⊤Φ(τ)x0

∥∥∥2
2

as follows:∥∥∥Φ̇⊤Φx0

∥∥∥2
2
=
∥∥Φ†W† E[z′ω⊤ − (ω⊤z′)ωω⊤]WΦx0 − ρΦ⊤Φx0

∥∥2
2

≤ E
∥∥Φ†W†(z′ω⊤)WΦx0

∥∥2
2
+ E

∥∥Φ†W†(ωω⊤)WΦx0

∥∥2
2
+ ρ

∥∥Φ⊤Φx0

∥∥2
2
,

where
∣∣ω⊤z′

∣∣ ≤ 1 is used. The first term is bounded as follows:∥∥Φ†W†(z′ω⊤)WΦx0

∥∥2
2
= tr

(
Φ†W†(z′ω⊤)WΦx0x

⊤
0 Φ

⊤W⊤(ω(z′)⊤)(W†)⊤(Φ†)⊤
)

(*)
= tr

(
(z′ω⊤)WΦx0x

⊤
0 Φ

⊤W⊤(ω(z′)⊤)(W†)⊤(Φ†)⊤Φ†W†)
(♮)

≤
∣∣tr (WΦx0x

⊤
0 Φ

⊤W⊤(ω(z′)⊤)(W†)⊤(Φ†)⊤Φ†W†)∣∣
(*)
=
∣∣tr ((ω(z′)⊤)(W†)⊤(Φ†)⊤Φ†W†WΦx0x

⊤
0 Φ

⊤W⊤)∣∣
(♮)

≤
∣∣tr ((W†)⊤(Φ†)⊤Φ†W†WΦx0x

⊤
0 Φ

⊤W⊤)∣∣
(*)
=
∣∣tr (Φ†W†WΦx0x

⊤
0

)∣∣
≤
∣∣tr (Φ†W†WΦ

)
· tr
(
x0x

⊤
0

)∣∣
(*)
=
∣∣tr (x0x

⊤
0

)∣∣
= ∥x0∥22 ,

where we use the trace cyclic property at (*), and the Cauchy-Schwartz inequality and the trace
property

∣∣tr(zω⊤)
∣∣ = ∣∣ω⊤z

∣∣ ≤ 1 for z,ω ∈ Sh−1 at (♮). Similarly,
∥∥Φ†W†(ωω⊤)WΦx0

∥∥2
2
≤

∥x0∥22. Thus, we have
∥∥∥Φ̇⊤Φx0

∥∥∥2
2
≤ 2 ∥x0∥22 + ρ

∥∥Φ⊤Φx0

∥∥2
2
. By doing the same algebra again,

we have
∥∥∥Φ⊤Φ̇x0

∥∥∥2
2
≤ 2 ∥x0∥22 + ρ

∥∥Φ⊤Φx0

∥∥2
2

as well. By combining them,

∥∥Φ⊤Φ(t)x0

∥∥2
2
≤
∥∥Φ⊤Φ(0)x0

∥∥2
2
+ 4 ∥x0∥22 t+ 2ρ

∫ t

0

∥∥Φ⊤Φ(τ)x0

∥∥2
2
dτ
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holds, to which the Grönwall–Bellman inequality (Theorem 1) can be used, and we deduce∥∥Φ⊤Φ(t)x0

∥∥2
2
≤ (
∥∥Φ⊤Φ(0)x0

∥∥2
2
+ 4 ∥x0∥22 t) exp(2ρt).

Lemma 14. For W ∈ Symh, for any t, the following bound holds:∥∥Φ⊤W⊤WΦ(t)
∥∥
F
≤
{∥∥Φ⊤W⊤WΦ(0)

∥∥
F
+

16ρte2ρt + (2ρI0 − 8)(e2ρt − 1)

ρ2

}
e4ρt,

where I0 := tr(W⊤W(0)) +
∥∥Φ⊤Φ(0)

∥∥
F

.

Proof of Lemma 14. By using the fundamental theorem of calculus and the triangular inequality, the
Frobenius norm

∥∥Φ⊤W⊤WΦ(t)
∥∥
F

is bounded:∥∥Φ⊤W⊤WΦ(t)
∥∥
F

≤
∥∥Φ⊤W⊤WΦ(0)

∥∥
F
+ 2

∫ t

0

∥∥∥∥∥d(WΦ)(τ)

dτ

⊤
(WΦ)(τ)

∥∥∥∥∥
F

dτ

≤
∥∥Φ⊤W⊤WΦ(0)

∥∥
F
+ 2

∫ t

0

∥∥∥Φ̇⊤W⊤WΦ(τ)
∥∥∥
F
dτ︸ ︷︷ ︸

(A)

+2

∫ t

0

∥∥∥Φ⊤Ẇ⊤WΦ(τ)
∥∥∥
F
dτ︸ ︷︷ ︸

(B)

.

(14)

To bound (A) in Eq. (14), we proceed by plugging the dynamics (Lemma 1) in as follows:∥∥∥Φ̇⊤W⊤WΦ
∥∥∥
F
=
∥∥(Φ†W† E[ω(z′)⊤ − (ω⊤z′)ωω⊤]W − ρΦ⊤)W⊤WΦ

∥∥
F

≤ E
∥∥Φ†W†(ω(z′)⊤)WW⊤WΦ

∥∥
F︸ ︷︷ ︸

(♣)

+E
∥∥Φ†W†(ωω⊤)WW⊤WΦ

∥∥
F︸ ︷︷ ︸

(♢)

+ ρ
∥∥Φ⊤W⊤WΦ

∥∥
F
.

(15)
We bound the squared (♣) in Eq. (15) as follows:∥∥Φ†W†(ω(z′)⊤)WW⊤WΦ

∥∥2
F

= tr
(
Φ⊤W⊤WW⊤(z′ω⊤)(W†)⊤(Φ†)⊤ ·Φ†W†(ω(z′)⊤)WW⊤WΦ

)
(*♮)
≤
∣∣tr ((W†)⊤(Φ†)⊤Φ†W†(ω(z′)⊤)WW⊤WΦ ·Φ⊤W⊤WW⊤)∣∣

(*)
=
∣∣tr ((Φ†)⊤Φ†W†(ω(z′)⊤)WW⊤WΦΦ⊤W⊤W

)∣∣
(*♮)
≤
∣∣tr (WW⊤WΦΦ⊤W⊤W · (Φ†)⊤Φ†W†)∣∣

(*)
=
∣∣tr (Φ†W⊤WΦ ·Φ⊤W⊤W(Φ†)⊤

)∣∣
≤
∣∣tr(Φ†W⊤WΦ) · tr(Φ⊤W⊤W(Φ†)⊤)

∣∣
(*)
= tr(W⊤W)2,

where we use the trace cyclic property at (*), and use the trace cyclic property, the Cauchy-Schwartz
inequality, and the trace evaluation of rank-1 matrices at (*♮), as we do in the proof of Lemma 13.
By using the same techniques, the squared (♢) in Eq. (15) can be bounded by tr(W⊤W) as well.
Hence, we obtain the bound of Eq. (15) as

∥∥∥Φ̇⊤W⊤WΦ
∥∥∥
F
≤ 2 tr(W⊤W) + ρ

∥∥Φ⊤W⊤WΦ
∥∥
F

.
To bound (B) in Eq. (14), the dynamics (Lemma 1) is plugged in again:∥∥∥Φ⊤Ẇ⊤WΦ

∥∥∥
F
=
∥∥Φ⊤ E[ω(z′)⊤ − (ω⊤z′)ωω⊤]Φ− ρΦ⊤WW⊤Φ⊤∥∥

≤ E
∥∥Φ⊤(ω(z′)⊤)Φ

∥∥
F︸ ︷︷ ︸

(♡)

+E
∥∥Φ⊤(ωω⊤)Φ

∥∥
F︸ ︷︷ ︸

(♠)

+ρ
∥∥Φ⊤WW⊤Φ

∥∥
F
, (16)
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where the squared (♡) is bounded as follows:∥∥Φ⊤(ω(z′)⊤)Φ
∥∥2
F
= tr

(
Φ⊤(z′ω⊤)Φ ·Φ⊤(ω(z′)⊤)Φ

)
(∗♮)
≤
∣∣tr (ΦΦ⊤(ω(z′)⊤)ΦΦ⊤)∣∣

(∗♮)
≤
∣∣tr (ΦΦ⊤ΦΦ⊤)∣∣

=
∥∥ΦΦ⊤∥∥2

F

=
∥∥Φ⊤Φ

∥∥2
F
.

The squared (♠) is bounded by
∥∥Φ⊤Φ

∥∥
F

as well. Hence, we obtain the bound of Eq. (16) as∥∥∥Φ⊤Ẇ⊤WΦ
∥∥∥
F
≤ 2

∥∥Φ⊤Φ
∥∥
F
+ ρ

∥∥Φ⊤WW⊤Φ
∥∥
F

. Eventually, we obtain the following bound
from Eq. (14) (which requires the symmetry of W):∥∥Φ⊤W⊤WΦ(t)

∥∥
F
≤
∥∥Φ⊤W⊤WΦ(0)

∥∥
F
+ 4

∫ t

0

tr(W⊤W(τ))dτ

+ 4

∫ t

0

∥∥Φ⊤Φ(τ)
∥∥
F
dτ + 4

∫ t

0

ρ
∥∥Φ⊤W⊤WΦ(τ)

∥∥
F
dτ

≤
∥∥Φ⊤W⊤WΦ(0)

∥∥
F
+ 4

∫ t

0

ρ
∥∥Φ⊤W⊤WΦ(τ)

∥∥
F
dτ

+ 4

∫ t

0

{I0 exp(2ρτ) + 8τ exp(2ρτ)}dτ

≤
∥∥Φ⊤W⊤WΦ(0)

∥∥
F
+ 4

∫ t

0

ρ
∥∥Φ⊤W⊤WΦ(τ)

∥∥
F
dτ

+
16ρte2ρt + (2ρI0 − 8)(e2ρt − 1)

ρ2
,

where Lemmas 10 and 12 are used at the second inequality and integration by parts is used in the third
inequality. This integral inequality can be solved by the Grönwall–Bellman inequality (Theorem 1),
and we can obtain the conclusion.

Lemma 15. For W ∈ Symh, for any t, the following bound holds:

∥WΦ(t)∥ ≤

√{
∥Φ⊤W⊤WΦ(0)∥+ 16ρte2ρt + (2ρI0 − 8)(e2ρt − 1)

ρ2

}
e4ρt,

where I0 is defined in Lemma 14.

Proof of Lemma 15. We evaluate
∥∥Φ⊤W⊤WΦ(t)

∥∥ = ∥WΦ(t)∥2. By the fundamental theorem
of calculus, we obtain the following decomposition:∥∥Φ⊤W⊤WΦ(t)

∥∥ ≤
∥∥Φ⊤W⊤WΦ(0)

∥∥+ 2

∫ t

0

∥∥∥∥∥
(
dWΦ

dτ

)⊤

WΦ(τ)

∥∥∥∥∥ dτ.
By following the same derivation as the proof of Lemma 14, it is not difficult to see the following
upper bound:∥∥∥∥∥

(
dWΦ

dτ

)⊤

WΦ

∥∥∥∥∥ ≤ 2 tr(W⊤W) + 2
∥∥Φ⊤Φ

∥∥
F
+ 2ρ

∥∥Φ⊤W⊤WΦ
∥∥ .

By plugging the results of Lemmas 10 and 12 into tr(W⊤W(τ)) and
∥∥Φ⊤Φ(τ)

∥∥
F

, we obtain the
integral inequality:∥∥Φ⊤W⊤WΦ(t)

∥∥ ≤
∥∥Φ⊤W⊤WΦ(0)

∥∥+ 4ρ

∫ t

0

∥∥Φ⊤W⊤WΦ(τ)
∥∥dτ

+
16ρte2ρt + (2ρI0 − 8)(e2ρt − 1)

ρ2
.

This can be solved via Theorem 1.
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Lemma 16. For W ∈ Symh, for any t, the following bound holds:∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2

≤
{∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2
+ Ξ1 ∥x0∥22 + Ξ2

∥∥Φ⊤Φ(0)x0

∥∥2
2

}
exp(2ρt),

where

Ξ1 := T 2
0

e4ρt − 1

ρ
+2T0

e4ρt(4ρt− 1) + 1

ρ2
+2

e4ρt(8ρ2t2 − 4ρt+ 1)− 1

ρ3
+4

e2ρt(2ρt− 1) + 1

ρ2
,

Ξ2 := 2
e2ρt − 1

ρ
,

and T0 := tr(W⊤W(0)).

Proof of Lemma 16. By using the fundamental theorem of calculus,
∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2

is
bounded as follows:∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2

≤
∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2
+ 2

∫ t

0

∥∥∥∥∥
(
dWΦ

dτ

)⊤

WΦ(τ)x0

∥∥∥∥∥
2

2

dτ

≤
∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2

+ 2

∫ t

0

∥∥∥Φ̇⊤W⊤WΦ(τ)x0

∥∥∥2
2
dτ︸ ︷︷ ︸

(A)

+2

∫ t

0

∥∥∥Φ⊤Ẇ⊤WΦ(τ)x0

∥∥∥2
2
dτ︸ ︷︷ ︸

(B)

.

(17)

To bound (A) in Eq. (17), we follow almost the same calculation as Eq. (15) in the proof of Lemma 13

(therefore omitted) and obtain
∥∥∥Φ̇⊤W⊤WΦx0

∥∥∥2
2
≤ tr(W⊤W)2 ∥x0∥22. To bound (B) in Eq. (17),

we follow almost the same calculation as Eq. (16) in the proof of Lemma 13 (therefore omitted) and

obtain
∥∥∥Φ⊤Ẇ⊤WΦx0

∥∥∥2
2
≤ 2

∥∥Φ⊤Φx0

∥∥2
2
+ ρ

∥∥Φ⊤W⊤WΦx0

∥∥2
2
. Here, the symmetry of W is

used. By substituting them back into (A) and (B) in Eq. (17), we obtain the following bound:∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2
≤
∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2
+ 2ρ

∫ t

0

∥∥Φ⊤W⊤WΦ(τ)x0

∥∥2
2
dτ

+ 4 ∥x0∥22
∫ t

0

tr(W⊤W(τ))2dτ︸ ︷︷ ︸
(♣)

+4

∫ t

0

∥∥Φ⊤Φ(τ)x0

∥∥2
2
dτ︸ ︷︷ ︸

(♢)

.

The term (♣) can be evaluated by Lemma 12 and integration by parts as follows:

(♣) ≤
∫ t

0

(T0 + 4τ)2 exp(4ρτ)dτ

=

∫ t

0

(T 2
0 + 8T0τ + 16τ2) exp(4ρτ)dτ

= T 2
0

e4ρt − 1

4ρ
+ T0

e4ρt(4ρt− 1) + 1

2ρ2
+
e4ρt(8ρ2t2 − 4ρt+ 1)− 1

2ρ3
,

The term (♢) can be evaluated by Lemma 13 and integration by parts as follows:

(♢) ≤
∫ t

0

{∥∥Φ⊤Φ(0)x0

∥∥2
2
+ 4 ∥x0∥22 τ

}
e2ρτdτ

=
∥∥Φ⊤Φ(0)x0

∥∥2
2

e2ρt − 1

2ρ
+ ∥x0∥22

e2ρt(2ρt− 1) + 1

ρ2
.
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Hence, we obtain the following integral inequality:∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2
≤
∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2
+ Ξ1 ∥x0∥22 + Ξ2

∥∥Φ⊤Φ(0)x0

∥∥2
2

+ 2ρ

∫ t

0

∥∥Φ⊤W⊤WΦ(τ)x0

∥∥2
2
dτ,

which can be solved by the Grönwall–Bellman inequality (Theorem 1). As a result, the desired bound
on
∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2

can be obtained.

B MISSING PROOFS

Lemma 1. Parameter matrices W and Φ evolve as follows:

W⊤Ẇ = H− ρWW⊤,

Φ̇Φ⊤W⊤ = W⊤H− ρΦΦ⊤W⊤,
(4)

where H := E[z′ω⊤ − (ω⊤z′)ωω⊤], z := Φx′/ ∥Φx′∥2, and ω := WΦx/ ∥WΦx∥2. The
expectation in H is taken over x0,x, and x′.

Proof of Lemma 1. To derive the W-dynamics, we begin with calculating the gradient ∇WLcos.

−∇WLcos = E

[
1

∥Φx′∥2
∥WΦx∥2 ∇W(x⊤Φ⊤W⊤Φx′)− x⊤Φ⊤W⊤Φx′∇W ∥WΦx∥2

∥WΦx∥22

]

= E
[
∇W(x⊤Φ⊤W⊤z′)− ω⊤z′∇W ∥WΦx∥2

∥WΦx∥2

]

= E

z′x⊤Φ⊤ − (ω⊤z′)WΦxx⊤Φ⊤

∥WΦx∥2

∥WΦx∥2


= E

[
z′

x⊤Φ⊤

∥WΦx∥2
− (ω⊤z′)ω

x⊤Φ⊤

∥WΦx∥2

]
.

Here, W follows the dynamics Ẇ = −∇WLcos − ρW, and hence we obtain ẆW⊤ = E[z′ω⊤ −
(ω⊤z′)ωω⊤]− ρWW⊤.

To derive the Φ-dynamics, we calculate the gradient ∇ΦLcos.
−∇ΦLcos

= E

[
1

∥Φx′∥2
∥WΦx∥2 ∇Φ(x

⊤Φ⊤W⊤StopGrad(Φ)x′)− x⊤Φ⊤W⊤Φx′∇Φ ∥WΦx∥2
∥WΦx∥22

]

= E

 1

∥Φx′∥2

∥WΦx∥2 W⊤Φx′x⊤ − x⊤Φ⊤W⊤Φx′W⊤WΦxx⊤

∥WΦx∥2

∥WΦx∥22


= W⊤ E

[
z′x⊤ − (ω⊤z′)ωx⊤

∥WΦx∥2

]
,

from which (−∇ΦLcos)Φ
⊤W⊤ = W⊤ E[z′ω⊤ − (ω⊤z′)ωω⊤] follows. Thus, the dynamics Φ̇ =

−∇ΦLcos − ρΦ can be written as Φ̇Φ⊤W⊤ = W⊤ E[z′ω⊤ − (ω⊤z′)ωω⊤]− ρΦΦ⊤W⊤.

Lemma 2. Under Assumptions 1 to 4, for a fixed x0, the norms of Φx and WΦx (as well as Φx′

and WΦx′) are concentrated:∥∥∥ 1√
hσ2

Φx
∥∥∥2
2
=
∥∥∥ 1√

h
Φ
∥∥∥2
F
+
∥∥∥ 1√

hσ2
Φx0

∥∥∥2
2
+ oP(1),∥∥∥ 1√

h2σ2
WΦx

∥∥∥2
2
=
∥∥∥ 1√

h2
WΦ

∥∥∥2
F
+
∥∥∥ 1√

h2σ2
WΦx0

∥∥∥2
2
+ oP(1).

Proof of Lemma 2. We will show concentration of
∥∥∥ 1√

hσ2
Φx
∥∥∥2
2

and
∥∥∥ 1√

h2σ2
WΦx

∥∥∥2
2
.
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Concentration of ∥Φx∥22 : We begin with showing the first concentration.∥∥∥∥ 1√
hσ2

Φx

∥∥∥∥2
2

=

∥∥∥∥ 1√
h

(
Φ
x− x0

σ
+Φ

x0

σ

)∥∥∥∥2
2

=

∥∥∥∥ 1√
h
Φ
x− x0

σ

∥∥∥∥2
2︸ ︷︷ ︸

(A)

+2σ−1

〈
1√
h
Φ
x− x0

σ
,

1√
h
Φx0

〉
︸ ︷︷ ︸

(B)

+

∥∥∥∥ 1√
h
Φ
x0

σ

∥∥∥∥2
2

.
(18)

To deal with (A), which is a Gaussian chaos (namely, a quadratic form with standard normal vectors),
we invoke the Hanson–Wright inequality [Ver18, Theorem 6.3.2]. Note that x−x0

σ follows the
standard normal distribution. Then, the following inequality holds with probability at least 1 − δ
(over the sampling of x):∣∣∣∣∥∥∥∥ 1√

h
Φ
x− x0

σ

∥∥∥∥
2

−
∥∥∥∥ 1√

h
Φ

∥∥∥∥
F

∣∣∣∣ ≤
√
C0 ∥Φ∥2 log 2

δ

h
, (19)

where the expectation is taken over x ∼ N (x0, σ
2Id), and C0 is an absolute constant irrelevant

to d and h. Now, we evaluate the deviation term and show it vanishes as d, h → ∞. Since
the deviation term contains ∥Φ∥2 and it depends on the time t, we need to carefully evaluate
its order in d and h along with time evolution. For this purpose, Lemma 11 is used to obtain
∥Φ(t)∥2 ≤ (

∥∥Φ⊤Φ(0)
∥∥ + 4t) exp(2ρt). Lastly, the Gaussian initialization of Φ (Assumption 4)

induces 1
h

∥∥Φ⊤Φ(0)
∥∥ = oP(1) (by Lemma 7). Thus, the deviation term of Eq. (19) is bounded from

above as follows: √
C0(∥Φ⊤Φ(0)∥+ 4t) exp(2ρt) log 2

δ

h
= oP(1),

from which we conclude as follows:∥∥∥∥ 1√
h
Φ
x− x0

σ

∥∥∥∥2
2

=

∥∥∥∥ 1√
h
Φ

∥∥∥∥2
F

+ oP(1).

Next, we deal with (B) in Eq. (18). The term (B) is equivalent to
〈
1
hΦ

⊤Φx0,
x−x0

σ

〉
, which is a

linear combination of the standard normal random variables. Its concentration (to mean 0) can be
established by the general Hoeffding’s inequality [Ver18, Theorem 2.6.3] as follows: With probability
at least 1− δ (over the sampling of x),

(B) =
∣∣∣∣〈 1

h
Φ⊤Φx0,

x− x0

σ

〉∣∣∣∣ ≤
√
C1 ∥Φ⊤Φx0∥22 log

2
δ

h2
, (20)

where C1 is an absolute constant irrelevant to d and h. We need to evaluate
∥∥Φ⊤Φ(t)x0

∥∥2
2

by

noting its time dependency again. For this purpose, Lemma 13 is used to obtain
∥∥Φ⊤Φ(t)x0

∥∥2
2
≤

(
∥∥Φ⊤Φ(0)x0

∥∥2
2
+ 4 ∥x0∥22 t) exp(2ρt). Here, 1

h2

∥∥Φ⊤Φ(0)x0

∥∥2
2
= oP(1) (Lemma 9) holds. In

addition, x0 ∼ N (0, I) (Assumption 2) indicates that ∥x0∥22 is the sum of independent zero-mean
sub-exponential random variables, from which Bernstein’s inequality claim ∥x0∥22 = OP(d) [Ver18,
Corollary 2.8.3]. Plugging them into the upper bound of

∥∥Φ⊤Φ(t)x0

∥∥2
2
, we deduce

(B) ≤

√√√√C1 log
2

δ

(
∥Φ⊤Φ(0)x0∥22

h2
+ 4t

∥x0∥22
h2

)
e2ρt =

√
oP(1) +OP(αh−1) = oP(1).

Eventually, the concentration of (A) and (B) is established and the conclusion follows from Eq. (18).

Concentration of ∥WΦx∥22 : In the same manner as Eq. (18), we have the following decomposi-
tion:∥∥∥∥ 1√

h2σ2
WΦx

∥∥∥∥2
2

=

∥∥∥∥ 1hWΦ
x− x0

σ

∥∥∥∥2
2

+
2

σ

〈
1

h
WΦ

x− x0

σ
,
1

h
WΦx0

〉
+

∥∥∥∥ 1hWΦ
x0

σ

∥∥∥∥2
2

. (21)
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The subsequent analysis follows in a very similar way to the analysis of
∥∥∥ 1√

hσ2
Φx
∥∥∥2
2
. Indeed, we

can obtain the following inequalities (each of them with probability at least 1− δ, respectively):∣∣∣∣∥∥∥∥ 1hWΦ
x− x0

σ

∥∥∥∥
2

−
∥∥∥∥ 1hWΦ

∥∥∥∥
F

∣∣∣∣ ≤
√
C2 ∥WΦ∥2 log 2

δ

h2
, (22)

∣∣∣∣〈 1

h
WΦ

x− x0

σ
,
1

h
WΦx0

〉∣∣∣∣ ≤
√
C3 ∥Φ⊤W⊤WΦx0∥22 log

2
δ

h4
, (23)

where C2 and C3 are absolute constants (see Eqs. (19) and (20)).

To deal with Eq. (22), we control the spectral norm ∥WΦ(t)∥ along time evolution by using
Lemma 15, and obtain the following bound:

∥WΦ(t)∥2 ≤
{∥∥Φ⊤W⊤WΦ(0)

∥∥+ 16ρte2ρt + (2ρI0 − 8)(e2ρt − 1)

ρ2

}
e4ρt,

where I0 := tr(W⊤W(0)) +
∥∥Φ⊤Φ(0)

∥∥
F

. By plugging this bound back into Eq. (22) and using
Lemmas 7 and 8, we obtain ∥∥∥∥ 1hWΦ

x− x0

σ

∥∥∥∥2
2

=

∥∥∥∥ 1hWΦ

∥∥∥∥2
F

+ oP(1).

Next, we deal with Eq. (23) by controlling the L2 norm
∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2

along time evolution.
By using Lemma 16, we obtain the following bound:∥∥Φ⊤W⊤WΦ(t)x0

∥∥2
2

≤
{∥∥Φ⊤W⊤WΦ(0)x0

∥∥2
2
+O(

∥∥Φ⊤Φ(0)x0

∥∥2
2
) + ∥x0∥22 O(tr(W⊤W(0))2)

}
e2ρt,

where the order term O(tr(W⊤W(0))2) hides the dependency on t. We now combine Lemmas 8
and 9 and the consequence of Bernstein’s inequality ∥x0∥22 = OP(d) and substitute them into Eq. (23).
Then, we obtain∣∣∣∣〈 1

h
WΦ

x− x0

σ
,
1

h
WΦx0

〉∣∣∣∣
≤

√√√√C ′
3

{
∥Φ⊤W⊤WΦ(0)x0∥22

h4
+

O(∥Φ⊤Φ(0)x0∥22)
h4

+
∥x0∥22 O(tr(W⊤W(0))2)

h4

}
=
√
oP(1) + oP(1) · h−2 +OP(d) · oP(1) · h−2

= oP(1),

where C ′
3 := C3e

2ρt log 2
δ .

Hence, the concentration result for
∥∥∥ 1√

h2σ2
WΦx

∥∥∥2
2

is established by substituting Eqs. (22) and (23)
back into Eq. (21).

Lemma 3. Under Assumptions 1 to 4, the following concentrations are established:∥∥∥ 1√
hσ2

Φx0

∥∥∥
2
=
∥∥∥ 1√

hσ2
Φ
∥∥∥
F
+ oP(1),

∥∥∥ 1√
h2σ2

WΦx0

∥∥∥
2
=
∥∥∥ 1√

h2σ2
WΦx0

∥∥∥
F
+ oP(1).

Proof of Lemma 3. To establish concentration of ∥Φx0∥2, we invoke the Hanson–Wright inequality
[Ver18, Theorem 6.3.2]: For an absolute constant C0,∣∣∣∣∥∥∥∥ 1√

hσ2
Φx0

∥∥∥∥
2

−
∥∥∥∥ 1√

hσ2
Φ

∥∥∥∥
F

∣∣∣∣ ≤
√
C0 ∥Φ∥2 log 2

δ

hσ2
,
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with probability at least 1 − δ. Here, we further derive the upper bound of the right-hand side by
Lemma 11:

∥Φ(t)∥2

h
≤

(
∥∥Φ⊤Φ(0)

∥∥+ 4t) exp(2ρt)

h
= oP(1),

where the last identity follows from Lemma 7. Thus, the concentration of ∥Φx0∥2 is shown.

To establish concentration of ∥WΦx0∥, we invoke the Hanson–Wright inequality again: For an
absolute constant C1,∣∣∣∣∥∥∥∥ 1√

h2σ2
WΦx0

∥∥∥∥− ∥∥∥∥ 1√
h2σ2

WΦ

∥∥∥∥
F

∣∣∣∣ ≤
√
C1 ∥WΦ∥2 log 2

δ

h2σ2
,

with probability at least 1− δ. We can show 1
h2 ∥WΦ(t)∥2 = oP(1) in the same way as in the proof

of Lemma 2.

Lemma 4. Let Ψ := WΦ. Assume that ∥Φ∥F and ∥Ψ∥F are bounded away from zero. Under
Assumptions 1 to 4, H can be expressed as follows:

H =
1

1 + σ2

{
Φ̃Ψ̃⊤ − 2Ψ̃Φ̃⊤Ψ̃Ψ̃⊤ − tr(Φ̃⊤Ψ̃)Ψ̃Ψ̃⊤

}
+ oP(1),

where Φ̃ := Φ/ ∥Φ∥F and Ψ̃ := Ψ/ ∥Ψ∥F.

Proof of Lemma 4. To evaluate H = E[z′ω⊤ − (ω⊤z′)ωω⊤] := H1 −H2, where H1 := E[z′ω⊤]

and H2 = E[(ω⊤z′)ωω⊤], we evaluate the normalizers ∥Φx′∥−1
2 and ∥WΦx∥−1

2 first. By Lem-
mas 2 and 3,

1

∥Φx′∥2
=

1√
hσ2

·

{∥∥∥∥ 1√
h
Φ

∥∥∥∥2
F

+

∥∥∥∥ 1√
hσ2

Φ

∥∥∥∥2
F

+ oP(1)

}−1/2

=
1√
hσ2

· 1
√
1 + σ−2

∥∥∥ 1√
h
Φ
∥∥∥
F
+ oP(1)

(♣)
=

1√
hσ2

·

 1
√
1 + σ−2

∥∥∥ 1√
h
Φ
∥∥∥
F

+ oP(1)


=

1√
1 + σ2

· 1

∥Φ∥F
+ oP(1),

where (♣) is due to the first-order Taylor expansion f(ε) = 1
x+ε ≈ 1

x − ε
x2 around ε = 0. Similarly,

we have
1

∥WΦx∥2
=

1

∥Ψx∥2
=

1√
1 + σ2

· 1

∥Ψ∥F
+ oP(1).

Next, we evaluate H1.

H1 = E
x0

E
x,x′

[
Φx′

∥Φx′∥2

(
Ψx

∥Ψx∥2

)⊤
]

= E
x0

[
1

(1 + σ2) ∥Φ∥F ∥Ψ∥F
E

x,x′
[Φx′x⊤Ψ⊤]

]
+ oP(1)

=
1

1 + σ2

Φ

∥Φ∥F
Ψ⊤

∥Ψ∥F
+ oP(1),

where we used Ex0
Ex,x′ [x′x⊤] = Ex0

[x0x
⊤
0 ] = Id at the last identity. We can evaluate H2

similarly.

H2 = E
x0

E
x,x′

[
(x⊤Ψ⊤Φx′)Ψxx⊤Ψ⊤

∥Φx′∥2 ∥Ψx∥32

]

= E
x0

[
1

(1 + σ2)2 ∥Φ∥F ∥Ψ∥3F
Ψ E

x,x′
[(x⊤Ψ⊤Φx′)xx⊤]Ψ⊤

]
+ oP(1),
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where the inner expectation E[(x⊤Ψ⊤Φx′)xx⊤] requires the moment evaluations of Gaussian:

E
x0

E
x,x′

[(x⊤Ψ⊤Φx′)xx⊤] = E
x|x0

[xx⊤Ax0x
⊤] ◁A := Ψ⊤Φ

= σ2 E[Ax0x
⊤
0 ] + σ2 E[x0x

⊤
0 A]

+ E[x0x
⊤
0 Ax0x

⊤
0 ] + σ2 E[x⊤Ax0]Id ◁ [PP12, §8.2.3]

= 2σ2A+ E[x0x
⊤
0 Ax0x

⊤
0 ] + σ2 tr(A)Id ◁ [PP12, §8.2.2]

= 2σ2A+ {2A+ tr(A)Id}+ σ2 tr(A)Id ◁ [PP12, §8.2.4]

= (1 + σ2){2Ψ⊤Φ+ tr(Ψ⊤Φ)Id}.
Note that Ψ⊤Φ = A = A⊤ = Φ⊤Ψ under Assumption 1. By plugging this back,

H2 =
1

1 + σ2

{
2Ψ̃Φ̃⊤Ψ̃Ψ̃⊤ + tr(Ψ̃⊤Φ̃)Ψ̃Ψ̃⊤

}
+ oP(1).

The desired expression of H = H1 −H2 is thereby obtained.

Proposition 1. Suppose W is non-singular. Under the dynamics (4) with H = Ĥ, the commutator
L(t) := [F,W] := FW −WF satisfies dvec(L(t))

dt = −K(t)vec(L(t)), where

K(t) := 2
W ⊕WFW +W2(FW ⊕ Id)

(1 + σ2)NΦN3
Ψ

+
(W−1)⊕ F− (W −N×W

2)⊕ Id
(1 + σ2)NΦNΨ

+ 3ρId,

and A⊕B := A⊗B+B⊗A denotes the sum of the two Kronecker products.

If inft≥0 λmin(K(t)) ≥ λ0 > 0 for some λ0 > 0, then ∥L(t)∥F → 0 as t→ ∞.

In the proof, we leverage the elementary properties of commutators.
Lemma 17. For matrices A, B, and C with the same size, we have the following identities.

1. [A,A] = O.

2. [A,B] = −[B,A].

3. [A,BC] = [A,B]C+B[A,C].

4. [AB,C] = A[B,C] + [A,C]B.

Proof of Proposition 1. First, compute the time derivative L̇ = FẆ − ẆF+ ḞW −WḞ:

FẆ − ẆF = FH⊤W−1 −W−1HF− ρL,

ḞW −WḞ = WH−H⊤W +W−1H⊤W2 −W2HW−1 − 2ρL,

which implies

L̇ = (FH⊤W−1 −W−1HF) + (WH−H⊤W) + (W−1H⊤W2 −W2HW−1)− 3ρL. (24)

We substitute H = Ĥ. Then,

WH−H⊤W = −2
W2FWFW −WFWFW2

(1 + σ2)NΦN3
Ψ

−N×
W2FW −WFW2

(1 + σ2)NΦNΨ
,

which can be simplified by Lemma 17 as follows:{
W2FWFW −WFWFW2 = [W,WFWF]W = −(LWF+ FWL)W,

W2FW −WFW2 = [W,WFW] = −WLW.

With the same technique, Eq. (24) can be simplified as follows:

L̇ =
(LW +WL)− (FLW−1 +W−1LF)

(1 + σ2)NΦNΨ

− 2
(WFWLW +WLWFW) +W2(FWL+ LWF)

(1 + σ2)NΦN3
Ψ

−N×
LW2 +W2L

(1 + σ2)NΦNΨ
− 3ρL.
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Figure 7: Plots of g(x) = −Ax6 + x2 (blue) and h(x) = −Bx (red). (Left) (A,B) = (1.5, 0.6) (Center)
(A,B) = (1.5, 0.4) (Right) (A,B) = (1.5, 0)

By using vec(ALB+BLA) = (B⊗A+A⊗B)vec(L) = (A⊕B)vec(L) for A,B ∈ Symd,
we obtain dvec(L)

dt = −Kvec(L).

Finally, by applying [TCG21, Lemma 2], the dynamics of L(t) satisfies ∥vec(L(t))∥2 ≤
e−2λ0t ∥vec(L(0))∥2 → 0 under the assumption inft≥0 λmin((K(t))) ≥ λ0 > 0.

Proposition 2. Suppose W is non-singular. Under the dynamics (4) with H = Ĥ, we have U̇ = O.

Proof of Proposition 2. The proof mostly follows the discussion of [TCG21, Appendix B.1]. To
apply their discussion, all we need to check is the existence of diagonal matrices G1 and G2 such
that Ẇ = UG1U

⊤ and Ḟ = UG2U
⊤ under the dynamics Eq. (4) with H = Ĥ.

For Ẇ, invertibility of W implies Ẇ = W−1Ĥ − ρW from the dynamics Eq. (4). With simul-
taneous diagonalization W = UΛWU⊤ and F = UΛFU

⊤, we have W−1 = UΛ−1
W U⊤ and

Ĥ = UΛĤU⊤ for some diagonal matrix ΛĤ . Hence, Ẇ = UG1U
⊤ for some diagonal matrix

G1.

In the same manner, we can verify Ḟ = UG2U
⊤ for some diagonal matrix G2.

C ANALYSIS OF REGIME SHIFT

In Section 5.2, we claimed that the pj-dynamics (8) entails the three regimes, mainly based on
categorization of the numerical plots with different values of (NΦ, NΨ, ρ) in Fig. 2. Here, we show
that the equilibrium point sets with different parameter values can indeed be classified into the three
regimes.

First, we need slight approximation because the pj-dynamics (8) is sixth-order and extremely
challenging to deal with analytically in general. We choose to set N×(= tr(Φ̃⊤Ψ̃)) ≈ 0. This can
be confirmed in our simple numerical experiments in Fig. 6. Then, the pj-dynamics reads:

ṗj ≈
1

(1 + σ2)NΦNΨ

{
− 2

N2
Ψ

p6j + p2j − ρ(1 + σ2)NΦNΨpj

}
︸ ︷︷ ︸

=f(pj)

.

Let us write f(x) = −Ax6+x2−BxwithA := 2/N2
Ψ > 0 andB := ρ(1+σ2)NΦNΨ ≥ 0. Now, we

focus on finding the roots of f(x) = 0, which are the equilibrium points of the pj-dynamics. In Fig. 7,
we show the graphs of g(x) = −Ax6 +x2 and h(x) = −Bx with different B. When B = 0, we can
analytically find the roots of f(x) = g(x) = 0 by g(x) = −Ax2(x2+A−1/2)(x+A−1/4)(x−A−1/4)
and x = 0,±A−1/4. This corresponds to the Stable regime in Fig. 3. When B is larger than zero and
as h(x) = −Bx tilts towards negative slightly, we have four roots as seen in Fig. 7 (Center). This
corresponds to the Acute regime in Fig. 3. Finally, when B is significantly larger than zero, we have
only two roots as seen in Fig. 7 (Left), which corresponds to the Collapse regime in Fig. 3. These
three cases are interpolated smoothly as B ∝ ρNΦNΨ changes; to put it differently, as regularization
strength ρ and norms NΦ, NΨ decrease, the regime approaches the Stable. Note again that we will
never perfectly attain the Stable regime because the pj-dynamics diverges as NΦ, NΨ → 0.
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Figure 8: Time evolution of the eigenmodes. At each epoch, the projection head eigenmode pj for each
j ∈ {1, 2, . . . , 64} is plotted. The eigenmode values are uniformly averaged within [epoch− 50, epoch + 50]
to avoid visual clutter due to eigenmode fluctuation.
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Figure 9: The eigenmodes of the projection head pj are plotted, with background colors illustrating three
intervals where pj diverges , pj collapses , and pj stably converges at each epoch. Each color corresponds
to those in Fig. 3. The vertical black line indicates the shift from Collapse (epoch < 2200) to Acute (epoch >
2200). The eigenmode values are uniformly averaged within [epoch− 50, epoch + 50] to avoid visual clutter
due to eigenmode fluctuation. (Top left) j = 1 (the largest eigenmode); (Top center) j = 2 (the second
largest eigenmode); (Top center) j = 3 (the third largest eigenmode); (Bottom left) j = 4 (the fourth largest
eigenmode);

D ADDITIONAL NUMERICAL EXPERIMENTS

D.1 FULL DETAIL OF LINEAR ENCODER SETUP

We further analyze the numerical experiments in Section 5.4. In Section 5.4, we focused on illus-
tration of the leading eigenmode pj of the projection head, which is shown in Fig. 6. Here, we
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Figure 10: Time evolution of the eigenmodes (trained with the nonlinear encoder). At each epoch, the projection
head eigenmode pj for each j ∈ {1, 2, . . . , 2048} is plotted.

investigate the other eigenmodes. Throughout the analysis, we focus on the absolute value of the
eigenmode |pj | because the eigendecomposition is non-unique; indeed, due to the decomposition
W =

∑64
j=1 pjuju

⊤
j (uj is the eigenvector), the eigenmode signs are irrelevant to the norms of the

eigenvectors. Flipping the sign does not affect the orthonormality of the eigenvectors, keeping U to
be a orthogonal matrix. After taking the absolute values, all eigenmodes are sorted in the descending
order, where j = 1 and j = 64 correspond to the largest and smallest, respectively.

Figure 8 illustrates time evolution of the eigenmode values of the projection head. Initially (epoch =
10), the eigenmode distribution mildly concentrates around the origin, which can be seen in the
initialization of the eigenvalue distribution in Fig. 4 as well. As time evolves, the distribution quickly
concentrates at zero very sharply, whereas a few positive eigenmodes that are significantly larger than
zero remains.

Next, we investigate time evolution of each eigenmode individually. Figure 9 shows time evolution
of the largest (j = 1), second largest (j = 2), third largest (j = 3), and fourth largest (j = 4), using
the same illustration as Fig. 6. The top left figure (j = 1) is the same one as in Fig. 6. As can be seen
in this case, only p1, p2, and p3 remain positive and all the other eigenmodes (including 5 ≤ j ≤ 64
omitted from Fig. 9) converges to nearly zero. In our theoretical analysis, we argued that there are
only two stable equilibrium in the Acute regime (pj = 0 and pj = p

(+)
▼ in Fig. 3). Given this, the

convergences of p{1,2,3} to positive values (that even fall in the stable interval) and {pj}63j=3 to zero
are reasonable in terms of the dynamics. Moreover, this convergence avoids the complete collapse
W → O; the complete collapse is avoided if several (but not necessarily all) eigenmodes remain to
be non-zero.

D.2 SIMULATION WITH NONLINEAR ENCODER

Here, we complement our analysis by conducting the numerical simulation of the SimSiam model
using a nonlinear encoder. As in Section 5.4, we use the official implementation of SimSiam. The
implementation differences from the official code are listed below:

• Dataset: CIFAR-10
• The feature encoder: ResNet-18, but the last fully-connected layers being replaced with linear Φ
• The projection head: linear W ∈ R2048×2048 without bias (h = 2048)
• Parameter initialization: following Assumption 4 and W are symmetrized by (W +W⊤)/2

• Optimizer: the momentum SGD with the initial learning rate 0.005

• Regularization strength: ρ = 0.008
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Figure 11: Numerical simulation of the SimSiam model with the nonlinear encoder. (Left) Time evolution of
NΦ, NΨ, and N×. (Right) Asymmetry of the projection head W (measured by the relative error of W−W⊤)
and non-commutativity of F and W (measured by the relative error of the commutator [F,W]).
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Figure 12: The eigenmodes of the projection head pj are plotted (trained with the nonlinear encoder), with
background colors illustrating three intervals where pj diverges , pj collapses , and pj stably converges at
each epoch. Each color corresponds to those in Fig. 3. The vertical black line indicates the shift from Collapse
(epoch < 10) to Acute (epoch > 10). (Top left) j = 1 (the largest eigenmode); (Top center) j = 2 (the
second largest eigenmode); (Top center) j = 3 (the third largest eigenmode); (Bottom left) j = 4 (the fourth
largest eigenmode);

• Epochs: 100

We used the same data augmentation applied to the ImageNet dataset in the official implementation.
The other details remain to be the same as the official implementation.

To see how the nonlinear setup aligns with Assumption 1 (symmetry of W), Assumption 6 (commu-
tativity of W and F), and Assumption 5 (constancy of NΦ, NΨ, and N×), we show them in Fig. 11.
The norm parameters NΦ, NΨ, and N× remains relatively stable, which aligns with Assumption 5
well. During the training epochs, W becomes relatively asymmetry, but converges to a symmetric
matrix. This point needs to be carefully addressed in future work. We can suppose that W and F
remain to be commutative.

The time evolution of the eigenvalues of the linear projection head W is shown in Fig. 10, and each
eigenvalue (j = 1, 2, 3, 4) is shown in Fig. 12. Each background color in Fig. 12 indicates whether
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pj diverges (red), collapses (gray), and stably converges (blue). The boundaries of these intervals are
computed by numerical root finding of the pj-dynamics (8). We observe that only a few number of
eigenvalues remain to be non-zero while most of them degenerate to zero; general trend observed
in the synthetic case using the linear encoder (Appendix C). Moreover, we can see that the initial
Collapse regime (epoch < 10) is lifted to the Acute regime (epoch > 10) in Fig. 12. The (non-zero)
eigenvalues eventually converge to the values in the (blue) stable interval.
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