
Data-Copilot: Bridging Billions of Data and Humans with
Autonomous Workflow

Anonymous ACL submission

Abstract001

Industries such as finance, meteorology, and002
energy generate vast amounts of heterogeneous003
data daily. Efficiently managing, processing,004
and visualizing such data is labor-intensive005
and frequently necessitates specialized exper-006
tise. Leveraging large language models (LLMs)007
to develop an automated workflow presents a008
highly promising solution. However, LLMs are009
not adept at handling complex numerical com-010
putations and table manipulations, and they are011
further constrained by a limited length context.012
To bridge this, we propose Data-Copilot, a data013
analysis agent that autonomously performs data014
querying, processing, and visualization tailored015
to diverse human requests. The advancements016
are twofold: First, it is a code-centric agent017
that leverages code as an intermediary to pro-018
cess and visualize massive data based on hu-019
man requests, achieving automated large-scale020
data analysis. Second, Data-Copilot involves a021
data exploration phase in advance, which au-022
tonomously explores how to design universal023
and error-free interfaces from data, reducing024
the error rate in real-time responses. Specifi-025
cally, It imitates common requests from data026
sources, abstracts them into universal interfaces027
(code modules), optimizes their functionality,028
and validates effectiveness. For real-time re-029
quests, Data-Copilot invokes these interfaces030
to address user intent. Compared to generating031
code from scratch, invoking these pre-designed032
and well-validated interfaces can significantly033
reduce errors during real-time requests. We034
open-sourced Data-Copilot with massive Chi-035
nese financial data, such as stocks, funds, and036
news. Quantitative evaluations indicate that our037
exploration-deployment strategy addresses hu-038
man requests more accurate and efficiently,039
with good interpretability.040

1 Introduction041

In the real world, vast amounts of heterogeneous042

data are generated every day across various indus-043

tries, including finance, meteorology, and energy, 044

among others. Humans have an inherent and signif- 045

icant demand for data analysis because these wide 046

and diverse data contain insights that can be applied 047

to numerous applications, from predicting financial 048

trends to monitoring energy consumption. How- 049

ever, these data-related tasks often require tedious 050

manual labor and specialized knowledge. 051

Recently, the advancement of large language 052

models (LLMs) (Zeng et al., 2023; Touvron et al., 053

2023; OpenAI, 2022) and techniques (Wei et al., 054

2022b; Kojima et al., 2022) have demonstrated the 055

capability to handle complex tasks. Given the vast 056

amounts of data generated daily, can we leverage 057

LLMs to create an automated data processing 058

workflow performing data analysis and visual- 059

ization that best matches user expectations? 060

An intuitive solution is to treat data as a special 061

text, i.e., directly use LLMs to read and process 062

massive data (Wu et al., 2023c; Zha et al., 2023). 063

However, as shown in Figure 1, several challenges 064

must be considered: (1) Due to context limitations 065

of LLMs, it is challenging for LLMs to directly 066

read and process massive data as they do with text. 067

Besides, it also poses the potential risk of data 068

leakage when LLMs directly access private data 069

sources. (2) Data processing is complex, involving 070

many tedious numerical calculations and intricate 071

table manipulations. LLMs are not adept at per- 072

forming these tasks. (3) Data analysis typically 073

requires visualizing the results of data processing, 074

whereas LLMs are limited to generating text out- 075

put. These challenges constrain the application of 076

LLMs in data-related tasks. 077

Recently, many agent-based designs have ex- 078

plored alternative solutions (Wu et al., 2023a; 079

Huang et al., 2023; Chen et al., 2023b; Hong 080

et al., 2023; Wu et al., 2023b; Nejjar et al., 081

2023; Li et al., 2024b). LiDA (Dibia, 2023) 082

and GPT4-Analyst (Cheng et al., 2023) focus on 083

exploring insight from data. Sheet-Copilot (Li 084

1

LLM can not read all
data due to input context

Data leakage risks

LLM as a Data Processor

Human Request

Data Sources

LLM Only Text

Data-Copilot

Seed Requests

Data Sources

Generated Requests
Interface Design

Interface Optimization

Interface Library

Data Acquisition

Data Processing
Table Manipulation

Data Visualization

Phase 1: Data Exploration

Phase 2: Workflow Deployment For Real-time Request

Data Sources

Interface Library

Real-time Request LLM

Generated Request1:China’s
GDP trend in the last five year
Generated Request2: Compare
China’s CPI last 10 year…..

Compare the earnings rate of all constituent
stocks of the SSE 50 index this year

Interface Workflow

Invoke

I split problem into Four Steps.
I loop through all the component
stocks of the SSE50 to get the
cross-sectional return …..

LLM is not adept at
numerical computation

LLMs only can output text

Figure 1: We compare two LLM strategies for automated data analysis. Upper: LLM’s capabilities, context
length, and output format constraints limit the use of LLMs to process massive data. Bottom: Data-Copilot is a
code-centric agent that utilizes code to handle extensive data analysis tasks. It explores how to design more universal
and error-free interface modules, improving the success rate of real-time requests. Faced with real-time requests,
Data-Copilot invokes self-design interfaces and constructs a workflow for human intent.

et al., 2023b), BIRD (Li et al., 2023c), DS-085

Agent (Guo et al., 2024b), DB-GPT (Xue et al.,086

2023) and TAG (Biswal et al., 2024) apply LLMs087

to data science domain like Text2SQL. Data Inter-088

preter (Hong et al., 2024) proposes a plan-code-089

verify paradigm for automating machine learning090

tasks. These methods showcase the potential of091

LLMs in completing complex daily tasks through092

agent design paradigms.093

Inspired by this, we advocate leveraging the cod-094

ing capabilities of LLM to build a data analysis095

agent. Acting like a human data analyst, it receives096

human requests and generates code as an intermedi-097

ary to process massive data and visualize its results098

(e.g., chart, table, text) for humans. However, cre-099

ating a code agent that can be used in real-world100

data analysis tasks is far from an easy feat. ①101

LLMs struggle to generate high-quality, error-free102

code in a single attempt, often containing format103

errors, logical inconsistencies, or fabricating non-104

existent functions. ② Although the inference speed105

of LLMs has significantly improved, generating106

lengthy code still consumes a considerable amount107

of time and tokens. These two challenges—high108

code error rate and inefficient inference—must109

be addressed urgently.110

To address this, we observe most human requests111

are either similar or inherently related. By abstract-112

ing common demands into interfaces and validat-113

ing their functionality in advance, we can signifi-114

cantly improve both the success rate and efficiency115

of real-time deployment. Therefore, we propose 116

Data-Copilot, an LLM-based agent with an inno- 117

vative exploration phase to achieve more reliable 118

data analysis. First, Data-Copilot is a code-centric 119

agent that connects massive data sources and gen- 120

erates code to retrieve, process, and visualize data 121

in a way that best matches user’s intent. The code- 122

centric design empowers it to efficiently and se- 123

curely handle extremely large-scale data and nearly 124

all types of data analysis tasks. Besides, Data- 125

Copilot also incorporates a data exploration and 126

interface design phase. It autonomously explores 127

how to design more universal and error-free inter- 128

faces (code modules) based on data schemas in 129

advance. In real-world deployment, Data-Copilot 130

flexibly invokes pre-design interface modules for 131

most requests, deploying a well-verified interface 132

workflow for data processing and visualization. 133

Data-Copilot brings three advantages. Firstly, 134

this exploratory process allows Data-Copilot to an- 135

alyze and summarize the inherent connections be- 136

tween human requests, design general interfaces 137

for similar requests, and pre-validate their correct- 138

ness, reducing errors in real-time responses. Sec- 139

ondly, when faced with massive requests, our agent 140

only needs to invoke these pre-designed interfaces 141

rather than generate redundant code, significantly 142

improving inference efficiency. Lastly, compared 143

to lengthy code, these interfaces provide greater 144

interpretability, since it is easier for human read- 145

ing and interaction. To achieve this, we contains 146

2

three steps (Figure 1) when self exploration:147

Explore data and Synthesize requests: Data-148

Copilot discovers potential requests and a broader149

range of human need from data. It involves a "self-150

exploration" process to generate massive requests151

based on all data schemas and seed requests.152

Interface Design and Test: It designs modular153

interface from synthesized requests, with test cases154

automatically generated for verification.155

Interface Optimization: To improve versatil-156

ity, it merges similar interfaces and also revises157

erroneous interfaces using compiler’s feedback.158

After exploration-design-optimization, Data-159

Copilot designs many general and error-free inter-160

faces, e.g., data acquiring, forecasting, and visual-161

izing modules, to accomplish data analysis tasks.162

When faced with real-time requests, Data-Copilot163

invokes these predefined interface modules to cre-164

ate a concise interface workflow for user requests.165

For different requests, Data-Copilot can flexibly166

deploy various invocation structures, such as step-167

by-step serial workflows, parallel, or loop. It can168

even output a hybrid form of interface workflows169

and raw code for these "unfamiliar" requests. Our170

contributions are threefold:171

• We propose a code-centric agent, Data-172

Copilot, for automated data analysis and visu-173

alization. It leverages LLM’s code generation174

abilities for data querying, processing, and175

visualization, reducing tedious human labor.176

• We decouple code generation into two phases:177

data exploration and workflow deployment.178

In exploration phase, Data-Copilot learns to179

design universal, error-free interface modules180

tailored to data. In the face of real-time re-181

quests, it flexibly invokes these interfaces to182

address users’ diverse requests. This design183

enhances the success rate and efficiency of184

real-time responses.185

• We open-source Data-Copilot for Chinese fi-186

nancial data analysis, including stocks, funds,187

and live news. Quantitative evaluations indi-188

cate our agent outperforms other strategies,189

with higher success rates and lower token190

consumption. Besides, interface workflows191

are more convenient for human inspection and192

interaction, offering interpretability.193

2 Data-Copilot194

Data-Copilot is a code-centric agent capable of per-195

forming data analysis and visualization based on196

human instructions. It operates in two phases: Data 197

Exploration and Workflow Deployment. In the first 198

phase (Section 2.1), Data-Copilot designs a self- 199

exploration process to discover numerous potential 200

needs based on data schemas (Step 1: exploration). 201

Then based on these synthesized requests, it ab- 202

stracts many universal interface modules (Step 2: 203

design). After that, it optimizes similar interfaces 204

and tests their correctness, ensuring each interface 205

is correct and universal (Step 3: testing and opti- 206

mization). The whole process is operated in ad- 207

vance, yielding many generic, error-free interfaces 208

for subsequent use. 209

When faced with real-time requests (Sec- 210

tion 2.2), Data-Copilot can flexibly invoke pre- 211

designed interfaces or directly generate raw code 212

based for the user’s request. In most cases, exist- 213

ing interfaces can cover the majority of real-world 214

requests, significantly enhancing both success rate 215

and response speed. We provide a detailed prompt 216

for two phases in Appendix E.3 and E.4. 217

2.1 Data Exploration 218

Let’s review how human data analysts operate. Ini- 219

tially, they need to observe the available data, un- 220

derstand the data formats, and learn how to access 221

them. Subsequently, humans often design generic 222

modules to simplify the code logic and test these 223

modules for usability. Similar to this, Data-Copilot 224

also autonomously explores data and derives in- 225

sights from vast data sources, including the rela- 226

tions between the data, and the potential requests 227

associated with the data. Then Data-Copilot ab- 228

stracts these exploratory insights into numerous 229

reusable code components (interfaces), testing their 230

correctness and optimizing their generality. This 231

process of exploring data, identifying common re- 232

quests, designing general interfaces, and testing 233

and optimizing their performance is conducted in 234

advance on its own. 235

Self-Exploration Request. To explore data and 236

mine insights, we design a self-exploration process. 237

Beginning with some seed requests collected from 238

humans, LLMs are prompted to read the data and 239

generate a large number of requests, each represent- 240

ing a potential demand scenario. This process is 241

similar to (Wang et al., 2022a; Dibia, 2023), but the 242

LLMs should generate requests specifically based 243

on provided data. As shown in Figure 2, when the 244

LLMs observe that the economic database contains 245

historical GDP and CPI data, they generate mul- 246

tiple related requests, e.g., Compare the CPI of 247

3

Request:

In the first quarter

of this year, the

year-on-year net

profit growth rate

of the SSE 50

constituents were

Economic Database

Financial Databases

Sales Database

… …

Massive Data Sources

Seed Request1: What was

China’s GDP last year ?

Seed Request2: Compare

two stock returns last year

…

Generated Request1:

I want to see the GDP trend

over the past ten years

Generated Request2:

Compare the CPI of China

and the USA last years

Generated Request3:

Show the Financial Index

of all stock

Generate more diverse

request based on data

Interface Design & Testing

Solve new request using existing

interfaces or design a new one

New Interface:

Query_CPI ()

Old Interface:

Query_GDP (), Plot_line ()

New Interface:

Query_GDP (), Plot_line ()

Data Acquisition Interfaces

• Get_stock_prices_data

• Get_cpi_ppi_currency_supply_data

• ….

Request:

Compare the

return of CSI

300, GEM Index

and CSI 1000

Index this year

Request 2

Phase 1: Data Exploration

Phase 2: Workflow Deployment

…

Data Process Interfaces

• Loop

• Rank

• Calculation

• …

Data Visualization

• Print_save_table

• Plot_k_line

• Plot_stock_data

• ….

Request Exploration

Each interface contains a name, parameters, a functional description, and the implementation code

Real-time Request

Request 1

Parallel Workflow

Step1: Get index

constituent stocks

Step2: Select the name

of each stock

Step3: Loop through

the financial index…

Step1: Obtain data for

the three indices in

parallel

Step2: Calculate the

returns of the three

indices in parallel

Step3: Plotting the

trend of returns in turn

Interface Optimization

Merge similar interfaces

Reflect on compiler’s feedback

Optimized Interface:

Query_GDP_CPI ()

Plot_line ()

Optimized Interface:

Query_GDP (), Plot_line ()

Feedback

DataFrame Manipulation Interfaces

• Select_value_by_column

• merge_two_dataframe

• …

Interface Library

Loop
Select

Column

Step1 Step3Step2

Financial

Acquisition

Visualization

Step4

Data

Acquisition

Data-1

Acquisition

Data-2

Acquisition

Data-3

Acquisition

Step1 Step3,4,5

Calculate

Return

Calculate

Return

Calculate

Return

Step2

Visualization

Visualization

Visualization

Loop Workflow
Request:

Use a radar chart

to plot the GDP,

CPI, and PPI,….

across 8 countries:

China, the United

States, Japan,…
Hybrid Generation: Interface and Raw Code

Lacking

interface for

radar chart

Data

Acquisition

Calculate

Return

Datatable Utilize raw code for radar Uncovered

Request Buffer

Figure 2: Overview of Data-Copilot. Data Exploration: First, it performs a self-exploration process to uncover
potential human requests from data sources. Then it abstracts many universal and error-free interfaces from
synthesized requests, including interface designing, testing, and optimizing similar interfaces. This exploration-
design-optimization process is operated in advance. Workflow Deployment: Upon receiving real-time requests,
Data-Copilot invokes existing interfaces and deploys a workflow for familiar requests, or flexibly combines interfaces
and raw code for "uncovered" requests.

China and the USA..., or I want to see the248

GDP trend over the past ten years. Each249

request involves one or more types of data.250

To achieve this, we first generate a parsing file251

for each data source to help LLM understand the252

data. Each file includes a description of the data,253

the access method, the data schema (the name of254

each column), and a usage example. Then we feed255

the parsing files and a few seed requests into the256

LLMs, and prompt LLMs to synthesize more di-257

verse requests based on these data. The brief exam-258

ple is shown in Appendix E.2.259

The quality of the generated requests. A com-260

mon issue is that the LLM often proposes a request261

about the data that doesn’t exist. To address this,262

we design a backward verification strategy to check 263

these synthesized requests. Specifically, we instruct 264

the LLM to reverse-convert the generated request 265

into the desired data source and other key infor- 266

mation, and then we verify the existence of such 267

data, thereby filtering out hallucinatory requests. 268

Besides, when synthesizing, we also use keywords 269

to control the topics of synthesized requests, en- 270

suring they closely align with real-world distribu- 271

tion. Upon manual evaluation of the synthesized 272

requests, we found that the generated requests gen- 273

erally met our expectations. We discuss the quality 274

of synthesized requests in detail in Tables 1 and B2. 275

Interface Design. After generating massive re- 276

quests through self-exploration, Data-Copilot ab- 277

4

stracts many universal interfaces from these re-278

quests. First, we have to clarify what an interface is279

in our paper. Similar to human-defined functions,280

an interface is a code module consisting of a name,281

parameters, a functional description, and an imple-282

mentation code. It performs specific tasks such283

as data retrieval, computation, and visualization.284

Each interface is designed, tested, and optimized285

iteratively by Data-Copilot.286

First, starting from the initial request, we iter-287

atively feed synthesized requests from the self-288

exploration stage and related data parsing files into289

LLMs, prompting the LLM to design complete290

code modules for request solving. Each code mod-291

ule is defined as an interface and stored in the in-292

terface library. During each iteration, LLMs are293

instructed to prioritize utilizing the existing inter-294

faces within the library. If the available interfaces295

are insufficient for request solving, the LLMs de-296

sign a new interface.297

As shown in Figure 2, for the first request: I298

want to see the GDP trend over ..., Data-299

Copilot design two interfaces: Query-GDP() and300

Plot-Line(). As for the second request: Compare301

the CPI of China and the USA over.., since302

the previous two could not solve this request, a new303

interface, Query-CPI(), is designed by LLMs.304

Interface Testing. After designing a new inter-305

face for a request (requesti→interfacei), Data-306

Copilot autonomously tests its correctness based307

on compiler feedback. First, Data-Copilot uses308

the requesti as the seed to generate massive sim-309

ilar requests as test cases. Then it tests the new310

interfacei one by one. In Figure 2, for new311

interfacei: Query-GDP(), Data-Copilot mimics312

requesti to generate many similar requests to test313

the Query-GDP(): "I want to see USA’s GDP314

over the past 10 years", "I want to see315

China’s GDP for the last year",.. If the in-316

terface passes all test cases, it is retained; otherwise,317

Data-Copilot self-reflects on error feedback of com-318

pilers, correcting the erroneous code snippets until319

it successfully passes the tests.320

Interface Optimization. To optimize the gen-321

erality of designed interfaces, Data-Copilot also322

merges similar interfaces. Similar to human de-323

velopers, each time a new interface is designed,324

this optimization process is triggered: evaluat-325

ing whether the newly designed interface can be326

merged with previous ones.327

• Retrieve similar interfaces. After a new in-328

terface is designed, we retrieve Top-N inter- 329

faces from existing interface library. Specif- 330

ically, we use gte-Qwen1.5-7B-instruct (Li 331

et al., 2023d) to obtain embeddings of each in- 332

terface code and then calculate their similarity, 333

identifying top N similar interfaces. 334

• Decide whether to merge. LLMs are 335

prompted to compare new interface with 336

Top-N retrieved interfaces in terms of func- 337

tionality, parameters, and processing logic, 338

autonomously deciding whether to merge 339

it with the existing ones. If LLM deems 340

no merging necessary, new interface is re- 341

tained. As shown in Figure 2, two interfaces 342

Query-GDP() and Query-CPI() are merged 343

into Query-GDP-CPI(). This process makes 344

each interface more general and unique. 345

• Test the optimized interface. When two in- 346

terfaces are merged, Data-Copilot also needs 347

to test the newly merged interface. Test cases 348

from two original interfaces are used to vali- 349

date the merged interface. The output of the 350

new interface must be consistent with two 351

original interfaces in both format and content. 352

In this phase, Data-Copilot alternates the above 353

three steps: interface design, testing, and optimiza- 354

tion until all the requests can be covered by these 355

interfaces. As shown in Figure F3, Data-Copilot 356

designs many interfaces for different task and op- 357

eration types, e.g., data acquisition, prediction, vi- 358

sualization, and DataFrame manipulation. We pro- 359

vide detailed algorithm processes (Appendix E.1) 360

and examples in Appendix F.1. 361

2.2 Workflow Deployment 362

As Figure 2 shows, it accurately and efficiently 363

handles requests by invoking relevant interfaces 364

(interface workflow). For long-tail or uncovered 365

requests, it flexibly generates raw code (interface- 366

code hybrid strategy) while documenting these for 367

future interface library updates. 368

Interfaces Retrieval. Considering the signifi- 369

cant differences between the interfaces involved in 370

different requests, it is unnecessary to load all inter- 371

faces every time. We design a simple yet efficient 372

interface retrieval strategy: hierarchical retrieval. 373

Specifically, we organize all designed interfaces in 374

a hierarchical structure. Each interface is grouped 375

into different tasks (stock task, fund task, etc.) and 376

different operation types (data acquisition, process- 377

ing, visualization, etc.). Upon receiving a real-time 378

5

request, Data-Copilot first determines the appropri-379

ate task types and required operation types and then380

loads the interfaces associated with these types for381

subsequent workflow planning. This can reduce382

the number of interfaces in the prompt.383

Interface Invocation Workflow. After reading384

interface descriptions, Data-Copilot plans work-385

flows—multiple interfaces in specific order form-386

ing chain, parallel, or loop structures. It determines387

which interfaces to invoke, their sequence, and pa-388

rameters, outputting in JSON format. Prompts and389

cases appear in Appendices E.4 and F.2.390

As Figure 2 shows, Data-Copilot designs sequen-391

tial, parallel, or loop interface workflows. For re-392

quest "Compare the return of CSI-300, GEM393

and CSI-1000 this year", it plans a parallel394

workflow: Data Acquisition(), Calculate395

Return() for three indices simultaneously, then396

Visualization(). The second case implements a397

loop workflow using Loop().398

Interface-Code Hybrid Generation. In the399

real world, it is inevitable to encounter "uncov-400

ered" requests that cannot be addressed by existing401

interfaces. As a remedy, Data-Copilot adopts an402

interface-code hybrid generation strategy. Specifi-403

cally, it prioritizes invoking existing interfaces to404

resolve user requests. It can solve most common405

user requests. However, if the deployed workflow406

continues to fail, or if Data-Copilot proactively de-407

termines that current request cannot be resolved408

by existing interfaces, it would generate raw code409

directly or generate a combination of raw code and410

interfaces. This design endows Data-Copilot with411

the flexibility to handle diverse requests.412

Besides, each time Data-Copilot encounters such413

"uncovered" requests, it also records them in the414

document. After accumulating sufficient new re-415

quests, we re-initiated the Data Exploration and416

interface design stage (Section 2.1), i.e., in real-417

world interactions, we periodically develop new418

interfaces for emerging demands, continuously up-419

dating Data-Copilot’s interface library.420

3 Dataset Synthesis421

3.1 Environment and Data Sources422

Data-Copilot is developed on Chinese financial423

market data, encompassing massive stocks, funds,424

economic data, real-time news, and company fi-425

nancial data. Similar to many works, Data-Copilot426

utilizes data interfaces provided by Tushare1 to427

1https://tushare.pro/

access vast amounts of financial data, including 428

time-series data spanning over 20 years for more 429

than 4,000 stocks, funds, and futures. In the 430

first phase, we use a strong LLM (e.g., gpt-4o) 431

for data exploration and a lightweight LLM (e.g., 432

gpt-3.5-turbo) for workflow deployment. 433

3.2 The Creation of Dataset 434

Human-proposed Request as Seed Set. We in- 435

vite 10 students in economics to submit 50 requests 436

each. These requests cover a wide range of com- 437

mon needs, including stock, fund tasks with dif- 438

ferent complexity levels. These human-proposed 439

requests can represent a distribution of real-world 440

scenarios, where the ratio of four tasks is: Stock(8), 441

Fund(4), Corporation(4) and Others(1). Then we 442

filter out highly similar requests. Lastly, we retain 443

173 high-quality requests, which are used as seeds 444

for Data Exploration phase. 445

Self-Exploration Request Set. As mentioned 446

in Section 2.1, we employ self-exploration to ex- 447

pand the request set. We first feed 173 human- 448

proposed seed requests along with all data descrip- 449

tions and schema into GPT-4 for data exploration 450

and request synthesis. We use keywords to control 451

the distribution of the synthesized requests, ensur- 452

ing close alignment with the real world. When ex- 453

ploration, it generates 6480 requests. Then we filter 454

out highly similar requests and retain 3547 requests. 455

Then we adopt a stratified sampling strategy to sam- 456

ple 547 instances as test set from each type. The re- 457

maining 3000 requests are used for interface design. 458

The distributions of four task types (stock, fund, 459

corporation, and others) and three complexity lev- 460

els (single-entity, multi-entities, and multi-entities 461

with complex relations) are shown in Table 1. It 462

shows that synthesized requests closely align with 463

humans. The detailed statistics are shown in Ta- 464

bles 1 and B1 and Figure B1. 465

Annotate Answer Table for Test Set. Human 466

annotators are instructed to annotate data tables as 467

answers for 547 test requests. Specifically, annota- 468

tors manually retrieve and process the correspond- 469

ing data based on testing request, and record the 470

final data table before chart plotting. For example, 471

request: "I want to see China’s GDP over 472

past 5 years", the labeled data-table is [2023: 473

17.8 trillion, 2022: 17.9 trillion, 2021: 17.8 trillion, 474

2020: 14.6 trillion, 2019: 14.3 trillion]. 475

The quality of self-exploration requests. We 476

manually evaluate the quality of testset. As shown 477

in Appendix B.3, these synthesized requests show 478

6

https://tushare.pro/

Name Source #Cases Form Four Types Ratio Three Complexity Levels Ratio

Seed Set Human-proposed 173 Query 8.0: 4.0: 4.0: 1 2.0: 1.5: 1
Set for Interface Design Self-Exploration 3000 Query 8.7: 3.3: 4.2: 1 1.9: 1.5: 1
Test Set Self-Exploration & Human 547 Query, Label 8.6: 3.3: 4.3: 1 1.8: 1.4: 1

Table 1: Statistics on human-proposed requests and self-exploration dataset. We report the number of each task type
and complexity level. The results indicate that our synthesized requests closely align with human distribution.

Model GPT-4o GPT-4-turbo GPT-3.5-turbo Llama3-70B-Instruct Llama2-70B-Instruct
Direct-Code 73.6 70.0 28.5 52.2 29.6
Ours 77.9 ↑4.3 74.6 ↑4.6 70.2 ↑41.7 70.9 ↑18.7 49.3 ↑19.7

Model Codellama-13B Vicuna-13B-v1.5 DeepSeek Coder-V2 Qwen2.5-Coder-32B Qwen2.5-Coder-14B
Direct-Code 21.0 17.3 63.8 66.5 51.7
Ours 50.8 ↑29.2 33.2 ↑15.9 75.3 ↑11.5 77.2 ↑10.7 72.3 ↑20.6

Table 2: Accuracy of ours and direct code generation (Direct-Code) using different LLMs for workflow deployment.

a comparable quality to human-proposed requests.479

3.3 Qualitative Evaluation480

As shown in Figure F9, Data-Copilot constructs481

the invocation workflow step-by-step (each step482

corresponds to one or more interfaces) and final483

results (bar, chart, text) for input request.484

Data-Copilot designs versatile interfaces via485

data exploration. After analyzing Chinese finan-486

cial data and 3,000 self-exploration requests, Data-487

Copilot created 73 interfaces across five function-488

alities (data acquisition, index calculation, table489

manipulation, visualization, general processing).490

Figure F3 shows key interfaces.491

Data-Copilot adapts to new requests by com-492

bining interfaces and raw code. As in Sec-493

tion 2.2, for unsupported requests, Data-Copilot494

integrates existing interfaces with raw code. In495

Figure 2 (3rd example), it retrieves data via inter-496

face, then generates radar chart code, enhancing497

flexibility for evolving demands.498

Interface Workflow enhances interpretability.499

After execution, Data-Copilot generates visuals and500

workflow summaries. As shown in Figures 2, F2501

and F4 to F7, outputs are intuitive. Structuring com-502

plex code into step-by-step interface calls improves503

clarity and inspection ease.504

4 Quantitative Evaluation505

4.1 Experiments Settings506

Baselines and Experiments Details We compare507

Data-Copilot with direct code generation (Direct-508

Code), ReAct, Reflexion, Multi-agent methods.509

Detailed prompts are in Appendices B.1 and E.5.510

Evaluation Methods. We evaluate all methods511

Methods Accuracy(%) #Token

Direct-Code 28.5 ±2.1 823
ReAct (Yao et al., 2022) 44.1 ±3.4 1515
Reflexion (Shinn et al., 2023) 59.0 ±3.9 2463
Multi-Agent (Hong et al., 2023) 57.4 ±1.8 2835
Data-Copilot 70.2 ±2.5 561.2
Data-Copilot + ReAct 71.5 ±1.7 834
Data-Copilot + Reflexion 71.8 ±2.2 978

Table 3: Accuracy and efficiency on gpt-3.5-turbo.

on 547 test cases, focusing on three aspects: data- 512

table accuracy, image quality, and inference effi- 513

ciency. Evaluations are conducted using GPT-4o: 514

Data-Table Evaluation: GPT-4o/turbo compares 515

the generated dataframe with a human-labeled 516

answer table (Section 3.2). Image Evaluation: 517

To evaluate whether the final image meets hu- 518

man requests, we feed the human request, human- 519

annotated answer table, and the generated image 520

into GPT-4o. GPT-4o is instructed to check image’s 521

visual elements based on human request, including 522

numerical points, lines, axes, image aesthetics, and 523

style, i.e., we design a checklist containing 5 cate- 524

gories with 10 sub-dimensions for GPT-4o scoring. 525

The results of data-table and image evaluation are 526

combined as Accuracy. Efficiency: Measured by 527

the total token consumption (#Token) per method, 528

representing solving efficiency. The evaluation de- 529

tails and comparison between manual evaluation 530

and model evaluation are shown in Appendix B.4. 531

4.2 Comparison Results 532

Data-Copilot Significantly Reduces Deployment 533

Failure Risk. As shown in Table 2, compared to 534

direct code generation, Data-Copilot achieves sig- 535

nificant improvements: +41.7 (GPT-3.5-turbo), 536

7

Methods Single Multiple Complex Rel. Overall

Direct-Code 42.4 29.0 1.6 28.5
ReAct 56.3 48.6 14.6 44.1
Reflexion 67.8 55.1 48.1 59.0
Multi-agent 63.2 64.7 35.5 57.4
Data-Copilot 71.8 ↑4 70.0 ↑5.3 67.1 ↑19 70.2 ↑11.2

Table 4: Accuracy for three complexity levels samples.

+18.7 (Llama3-70B), and +29.2 (Codellama-13B).537

By decoupling into interface design and workflow538

deployment stages, smaller LLMs (Llama3-70B,539

GPT-3.5) perform at GPT-4 level during deploy-540

ment. Even GPT-4 improves by +4%, confirming541

generalizability. Pre-designed interfaces reduce542

errors through optimization and validation during543

design, whereas direct code generation often over-544

looks details and introduces mistakes.545

Data-Copilot Outperforms Advanced Agent546

Strategies in Both Accuracy and Efficiency. As547

shown in Table 3, Data-Copilot surpasses all base-548

line strategies in success rate (Accuracy), and ef-549

ficiency (#token). Compared to the best baseline550

(Reflexion), Data-Copilot achieved an +11.2% im-551

provement in accuracy and a -75% reduction in552

token consumption. Besides, as shown in the last553

two rows of Table 3, Data-Copilot can seamlessly554

integrate with agent strategies such as ReAct and555

Reflexion into the workflow deployment. For ex-556

ample, when combined with ReAct, Data-Copilot557

invokes an interface, obtains an intermediate re-558

sult, and then reasons to invoke the next interface,559

improving its performance by +1.3.560

Data-Copilot Reduces Repetitive Generation561

in the Real World. In the real world, most requests562

are similar or even repetitive. As shown in Table 3,563

Data-Copilot can save 70% of token consumption564

since its output only contains interface names and565

arguments. In contrast, baseline strategies have566

to repetitively generate complete code for each re-567

quest, consuming many more tokens.568

4.3 Why Data-Copilot Brings Improvements?569

Data-Copilot exhibits superior performance in570

complex scenarios. We categorize test requests571

by entity count: single entity, multiple572

entities, and multiple entities with573

complex relations (statistics in Appendix B.2).574

As Table 4 shows, with single entities, improve-575

ment is minimal (4%). However, with multiple en-576

tities and complex relations, improvements reach577

5.3% and 19%, respectively. Baselines often gen-578

erate logically incorrect code and omit critical579

GPT-3.5 GPT-4
Direct Code Generation 28.3 70

Workflow Deployment LLM
GPT-3.5 GPT-4

Interface Design LLM GPT-3.5 31.9 49.6
GPT-4 70.2 74.6

Table 5: We explore different LLM combinations for
interface design and workflow deployment.

Methods Accuracy(%)

Direct Code Generation 28.5
Data-Copilot 70.2
w/o Self-Exploration Request 35.9
w/o Interface Optimization 42.1
w/o Interface-Code Hybrid 63.8

Table 6: We ablate three modules from Data-Copilot.

steps, while Data-Copilot simply invokes versatile 580

interfaces, reducing real-time response complexity 581

through pre-designed interfaces. 582

The Quality of Interface is the Key Factor. We 583

analyze the effects of using different LLM combi- 584

nations for two stages: interface design and work- 585

flow deployment. As shown in Table 5, we ob- 586

serve when using a weaker LLM for interface de- 587

sign, the effectiveness is significantly diminished. 588

For example, using GPT-3.5-turbo (1st stage) and 589

GPT-4-turbo (2nd stage) resulted in a score of 590

only 49.6, which is even lower than directly using 591

GPT-4-turbo for direct code generation (70.2). This 592

phenomenon can also be seen in other combina- 593

tions. After manually checking, we find interfaces 594

designed by GPT-3.5-turbo are prone to failure and 595

exhibit poor generalizability. Therefore, we chose 596

to use GPT-4-turbo for interface design and op- 597

timization, while employing GPT-3.5-turbo for 598

real-time deployment, achieving a balance between 599

accuracy and efficiency. 600

5 Conclusion 601

We propose Data-Copilot, a code-centric data 602

analysis agent. It generates code for large-scale 603

data processing and creates interface modules 604

through data exploration, improving real-time 605

request success. It autonomously designs universal 606

interfaces for various data types and invokes them 607

for reliable problem-solving. Experiments show 608

higher success rates with lower token consumption. 609

610

8

Limitations611

Data-Copilot proposes a new paradigm for address-612

ing the data-related task, through LLM. But we613

want to highlight that it still remains some limita-614

tions or improvement spaces:615

1) Online Design Interface. The essence of616

Data-Copilot lies in effective interface design, a617

process that directly affects the effectiveness of sub-618

sequent interface deployments. Currently, this in-619

terface design process is conducted offline. There-620

fore, it is crucial to explore how to design the inter-621

face online and deploy it simultaneously. It greatly622

broadens the application scenarios of Data-Copilot.623

2) System stability The interface deployment624

process can occasionally be unstable. The main625

source of this instability is because LLM is not626

fully controllable. Despite their proficiency in gen-627

erating the text, LLMs occasionally fail to follow628

the instructions or provide incorrect answers, thus629

causing anomalies in the interface workflow. Con-630

sequently, finding methods to minimize these un-631

certainties during the interface dispatch process632

should be a key consideration in the future.633

3) Data-Copilot possesses the potential to han-634

dle data from other domains effectively. Cur-635

rently, our focus is on developing an LLM-based636

agent for the data domain. Due to the limited ac-637

cess to data, we chose the China Financial Data,638

which includes stocks, futures, finance, macroeco-639

nomics, and financial news. Although these data640

all belong to the financial domain, the data volume641

is extremely large, and the data schemas are highly642

different. The corresponding user’s requests are643

also diverse, which poses a great challenge to the644

current LLM. However, Data-Copilot has adeptly645

accomplished this task. Therefore, we believe Data-646

Copilot also possesses the potential to effectively647

handle data from other domains.648

References649

Sangzin Ahn. 2024. Data science through natural lan-650
guage with chatgpt’s code interpreter. Translational651
and Clinical Pharmacology, 32(2):73.652

Shamma Mubarak Aylan Abdulla Almheiri, Moham-653
mad AlAnsari, Jaber AlHashmi, Noha Abdalmajeed,654
Muhammed Jalil, and Gurdal Ertek. 2024. Data an-655
alytics with large language models (llm): A novel656
prompting framework. In International Conference657
on Business Analytics in Practice, pages 243–255.658
Springer.659

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kam- 660
setty, Shu Liu, Joseph E Gonzalez, Carlos Guestrin, 661
and Matei Zaharia. 2024. Text2sql is not enough: 662
Unifying ai and databases with tag. arXiv preprint 663
arXiv:2408.14717. 664

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 665
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 666
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 667
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 668
Gretchen Krueger, Tom Henighan, Rewon Child, 669
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 670
Clemens Winter, and 12 others. 2020. Language 671
Models are Few-Shot Learners. In NeurIPS. 672

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, 673
and Denny Zhou. 2023. Large language models as 674
tool makers. arXiv preprint arXiv:2305.17126. 675

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, 676
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han- 677
chong Zhang, Yuchen Mao, Wenjing Hu, and 1 oth- 678
ers. 2024. Spider2-v: How far are multimodal agents 679
from automating data science and engineering work- 680
flows? arXiv preprint arXiv:2407.10956. 681

Shuaichen Chang and Eric Fosler-Lussier. 2023. How 682
to prompt llms for text-to-sql: A study in zero-shot, 683
single-domain, and cross-domain settings. arXiv 684
preprint arXiv:2305.11853. 685

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, 686
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin 687
Shi. 2023a. Autoagents: A framework for automatic 688
agent generation. arXiv preprint arXiv:2309.17288. 689

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and 690
Yuqing Yang. 2024a. Viseval: A benchmark for data 691
visualization in the era of large language models. 692
IEEE Transactions on Visualization and Computer 693
Graphics, pages 1–11. 694

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and 695
Yuqing Yang. 2024b. Viseval: A benchmark for data 696
visualization in the era of large language models. 697
IEEE Transactions on Visualization and Computer 698
Graphics. 699

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 700
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin, 701
Yaxi Lu, Ruobing Xie, and 1 others. 2023b. Agent- 702
verse: Facilitating multi-agent collaboration and ex- 703
ploring emergent behaviors in agents. arXiv preprint 704
arXiv:2308.10848. 705

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023. 706
Is gpt-4 a good data analyst? arXiv preprint 707
arXiv:2305.15038. 708

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 709
Maarten Bosma, Gaurav Mishra, Adam Roberts, 710
Paul Barham, Hyung Won Chung, Charles Sut- 711
ton, Sebastian Gehrmann, and others. 2022. Palm: 712
Scaling language modeling with pathways. ArXiv, 713
abs/2204.02311. 714

9

https://doi.org/10.1109/TVCG.2024.3456320
https://doi.org/10.1109/TVCG.2024.3456320
https://doi.org/10.1109/TVCG.2024.3456320

Victor Dibia. 2023. Lida: A tool for automatic gener-715
ation of grammar-agnostic visualizations and info-716
graphics using large language models. arXiv preprint717
arXiv:2303.02927.718

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,719
Yunjun Gao, Jinshu Lin, Dongfang Lou, and 1 others.720
2023. C3: Zero-shot text-to-sql with chatgpt. arXiv721
preprint arXiv:2307.07306.722

James Ford, Xingmeng Zhao, Dan Schumacher, and723
Anthony Rios. 2024. Charting the future: Us-724
ing chart question-answering for scalable evaluation725
of llm-driven data visualizations. arXiv preprint726
arXiv:2409.18764.727

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,728
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.729
Text-to-sql empowered by large language mod-730
els: A benchmark evaluation. arXiv preprint731
arXiv:2308.15363.732

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,733
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-734
ham Neubig. 2022. Pal: Program-aided language735
models. ArXiv, abs/2211.10435.736

Ken Gu, Madeleine Grunde-McLaughlin, Andrew Mc-737
Nutt, Jeffrey Heer, and Tim Althoff. 2024a. How do738
data analysts respond to ai assistance? a wizard-of-739
oz study. In Proceedings of the CHI Conference on740
Human Factors in Computing Systems, pages 1–22.741

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying742
Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,743
Youran Pan, Teng Wu, Jiaqian Yu, and 1 others.744
2024b. Blade: Benchmarking language model745
agents for data-driven science. arXiv preprint746
arXiv:2408.09667.747

Jiajing Guo, Vikram Mohanty, Jorge H Piazentin Ono,748
Hongtao Hao, Liang Gou, and Liu Ren. 2024a. Inves-749
tigating interaction modes and user agency in human-750
llm collaboration for domain-specific data analysis.751
In Extended Abstracts of the CHI Conference on Hu-752
man Factors in Computing Systems, pages 1–9.753

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,754
Yi Chang, and Jun Wang. 2024b. Ds-agent: Auto-755
mated data science by empowering large language756
models with case-based reasoning. arXiv preprint757
arXiv:2402.17453.758

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting759
Hu. 2023. Toolkengpt: Augmenting frozen lan-760
guage models with massive tools via tool embeddings.761
ArXiv, abs/2305.11554.762

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu,763
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang,764
Lingyao Zhang, Mingchen Zhuge, and 1 others. 2024.765
Data interpreter: An llm agent for data science. arXiv766
preprint arXiv:2402.18679.767

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 768
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, 769
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 770
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 771
and Jürgen Schmidhuber. 2023. Metagpt: Meta pro- 772
gramming for a multi-agent collaborative framework. 773
Preprint, arXiv:2308.00352. 774

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong 775
Wang, Li Li, Xiapu Luo, David Lo, John Grundy, 776
and Haoyu Wang. 2023. Large language models 777
for software engineering: A systematic literature re- 778
view. ACM Transactions on Software Engineering 779
and Methodology. 780

Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo 781
Zhao, and Hang Zhao. 2023. Chatdb: Augmenting 782
llms with databases as their symbolic memory. arXiv 783
preprint arXiv:2306.03901. 784

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin 785
Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming 786
Zhu, Yao Cheng, and 1 others. 2024. Infiagent- 787
dabench: Evaluating agents on data analysis tasks. 788
arXiv preprint arXiv:2401.05507. 789

Rongjie Huang, Mingze Li, Dongchao Yang, Jia- 790
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu, 791
Zhiqing Hong, Jiawei Huang, Jinglin Liu, and 1 oth- 792
ers. 2023. Audiogpt: Understanding and generat- 793
ing speech, music, sound, and talking head. arXiv 794
preprint arXiv:2304.12995. 795

Jeevana Priya Inala, Chenglong Wang, Steven Drucker, 796
Gonzalo Ramos, Victor Dibia, Nathalie Riche, Dave 797
Brown, Dan Marshall, and Jianfeng Gao. 2024. Data 798
analysis in the era of generative ai. arXiv preprint 799
arXiv:2409.18475. 800

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin 801
Zhao, and Ji-Rong Wen. 2023. StructGPT: A general 802
framework for large language model to reason over 803
structured data. In Proceedings of the 2023 Con- 804
ference on Empirical Methods in Natural Language 805
Processing, pages 9237–9251, Singapore. Associa- 806
tion for Computational Linguistics. 807

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wen- 808
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang, 809
Xinya Du, and Dong Yu. 2024. Dsbench: How far 810
are data science agents to becoming data science ex- 811
perts? arXiv preprint arXiv:2409.07703. 812

Harshit Joshi, Abishai Ebenezer, José Cambronero, 813
Sumit Gulwani, Aditya Kanade, Vu Le, Ivan Radiček, 814
and Gust Verbruggen. 2023. Flame: A small 815
language model for spreadsheet formulas. arXiv 816
preprint arXiv:2301.13779. 817

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, 818
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large 819
Language Models are Zero-Shot Reasoners. In Con- 820
ference on Neural Information Processing Systems 821
(NeurIPS). 822

10

https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,823
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel824
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A825
natural and reliable benchmark for data science code826
generation. In International Conference on Machine827
Learning, pages 18319–18345. PMLR.828

Guohao Li, Hasan Abed Al Kader Hammoud, Hani829
Itani, Dmitrii Khizbullin, and Bernard Ghanem.830
2023a. Camel: Communicative agents for "mind" ex-831
ploration of large language model society. In Thirty-832
seventh Conference on Neural Information Process-833
ing Systems.834

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-835
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,836
Cuiping Li, and Hong Chen. 2024a. Codes: Towards837
building open-source language models for text-to-sql.838
arXiv preprint arXiv:2402.16347.839

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and840
Zhaoxiang Zhang. 2023b. Sheetcopilot: Bringing841
software productivity to the next level through large842
language models. arXiv preprint arXiv:2305.19308.843

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,844
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,845
Ruiying Geng, and 1 others. 2023c. Can llm already846
serve as a database interface? a big bench for large-847
scale database grounded text-to-sqls. arXiv preprint848
arXiv:2305.03111.849

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,850
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,851
Nan Huo, and 1 others. 2024b. Can llm already serve852
as a database interface? a big bench for large-scale853
database grounded text-to-sqls. Advances in Neural854
Information Processing Systems, 36.855

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,856
Pengjun Xie, and Meishan Zhang. 2023d. Towards857
general text embeddings with multi-stage contrastive858
learning. arXiv preprint arXiv:2308.03281.859

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,860
Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao861
Ye, Ziyue Li, Rui Zhao, and 1 others. 2024c.862
Pet-sql: A prompt-enhanced two-stage text-to-sql863
framework with cross-consistency. arXiv preprint864
arXiv:2403.09732.865

Jinqing Lian, Xinyi Liu, Yingxia Shao, Yang Dong,866
Ming Wang, Zhang Wei, Tianqi Wan, Ming Dong,867
and Hailin Yan. 2024. Chatbi: Towards natural lan-868
guage to complex business intelligence sql. arXiv869
preprint arXiv:2405.00527.870

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,871
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and872
Shuming Shi. 2023a. Encouraging divergent thinking873
in large language models through multi-agent debate.874
arXiv preprint arXiv:2305.19118.875

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,876
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,877
Shaoguang Mao, Yun Wang, Linjun Shou, Ming878

Gong, and Nan Duan. 2023b. Taskmatrix.ai: Com- 879
pleting tasks by connecting foundation models with 880
millions of apis. Preprint, arXiv:2303.16434. 881

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S 882
Yu. 2023. A comprehensive evaluation of chat- 883
gpt’s zero-shot text-to-sql capability. arXiv preprint 884
arXiv:2303.13547. 885

Li Xian Liu, Zhiyue Sun, Kunpeng Xu, and Chao Chen. 886
2024a. Ai-driven financial analysis: Exploring chat- 887
gpt’s capabilities and challenges. International Jour- 888
nal of Financial Studies, 12(3):60. 889

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei 890
Chang, and Yansong Feng. 2024b. Are llms capable 891
of data-based statistical and causal reasoning? bench- 892
marking advanced quantitative reasoning with data. 893
arXiv preprint arXiv:2402.17644. 894

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo 895
Chen. 2024. Large language model for table process- 896
ing: A survey. arXiv preprint arXiv:2402.05121. 897

Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and 898
Dongmei Zhang. 2023. Demonstration of insightpi- 899
lot: An llm-empowered automated data exploration 900
system. arXiv preprint arXiv:2304.00477. 901

Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xi- 902
aokang Zhang, Xiaohan Zhang, Sijia Luo, Xi Wang, 903
and Jie Tang. 2024. Spreadsheetbench: Towards chal- 904
lenging real world spreadsheet manipulation. arXiv 905
preprint arXiv:2406.14991. 906

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: gen- 907
erating data visualizations via natural language using 908
chatgpt, codex and gpt-3 large language models. Ieee 909
Access, 11:45181–45193. 910

Mohamed Nejjar, Luca Zacharias, Fabian Stiehle, and 911
Ingo Weber. 2023. Llms for science: Usage for code 912
generation and data analysis. Journal of Software: 913
Evolution and Process, page e2723. 914

OpenAI. 2022. Chatgpt. 915

OpenAI. 2023. Gpt-4 technical report. 916

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car- 917
roll L. Wainwright, Pamela Mishkin, Chong Zhang, 918
Sandhini Agarwal, Katarina Slama, Alex Ray, John 919
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 920
Maddie Simens, Amanda Askell, Peter Welinder, 921
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. 922
Training language models to follow instructions with 923
human feedback. CoRR, abs/2203.02155. 924

Mohammadreza Pourreza and Davood Rafiei. 2023. 925
Din-sql: Decomposed in-context learning of 926
text-to-sql with self-correction. arXiv preprint 927
arXiv:2304.11015. 928

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan 929
Liu, and Heng Ji. 2023. Creator: Disentan- 930
gling abstract and concrete reasonings of large lan- 931
guage models through tool creation. arXiv preprint 932
arXiv:2305.14318. 933

11

https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,934
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,935
Chaojun Xiao, Chi Han, and 1 others. 2023a. Tool936
learning with foundation models. arXiv preprint937
arXiv:2304.08354.938

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan939
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,940
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,941
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and942
Maosong Sun. 2023b. Toolllm: Facilitating large943
language models to master 16000+ real-world apis.944
Preprint, arXiv:2307.16789.945

Gaurav Sahu, Abhay Puri, Juan Rodriguez, Alexan-946
dre Drouin, Perouz Taslakian, Valentina Zantedeschi,947
Alexandre Lacoste, David Vazquez, Nicolas Cha-948
pados, Christopher Pal, and 1 others. 2024. In-949
sightbench: Evaluating business analytics agents950
through multi-step insight generation. arXiv preprint951
arXiv:2407.06423.952

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta953
Raileanu, M. Lomeli, Luke Zettlemoyer, Nicola Can-954
cedda, and Thomas Scialom. 2023. Toolformer: Lan-955
guage Models Can Teach Themselves to Use Tools.956
ArXiv, abs/2302.04761.957

Shuyu Shen, Sirong Lu, Leixian Shen, Zhonghua Sheng,958
Nan Tang, and Yuyu Luo. 2024. Ask humans or ai?959
exploring their roles in visualization troubleshooting.960
arXiv preprint arXiv:2412.07673.961

Yongliang Shen, Kaitao Song, Xu Tan, Dong Sheng Li,962
Weiming Lu, and Yue Ting Zhuang. 2023. Hugging-963
gpt: Solving ai tasks with chatgpt and its friends in964
huggingface. ArXiv, abs/2303.17580.965

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu966
Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang,967
and May D Wang. 2024. Ehragent: Code empow-968
ers large language models for complex tabular rea-969
soning on electronic health records. arXiv preprint970
arXiv:2401.07128.971

Noah Shinn, Federico Cassano, Ashwin Gopinath,972
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-973
flexion: Language agents with verbal reinforcement974
learning. In Thirty-seventh Conference on Neural975
Information Processing Systems.976

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and977
Dongmei Zhang. 2024. Table meets llm: Can large978
language models understand structured table data?979
a benchmark and empirical study. In Proceedings980
of the 17th ACM International Conference on Web981
Search and Data Mining, pages 645–654.982

Ruoxi Sun, Sercan Arik, Rajarishi Sinha, Hootan983
Nakhost, Hanjun Dai, Pengcheng Yin, and Tomas984
Pfister. 2023a. SQLPrompt: In-context text-to-SQL985
with minimal labeled data. In Findings of the Associ-986
ation for Computational Linguistics: EMNLP 2023,987
pages 542–550, Singapore. Association for Compu-988
tational Linguistics.989

Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun 990
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas 991
Pfister. 2023b. Sql-palm: Improved large language 992
modeladaptation for text-to-sql. arXiv preprint 993
arXiv:2306.00739. 994

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. 995
Vipergpt: Visual inference via python execution for 996
reasoning. Preprint, arXiv:2303.08128. 997

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 998
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 999
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 1000
Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard 1001
Grave, and Guillaume Lample. 2023. Llama: Open 1002
and Efficient Foundation Language Models. ArXiv, 1003
abs/2302.13971. 1004

Jorge Valverde-Rebaza, Aram González, Octavio 1005
Navarro-Hinojosa, and Julieta Noguez. 2024. Ad- 1006
vanced large language models and visualization tools 1007
for data analytics learning. In Frontiers in Education, 1008
volume 9, page 1418006. Frontiers Media SA. 1009

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, 1010
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun 1011
Li. 2023a. Mac-sql: Multi-agent collaboration for 1012
text-to-sql. arXiv preprint arXiv:2312.11242. 1013

Tianshu Wang, Hongyu Lin, Xianpei Han, Le Sun, Xi- 1014
aoyang Chen, Hao Wang, and Zhenyu Zeng. 2023b. 1015
Dbcopilot: Scaling natural language querying to mas- 1016
sive databases. arXiv preprint arXiv:2312.03463. 1017

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 1018
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 1019
Hajishirzi. 2022a. Self-instruct: Aligning language 1020
model with self generated instructions. Preprint, 1021
arXiv:2212.10560. 1022

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo- 1023
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva 1024
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An- 1025
jana Arunkumar, David Stap, Eshaan Pathak, Giannis 1026
Karamanolakis, Haizhi Gary Lai, Ishan Virendrab- 1027
hai Purohit, Ishani Mondal, Jacob William Ander- 1028
son, Kirby C. Kuznia, Krima Doshi, Kuntal Kumar 1029
Pal, and 21 others. 2022b. Super-NaturalInstructions: 1030
Generalization via Declarative Instructions on 1600+ 1031
NLP Tasks. In Proceedings of the 2022 Conference 1032
on Empirical Methods in Natural Language Process- 1033
ing (EMNLP). Association for Computational Lin- 1034
guistics. 1035

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar- 1036
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly 1037
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu 1038
Lee, and 1 others. 2024. Chain-of-table: Evolving 1039
tables in the reasoning chain for table understanding. 1040
arXiv preprint arXiv:2401.04398. 1041

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 1042
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 1043
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. 1044
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy 1045

12

https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560

Liang, Jeff Dean, and William Fedus. 2022a. Emer-1046
gent abilities of large language models. CoRR,1047
abs/2206.07682.1048

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten1049
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,1050
and Denny Zhou. 2022b. Chain of Thought Prompt-1051
ing Elicits Reasoning in Large Language Models. In1052
Conference on Neural Information Processing Sys-1053
tems (NeurIPS).1054

Luoxuan Weng, Yinghao Tang, Yingchaojie Feng, Zhuo1055
Chang, Peng Chen, Ruiqin Chen, Haozhe Feng, Chen1056
Hou, Danqing Huang, Yang Li, and 1 others. 2024.1057
Datalab: A unifed platform for llm-powered business1058
intelligence. arXiv preprint arXiv:2412.02205.1059

Chenfei Wu, Sheng-Kai Yin, Weizhen Qi, Xiaodong1060
Wang, Zecheng Tang, and Nan Duan. 2023a. Visual1061
ChatGPT: Talking, Drawing and Editing with Visual1062
Foundation Models. arXiv.1063

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,1064
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,1065
Xiaoyun Zhang, and Chi Wang. 2023b. Auto-1066
gen: Enabling next-gen llm applications via multi-1067
agent conversation framework. arXiv preprint1068
arXiv:2308.08155.1069

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,1070
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-1071
badur, David Rosenberg, and Gideon Mann. 2023c.1072
Bloomberggpt: A large language model for finance.1073
arXiv preprint arXiv:2303.17564.1074

Xueqing Wu, Rui Zheng, Jingzhen Sha, Te-Lin Wu,1075
Hanyu Zhou, Mohan Tang, Kai-Wei Chang, Nanyun1076
Peng, and Haoran Huang. 2024. Daco: To-1077
wards application-driven and comprehensive data1078
analysis via code generation. arXiv preprint1079
arXiv:2403.02528.1080

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin1081
Qu, and Chen Zhu-Tian. 2024. Waitgpt: Monitoring1082
and steering conversational llm agent in data analysis1083
with on-the-fly code visualization. arXiv preprint1084
arXiv:2408.01703.1085

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-1086
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,1087
Qian Liu, Che Liu, and 1 others. 2023. Openagents:1088
An open platform for language agents in the wild.1089
arXiv preprint arXiv:2310.10634.1090

Siqiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng,1091
Keting Chen, Hongjun Yang, Zhiping Zhang, Jian-1092
shan He, Hongyang Zhang, Ganglin Wei, Wang1093
Zhao, Fan Zhou, Danrui Qi, Hong Yi, Shaodong1094
Liu, and Faqiang Chen. 2023. Db-gpt: Empower-1095
ing database interactions with private large language1096
models. arXiv preprint arXiv:2312.17449.1097

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong,1098
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,1099
Pengyuan Liu, Dong Yu, and 1 others. 2024. Mat-1100
plotagent: Method and evaluation for llm-based1101

agentic scientific data visualization. arXiv preprint 1102
arXiv:2402.11453. 1103

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 1104
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 1105
React: Synergizing reasoning and acting in language 1106
models. arXiv preprint arXiv:2210.03629. 1107

Junyi Ye, Mengnan Du, and Guiling Wang. 2024. 1108
Dataframe qa: A universal llm framework on 1109
dataframe question answering without data exposure. 1110
arXiv preprint arXiv:2401.15463. 1111

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 1112
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 1113
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, 1114
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan 1115
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023. 1116
Glm-130b: An Open Bilingual Pre-trained Model. 1117
ICLR 2023 poster. 1118

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, 1119
Qingyi Huang, Saisai Yang, Jing Yuan, Chang- 1120
bao Su, Xiang Li, Aofeng Su, and 1 others. 2023. 1121
Tablegpt: Towards unifying tables, nature lan- 1122
guage and commands into one gpt. arXiv preprint 1123
arXiv:2307.08674. 1124

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen 1125
Xu, and Kai Yu. 2023a. Act-sql: In-context learning 1126
for text-to-sql with automatically-generated chain-of- 1127
thought. arXiv preprint arXiv:2310.17342. 1128

Haochen Zhang, Yuyang Dong, Chuan Xiao, and 1129
Masafumi Oyamada. 2023b. Large language 1130
models as data preprocessors. arXiv preprint 1131
arXiv:2308.16361. 1132

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 1133
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 1134
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi- 1135
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel 1136
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu 1137
Wang, and Luke Zettlemoyer. 2022. Opt: Open 1138
Pre-trained Transformer Language Models. ArXiv, 1139
abs/2205.01068. 1140

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bo- 1141
han Zhang, Guanlin Li, Zijun Yao, Kangli Xu, Jin- 1142
chang Zhou, Daniel Zhang-Li, and 1 others. 2024a. 1143
Tablellm: Enabling tabular data manipulation by 1144
llms in real office usage scenarios. arXiv preprint 1145
arXiv:2403.19318. 1146

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, 1147
Yuqing Yang, and Kan Ren. 2024b. Bench- 1148
marking data science agents. arXiv preprint 1149
arXiv:2402.17168. 1150

13

https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449

Appendix1151

A Preprocessing of Workflow Deployment1152

Intent Analysis To accurately comprehend user1153

requests, Data-Copilot first parses the time, loca-1154

tion, data object, and output format of user requests,1155

which are critical to data-related tasks. For exam-1156

ple, the request is: "I want to compare the GDP1157

and CPI trend in our area over the past1158

five years", Data-Copilot parses it as: "Draw a1159

line chart of China’s national GDP and1160

CPI per quarter from May 2019 to May 20241161

for comparison". To achieve this, we first in-1162

voke an external API to obtain the local time and1163

network IP address, then feed this supportive infor-1164

mation into LLMs along with the original request1165

to generate the parsed result.1166

Multi-form Output Upon execution of the1167

workflow, Data-Copilot yields the desired results1168

in the form of graphics, tables, and descriptive1169

text. Additionally, it also provides a comprehen-1170

sive summary of the entire workflow. It greatly1171

enhances the interpretability of the whole process,1172

as the interface workflow is easy for humans to1173

read and inspect. As the example shown in Fig-1174

ure F2, the request is "Forecasting China’s1175

GDP growth rate...". Data-Copilot first inter-1176

prets the user’s intent. Then it deploys a three-1177

step workflow: 1) Invoking get-GDP-data() inter-1178

face to acquire historical GDP data. 2) Invoking1179

predict-next-value() interface for forecasting.1180

3) Visualizing the output.1181

B Experiments Details1182

B.1 Baselines and Experiments Details1183

We compare Data-Copilot with ② direct code gen-1184

eration (Direct-Code) and various agent strategies:1185

③ ReAct (Yao et al., 2022): LLMs iteratively com-1186

bine reasoning and code execution. ④ Reflex-1187

ion (Shinn et al., 2023): LLMs refine responses1188

based on compiler feedback, limited to two iter-1189

ations. ⑤ Multi-agent collaboration (Wu et al.,1190

2023b; Hong et al., 2023; Liang et al., 2023a):1191

Three LLM agents (two coders, one manager) col-1192

laborate to generate solutions. Data-Copilot uses1193

the same LLM as all baselines when invoking pre-1194

designed interfaces. Detailed prompts are in Ap-1195

pendix E.5.1196

B.2 The Definitions of Three Complexity 1197

Levels for Testset 1198

We categorize our test set into three types based 1199

on the number of entities involved: single entity, 1200

multiple entities, and multiple entities with com- 1201

plex relations (e.g., loop calculations). The ststics 1202

of three subset are shown in Table B1. 1203

• Single entity: Requests involve a single entity 1204

and can be resolved step-by-step. E.g., "query 1205

based on a specific condition". 1206

• Multiple entities: Requests require processing 1207

multiple entities simultaneously. E.g., "com- 1208

pare a certain metric across multiple entities". 1209

• Multiple entities with complex relations: In- 1210

volving multiple entities and containing loops, 1211

nesting, and other intricate logic. E.g., "List 1212

the top 10 stocks by yesterday’s price increase 1213

that also in the internet industry." 1214

B.3 The Quality of Self-exploration Requests. 1215

To assess the quality of self-exploration requests, 1216

we invited four additional graduate students to 1217

manually evaluate our test set (546 requests) 1218

and human-proposed requests (173 seed set) on 1219

four criteria: task difficulty, request 1220

rationality, expression ambiguity, and 1221

answer accuracy. We provide detailed guidance 1222

for each criterion in Appendix B.5. The results 1223

of two sets are shown in Table B2. We observed 1224

that the synthesized requests exhibit a comparable 1225

quality to human-proposed requests, with slightly 1226

higher difficulty, ambiguity, and similar rationality. 1227

It ensures that our test set can reflect most of the 1228

real-world demands. Besides, the evaluators gave 1229

a high score of 4.8 on the label (answer table) of 1230

our test set, which also ensures the accuracy of our 1231

dataset. 1232

B.4 The detail of GPT-4o Evaluation 1233

As described in Section 4.1, the evaluation contains 1234

three aspects: Data-table, Image, and Efficiency. 1235

Data-table Evaluation: For each request, we 1236

use GPT-4o to compare predicted data table with 1237

human-annotated table. If GPT-4o identifies any 1238

inconsistencies, the judgment is False. For exam- 1239

ple, a request: “Please show me the China’s GDP 1240

....” with its labeled data-table: [2023: 17.8 , 2022: 1241

17.9 , 2021: 17.8 , 2020: 14.6]. Predicted data: 1242

14

Table B1: Statistics of four task types and three complexity levels on our test set.

Task
Types

Request Complexity
Single Entity Multiple Entities Multi-entities with Complex Relation Overall

Stock 79 106 87 272
Fund 55 36 22 113
Corporation 97 30 4 131
Other 6 12 13 31
Total 237 184 126 547

Table B2: Human evaluation on the human-proposed re-
quests and synthesized requests across four dimensions.

Task
Difficulty

Request
Rationality

Expression
Ambiguity

Answer
Accuracy

Seed Set 3.5 4.3 4.4 -
Test Set 3.9 4.2 4.0 4.8

Table B3: Comparison of Human and GPT-4o Evalua-
tions

Human
Evaluation

GPT-4o
Evaluation

Average Score 65.8 67.2
Correlation Coefficient 0.894 0.894
N(score ≥ 60) 35 cases 38 cases

[2023: 17.8 , 2022: 17.9 , 2021: 17.8]. Based on1243

them, judgment of GPT-4o is False.1244

Image Evaluation: We design a comprehen-1245

sive evaluation checklist for GPT-4o-based image1246

scoring, comprising 5 main categories with 10 sub-1247

dimensions. It includes (1) numerical points, (2)1248

lines, (3) axes, (4) aesthetics of image layout, and1249

(5) chart design, e.g., Chart type, Color usage, Pro-1250

portion and scale, Labels and legends, Readability,1251

Completeness, Relevance, Distinctiveness, Data ac-1252

curacy, ... If the total score exceeds 60 points, the1253

image is considered to meet expectations (True);1254

otherwise, it is judged as false.1255

Manual Evaluation Vs. GPT-4o Evaluation.1256

For data-table evaluation, GPT-4o’s assessment re-1257

sults are highly accurate as it only needs to com-1258

pare differences in text modality. For image evalu-1259

ation, we randomly sampled 50 examples for both1260

human and GPT-4o-based evaluation. As shown1261

in Table B3, we calculate the average score, cor-1262

relation coefficient, and the #samples >= 60 of1263

the two methods. The results show that the aver-1264

age scores of the two evaluation methods are close1265

(GPT-based: 67.2, Human-based: 65.8), and the1266

two score sequences also have a strong correlation1267

(0.894).1268

Figure B1: We count the keywords for each request type
(Stock, Corp., Fund, Others) in the test set.

B.5 Human Evaluation on Test Benchmark 1269

We invite four more graduate students to manually 1270

evaluate our benchmark according to four criteria: 1271

task difficulty, request rationality, expression am- 1272

biguity, and answer accuracy. The belief guidance 1273

for human evaluation is as follows: 1274

• Task Difficulty: The difficulty of the task, 1275

whether it requires multiple steps... Scoring 1276

Criteria: 5: very difficult,..., 1: easy. 1277

• Request Rationality: Whether the request 1278

is reasonable, or if it is strange and does not 1279

align with human habits... Scoring Criteria: 5: 1280

Reasonable, aligns with humans.. 1281

• Expression Ambiguity: Whether the phras- 1282

ing of the request is ambiguous, or if the enti- 1283

ties involved are unclear... Scoring Criteria: 5: 1284

Clear without any ambiguity... 1285

• Answer Accuracy: Whether the answer table 1286

is correct, detailed, and comprehensive, totally 1287

meeting user expectations... Scoring Criteria: 1288

5: Data is totally correct ... 3: Partial... 1289

B.6 Ablation Study 1290

As shown in Section 4.3, we ablate Data-Copilot 1291

from three aspects: ① We ablate the self- 1292

15

exploration request process. Instead, we directly1293

used seed requests for interface design and opti-1294

mization. It leads to a 34.3 performance drop.1295

We observe that too few seed requests are insuf-1296

ficient to design universe interfaces. ② We ablate1297

the interface optimization. It means every suc-1298

cessfully designed interface was retained in the1299

interface library. We observe that performance is1300

also significantly affected (-28 points). Without1301

interface optimization, there are many similar in-1302

terfaces, which hurt the effect of workflow invo-1303

cation. ③ Interface-Code Hybrid Generation:1304

Data-Copilot can only invoke interfaces during1305

workflow deployment. Without a hybrid genera-1306

tion manner, it shows a 6.4-point performance drop,1307

which is caused by “uncovered” requests. It high-1308

lights our flexibility in addressing different types1309

of requests.1310

B.7 Expanding to Other Programming1311

Languages1312

In addition to the Python language, Data-Copilot1313

exhibits excellent scalability, allowing for easy1314

switching to other programming languages by sim-1315

ply regenerating the corresponding interfaces. We1316

tested three programming languages: Python, C++,1317

and Matlab. The results indicate that Python per-1318

formed the best (Accuracy: 70.2), followed by C++1319

(54.2), with Matlab (36.5) yielding the poorest re-1320

sults. Upon examination, we found that Matlab1321

code often suffers from formatting errors or di-1322

mensional discrepancies in the data, rendering the1323

program non-executable. We speculate this may be1324

related to a lack of sufficient Matlab code in the1325

pre-training corpus. So ultimately, we opted for1326

Python for Data-Copilot.1327

C Related Works1328

In the recent past, breakthroughs in large language1329

models (LLMs) such as GPT-3, GPT-4, PaLM,1330

and LLaMa (Brown et al., 2020; Chowdhery et al.,1331

2022; Zhang et al., 2022; Zeng et al., 2023; Tou-1332

vron et al., 2023; Ouyang et al., 2022; OpenAI,1333

2023; Wei et al., 2022a; Zhang et al., 2024a) have1334

revolutionized the field of natural language pro-1335

cessing (NLP). These models have showcased re-1336

markable competencies in handling zero-shot and1337

few-shot tasks along with complex tasks like math-1338

ematical and commonsense reasoning. The impres-1339

sive capabilities of these LLMs can be attributed1340

to their extensive training corpus, intensive compu-1341

tation, and alignment mechanism (Ouyang et al., 1342

2022; Wang et al., 2022b,a). 1343

LLM-based Agent Recent studies have begun 1344

to explore the synergy between external tools and 1345

large language models (LLMs). Tool-enhanced 1346

studies (Schick et al., 2023; Gao et al., 2022; Qin 1347

et al., 2023a; Hao et al., 2023; Qin et al., 2023b; 1348

Hou et al., 2023) integrate external tools into LLM, 1349

thus augmenting the capability of LLMs to em- 1350

ploy external tools. Several researchers have ex- 1351

tended the scope of LLMs to include the other 1352

modality (Wu et al., 2023a; Surís et al., 2023; 1353

Shen et al., 2023; Liang et al., 2023b; Huang 1354

et al., 2023). In addition, there are many LLM- 1355

based agent applications (Xie et al., 2023), such 1356

as CAMEL (Li et al., 2023a), AutoGPT2, Agent- 1357

GPT3, BabyAGI4, BMTools5, LangChain6, Agent- 1358

verse (Chen et al., 2023b), Autoagent (Chen et al., 1359

2023a), MetaGPT (Hong et al., 2023), Auto- 1360

GEN (Wu et al., 2023b), etc. Most of them are 1361

focused on daily tools or code generation and do 1362

not consider the specificity of data-related tasks. 1363

Except for learning to operate the tools, several 1364

contemporaneous studies (Cai et al., 2023; Qian 1365

et al., 2023) have proposed to empower LLMs to 1366

create new tools for specific scenarios like mathe- 1367

matical solving and reasoning. These impressive 1368

studies have revealed the great potential of LLM to 1369

handle specialized domain tasks. 1370

Applying LLM To Data Science Apart from 1371

these studies, the application of large models in 1372

the field of data science has garnered significant 1373

interest among researchers (Maddigan and Susn- 1374

jak, 2023; Valverde-Rebaza et al., 2024; Gu et al., 1375

2024a; Liu et al., 2024b; Chen et al., 2024a; Zhang 1376

et al., 2023b; Ahn, 2024; Inala et al., 2024; Liu 1377

et al., 2024a; Xie et al., 2024; Wu et al., 2024; 1378

Guo et al., 2024a; Cao et al., 2024; Lu et al., 2024; 1379

Ye et al., 2024; Sui et al., 2024; Ford et al., 2024; 1380

Chen et al., 2024b; Weng et al., 2024; Shen et al., 1381

2024). FLAME (Joshi et al., 2023) investigates the 1382

feasibility of using NLP methods to manipulate Ex- 1383

cel sheets. StructGPT (Jiang et al., 2023) explore 1384

reasoning abilities of LLM over structured data. 1385

LiDA (Dibia, 2023) and GPT4-Analyst (Cheng 1386

et al., 2023; Ma et al., 2023) focus on automated 1387

2https://github.com/Significant-Gravitas/
Auto-GPT

3https://github.com/reworkd/AgentGPT
4https://github.com/yoheinakajima/babyagi
5https://github.com/OpenBMB/BMTools
6https://github.com/hwchase17/langchain

16

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/reworkd/AgentGPT
https://github.com/yoheinakajima/babyagi
https://github.com/OpenBMB/BMTools
https://github.com/hwchase17/langchain

data exploration. Besides, many reseraches (Liu1388

et al., 2023; Chang and Fosler-Lussier, 2023; Dong1389

et al., 2023; Almheiri et al., 2024), like Sheet-1390

Copilot (Li et al., 2023b), BIRD (Li et al., 2024b),1391

DAIL-SQL (Gao et al., 2023), DIN-SQL (Pourreza1392

and Rafiei, 2023), PET-SQL (Li et al., 2024c), DB-1393

Copilot (Wang et al., 2023b), MAC-SQL (Wang1394

et al., 2023a), ACT-SQL (Zhang et al., 2023a),1395

ChatBI (Lian et al., 2024), CodeS (Li et al., 2024a),1396

SQLPrompt (Sun et al., 2023a), ChatDB (Hu et al.,1397

2023), SQL-PaLM (Sun et al., 2023b), and DB-1398

GPT (Xue et al., 2023), EHRAgent (Shi et al.,1399

2024) apply LLMs to Text2SQL and table rason-1400

ing. Chain-of-Table (Wang et al., 2024) proposes1401

a step-by-step reasoning strategy based on the ta-1402

ble. Some researchers also focus on designing1403

various benchmarks and evaluation methods (Lai1404

et al., 2023; Zhang et al., 2024b; Sahu et al., 2024;1405

Yang et al., 2024; Ma et al., 2024; Gu et al., 2024b;1406

Jing et al., 2024; Hu et al., 2024) for LLMs in data1407

science.1408

D Visualization1409

We provide several cases in this section to visual-1410

ize workflow deployed by Data-Copilot, which in-1411

cludes queries about diverse sources (stocks, com-1412

pany finance, funds, etc.) using different structures1413

(parallel, serial, and loop Structure).1414

Different Structures As shown in Figure F4,F5,1415

Data-Copilot deploys different structural work-1416

flows based on user requirements. In Figure F4, the1417

user proposes a complex request, and Data-Copilot1418

deploys a loop structure to implement the finan-1419

cial data query of each stock, and finally outputs1420

a graph and table in parallel. In Figure F5, Data-1421

Copilot proposes a parallel structure workflow to1422

meet user request (the demand for comparison in1423

user request) and finally draws two stock indica-1424

tors on the same canvas. These concise workflows1425

can cope with such complex requests well, which1426

suggests that the data exploration and workflow1427

deployment process of Data-Copilot are rational1428

and effective.1429

Diverse Sources Figure F6, F7, F8 demonstrate1430

that Data-Copilot is capable of handling a large1431

number of data sources, including stocks, funds,1432

news, financial data, etc. Although the formats1433

and access methods of these data types are quite1434

different, our system efficiently manages and dis-1435

plays the data through its self-designed versatile1436

interface, requiring minimal human intervention.1437

E Detailed Prompts 1438

We provide detailed prompts for our Data-Copilot 1439

and baselines. Specifically, for the data exploration, 1440

we provide detailed prompts in Appendix E.3 for 1441

four phases: self-exploration, interface design, and 1442

interface optimization. For the workflow deploy- 1443

ment phase, we also provide prompts for three 1444

key procedures in Appendix E.4: Intent Analysis, 1445

Task Selection, and Planning Workflow. Addition- 1446

ally, we outline prompts for all baselines in Ap- 1447

pendix E.5: Direct-Code, ReAct, Reflection, and 1448

Multi-Agent Collaboration strategies. 1449

E.2 Example for Data Exploration 1450

Instruction: Given some data and its 1451
description , please mimic these seed 1452
requests and generate more requests. The 1453
requests you generate should be as 1454

diverse as possible , covering more data 1455
types and common needs. 1456
Seed Request: {request1, request2,...} 1457
Parsing file for GDP_Data :{ 1458

Description: This data records China’s 1459
annual and quarterly GDP..., 1460
Access Method: pro.cn-gdp(start-time, 1461
end-time, frequency,...), 1462
Output Schema: Return 9 columns, 1463
including quarter, gdp, gdp-yoy..., 1464
Usage:{ 1465

Example: pro.cn-gdp(start-q=’2018Q1’, 1466
end-q=’2019Q3’,..), 1467
First Row: {2019Q4, 990, 1468
..}, Last Rows: {2018Q4, 900, ..}}} 1469

Parsing file for Stock_data :{...} , 1470
.... 1471

F Case Study 1472

Detailed cases of data exploration and workflow de- 1473

ployment are presented in Appendices F.1 and F.2. 1474

1475

17

E.1 Algorithm Flow For Interface Design and Optimization

Step 1: Interface Design and Testing

1. One-to-One Interface Design
* Design interfaces one -by-one using synthesized requests (request 1---->
interface 1)
* Generate a series of initial interfaces with single functionalities

2. Test Case Generation
* For each designed interface:

> Sample a sub data -table from relevant data sources
> Generate test requests based on data schemas and sampled sub -tables
> For example: For an interface: "GDP_retrieves(Year , Country)"

- Sample a data point from the GDP table: China , 2023, $13 trillion
- Generate test request: "What is China ’s GDP in 2023?"
- Use the sampled sub -table as the expected answer

> Repeat this process K times for each interface , generating K test cases
3. Interface Evaluation

* Use the generated test cases to evaluate the usability of each interface
* Record interfaces that pass the tests and their testing results

Step 2: Interface Optimization and Compiler Feedback Evaluation

1. Similar Interface Retrieval
* Analyze the functionality and parameters of all interfaces
* Identify pairs of interfaces with similar or overlapping functionalities

2. Interface Merging Decision
* For each pair of similar interfaces , assess the necessity and feasibility of
merging
* Consider functional coverage , usage scenarios , and complexity of the interfaces

3. Interface Merging Execution
* Design a new merged interface ensuring:

> The new interface covers all functionalities of the original two interfaces
4. Merged Interface Evaluation

* Evaluate the merged interface using test cases generated in the previous steps
* Collect compiler feedback on the merged interface
* Verify:

> Whether the new interface can correctly handle all test cases of the
original interfaces
> Whether the output is consistent with the original interfaces in both format
and content

5. Feedback-Based Self-Optimization
* If the merged interface fails evaluation:

> Guide the LLMs to analyze compiler feedback
> Perform self -reflection based on the feedback and two old interfaces
> Optimize the interface design to address issues

* Repeat the evaluation -reflection -optimization cycle multiple times
* Abandon the merging attempt after multiple fails

18

E.3 Prompts For Data Exploration

Explore Data by self-exploration Phase
Instruction: Given some data and its description , please mimic these seed
requests and generate more requests. The requests you generate should be as diverse
as possible , covering more data types and common needs.

Seed Request: {request1, request2,...}
parsing file for GDP -Data:{

Description: This data records China’s annual and quarterly GDP...,
Access Method: You can access the data by pro.cn-gdp(start-time, end-time, frequency,...),
start-time means....,
Output Schema: The data return 9 columns, including quarter: quarter, gdp: cumulative GDP,
gdp-yoy: quarterly Year-on-Year growth rate, pi,...,
Usage:{

Example: pro.cn-gdp(start-q=’2018Q1’, end-q=’2019Q3’, frequency=’quarter’),
First Row: {2019Q4 990865.1 6.10, ...},
Last Rows: {2018Q4 900309.5 6.60, ...}}}

parsing file for stock_data: {...}

Interface Design:
Instruction: You are an experienced program coder. Given a request and some
existing interfaces , you should use these interfaces to solve the request or design
new interfaces to resolve my request.

(1) You should define the name , function , inputs , and outputs of the interface.
Please describe the functionality of the interface as accurately as possible and
write complete implementation code in the new interface.
(2) Finally please explain how to resolve my request using your newly designed
interfaces or existing interfaces in the neural language.

Output Format:
Your newly designed interfaces:
Interface1 ={ Interface Name: {name},

Function description: {This interface is to ...},
Input: {argument1: type, argument2: type, ...},
Output: {pd.DataFrame} }

Interface2 =....

The solving process for request: {To fullfil this request, I design a interface ...}
###The user request: {input request}
Data Files: {All data parsing files}
###The existing interfaces: {all interfaces in library}

Interface Optimization
Instruction: Please check that the interface you have designed can be merged with
any existing interfaces in the library.

(1) You should merge interfaces with similar functionality and similar input and
output formats into a new interface.
(2) You can use parameters to control the different inputs , if you want to merge two
interfaces.

(3) Please explain your reason for merging and output all interfaces in the library
after merging.
(4) If you don ’t think a merge is necessary , then just add new interfaces into the
existing interface library and output them all.

###New interfaces: {interfaces}
Existing interfaces: {interface1, interface2, interface3, ..}
Output Format:
The reasons for merging: {reason}
Interfaces after merging: {interface1, interface2, optimized interface3, ..}

19

E.4 Prompts For Workflow Deployment

Intent Analysis Phase
Analysis Prompt: Please parse the input request for time , place , object , and
output format. You should rewrite the instruction according to today ’s date. The
rewritten new instruction must be semantically consistent and contain a specific
time and specific indicators.

Output Format: Rewritten Request. (Time:%s, Location :%s, Object :%s, Format :%s).

User Request: Today is {Timestamp}. The user request is {Input Request}.
Please output a Rewritten Request.

Task Selection
Select Prompt: Please select the most suitable task according to the given
Request and generate its task_instruction in the format of task={ task_name:
task_instruction }. There are four types of optional tasks. [fund_task]: used to
extract and process tasks about all public funds. [stock_task]: for extracting and
processing tasks about all stock prices , index information , company financials , etc
., [economic_task]: for extracting and processing tasks about all Chinese
macroeconomic and monetary policies , as well as querying companies and northbound
funds , [visualization_task]: for drawing one or more K-line charts , trend charts , or
outputting statistical results.

Output Format: task1 ={%s: %s}, task2 ={%s: %s}

User Request: {Rewritten Request}.
Please output a task plan for this request.

Planning Workflow
Planning prompt: Please use the given interface (function) to complete the
Instruction step by step. At each step you can only choose one or more interfaces
from the following interface library without dependencies , and generate the
corresponding arguments for the interface , the arguments format should be strictly
in accordance with the interface description. The interface in the later steps can
use results generated by previous interfaces.

Output Format:
Please generate as json format for each step:step1 ={" arg1": [arg1 ,arg2 ...], "
function1 ": "%s", "output1 ": "%s", "description1 ": "%s"}, step2 ={" arg1": [arg1 ,arg2
..], "function1 ": "%s", "output1 ": "%s", "description1 ": "%s"}, ending with ###.

User Request: {Task Instruction}.
Please output an interface invocation for this instruction.

20

E.5 Prompts For Baselines

Direct-Code LLM
Instruction: You are an artificial intelligence assistant. Given some data access
methods and a user request , you should write a complete Python code to fulfill the

user ’s request. Your code must completely fulfill all the user ’s requirements
without syntax errors!

User Request: {User request}
Data files: {All data files}
Please solve the request by Python Code.

Step-by-Step ReAct
Instruction: You are an artificial intelligence assistant. Given some data access
methods and a user request , please think step by step and generate your thoughts

and actions for each step , and then finally realize the user ’s request.
User Request: {User request}
Data files: {All data files}

Thought Prompt: Please think about the next action that should be taken to handle
the user request.

{Thought: I need to ...}
Action Prompt: Based on your previous thoughts , please generate a complete Python
code to accomplish what you just planned.

{Action: def get-data()....}
Observation Prompt: Please summarize the results of the code execution just now
and think about whether this result accomplishes what you planned for this step.
{Action: Yes, I observed that this function successfully fetched the data...}
....

Step-by-Step Reflexion
Instruction: You are an artificial intelligence assistant. Given some data access
methods and a user request , please think step by step and then generate your

thoughts and actions for each step. After the execution of your current action , you
need to reflect on the results until your current plan has been successfully
completed. Then you think about the next step and then generate your next action ,
and finally realize the user ’s request.
User Request: {User request}
Data files: {All data files}

Thought Prompt: Please think about the next action that should be taken to handle
the user request.

{Thought: I need to ...}
Action Prompt: Based on your previous thoughts , please generate a complete Python
code to accomplish what you just planned.

{Action: def get-data()....}
Observation Prompt: Please record the compiler ’s return results just now and
think about whether this result accomplishes what you planned for this step.
{Action: No, I observe that the compiler returns an error...}
Reflection Prompt: Please reflect on the error returned by the compiler and
regenerate a new Python code to resolve the issue. If the compilation passes without
any errors , reflect on whether the current result is what you planned to do.

{Action: I revise my solution as follows: def get-data2()....}
....

21

Multi-agent collaboration
Instruction For Manager: You are the manager of the project team and you need to
lead your team to fulfill user requests. You have two experienced programmers under
you (Programmer -A and -B) and you need to assign them the same or different tasks
according to the user request , then organize the discussion , and finally solve the
problem.
Instruction For Agent1/Agent2: You are an experienced programmer. Your team has a
colleague who is also a programmer and a manager. You need to write code according

to the manager ’s arrangement , discuss it with them , improve your program , and get a
consensus conclusion.
User Request: {User request}
Data files: {All data files}

-------- Phase1 Discussion for Task Assignment -------
Task Assignment Prompt For 3 Agents: Now let ’s start discussing how to solve user
problems. The speaking order is manager , A and B. After a round of discussion , the

manager decides on a preliminary solution and assigns specific tasks to the two
programmers
Manager Response: {To fulfill the request... }
Programmer A Response: {Yes, I agree with the manager. We should first,....}
Programmer B Response: {That’s a good solution. We also should...}
Manager Response: {After discussion, Programmer A should..., B should}

-------- Phase2 Coding and Discussion -------
Prompts For 3 Agents: Two programmers complete their respective tasks as assigned
by their manager. Then the manager organizes a discussion on whether the two

options and their running results are reasonable. Lastly , two programmers need to
regenerate the code.
Programmer A Response: {Solution1 Generated by A}
Programmer B Response: {Solution1 Generated by B}
Prompts For 3 Agents: Please evaluate two solutions. {Solution1, Result1, Solution2,
Result2}
Programmer A Evaluation: {I think ...}
Programmer B Evaluation: {I agree with ...}
Programmer A Regeneration: {Revised Solution1}
Programmer B Regeneration: {Revised Solution2}

-------- Phase3 Discussion -------
....

-------- Phase4 Final Decision -------
Prompts For manager: Please output a complete and correct solving code for user
request based on the previous discussions of the group.
Manager Decision: {Final Solution}

22

F.1 Cases for Data Exploration

---- The First Request: Interface Design -----
Input Request: Get the daily opening price data of Bank of Hangzhou from Jan 23,
2018 to Mar 13, 2019 and plot the trend.

Response: First , we need to design a function to get the opening price data from the
bank ’s database. Then , we need another function to process this data and prepare

them for graphical representation. Finally , we need a function to plot the trend
chart.

New Design Interfaces:
{Interface1=Name:getBankData(), Function:.., Input:.., Output:..}
{Interface2=Name:prepareDataForPlotting(), Function:.., Input:.., Output:..}
{Interface3=Name:plotData(), Function:.., Input:.., Output:..}

The solving process for request: These three new interface functions will meet your
needs. In your program , you would first get the data using getBankData , then process
the data using prepareDataForPlotting , and finally use plotData to plot the trend.

Complete code: {Complete code using three new interfaces...}

---- The Second Request: Interface Definition Phase-------
Input Request: Get the monthly closing price data of Ningde Times from January 23,
2018 to March 13, 2019, and plot the trend.

Response: To fulfill this requirement , we design a new interface function. In
addition , I need to use two existing interfaces to fulfill your requirement.

New Designed Interfaces:
{Interface4=Name: getStockData()..}

Existing Interfaces
{Interface1=Name:getBankData(), ...}
{Interface2=Name:prepareDataForPlotting(), ...}
{Interface3=Name:plotData(), ...}

The solving process for request: You need to call these functions to meet your needs
. First , use new interface {getStockData()} to get the data of Ningde Times , then use
existing interface {prepareDataForPlotting()} to process this data , and finally use {
plotData()} to plot the trend ...

Complete code: {Complete code using three new interfaces...}

---- Interface Optimization Phase -------
The reason for merging: Yes , these interface functions can be merged and
reformulated to eliminate duplicate functions. We can merge getBankData() and
getStockData() into a more generic function get-financial-data(), which can fetch any
financial data , including bank and stock data. In addition , we can keep the
prepareDataForPlotting and plotData functions , as they can also be applied to
different types of financial data]

{Interface1=Interface Name:get-financial-data(), ...}
{Interface2=Interface Name:prepareDataForPlotting(), ...}
{Interface3=Interface Name:plotData(), ...}

23

F.2 Cases for Real-time Request

Request: Today is 2019 -03 -13. The user request is to please help me plot the
stock price trend of Guizhou Maotai from January 23, 2018 to today.

Rewritten Request: Please help me plot the closing price of Guizhou Maotai from
Jan 23, 2018 to Mar 13, 2019 (Time :20180123 -20190313 , Location: China , Object:
Guizhou Maotai stock price , Format: Line).

Plan: task1 ={" stock_task ": "Get the time series data of Guizhou Maotai ’s stock
price from 20180123 to 20190313"} , task2 ={" visualization_task ": "Plot the stock
price of Guizhou Maotai from 20180123 to 20190313 on a line chart"}

Function Call:
step1={

"arg1": [" Guizhou Maotai", "20180123" , "20190313" , "daily"],
"function1 ": "get_stock_prices_data",
"output1 ": "result1",
"description1 ": "Guizhou Maotai daily stock price (open , close , high
, low , etc.) time series data"},

step2={
"arg1": [" result1","close"],
"function1 ": "calculate_stock_index",
"output1 ": "result2v ,
"description1 ": "Guizhou Maotai ’s closing price time series data"},

step3={
"arg": [" result2", null , "line", "Guizhou Maotai closing price chart
from January 23, 2018 to March 13, 2019"] , "function ": "

plot_stock_data",
"output ": "result1",
"description ": "Guizhou Maotai Stock Price Line Chart"

} ###

24

Request: Forecasting China's GDP growth rate for the next 4 quarters
Intent Analysis: Show data and print tables for the next 4 quarters based on China's GDP growth rate
for each quarter from 20000101 to June 07, 2023 (today)
WorkFlow Planning :
step1=: {'arg1': ['20000101', '20230607', 'gdp_yoy'], 'function1': 'get_GDP_data', 'output1': 'result1',
'description1’: GDP historical year-over-year growth data'}
step2=: {'arg1': ['result1', 'gdp_yoy’, 4], 'function1': 'predict_next_value', 'output1': 'result2',
'description1': ' Year-on-year GDP growth data forecast data for the next 4 quarters '}
step1=: {'arg': ['input1', ' Table of GDP forecast data for the next 4 quarters ', True], 'function':
'print_save_table', 'output': 'result1', 'description': ' Print and save GDP forecast data table '}

get_GDP_datapredict_next_value

Step1Step2

result1

20230607

20000101

print_save_table
gdp_yoy

Step3

result2

4gdp_yoy

GDP historical year-
over-year growth data

Year-on-year GDP
growth data forecast data
for the next 4 quarters

Print and save GDP
forecast data table

Output Summary
First, we use the two interface
{get_GDP_data},{predict_next_value} to fetch the
historical GDP data and predict the GDP for the next
four quarters. Then we invoke the {print_save_table}
interface to print and save the table.
Finally, we show you the historical yoy GDP and
forecast data as following:

Figure F2: Data-Copilot deploys workflows to solve users’ prediction request. It invokes three interfaces step by
step and generates arguments for each interface.

25

Interface design in First Stage by LLM

Visualization

Interfaces

Data

Acquisition

Interfaces

Data

Processing

Interfaces

DataFrame

Manipulation

Interfaces

calculate_stock_index (…)

Select or Calculate a index for a stock from source dataframe

stock_data: pd.DataFrame, index:str='close' -> pd.DataFrame

loop_rank (…)

It iteratively applies the given function to each row and get a result

(df: pd.DataFrame, func: callable, *args, **kwargs) -> pd.DataFrame

output_mean_median_col

It calculates the mean and median value for the specified column

(data: pd.DataFrame, col: str = 'new_feature') -> float:\n

merge_indicator_for_same_stock (…)

Merges two DataFrames (two indicators of the same stock)

(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame

select_value_by_column (…)

Selects a specific column or a specific value within a DataFrame

(df1:pd.DataFrame, col_name: str = '', row_index: int = -1) ->

Union[pd.DataFrame, Any]

get_stock_prices_data (…)

Retrieves the daily/weekly/monthly price data for a given stock name

during a specific time period

(stock_name: str='', start_date: str='', end_date: str='', freq:str='daily') -

> pd.DataFrame

get_cpi_ppi_currency_supply_data(…)

Query three types of macro-economic data: CPI, PPI and Money

Supply, each with several different indexes

(start_month: str = '', end_month: str = '', type: str = 'cpi', index: str = '')

-> pd.DataFrame

plot_stock_data (…)

This function plots stock data for cross-sectional data or time-series

data using Line graph or Bar graph

(stock_data: pd.DataFrame, ax: Optional[plt.Axes] = None, figure_type:

str = 'line', title_name: str ='') -> plt.Axes

plot_k_line (…)

Plots a K-line chart of stock price, volume, and technical index: macd,

kdj, etc.

(stock_data: pd.DataFrame, title: str = '') -> None

print_save_table (…)

It prints the dataframe and saves it to a CSV file at the specified file path

(df: pd.DataFrame, title_name: str, save:bool = False ,file_path: str =

'./output/') -> None

Name:

Function:

Input/output:

Name:

Function:

Input/output:

Name:

Function:

Input/output:

Name:

Function:

Input/output:

Name:

Function:

Input/output:

Name:

Function:

Input/output:
Name:

Function:

Input/output:

Name:

Function:

Input/output:

Name:

Function:

Input/output:

Name:

Function:

Input/output:

Data

Prediction

Interfaces

predict_next_value (…)

Predict the next n values of a specific column in the DataFrame using

linear regression

(df: pd.DataFrame, pred_index: str = 'nt_yoy', pred_num:int = 1.) ->

pd.DataFrame

Name:

Function:

Input/output:

Data Acquisition Index Calculation Table Manipulation Visualization General Processing Logic

Stock 11 9 4

e.g., sort_table

select_col

5

e.g.,

plot_line_trend

generate_report

5

e.g.,

loop_rank

handle_missing_data

Fund 6 8

Corp. 4 8

Others 5 3

Figure F3: We have listed some of Data-Copilot’s self-design interfaces, including five categories. Most of the
interfaces are a combination of several simple interfaces. For example, the text marked in blue indicates that the
interface includes multiple functions.

26

Request: The year-on-year net profit growth rates of the SSE 50 index constituents in the first quarter
of this year were
Intent Detecting Stage: Search the distribution of the quarterly financial indicators of the SSE 50 index
constituents' net profit growth rate (netprofit_yoy) from 01/01/2023 to 03/31/2023.
WorkFlow Planning :
step1=: {'arg1': ['上证50', '20230301', '20230331'], 'function1': 'get_index_constituent', 'output1':
'result1', 'description1': ' Information on all SSE 50 constituents for the month '}
step2=: {'arg1': ['result1', 'stock_name', -1], 'function1': 'select_value_by_column', 'output1': 'result2',
'description1': ' Stock names of SSE 50 constituent stocks '}
step3=: {'arg1': ['result2', 'get_Financial_data_from_time_range', '20230331', '20230331',
'netprofit_yoy'], 'function1': 'loop_rank', 'output1': 'result3', 'description1': ' Cross-sectional data of the
year-on-year growth rate of net profit of each constituent stock of the SSE 50 for the first quarter
20230331'}
step4=: {'arg': ['input1', None, ' bar ', 'SSE50 quarterly report 20230331 year-on-year distribution of
net profit growth of each constituent stock '], 'function': 'plot_stock_data', 'output': 'result1',
'description': ' Plotting bar graphs '}
step5=: {'arg': ['input1', 'new_feature', 'SSE50 quarterly report 20230331 year-on-year distribution of
net profit growth of each constituent stock '], 'function': ‘print_save_table', 'output': 'result2',
'description': 'print and save table'}

get_index_
constituent

select_value_by
_column

Step1Step2

Workflow

loop_rank

plot_stock_data

Step3Step4

result3

result2 result1
上证50

'20230301 '

'20230331'

get_Financial_data
_from_time_range

'20230301 '

'20230331'

print_save_table

result3

Figure F4: For complex requests about stock financial data, Data-Copilot deploys a loop workflow to solve user
requests and finally outputs images and tables in parallel.

27

Request: Compare the change in the P/E ratio of Ningde Times and Guizhou Maotai in the last three
years
Intent Detecting Stage:
Please show the technical indicator price-to-earnings valuation (pe-ttm) charts of Ningde Times(宁德
时代) and Guizhou Maotai (贵州茅台) from June 6, 2020 to June 6, 2023 to compare the change in
their PE.

WorkFlow Planning :
step1=: {'arg1': ['宁德时代', '20200606', '20230606'], 'function1': 'get_stock_technical_data', 'output1':
'result1', 'description1': 'Time series data of Ningde times technical indicators ', 'arg2': ['贵州茅台',
'20200606', '20230606'], 'function2': 'get_stock_technical_data', 'output2': 'result2', 'description2': '
Time series data of technical indicators of Guizhou Maotai '}
step2=: {'arg1': ['result1', 'pe_ttm'], 'function1': 'calculate_stock_index', 'output1': 'result3',
'description1': ' Ningde Time's pe value time series data ', 'arg2': ['result2', 'pe_ttm'], 'function2':
'calculate_stock_index', 'output2': 'result4', 'description2': ' Guizhou Maotai's pe value time series data '}
step3=: {'arg': ['input1', None, 'line', ' PE trend of Ningde Times and Guizhou Maotai from Jun 06,
2020 to Jun 06, 2023 '], 'function': 'plot_stock_data', 'output': 'result1', 'description': ' Plotting the PE
trend of Ningde Times '}
step4=: {‘arg’: ['input2', 'result1', ' line ', ' PE trend of Ningde Times and Guizhou Maotai from Jun 06,
2020 to Jun 06, 2023 '], 'function': 'plot_stock_data', 'output': 'result2', 'description': 'Plotting the PE
trend of Guizhou Maotai'}

get_stock_technical_data

get_stock_technical_data

calculate_stock_index

calculate_stock_index

plot_stock_data

plot_stock_data

Step1Step2Step3Step4
宁德时代

贵州茅台

'20200606

'20230606

result1

result2

result3

result4

Workflow

Figure F5: Data-Copilot acquires the P/E data of two stocks in parallel and plots them in a graph.

28

Request: Returns of all funds managed by fund manager Zhou Haidong (周海栋) this year

Intent Detecting Stage: View fund managers, showing a cross-section of returns for each fund

managed by Haidong Zhou from January 1, 2023 to June 6, 2023

WorkFlow Planning :

step1=: {'arg1': ['周海栋'], 'function1': 'query_fund_Manager', 'output1': 'result1', 'description1': ' Data

of all funds managed by Zhou Haidong '}

step2=: {'arg1': ['result1’, 'fund_code', -1], 'function1': 'select_value_by_column', 'output1': 'result2',

'description1': ‘ List of codes of all funds managed by Zhou Haidong '}

step3=: {'arg1': ['result2', 'calculate_earning_between_two_time', '20230101', '20230606', 'adj_nav'],

‘function1’: ‘loop_rank', 'output1': 'result3', 'description1': 'Cross-sectional return data from 20230101

to 20230606 for each fund managed by Haidong Zhou's'}

step4=: {'arg': ['input1', None, 'bar', ' Return of each fund managed by Haidong Zhou from January 1,

2023 to June 6, 2023 '], 'function': 'plot_stock_data', 'output': 'result1', 'description': 'Plotting fund

return histogram '}

'query_fund_

Manager

select_value_by

_column

Step1Step2

Workflow

loop_rankplot_stock_data

Step3Step4

result2 result1

周海栋

calculate_earning_

between_two_time

'20230101 '

'20230606'

result3

Figure F6: Data-Copilot also has access to fund data and can query the returns of all funds managed by the fund
manager.

29

Request: Bank of Chengdu candlestick and KDJ indicator for the past year

Intent Detecting Stage: Display the latest financial news and market developments on financial
websites

WorkFlow Planning :
step1=: {'arg1': ['成都银行', '20220606', '20230606', 'daily'], 'function1': 'get_stock_prices_data',
'output1': 'result1', 'description1': ' Bank of Chengdu daily stock price (open, close, high, low and other
related prices) time series data ', 'arg2': ['成都银行', '20220606', '20230606'], 'function2':
'get_stock_technical_data', 'output2': 'result2', 'description2': ' Time series data of Bank of Chengdu
technical indicators '}
step2=: {'arg1': ['result1', 'candle_K'], 'function1': 'calculate_stock_index', 'output1': 'result3',
'description1': ' Bank of Chengdu candlestick related data ', 'arg2': ['result2', 'KDJ'], 'function2':
'calculate_stock_index', 'output2': 'result4', 'description2': ' Time series data of Bank of Chengdu KDJ
indicator '}
step3=: {'arg1': ['result3', 'result4'], 'function1': 'merge_indicator_for_same_stock', 'output1': 'result5',
'description1': ' Bank of Chengdu Candlestick Indicator and KDJ Indicator Combined Time Series Data
'}
step4=: {'arg': ['input1', 'The K plot and KDJ index for chengduyinhang from 2022/06/06 to
2023/06/06 '], 'function': 'plot_k_line', 'output': 'result1', 'description': ' Plotting candlestick and KDJ
charts '}

get_stock_prices
_data

calculate_stock
_index

Step1Step2

Workflow

get_stock_technical
_data

calculate_stock
_index

merge_indicator_for
_same_stockplot_k_line

Step3Step4

result5 result3

result4
result2

result1

成都银行

'20220606'

'20230606'

daily

Figure F7: Data-Copilot can plot multiple indicators in a single graph by deploying workflows in parallel.

30

Request: I want to see the current news or the latest news

Intent Detecting Stage: Display the latest financial news and market developments on financial
websites

WorkFlow Planning :
step1=: {'arg1': ['sina'], 'function1': 'get_latest_new_from_web', 'output1': 'result1', 'description1': ' The
latest financial news data '}
step2=: {'arg': ['input1', ' The latest financial news and market developments ', False], 'function':
'print_save_table', 'output': 'result1', 'description': ' Scroll to show news '}

get_latest_new_from_webprint_save_table

Step1Step2

Workflow

Request: Introduce the Bank of Chengdu, what is the company, what is the main business

Intent Detecting Stage: Briefly introduce the listed company Bank of Chengdu and its main business

WorkFlow Planning :
step1=: {'arg1': ['成都银行'], 'function1': 'get_company_info', 'output1': 'result1', 'description1': '
Information of Bank of Chengdu '}
step2=: {'arg': ['input1', '成都银行及其相关信息', True], 'function': 'print_save_table', 'output': None,
'description': ' Information of Bank of Chengdu '

get_company_infoprint_save_table

Step1Step2

Workflow

result1
sina

成都银行

result1

Figure F8: Data-Copilot can provide the latest financial news and company information by deploying the corre-
sponding workflows.

31

Top-10 Last-10

A. User Input Panel

B. Text Output Panel

C. Graph and Table Panel

Figure F9: The user interface of our system. The green box (A) is the user input panel, and the purple (B) and red
parts (C) are the results returned by the system.

32

	Introduction
	Data-Copilot
	Data Exploration
	Workflow Deployment

	Dataset Synthesis
	Environment and Data Sources
	The Creation of Dataset
	Qualitative Evaluation

	Quantitative Evaluation
	Experiments Settings
	Comparison Results
	Why Data-Copilot Brings Improvements?

	Conclusion
	Preprocessing of Workflow Deployment
	Experiments Details
	Baselines and Experiments Details
	The Definitions of Three Complexity Levels for Testset
	The Quality of Self-exploration Requests.
	The detail of GPT-4o Evaluation
	Human Evaluation on Test Benchmark
	Ablation Study
	Expanding to Other Programming Languages

	Related Works
	Visualization
	Detailed Prompts
	Example for Data Exploration
	Case Study
	Algorithm Flow For Interface Design and Optimization
	Prompts For Data Exploration

	Prompts For Workflow Deployment
	Prompts For Baselines
	Cases for Data Exploration

	Cases for Real-time Request

