Data-Copilot: Bridging Billions of Data and Humans with
Autonomous Workflow

Anonymous ACL submission

Abstract

Industries such as finance, meteorology, and
energy generate vast amounts of heterogeneous
data daily. Efficiently managing, processing,
and visualizing such data is labor-intensive
and frequently necessitates specialized exper-
tise. Leveraging large language models (LLMs)
to develop an automated workflow presents a
highly promising solution. However, LLMs are
not adept at handling complex numerical com-
putations and table manipulations, and they are
further constrained by a limited length context.
To bridge this, we propose Data-Copilot, a data
analysis agent that autonomously performs data
querying, processing, and visualization tailored
to diverse human requests. The advancements
are twofold: First, it is a code-centric agent
that leverages code as an intermediary to pro-
cess and visualize massive data based on hu-
man requests, achieving automated large-scale
data analysis. Second, Data-Copilot involves a
data exploration phase in advance, which au-
tonomously explores how to design universal
and error-free interfaces from data, reducing
the error rate in real-time responses. Specifi-
cally, It imitates common requests from data
sources, abstracts them into universal interfaces
(code modules), optimizes their functionality,
and validates effectiveness. For real-time re-
quests, Data-Copilot invokes these interfaces
to address user intent. Compared to generating
code from scratch, invoking these pre-designed
and well-validated interfaces can significantly
reduce errors during real-time requests. We
open-sourced Data-Copilot with massive Chi-
nese financial data, such as stocks, funds, and
news. Quantitative evaluations indicate that our
exploration-deployment strategy addresses hu-
man requests more accurate and efficiently,
with good interpretability.

1 Introduction

In the real world, vast amounts of heterogeneous
data are generated every day across various indus-

tries, including finance, meteorology, and energy,
among others. Humans have an inherent and signif-
icant demand for data analysis because these wide
and diverse data contain insights that can be applied
to numerous applications, from predicting financial
trends to monitoring energy consumption. How-
ever, these data-related tasks often require tedious
manual labor and specialized knowledge.

Recently, the advancement of large language
models (LLMs) (Zeng et al., 2023; Touvron et al.,
2023; OpenAl, 2022) and techniques (Wei et al.,
2022b; Kojima et al., 2022) have demonstrated the
capability to handle complex tasks. Given the vast
amounts of data generated daily, can we leverage
LLMs to create an automated data processing
workflow performing data analysis and visual-
ization that best matches user expectations?

An intuitive solution is to treat data as a special
text, i.e., directly use LLMs to read and process
massive data (Wu et al., 2023c; Zha et al., 2023).
However, as shown in Figure 1, several challenges
must be considered: (1) Due to context limitations
of LLMs, it is challenging for LLMs to directly
read and process massive data as they do with text.
Besides, it also poses the potential risk of data
leakage when LLMs directly access private data
sources. (2) Data processing is complex, involving
many tedious numerical calculations and intricate
table manipulations. LLMs are not adept at per-
forming these tasks. (3) Data analysis typically
requires visualizing the results of data processing,
whereas LLMs are limited to generating text out-
put. These challenges constrain the application of
LLMs in data-related tasks.

Recently, many agent-based designs have ex-
plored alternative solutions (Wu et al., 2023a;
Huang et al., 2023; Chen et al., 2023b; Hong
et al., 2023; Wu et al., 2023b; Nejjar et al.,
2023; Li et al.,, 2024b). LiDA (Dibia, 2023)
and GPT4-Analyst (Cheng et al., 2023) focus on
exploring insight from data. Sheet-Copilot (Li

{ LLM as a Data Pr J

-
{ Data Sources 1% LLM can not read all

LLM

. gala due to input context
‘ﬁ Data leakage risks
-

‘ Human Request

ﬁLLM is not adept at
J numerical computation _ J

Only Text $% LLMs only can output text

Data-Copilot)

o

- N
{ Seed Requests 1 . Generated Requests
— Generated Request1:China’s
GDP trend in the last five year |~

Phase 1: Data Exploration

—
Generated Request2: Compare

—
L DataiSources J (China’s CPI last 10 year.....

Phase 2: Workflow Deployment For Real-time Request

Interface Library

‘ 2= Data Acquisition
v{ Interface Design ‘ ——
\ L'«] Table Manipulation

—)
Data Processing

L Interface Optimization J‘ [*2 Data Visualization

L Data Sources Ji

Invoke

‘ Interface Library ‘

| —

Q Compare the of
of the SSE 50 index this year

LLM

Interface Workflow iffitte HHH‘

|

eaming rate
03241
04416
04432

Step2

Step3

Stepd

stock_name
longjilvneng

* China zhongmian
tianheguangneng

I split problem into Four Steps.
T loop through all the component
stocks of the SSES
CTOs: ct al return

Figure 1: We compare two LLM strategies for automated data analysis. Upper: LLM’s capabilities, context
length, and output format constraints limit the use of LLMs to process massive data. Bottom: Data-Copilot is a
code-centric agent that utilizes code to handle extensive data analysis tasks. It explores how to design more universal
and error-free interface modules, improving the success rate of real-time requests. Faced with real-time requests,
Data-Copilot invokes self-design interfaces and constructs a workflow for human intent.

et al.,, 2023b), BIRD (Li et al.,, 2023c), DS-
Agent (Guo et al., 2024b), DB-GPT (Xue et al.,
2023) and TAG (Biswal et al., 2024) apply LLMs
to data science domain like Text2SQL. Data Inter-
preter (Hong et al., 2024) proposes a plan-code-
verify paradigm for automating machine learning
tasks. These methods showcase the potential of
LLM:s in completing complex daily tasks through
agent design paradigms.

Inspired by this, we advocate leveraging the cod-
ing capabilities of LLM to build a data analysis
agent. Acting like a human data analyst, it receives
human requests and generates code as an intermedi-
ary to process massive data and visualize its results
(e.g., chart, table, text) for humans. However, cre-
ating a code agent that can be used in real-world
data analysis tasks is far from an easy feat. ©
LLMs struggle to generate high-quality, error-free
code in a single attempt, often containing format
errors, logical inconsistencies, or fabricating non-
existent functions. @ Although the inference speed
of LLMs has significantly improved, generating
lengthy code still consumes a considerable amount
of time and tokens. These two challenges—high
code error rate and inefficient inference—must
be addressed urgently.

To address this, we observe most human requests
are either similar or inherently related. By abstract-
ing common demands into interfaces and validat-
ing their functionality in advance, we can signifi-
cantly improve both the success rate and efficiency

of real-time deployment. Therefore, we propose
Data-Copilot, an LLM-based agent with an inno-
vative exploration phase to achieve more reliable
data analysis. First, Data-Copilot is a code-centric
agent that connects massive data sources and gen-
erates code to retrieve, process, and visualize data
in a way that best matches user’s intent. The code-
centric design empowers it to efficiently and se-
curely handle extremely large-scale data and nearly
all types of data analysis tasks. Besides, Data-
Copilot also incorporates a data exploration and
interface design phase. It autonomously explores
how to design more universal and error-free inter-
faces (code modules) based on data schemas in
advance. In real-world deployment, Data-Copilot
flexibly invokes pre-design interface modules for
most requests, deploying a well-verified interface
workflow for data processing and visualization.

Data-Copilot brings three advantages. Firstly,
this exploratory process allows Data-Copilot to an-
alyze and summarize the inherent connections be-
tween human requests, design general interfaces
for similar requests, and pre-validate their correct-
ness, reducing errors in real-time responses. Sec-
ondly, when faced with massive requests, our agent
only needs to invoke these pre-designed interfaces
rather than generate redundant code, significantly
improving inference efficiency. Lastly, compared
to lengthy code, these interfaces provide greater
interpretability, since it is easier for human read-
ing and interaction. To achieve this, we contains

three steps (Figure 1) when self exploration:
Explore data and Synthesize requests: Data-
Copilot discovers potential requests and a broader
range of human need from data. It involves a "self-
exploration" process to generate massive requests
based on all data schemas and seed requests.
Interface Design and Test: It designs modular
interface from synthesized requests, with test cases
automatically generated for verification.
Interface Optimization: To improve versatil-
ity, it merges similar interfaces and also revises
erroneous interfaces using compiler’s feedback.
After exploration-design-optimization, Data-
Copilot designs many general and error-free inter-
faces, e.g., data acquiring, forecasting, and visual-
izing modules, to accomplish data analysis tasks.
When faced with real-time requests, Data-Copilot
invokes these predefined interface modules to cre-
ate a concise interface workflow for user requests.
For different requests, Data-Copilot can flexibly
deploy various invocation structures, such as step-
by-step serial workflows, parallel, or loop. It can
even output a hybrid form of interface workflows
and raw code for these "unfamiliar" requests. Our
contributions are threefold:

* We propose a code-centric agent, Data-
Copilot, for automated data analysis and visu-
alization. It leverages LLM’s code generation
abilities for data querying, processing, and
visualization, reducing tedious human labor.

* We decouple code generation into two phases:
data exploration and workflow deployment.
In exploration phase, Data-Copilot learns to
design universal, error-free interface modules
tailored to data. In the face of real-time re-
quests, it flexibly invokes these interfaces to
address users’ diverse requests. This design
enhances the success rate and efficiency of
real-time responses.

* We open-source Data-Copilot for Chinese fi-
nancial data analysis, including stocks, funds,
and live news. Quantitative evaluations indi-
cate our agent outperforms other strategies,
with higher success rates and lower token
consumption. Besides, interface workflows
are more convenient for human inspection and
interaction, offering interpretability.

2 Data-Copilot

Data-Copilot is a code-centric agent capable of per-
forming data analysis and visualization based on

human instructions. It operates in two phases: Data
Exploration and Workflow Deployment. In the first
phase (Section 2.1), Data-Copilot designs a self-
exploration process to discover numerous potential
needs based on data schemas (Step 1: exploration).
Then based on these synthesized requests, it ab-
stracts many universal interface modules (Step 2:
design). After that, it optimizes similar interfaces
and tests their correctness, ensuring each interface
is correct and universal (Step 3: testing and opti-
mization). The whole process is operated in ad-
vance, yielding many generic, error-free interfaces
for subsequent use.

When faced with real-time requests (Sec-
tion 2.2), Data-Copilot can flexibly invoke pre-
designed interfaces or directly generate raw code
based for the user’s request. In most cases, exist-
ing interfaces can cover the majority of real-world
requests, significantly enhancing both success rate
and response speed. We provide a detailed prompt
for two phases in Appendix E.3 and E.4.

2.1 Data Exploration

Let’s review how human data analysts operate. Ini-
tially, they need to observe the available data, un-
derstand the data formats, and learn how to access
them. Subsequently, humans often design generic
modules to simplify the code logic and test these
modules for usability. Similar to this, Data-Copilot
also autonomously explores data and derives in-
sights from vast data sources, including the rela-
tions between the data, and the potential requests
associated with the data. Then Data-Copilot ab-
stracts these exploratory insights into numerous
reusable code components (interfaces), testing their
correctness and optimizing their generality. This
process of exploring data, identifying common re-
quests, designing general interfaces, and testing
and optimizing their performance is conducted in
advance on its own.

Self-Exploration Request. To explore data and
mine insights, we design a self-exploration process.
Beginning with some seed requests collected from
humans, LLMs are prompted to read the data and
generate a large number of requests, each represent-
ing a potential demand scenario. This process is
similar to (Wang et al., 2022a; Dibia, 2023), but the
LLMs should generate requests specifically based
on provided data. As shown in Figure 2, when the
LLMs observe that the economic database contains
historical GDP and CPI data, they generate mul-
tiple related requests, e.g., Compare the CPI of

Phase 1: Data Exploration

Massive Data Sources Request Exploration

Interface Design & Testing Interface Optimization

Generate more diverse

% Economic Database
request based on data

% Financial Databases

[:>,

=

Solve new request using existing
interfaces or design a new one

Merge similar interfaces
Reflect on compiler’s feedback]

Generated Requestl
| want to see the GDP trend
over the past ten years

% Sales Database

Seed Requestl: What was Generated Request2
China’s GDP last year ? Compare the CPI of China
Seed Request2: Compare and the USA last years
two stock returns last year Ger d Request3 R
Show the Financial Index
of all stock

\: Old Interface:
| Query_GDP (), Plot_line ()

Optimized Interface:

New Interface:
QL GDP (), Plot_line (

DP (), Plot_lir

Optimized Interface:

€ GDP_CPI (

Plot_line ()

New Interface:

T

> OL

@
k @@ Feedback

@ Interface Library

Data Visualization DataFrame Manipulation Interfaces

Each interface contains a name, parameters, a functional description, and the implementation code

Data Acquisition Interfaces

+ Print_save_table + Select_value_by_column + Get_stock_prices_data

* Plot_k_lir * mert vo_dataframe » Get_cpi_ppi_currency_supply_data
+ Plot_stock_data + Calculation

@ Real-time Request

—~ N

Q Request ?tet‘ﬂ‘ ‘St?pz‘ Stepa45 Stepl: Obtain data for
Data Calct L

Compare the { Acquisiti }—{ eturr Visualization f~ the three indices in
return of CSI — parallel
300, GEM Index [:>{ Data }H{ Caloulat } _[‘ I } el Step2: Calculate the
and CSI 1000 Acquisitio r — — - returns of the three
Index this year { Data-3] lculat] C indices in parallel

P —— Acquisitior Returr — U \/~ Step3: Plotting the
Q Request Parallel Workflow trend of returns in turn

In the first quarter
of this year, the
year-on-year net
profit growth rate
of the SSE 50
constituents were
_

Q Request

Stepl Step2 Step3

inancial

Acquisitior

Loop Workflow

<

Step4

Data
Select | _\ .
Acquisition Column

Stepl: Get index
constituent stocks
Step2: Select the name
of each stock

Step3: Loop through
the financial index...

"""" "

DR

Use a radar chart
to plot the GDP,

tabl Utilize raw code for radar

Uncovered

Lacking Request Buffes

N N
Data } Calulat }
Acquisit Return

CPI, and PPI,....
across 8 countries:[:>

interface for
radar chart

— —

China, the United
States, Japan,...

Hybrid Generation: Interface and Raw Code

Phase 2: Workflow Deployment

Figure 2: Overview of Data-Copilot. Data Exploration: First, it performs a self-exploration process to uncover
potential human requests from data sources. Then it abstracts many universal and error-free interfaces from
synthesized requests, including interface designing, testing, and optimizing similar interfaces. This exploration-
design-optimization process is operated in advance. Workflow Deployment: Upon receiving real-time requests,
Data-Copilot invokes existing interfaces and deploys a workflow for familiar requests, or flexibly combines interfaces

and raw code for "uncovered" requests.

China and the USA...,orI want to see the
GDP trend over the past ten years. Each
request involves one or more types of data.

To achieve this, we first generate a parsing file
for each data source to help LLM understand the
data. Each file includes a description of the data,
the access method, the data schema (the name of
each column), and a usage example. Then we feed
the parsing files and a few seed requests into the
LLMs, and prompt LLMs to synthesize more di-
verse requests based on these data. The brief exam-
ple is shown in Appendix E.2.

The quality of the generated requests. A com-
mon issue is that the LLM often proposes a request
about the data that doesn’t exist. To address this,

we design a backward verification strategy to check
these synthesized requests. Specifically, we instruct
the LLM to reverse-convert the generated request
into the desired data source and other key infor-
mation, and then we verify the existence of such
data, thereby filtering out hallucinatory requests.
Besides, when synthesizing, we also use keywords
to control the topics of synthesized requests, en-
suring they closely align with real-world distribu-
tion. Upon manual evaluation of the synthesized
requests, we found that the generated requests gen-
erally met our expectations. We discuss the quality
of synthesized requests in detail in Tables 1 and B2.

Interface Design. After generating massive re-
quests through self-exploration, Data-Copilot ab-

stracts many universal interfaces from these re-
quests. First, we have to clarify what an interface is
in our paper. Similar to human-defined functions,
an interface is a code module consisting of a name,
parameters, a functional description, and an imple-
mentation code. It performs specific tasks such
as data retrieval, computation, and visualization.
Each interface is designed, tested, and optimized
iteratively by Data-Copilot.

First, starting from the initial request, we iter-
atively feed synthesized requests from the self-
exploration stage and related data parsing files into
LLMs, prompting the LLM to design complete
code modules for request solving. Each code mod-
ule is defined as an interface and stored in the in-
terface library. During each iteration, LLMs are
instructed to prioritize utilizing the existing inter-
faces within the library. If the available interfaces
are insufficient for request solving, the LL.Ms de-
sign a new interface.

As shown in Figure 2, for the first request: I
want to see the GDP trend over ..., Data-
Copilot design two interfaces: Query-GDP() and
Plot-Line(). As for the second request: Compare
the CPI of China and the USA over. ., since
the previous two could not solve this request, a new
interface, Query-CPI(), is designed by LLMs.

Interface Testing. After designing a new inter-
face for a request (request;—inter face;), Data-
Copilot autonomously tests its correctness based
on compiler feedback. First, Data-Copilot uses
the request; as the seed to generate massive sim-
ilar requests as test cases. Then it tests the new
inter face; one by one. In Figure 2, for new
inter face;: Query-GDP (), Data-Copilot mimics
request; to generate many similar requests to test
the Query-GDP(): "I want to see USA’s GDP
over the past 10 years”, "I want to see
China’s GDP for the last year"”,..Ifthein-
terface passes all test cases, it is retained; otherwise,
Data-Copilot self-reflects on error feedback of com-
pilers, correcting the erroneous code snippets until
it successfully passes the tests.

Interface Optimization. To optimize the gen-
erality of designed interfaces, Data-Copilot also
merges similar interfaces. Similar to human de-
velopers, each time a new interface is designed,
this optimization process is triggered: evaluat-
ing whether the newly designed interface can be
merged with previous ones.

¢ Retrieve similar interfaces. After a new in-

terface is designed, we retrieve 7op-N inter-
faces from existing interface library. Specif-
ically, we use gte-Qwenl.5-7B-instruct (Li
et al., 2023d) to obtain embeddings of each in-
terface code and then calculate their similarity,
identifying top N similar interfaces.

* Decide whether to merge. LLMs are
prompted to compare new interface with
Top-N retrieved interfaces in terms of func-
tionality, parameters, and processing logic,
autonomously deciding whether to merge
it with the existing ones. If LLM deems
no merging necessary, new interface is re-
tained. As shown in Figure 2, two interfaces
Query-GDP() and Query-CPI() are merged
into Query-GDP-CPI(). This process makes
each interface more general and unique.

* Test the optimized interface. When two in-
terfaces are merged, Data-Copilot also needs
to test the newly merged interface. Test cases
from two original interfaces are used to vali-
date the merged interface. The output of the
new interface must be consistent with two
original interfaces in both format and content.

In this phase, Data-Copilot alternates the above
three steps: interface design, testing, and optimiza-
tion until all the requests can be covered by these
interfaces. As shown in Figure F3, Data-Copilot
designs many interfaces for different task and op-
eration types, e.g., data acquisition, prediction, vi-
sualization, and DataFrame manipulation. We pro-
vide detailed algorithm processes (Appendix E.1)
and examples in Appendix F.1.

2.2 Workflow Deployment

As Figure 2 shows, it accurately and efficiently
handles requests by invoking relevant interfaces
(interface workflow). For long-tail or uncovered
requests, it flexibly generates raw code (interface-
code hybrid strategy) while documenting these for
future interface library updates.

Interfaces Retrieval. Considering the signifi-
cant differences between the interfaces involved in
different requests, it is unnecessary to load all inter-
faces every time. We design a simple yet efficient
interface retrieval strategy: hierarchical retrieval.
Specifically, we organize all designed interfaces in
a hierarchical structure. Each interface is grouped
into different tasks (stock task, fund task, etc.) and
different operation types (data acquisition, process-
ing, visualization, etc.). Upon receiving a real-time

request, Data-Copilot first determines the appropri-
ate task types and required operation types and then
loads the interfaces associated with these types for
subsequent workflow planning. This can reduce
the number of interfaces in the prompt.

Interface Invocation Workflow. After reading
interface descriptions, Data-Copilot plans work-
flows—multiple interfaces in specific order form-
ing chain, parallel, or loop structures. It determines
which interfaces to invoke, their sequence, and pa-
rameters, outputting in JSON format. Prompts and
cases appear in Appendices E.4 and F.2.

As Figure 2 shows, Data-Copilot designs sequen-
tial, parallel, or loop interface workflows. For re-
quest "Compare the return of CSI-300, GEM
and CSI-1000 this year”, it plans a parallel
workflow: Data Acquisition(), Calculate
Return() for three indices simultaneously, then
Visualization(). The second case implements a
loop workflow using Loop ().

Interface-Code Hybrid Generation. In the
real world, it is inevitable to encounter "uncov-
ered" requests that cannot be addressed by existing
interfaces. As a remedy, Data-Copilot adopts an
interface-code hybrid generation strategy. Specifi-
cally, it prioritizes invoking existing interfaces to
resolve user requests. It can solve most common
user requests. However, if the deployed workflow
continues to fail, or if Data-Copilot proactively de-
termines that current request cannot be resolved
by existing interfaces, it would generate raw code
directly or generate a combination of raw code and
interfaces. This design endows Data-Copilot with
the flexibility to handle diverse requests.

Besides, each time Data-Copilot encounters such
"uncovered" requests, it also records them in the
document. After accumulating sufficient new re-
quests, we re-initiated the Data Exploration and
interface design stage (Section 2.1), i.e., in real-
world interactions, we periodically develop new
interfaces for emerging demands, continuously up-
dating Data-Copilot’s interface library.

3 Dataset Synthesis

3.1 Environment and Data Sources

Data-Copilot is developed on Chinese financial
market data, encompassing massive stocks, funds,
economic data, real-time news, and company fi-
nancial data. Similar to many works, Data-Copilot
utilizes data interfaces provided by Tushare' to

"https://tushare.pro/

access vast amounts of financial data, including
time-series data spanning over 20 years for more
than 4,000 stocks, funds, and futures. In the
first phase, we use a strong LLM (e.g., gpt-40)
for data exploration and a lightweight LLM (e.g.,
gpt-3.5-turbo) for workflow deployment.

3.2 The Creation of Dataset

Human-proposed Request as Seed Set. We in-
vite 10 students in economics to submit 50 requests
each. These requests cover a wide range of com-
mon needs, including stock, fund tasks with dif-
ferent complexity levels. These human-proposed
requests can represent a distribution of real-world
scenarios, where the ratio of four tasks is: Stock(8),
Fund(4), Corporation(4) and Others(1). Then we
filter out highly similar requests. Lastly, we retain
173 high-quality requests, which are used as seeds
for Data Exploration phase.

Self-Exploration Request Set. As mentioned
in Section 2.1, we employ self-exploration to ex-
pand the request set. We first feed 173 human-
proposed seed requests along with all data descrip-
tions and schema into GPT-4 for data exploration
and request synthesis. We use keywords to control
the distribution of the synthesized requests, ensur-
ing close alignment with the real world. When ex-
ploration, it generates 6480 requests. Then we filter
out highly similar requests and retain 3547 requests.
Then we adopt a stratified sampling strategy to sam-
ple 547 instances as test set from each type. The re-
maining 3000 requests are used for interface design.
The distributions of four task types (stock, fund,
corporation, and others) and three complexity lev-
els (single-entity, multi-entities, and multi-entities
with complex relations) are shown in Table 1. It
shows that synthesized requests closely align with
humans. The detailed statistics are shown in Ta-
bles 1 and B1 and Figure B1.

Annotate Answer Table for Test Set. Human
annotators are instructed to annotate data tables as
answers for 547 test requests. Specifically, annota-
tors manually retrieve and process the correspond-
ing data based on testing request, and record the
final data table before chart plotting. For example,
request: "I want to see China’s GDP over
past 5 years”, the labeled data-table is [2023:
17.8 trillion, 2022: 17.9 trillion, 2021: 17.8 trillion,
2020: 14.6 trillion, 2019: 14.3 trillion].

The quality of self-exploration requests. We
manually evaluate the quality of testset. As shown
in Appendix B.3, these synthesized requests show

https://tushare.pro/

Name Source #Cases Form Four Types Ratio Three Complexity Levels Ratio
Seed Set Human-proposed 173 Query 8.0:4.0:4.0: 1 2.0:1.5:1
Set for Interface Design Self-Exploration 3000 Query 8.7:3.3:4.2: 1 1.9: 1.5: 1
Test Set Self-Exploration & Human 547 Query, Label 8.6: 3.3: 4.3: 1 1.8:14:1

Table 1: Statistics on human-proposed requests and self-exploration dataset. We report the number of each task type
and complexity level. The results indicate that our synthesized requests closely align with human distribution.

Model GPT-40 GPT-4-turbo GPT-3.5-turbo Llama3-70B-Instruct Llama2-70B-Instruct
Direct-Code 73.6 70.0 28.5 522 29.6

Ours 77.9 143 74.6 +4.6 70.2 +41.7 70.9 +18.7 49.3 +19.7
Model Codellama-13B Vicuna-13B-v1.5 DeepSeek Coder-V2 Qwen2.5-Coder-32B Qwen2.5-Coder-14B
Direct-Code 21.0 17.3 63.8 66.5 51.7

Ours 50.8 129.2 33.2 1159 75.3 1115 77.2 +10.7 72.3 120.6

Table 2: Accuracy of ours and direct code generation (Direct-Code) using different LLMs for workflow deployment.

a comparable quality to human-proposed requests. Methods Accuracy(%) #Token
L. . Direct-Code 28.5 +2.1 823
3.3 Qualitative Evaluation ReAct (Yao et al., 2022) 44.1 +34 1515
. . . Reflexion (Shinn et al., 2023) 59.0 £3.9 2463
As shown in Flgure F9, Data—COpllot constructs Multi-Agent (Hong et al., 2023) 574 +1.8 2835
the invocation workflow step-by-step (each step Data-Copilot 70.2 +2.5 561.2
corresponds to one or more interfaces) and final Data-Copilot + ReAct 7L £17 834
Data-Copilot + Reflexion 71.8 £22 978

results (bar, chart, text) for input request.

Data-Copilot designs versatile interfaces via
data exploration. After analyzing Chinese finan-
cial data and 3,000 self-exploration requests, Data-
Copilot created 73 interfaces across five function-
alities (data acquisition, index calculation, table
manipulation, visualization, general processing).
Figure F3 shows key interfaces.

Data-Copilot adapts to new requests by com-
bining interfaces and raw code. As in Sec-
tion 2.2, for unsupported requests, Data-Copilot
integrates existing interfaces with raw code. In
Figure 2 (3rd example), it retrieves data via inter-
face, then generates radar chart code, enhancing
flexibility for evolving demands.

Interface Workflow enhances interpretability.
After execution, Data-Copilot generates visuals and
workflow summaries. As shown in Figures 2, F2
and F4 to F7, outputs are intuitive. Structuring com-
plex code into step-by-step interface calls improves
clarity and inspection ease.

4 Quantitative Evaluation

4.1 Experiments Settings

Baselines and Experiments Details We compare
Data-Copilot with direct code generation (Direct-
Code), ReAct, Reflexion, Multi-agent methods.
Detailed prompts are in Appendices B.1 and E.5.
Evaluation Methods. We evaluate all methods

Table 3: Accuracy and efficiency on gpt-3.5-turbo.

on 547 test cases, focusing on three aspects: data-
table accuracy, image quality, and inference effi-
ciency. Evaluations are conducted using GPT-4o:
Data-Table Evaluation: GPT-4o/turbo compares
the generated dataframe with a human-labeled
answer table (Section 3.2). Image Evaluation:
To evaluate whether the final image meets hu-
man requests, we feed the human request, human-
annotated answer table, and the generated image
into GPT-40. GPT-4o is instructed to check image’s
visual elements based on human request, including
numerical points, lines, axes, image aesthetics, and
style, i.e., we design a checklist containing 5 cate-
gories with 10 sub-dimensions for GPT-40 scoring.
The results of data-table and image evaluation are
combined as Accuracy. Efficiency: Measured by
the total token consumption (#Token) per method,
representing solving efficiency. The evaluation de-
tails and comparison between manual evaluation
and model evaluation are shown in Appendix B.4.

4.2 Comparison Results

Data-Copilot Significantly Reduces Deployment
Failure Risk. As shown in Table 2, compared to
direct code generation, Data-Copilot achieves sig-
nificant improvements: +41.7 (GPT-3.5-turbo),

Methods Single Multiple Complex Rel. Overall
Direct-Code 42.4 29.0 1.6 28.5
ReAct 56.3 48.6 14.6 44.1
Reflexion 67.8 55.1 48.1 59.0
Multi-agent 63.2 64.7 35.5 57.4
Data-Copilot 71.8 +4 70.0 15.3 67.1 119 70.2 +11.2

Table 4: Accuracy for three complexity levels samples.

+18.7 (L1ama3-70B), and +29.2 (Codellama-13B).
By decoupling into interface design and workflow
deployment stages, smaller LLMs (L1lama3-70B,
GPT-3.5) perform at GPT-4 level during deploy-
ment. Even GPT-4 improves by +4%, confirming
generalizability. Pre-designed interfaces reduce
errors through optimization and validation during
design, whereas direct code generation often over-
looks details and introduces mistakes.

Data-Copilot Outperforms Advanced Agent
Strategies in Both Accuracy and Efficiency. As
shown in Table 3, Data-Copilot surpasses all base-
line strategies in success rate (Accuracy), and ef-
ficiency (#token). Compared to the best baseline
(Reflexion), Data-Copilot achieved an +11.2% im-
provement in accuracy and a -75% reduction in
token consumption. Besides, as shown in the last
two rows of Table 3, Data-Copilot can seamlessly
integrate with agent strategies such as ReAct and
Reflexion into the workflow deployment. For ex-
ample, when combined with ReAct, Data-Copilot
invokes an interface, obtains an intermediate re-
sult, and then reasons to invoke the next interface,
improving its performance by +1.3.

Data-Copilot Reduces Repetitive Generation
in the Real World. In the real world, most requests
are similar or even repetitive. As shown in Table 3,
Data-Copilot can save 70% of token consumption
since its output only contains interface names and
arguments. In contrast, baseline strategies have
to repetitively generate complete code for each re-
quest, consuming many more tokens.

4.3 Why Data-Copilot Brings Improvements?

Data-Copilot exhibits superior performance in
complex scenarios. We categorize test requests
by entity count: single entity, multiple
entities, and multiple entities with
complex relations (statistics in Appendix B.2).
As Table 4 shows, with single entities, improve-
ment is minimal (4%). However, with multiple en-
tities and complex relations, improvements reach
5.3% and 19%, respectively. Baselines often gen-
erate logically incorrect code and omit critical

GPT-3.5 GPT-4
Direct Code Generation 28.3 70
Workflow Deployment LLM
GPT-3.5 GPT+4
. GPT-3.5| 319 49.6
Interface Design LLM GPT-A4 702 746

Table 5: We explore different LLM combinations for
interface design and workflow deployment.

Methods Accuracy(%)
Direct Code Generation 28.5
Data-Copilot 70.2
w/o Self-Exploration Request 35.9
w/o Interface Optimization 42.1
w/ o Interface-Code Hybrid 63.8

Table 6: We ablate three modules from Data-Copilot.

steps, while Data-Copilot simply invokes versatile
interfaces, reducing real-time response complexity
through pre-designed interfaces.

The Quality of Interface is the Key Factor. We
analyze the effects of using different LLM combi-
nations for two stages: interface design and work-
flow deployment. As shown in Table 5, we ob-
serve when using a weaker LLM for interface de-
sign, the effectiveness is significantly diminished.
For example, using GPT-3.5-turbo (1st stage) and
GPT-4-turbo (2nd stage) resulted in a score of
only 49.6, which is even lower than directly using
GPT-4-turbo for direct code generation (70.2). This
phenomenon can also be seen in other combina-
tions. After manually checking, we find interfaces
designed by GPT-3.5-turbo are prone to failure and
exhibit poor generalizability. Therefore, we chose
to use GPT-4-turbo for interface design and op-
timization, while employing GPT-3.5-turbo for
real-time deployment, achieving a balance between
accuracy and efficiency.

5 Conclusion

We propose Data-Copilot, a code-centric data
analysis agent. It generates code for large-scale
data processing and creates interface modules
through data exploration, improving real-time
request success. It autonomously designs universal
interfaces for various data types and invokes them
for reliable problem-solving. Experiments show
higher success rates with lower token consumption.

Limitations

Data-Copilot proposes a new paradigm for address-
ing the data-related task, through LLM. But we
want to highlight that it still remains some limita-
tions or improvement spaces:

1) Online Design Interface. The essence of
Data-Copilot lies in effective interface design, a
process that directly affects the effectiveness of sub-
sequent interface deployments. Currently, this in-
terface design process is conducted offline. There-
fore, it is crucial to explore how to design the inter-
face online and deploy it simultaneously. It greatly
broadens the application scenarios of Data-Copilot.

2) System stability The interface deployment
process can occasionally be unstable. The main
source of this instability is because LLM is not
fully controllable. Despite their proficiency in gen-
erating the text, LLLMs occasionally fail to follow
the instructions or provide incorrect answers, thus
causing anomalies in the interface workflow. Con-
sequently, finding methods to minimize these un-
certainties during the interface dispatch process
should be a key consideration in the future.

3) Data-Copilot possesses the potential to han-
dle data from other domains effectively. Cur-
rently, our focus is on developing an LLM-based
agent for the data domain. Due to the limited ac-
cess to data, we chose the China Financial Data,
which includes stocks, futures, finance, macroeco-
nomics, and financial news. Although these data
all belong to the financial domain, the data volume
is extremely large, and the data schemas are highly
different. The corresponding user’s requests are
also diverse, which poses a great challenge to the
current LLM. However, Data-Copilot has adeptly
accomplished this task. Therefore, we believe Data-
Copilot also possesses the potential to effectively
handle data from other domains.

References

Sangzin Ahn. 2024. Data science through natural lan-
guage with chatgpt’s code interpreter. Translational
and Clinical Pharmacology, 32(2):73.

Shamma Mubarak Aylan Abdulla Almheiri, Moham-
mad AlAnsari, Jaber AlHashmi, Noha Abdalmajeed,
Muhammed Jalil, and Gurdal Ertek. 2024. Data an-
alytics with large language models (Ilm): A novel
prompting framework. In International Conference
on Business Analytics in Practice, pages 243-255.
Springer.

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kam-
setty, Shu Liu, Joseph E Gonzalez, Carlos Guestrin,
and Matei Zaharia. 2024. Text2sql is not enough:
Unifying ai and databases with tag. arXiv preprint
arXiv:2408.14717.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
Models are Few-Shot Learners. In NeurIPS.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen,
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han-
chong Zhang, Yuchen Mao, Wenjing Hu, and 1 oth-
ers. 2024. Spider2-v: How far are multimodal agents
from automating data science and engineering work-
flows? arXiv preprint arXiv:2407.10956.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings. arXiv
preprint arXiv:2305.11853.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Borje F Karlsson, Jie Fu, and Yemin
Shi. 2023a. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and
Yuqing Yang. 2024a. Viseval: A benchmark for data
visualization in the era of large language models.
IEEE Transactions on Visualization and Computer
Graphics, pages 1-11.

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and
Yuqing Yang. 2024b. Viseval: A benchmark for data
visualization in the era of large language models.
IEEE Transactions on Visualization and Computer
Graphics.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, and 1 others. 2023b. Agent-
verse: Facilitating multi-agent collaboration and ex-
ploring emergent behaviors in agents. arXiv preprint
arXiv:2308.10848.

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023.
Is gpt-4 a good data analyst? arXiv preprint
arXiv:2305.15038.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, and others. 2022. Palm:
Scaling language modeling with pathways. ArXiv,
abs/2204.02311.

https://doi.org/10.1109/TVCG.2024.3456320
https://doi.org/10.1109/TVCG.2024.3456320
https://doi.org/10.1109/TVCG.2024.3456320

Victor Dibia. 2023. Lida: A tool for automatic gener-
ation of grammar-agnostic visualizations and info-
graphics using large language models. arXiv preprint
arXiv:2303.02927.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, and 1 others.
2023. C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

James Ford, Xingmeng Zhao, Dan Schumacher, and
Anthony Rios. 2024. Charting the future: Us-
ing chart question-answering for scalable evaluation
of llm-driven data visualizations. arXiv preprint
arXiv:2409.18764.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. ArXiv, abs/2211.10435.

Ken Gu, Madeleine Grunde-McLaughlin, Andrew Mc-
Nutt, Jeffrey Heer, and Tim Althoff. 2024a. How do
data analysts respond to ai assistance? a wizard-of-
oz study. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pages 1-22.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying
Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,
Youran Pan, Teng Wu, Jiagian Yu, and 1 others.
2024b. Blade: Benchmarking language model
agents for data-driven science. arXiv preprint
arXiv:2408.09667.

Jiajing Guo, Vikram Mohanty, Jorge H Piazentin Ono,
Hongtao Hao, Liang Gou, and Liu Ren. 2024a. Inves-
tigating interaction modes and user agency in human-
IIm collaboration for domain-specific data analysis.
In Extended Abstracts of the CHI Conference on Hu-
man Factors in Computing Systems, pages 1-9.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,
Yi Chang, and Jun Wang. 2024b. Ds-agent: Auto-
mated data science by empowering large language
models with case-based reasoning. arXiv preprint
arXiv:2402.17453.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2023. Toolkengpt: Augmenting frozen lan-
guage models with massive tools via tool embeddings.
ArXiv, abs/2305.11554.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu,
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang,
Lingyao Zhang, Mingchen Zhuge, and 1 others. 2024.
Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679.

10

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jirgen Schmidhuber. 2023. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.
Preprint, arXiv:2308.00352.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. 2023. Large language models
for software engineering: A systematic literature re-
view. ACM Transactions on Software Engineering
and Methodology.

Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo
Zhao, and Hang Zhao. 2023. Chatdb: Augmenting
Ilms with databases as their symbolic memory. arXiv
preprint arXiv:2306.03901.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin
Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming
Zhu, Yao Cheng, and 1 others. 2024. Infiagent-
dabench: Evaluating agents on data analysis tasks.
arXiv preprint arXiv:2401.05507.

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, and 1 oth-
ers. 2023. Audiogpt: Understanding and generat-
ing speech, music, sound, and talking head. arXiv
preprint arXiv:2304.12995.

Jeevana Priya Inala, Chenglong Wang, Steven Drucker,
Gonzalo Ramos, Victor Dibia, Nathalie Riche, Dave
Brown, Dan Marshall, and Jianfeng Gao. 2024. Data
analysis in the era of generative ai. arXiv preprint
arXiv:2409.18475.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023. StructGPT: A general
framework for large language model to reason over
structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237-9251, Singapore. Associa-
tion for Computational Linguistics.

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2024. Dsbench: How far
are data science agents to becoming data science ex-
perts? arXiv preprint arXiv:2409.07703.

Harshit Joshi, Abishai Ebenezer, José Cambronero,
Sumit Gulwani, Aditya Kanade, Vu Le, Ivan Radicek,
and Gust Verbruggen. 2023. Flame: A small
language model for spreadsheet formulas. arXiv
preprint arXiv:2301.13779.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large
Language Models are Zero-Shot Reasoners. In Con-
ference on Neural Information Processing Systems
(NeurIPS).

https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319—-18345. PMLR.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. Camel: Communicative agents for "mind" ex-
ploration of large language model society. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
arXiv preprint arXiv:2402.16347.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and
Zhaoxiang Zhang. 2023b. Sheetcopilot: Bringing
software productivity to the next level through large
language models. arXiv preprint arXiv:2305.19308.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, and 1 others. 2023c. Can llm already
serve as a database interface? a big bench for large-
scale database grounded text-to-sqls. arXiv preprint
arXiv:2305.03111.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, and 1 others. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023d. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,
Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao
Ye, Ziyue Li, Rui Zhao, and 1 others. 2024c.
Pet-sql: A prompt-enhanced two-stage text-to-sql
framework with cross-consistency. arXiv preprint
arXiv:2403.09732.

Jinqing Lian, Xinyi Liu, Yingxia Shao, Yang Dong,
Ming Wang, Zhang Wei, Tianqi Wan, Ming Dong,
and Hailin Yan. 2024. Chatbi: Towards natural lan-
guage to complex business intelligence sql. arXiv
preprint arXiv:2405.00527.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023a. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, Yun Wang, Linjun Shou, Ming

11

Gong, and Nan Duan. 2023b. Taskmatrix.ai: Com-
pleting tasks by connecting foundation models with
millions of apis. Preprint, arXiv:2303.16434.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S
Yu. 2023. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Li Xian Liu, Zhiyue Sun, Kunpeng Xu, and Chao Chen.
2024a. Ai-driven financial analysis: Exploring chat-
gpt’s capabilities and challenges. International Jour-
nal of Financial Studies, 12(3):60.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei
Chang, and Yansong Feng. 2024b. Are llms capable
of data-based statistical and causal reasoning? bench-
marking advanced quantitative reasoning with data.
arXiv preprint arXiv:2402.17644.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo
Chen. 2024. Large language model for table process-
ing: A survey. arXiv preprint arXiv:2402.05121.

Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and
Dongmei Zhang. 2023. Demonstration of insightpi-
lot: An llm-empowered automated data exploration
system. arXiv preprint arXiv:2304.00477.

Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xi-
aokang Zhang, Xiaohan Zhang, Sijia Luo, Xi Wang,
and Jie Tang. 2024. Spreadsheetbench: Towards chal-
lenging real world spreadsheet manipulation. arXiv
preprint arXiv:2406.14991.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: gen-
erating data visualizations via natural language using
chatgpt, codex and gpt-3 large language models. leee
Access, 11:45181-45193.

Mohamed Nejjar, Luca Zacharias, Fabian Stiehle, and
Ingo Weber. 2023. Llms for science: Usage for code
generation and data analysis. Journal of Software:
Evolution and Process, page €2723.

OpenAl. 2022. Chatgpt.
OpenAl. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. CoRR, abs/2203.02155.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of
text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Disentan-
gling abstract and concrete reasonings of large lan-
guage models through tool creation. arXiv preprint
arXiv:2305.14318.

https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, and 1 others. 2023a. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and
Maosong Sun. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
Preprint, arXiv:2307.16789.

Gaurav Sahu, Abhay Puri, Juan Rodriguez, Alexan-
dre Drouin, Perouz Taslakian, Valentina Zantedeschi,
Alexandre Lacoste, David Vazquez, Nicolas Cha-
pados, Christopher Pal, and 1 others. 2024. In-
sightbench: Evaluating business analytics agents
through multi-step insight generation. arXiv preprint
arXiv:2407.06423.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, M. Lomeli, Luke Zettlemoyer, Nicola Can-
cedda, and Thomas Scialom. 2023. Toolformer: Lan-
guage Models Can Teach Themselves to Use Tools.
ArXiv, abs/2302.04761.

Shuyu Shen, Sirong Lu, Leixian Shen, Zhonghua Sheng,
Nan Tang, and Yuyu Luo. 2024. Ask humans or ai?
exploring their roles in visualization troubleshooting.
arXiv preprint arXiv:2412.07673.

Yongliang Shen, Kaitao Song, Xu Tan, Dong Sheng Li,
Weiming Lu, and Yue Ting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. ArXiv, abs/2303.17580.

Wengi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu
Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang,
and May D Wang. 2024. Ehragent: Code empow-
ers large language models for complex tabular rea-
soning on electronic health records. arXiv preprint
arXiv:2401.07128.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645-654.

Ruoxi Sun, Sercan Arik, Rajarishi Sinha, Hootan
Nakhost, Hanjun Dai, Pengcheng Yin, and Tomas
Pfister. 2023a. SQLPrompt: In-context text-to-SQL
with minimal labeled data. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 542-550, Singapore. Association for Compu-
tational Linguistics.

Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas
Pfister. 2023b. Sql-palm: Improved large language
modeladaptation for text-to-sql. arXiv preprint
arXiv:2306.00739.

Didac Suris, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. Preprint, arXiv:2303.08128.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and Efficient Foundation Language Models. ArXiv,
abs/2302.13971.

Jorge Valverde-Rebaza, Aram Gonzilez, Octavio
Navarro-Hinojosa, and Julieta Noguez. 2024. Ad-
vanced large language models and visualization tools
for data analytics learning. In Frontiers in Education,
volume 9, page 1418006. Frontiers Media SA.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023a. Mac-sql: Multi-agent collaboration for
text-to-sql. arXiv preprint arXiv:2312.11242.

Tianshu Wang, Hongyu Lin, Xianpei Han, Le Sun, Xi-
aoyang Chen, Hao Wang, and Zhenyu Zeng. 2023b.
Dbcopilot: Scaling natural language querying to mas-
sive databases. arXiv preprint arXiv:2312.03463.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2022a. Self-instruct: Aligning language
model with self generated instructions. Preprint,
arXiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Giannis
Karamanolakis, Haizhi Gary Lai, Ishan Virendrab-
hai Purohit, Ishani Mondal, Jacob William Ander-
son, Kirby C. Kuznia, Krima Doshi, Kuntal Kumar
Pal, and 21 others. 2022b. Super-Naturallnstructions:
Generalization via Declarative Instructions on 1600+
NLP Tasks. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP). Association for Computational Lin-
guistics.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, and 1 others. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
arXiv preprint arXiv:2401.04398.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy

https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://doi.org/10.18653/v1/2023.findings-emnlp.39
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560

Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. CoRR,
abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022b. Chain of Thought Prompt-
ing Elicits Reasoning in Large Language Models. In
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Luoxuan Weng, Yinghao Tang, Yingchaojie Feng, Zhuo
Chang, Peng Chen, Ruiqin Chen, Haozhe Feng, Chen
Hou, Danqing Huang, Yang Li, and 1 others. 2024.
Datalab: A unifed platform for llm-powered business
intelligence. arXiv preprint arXiv:2412.02205.

Chenfei Wu, Sheng-Kai Yin, Weizhen Qi, Xiaodong
Wang, Zecheng Tang, and Nan Duan. 2023a. Visual
ChatGPT: Talking, Drawing and Editing with Visual
Foundation Models. arXiv.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023b. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023c.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Xueqing Wu, Rui Zheng, Jingzhen Sha, Te-Lin Wu,
Hanyu Zhou, Mohan Tang, Kai-Wei Chang, Nanyun
Peng, and Haoran Huang. 2024. Daco: To-
wards application-driven and comprehensive data

analysis via code generation. arXiv preprint
arXiv:2403.02528.

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin
Qu, and Chen Zhu-Tian. 2024. Waitgpt: Monitoring
and steering conversational 1lm agent in data analysis
with on-the-fly code visualization. arXiv preprint
arXiv:2408.01703.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, and 1 others. 2023. Openagents:
An open platform for language agents in the wild.
arXiv preprint arXiv:2310.10634.

Sigiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng,
Keting Chen, Hongjun Yang, Zhiping Zhang, Jian-
shan He, Hongyang Zhang, Ganglin Wei, Wang
Zhao, Fan Zhou, Danrui Qi, Hong Yi, Shaodong
Liu, and Fagiang Chen. 2023. Db-gpt: Empower-
ing database interactions with private large language
models. arXiv preprint arXiv:2312.17449.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong,
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,
Pengyuan Liu, Dong Yu, and 1 others. 2024. Mat-
plotagent: Method and evaluation for llm-based

13

agentic scientific data visualization. arXiv preprint
arXiv:2402.11453.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Junyi Ye, Mengnan Du, and Guiling Wang. 2024.
Dataframe qa: A universal llm framework on
dataframe question answering without data exposure.
arXiv preprint arXiv:2401.15463.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GIm-130b: An Open Bilingual Pre-trained Model.
ICLR 2023 poster.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang,
Qingyi Huang, Saisai Yang, Jing Yuan, Chang-
bao Su, Xiang Li, Aofeng Su, and 1 others. 2023.
Tablegpt: Towards unifying tables, nature lan-
guage and commands into one gpt. arXiv preprint
arXiv:2307.08674.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023a. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought. arXiv preprint arXiv:2310.17342.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and
Masafumi Oyamada. 2023b. Large language
models as data preprocessors. arXiv preprint
arXiv:2308.16361.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
Pre-trained Transformer Language Models. ArXiv,
abs/2205.01068.

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bo-
han Zhang, Guanlin Li, Zijun Yao, Kangli Xu, Jin-
chang Zhou, Daniel Zhang-Li, and 1 others. 2024a.
Tablellm: Enabling tabular data manipulation by
llms in real office usage scenarios. arXiv preprint
arXiv:2403.19318.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen,
Yuqing Yang, and Kan Ren. 2024b. Bench-
marking data science agents. arXiv preprint
arXiv:2402.17168.

https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2312.17449

Appendix

A Preprocessing of Workflow Deployment

Intent Analysis To accurately comprehend user
requests, Data-Copilot first parses the time, loca-
tion, data object, and output format of user requests,
which are critical to data-related tasks. For exam-
ple, the requestis: "I want to compare the GDP
and CPI trend in our area over the past
five years", Data-Copilot parses it as: "Draw a
line chart of China’s national GDP and
CPI per quarter from May 2019 to May 2024
for comparison”. To achieve this, we first in-
voke an external API to obtain the local time and
network IP address, then feed this supportive infor-
mation into LLMs along with the original request
to generate the parsed result.

Multi-form Output Upon execution of the
workflow, Data-Copilot yields the desired results
in the form of graphics, tables, and descriptive
text. Additionally, it also provides a comprehen-
sive summary of the entire workflow. It greatly
enhances the interpretability of the whole process,
as the interface workflow is easy for humans to
read and inspect. As the example shown in Fig-
ure F2, the request is "Forecasting China’s
GDP growth rate...". Data-Copilot first inter-
prets the user’s intent. Then it deploys a three-
step workflow: 1) Invoking get-GDP-data() inter-
face to acquire historical GDP data. 2) Invoking
predict-next-value() interface for forecasting.
3) Visualizing the output.

B Experiments Details

B.1 Baselines and Experiments Details

We compare Data-Copilot with @ direct code gen-
eration (Direct-Code) and various agent strategies:
® ReAct (Yao et al., 2022): LLMs iteratively com-
bine reasoning and code execution. @ Reflex-
ion (Shinn et al., 2023): LLMs refine responses
based on compiler feedback, limited to two iter-
ations. ® Multi-agent collaboration (Wu et al.,
2023b; Hong et al., 2023; Liang et al., 2023a):
Three LLM agents (two coders, one manager) col-
laborate to generate solutions. Data-Copilot uses
the same LLLM as all baselines when invoking pre-
designed interfaces. Detailed prompts are in Ap-
pendix E.5.

14

B.2 The Definitions of Three Complexity
Levels for Testset

We categorize our test set into three types based
on the number of entities involved: single entity,
multiple entities, and multiple entities with com-
plex relations (e.g., loop calculations). The ststics
of three subset are shown in Table B1.

* Single entity: Requests involve a single entity
and can be resolved step-by-step. E.g., "query
based on a specific condition".

Multiple entities: Requests require processing
multiple entities simultaneously. E.g., "com-
pare a certain metric across multiple entities".

Multiple entities with complex relations: In-
volving multiple entities and containing loops,
nesting, and other intricate logic. E.g., "List
the top 10 stocks by yesterday’s price increase
that also in the internet industry."

B.3 The Quality of Self-exploration Requests.

To assess the quality of self-exploration requests,
we invited four additional graduate students to
manually evaluate our test set (546 requests)
and human-proposed requests (173 seed set) on
four criteria: task difficulty, request
rationality, expression ambiguity, and
answer accuracy. We provide detailed guidance
for each criterion in Appendix B.5. The results
of two sets are shown in Table B2. We observed
that the synthesized requests exhibit a comparable
quality to human-proposed requests, with slightly
higher difficulty, ambiguity, and similar rationality.
It ensures that our test set can reflect most of the
real-world demands. Besides, the evaluators gave
a high score of 4.8 on the label (answer table) of
our test set, which also ensures the accuracy of our
dataset.

B.4 The detail of GPT-40 Evaluation

As described in Section 4.1, the evaluation contains
three aspects: Data-table, Image, and Efficiency.
Data-table Evaluation: For each request, we
use GPT-40 to compare predicted data table with
human-annotated table. If GPT-40 identifies any
inconsistencies, the judgment is False. For exam-
ple, a request: “Please show me the China’s GDP
... with its labeled data-table: [2023: 17.8, 2022:
17.9, 2021: 17.8, 2020: 14.6]. Predicted data:

Table B1: Statistics of four task types and three complexity levels on our test set.

Request Complexity
b Single Entity ~ Multiple Entities ~ Multi-entities with Complex Relation — Overall
2 | Stock 79 106 87 272
2 Fund 55 36 22 113
'S | Corporation 97 30 4 131
“ | Other 6 12 13 31
Total 237 184 126 547

Table B2: Human evaluation on the human-proposed re-
quests and synthesized requests across four dimensions.

Task Request Expression Answer

Difficulty Rationality Ambiguity Accuracy
Seed Set 35 4.3 4.4 -
Test Set 39 42 4.0 4.8

Table B3: Comparison of Human and GPT-40 Evalua-
tions

Human GPT-4o0
Evaluation Evaluation

Average Score 65.8 67.2
Correlation Coefficient 0.894 0.894
N(score > 60) 35 cases 38 cases

[2023: 17.8,2022: 17.9, 2021: 17.8]. Based on
them, judgment of GPT-4o is False.

Image Evaluation: We design a comprehen-
sive evaluation checklist for GPT-40-based image
scoring, comprising 5 main categories with 10 sub-
dimensions. It includes (1) numerical points, (2)
lines, (3) axes, (4) aesthetics of image layout, and
(5) chart design, e.g., Chart type, Color usage, Pro-
portion and scale, Labels and legends, Readability,
Completeness, Relevance, Distinctiveness, Data ac-
curacy, ... If the total score exceeds 60 points, the
image is considered to meet expectations (True);
otherwise, it is judged as false.

Manual Evaluation Vs. GPT-40 Evaluation.
For data-table evaluation, GPT-40’s assessment re-
sults are highly accurate as it only needs to com-
pare differences in text modality. For image evalu-
ation, we randomly sampled 50 examples for both
human and GPT-40-based evaluation. As shown
in Table B3, we calculate the average score, cor-
relation coefficient, and the #samples >= 60 of
the two methods. The results show that the aver-
age scores of the two evaluation methods are close
(GPT-based: 67.2, Human-based: 65.8), and the
two score sequences also have a strong correlation
(0.894).

Trend
Eaming Rate
Amplitude

P)
% Ragiy , Stock D

Otter,

Where + Others
Regist® red place Others A\ im

Ney,
&
g, Shoy,
€x

Py,

Fund
.
o
o«
o

Returns
Net profit
Manager

Revenue
Net value Scales

Debt + Others

Figure B1: We count the keywords for each request type
(Stock, Corp., Fund, Others) in the test set.

B.S Human Evaluation on Test Benchmark

We invite four more graduate students to manually
evaluate our benchmark according to four criteria:
task difficulty, request rationality, expression am-
biguity, and answer accuracy. The belief guidance
for human evaluation is as follows:

* Task Difficulty: The difficulty of the task,
whether it requires multiple steps... Scoring
Criteria: 5: very difficult,..., 1: easy.

* Request Rationality: Whether the request
is reasonable, or if it is strange and does not
align with human habits... Scoring Criteria: 5:
Reasonable, aligns with humans..

* Expression Ambiguity: Whether the phras-
ing of the request is ambiguous, or if the enti-
ties involved are unclear... Scoring Criteria: 5:
Clear without any ambiguity...

* Answer Accuracy: Whether the answer table
is correct, detailed, and comprehensive, totally
meeting user expectations... Scoring Criteria:
5: Data is totally correct ... 3: Partial...

B.6 Ablation Study

As shown in Section 4.3, we ablate Data-Copilot
from three aspects: @ We ablate the self-

15

exploration request process. Instead, we directly
used seed requests for interface design and opti-
mization. It leads to a 34.3 performance drop.
We observe that too few seed requests are insuf-
ficient to design universe interfaces. @ We ablate
the interface optimization. It means every suc-
cessfully designed interface was retained in the
interface library. We observe that performance is
also significantly affected (-28 points). Without
interface optimization, there are many similar in-
terfaces, which hurt the effect of workflow invo-
cation. @ Interface-Code Hybrid Generation:
Data-Copilot can only invoke interfaces during
workflow deployment. Without a hybrid genera-
tion manner, it shows a 6.4-point performance drop,
which is caused by “uncovered” requests. It high-
lights our flexibility in addressing different types
of requests.

B.7 Expanding to Other Programming
Languages

In addition to the Python language, Data-Copilot
exhibits excellent scalability, allowing for easy
switching to other programming languages by sim-
ply regenerating the corresponding interfaces. We
tested three programming languages: Python, C++,
and Matlab. The results indicate that Python per-
formed the best (Accuracy: 70.2), followed by C++
(54.2), with Matlab (36.5) yielding the poorest re-
sults. Upon examination, we found that Matlab
code often suffers from formatting errors or di-
mensional discrepancies in the data, rendering the
program non-executable. We speculate this may be
related to a lack of sufficient Matlab code in the
pre-training corpus. So ultimately, we opted for
Python for Data-Copilot.

C Related Works

In the recent past, breakthroughs in large language
models (LLMs) such as GPT-3, GPT-4, PalLM,
and LLaMa (Brown et al., 2020; Chowdhery et al.,
2022; Zhang et al., 2022; Zeng et al., 2023; Tou-
vron et al., 2023; Ouyang et al., 2022; OpenAl,
2023; Wei et al., 2022a; Zhang et al., 2024a) have
revolutionized the field of natural language pro-
cessing (NLP). These models have showcased re-
markable competencies in handling zero-shot and
few-shot tasks along with complex tasks like math-
ematical and commonsense reasoning. The impres-
sive capabilities of these LLMs can be attributed
to their extensive training corpus, intensive compu-

16

tation, and alignment mechanism (Ouyang et al.,
2022; Wang et al., 2022b,a).

LLM-based Agent Recent studies have begun
to explore the synergy between external tools and
large language models (LLMs). Tool-enhanced
studies (Schick et al., 2023; Gao et al., 2022; Qin
et al., 2023a; Hao et al., 2023; Qin et al., 2023b;
Hou et al., 2023) integrate external tools into LLM,
thus augmenting the capability of LLMs to em-
ploy external tools. Several researchers have ex-
tended the scope of LLMs to include the other
modality (Wu et al., 2023a; Suris et al., 2023;
Shen et al., 2023; Liang et al., 2023b; Huang
et al., 2023). In addition, there are many LLM-
based agent applications (Xie et al., 2023), such
as CAMEL (Li et al., 2023a), AutoGPT?, Agent-
GPT?, BabyAGI*, BMTools>, LangChain®, Agent-
verse (Chen et al., 2023b), Autoagent (Chen et al.,
2023a), MetaGPT (Hong et al., 2023), Auto-
GEN (Wu et al., 2023b), etc. Most of them are
focused on daily tools or code generation and do
not consider the specificity of data-related tasks.
Except for learning to operate the tools, several
contemporaneous studies (Cai et al., 2023; Qian
et al., 2023) have proposed to empower LLMs to
create new tools for specific scenarios like mathe-
matical solving and reasoning. These impressive
studies have revealed the great potential of LLM to
handle specialized domain tasks.

Applying LLM To Data Science Apart from
these studies, the application of large models in
the field of data science has garnered significant
interest among researchers (Maddigan and Susn-
jak, 2023; Valverde-Rebaza et al., 2024; Gu et al.,
2024a; Liu et al., 2024b; Chen et al., 2024a; Zhang
et al., 2023b; Ahn, 2024; Inala et al., 2024; Liu
et al., 2024a; Xie et al., 2024; Wu et al., 2024,
Guo et al., 2024a; Cao et al., 2024; Lu et al., 2024;
Ye et al., 2024; Sui et al., 2024; Ford et al., 2024,
Chen et al., 2024b; Weng et al., 2024; Shen et al.,
2024). FLAME (Joshi et al., 2023) investigates the
feasibility of using NLP methods to manipulate Ex-
cel sheets. StructGPT (Jiang et al., 2023) explore
reasoning abilities of LLM over structured data.
LiDA (Dibia, 2023) and GPT4-Analyst (Cheng
et al., 2023; Ma et al., 2023) focus on automated

2https
Auto-GPT
3https
4https
Shttps
6https

://github.com/Significant-Gravitas/
://github.
://github.
://github.
://github.

com/reworkd/AgentGPT
com/yoheinakajima/babyagi
com/OpenBMB/BMTools
com/hwchase17/langchain

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/reworkd/AgentGPT
https://github.com/yoheinakajima/babyagi
https://github.com/OpenBMB/BMTools
https://github.com/hwchase17/langchain

data exploration. Besides, many reseraches (Liu
et al., 2023; Chang and Fosler-Lussier, 2023; Dong
et al., 2023; Almheiri et al., 2024), like Sheet-
Copilot (Li et al., 2023b), BIRD (Li et al., 2024b),
DAIL-SQL (Gao et al., 2023), DIN-SQL (Pourreza
and Rafiei, 2023), PET-SQL (Li et al., 2024c), DB-
Copilot (Wang et al., 2023b), MAC-SQL (Wang
et al., 2023a), ACT-SQL (Zhang et al., 2023a),
ChatBI (Lian et al., 2024), CodeS (Li et al., 2024a),
SQLPrompt (Sun et al., 2023a), ChatDB (Hu et al.,
2023), SQL-PaLM (Sun et al., 2023b), and DB-
GPT (Xue et al., 2023), EHRAgent (Shi et al.,
2024) apply LLMs to Text2SQL and table rason-
ing. Chain-of-Table (Wang et al., 2024) proposes
a step-by-step reasoning strategy based on the ta-
ble. Some researchers also focus on designing
various benchmarks and evaluation methods (Lai
et al., 2023; Zhang et al., 2024b; Sahu et al., 2024;
Yang et al., 2024; Ma et al., 2024; Gu et al., 2024b;
Jing et al., 2024; Hu et al., 2024) for LLMs in data
science.

D Visualization

We provide several cases in this section to visual-
ize workflow deployed by Data-Copilot, which in-
cludes queries about diverse sources (stocks, com-
pany finance, funds, etc.) using different structures
(parallel, serial, and loop Structure).

Different Structures As shown in Figure F4,F5,
Data-Copilot deploys different structural work-
flows based on user requirements. In Figure F4, the
user proposes a complex request, and Data-Copilot
deploys a loop structure to implement the finan-
cial data query of each stock, and finally outputs
a graph and table in parallel. In Figure F5, Data-
Copilot proposes a parallel structure workflow to
meet user request (the demand for comparison in
user request) and finally draws two stock indica-
tors on the same canvas. These concise workflows
can cope with such complex requests well, which
suggests that the data exploration and workflow
deployment process of Data-Copilot are rational
and effective.

Diverse Sources Figure F6, F7, F8 demonstrate
that Data-Copilot is capable of handling a large
number of data sources, including stocks, funds,
news, financial data, etc. Although the formats
and access methods of these data types are quite
different, our system efficiently manages and dis-
plays the data through its self-designed versatile
interface, requiring minimal human intervention.

17

E Detailed Prompts

We provide detailed prompts for our Data-Copilot
and baselines. Specifically, for the data exploration,
we provide detailed prompts in Appendix E.3 for
four phases: self-exploration, interface design, and
interface optimization. For the workflow deploy-
ment phase, we also provide prompts for three
key procedures in Appendix E.4: Intent Analysis,
Task Selection, and Planning Workflow. Addition-
ally, we outline prompts for all baselines in Ap-
pendix E.5: Direct-Code, ReAct, Reflection, and
Multi-Agent Collaboration strategies.

E.2 Example for Data Exploration

###Instruction: Given some data and its
description, please mimic these seed
requests and generate more requests.
requests you generate should be as
diverse as possible, covering more data
types and common needs.
###Seed Request: {requestl, request2,...}
###Parsing file for GDP_Data:({
Description: This data records China’s
annual and quarterly GDP...,
Access Method: pro.cn-gdp(start-time,
end-time, frequency,...),
Qutput Schema: Return 9 columns,
including quarter, gdp, gdp-yoy...,
Usage : {
Example: pro.cn-gdp(start-q="2018Q1’,
end-g="2019Q3’,..),
First Row: {2019Q4, 990,
..}, Last Rows: {2018Q4, 900, ..
###Parsing file for Stock_data:{...3},

The

333

F Case Study

Detailed cases of data exploration and workflow de-
ployment are presented in Appendices F.1 and F.2.

E.1 Algorithm Flow For Interface Design and Optimization
Step 1: Interface Design and Testing

1. One-to-One Interface Design
* Design interfaces one-by-one using synthesized requests (request 1---->
interface 1)
* Generate a series of initial interfaces with single functionalities
2. Test Case Generation
* For each designed interface:
> Sample a sub data-table from relevant data sources
> Generate test requests based on data schemas and sampled sub-tables
> For example: For an interface: "GDP_retrieves(Year, Country)”
- Sample a data point from the GDP table: China, 2023, $13 trillion
- Generate test request: "What is China’s GDP in 2023?"
- Use the sampled sub-table as the expected answer
> Repeat this process K times for each interface, generating K test cases
3. Interface Evaluation
* Use the generated test cases to evaluate the usability of each interface
* Record interfaces that pass the tests and their testing results

Step 2: Interface Optimization and Compiler Feedback Evaluation

1. Similar Interface Retrieval
* Analyze the functionality and parameters of all interfaces
* Identify pairs of interfaces with similar or overlapping functionalities
2. Interface Merging Decision
* For each pair of similar interfaces, assess the necessity and feasibility of
merging
* Consider functional coverage, usage scenarios, and complexity of the interfaces
3. Interface Merging Execution
* Design a new merged interface ensuring:
> The new interface covers all functionalities of the original two interfaces
4. Merged Interface Evaluation
* Evaluate the merged interface using test cases generated in the previous steps
* Collect compiler feedback on the merged interface
* Verify:
> Whether the new interface can correctly handle all test cases of the
original interfaces
> Whether the output is consistent with the original interfaces in both format
and content
5. Feedback-Based Self-Optimization
* If the merged interface fails evaluation:
> Guide the LLMs to analyze compiler feedback
> Perform self-reflection based on the feedback and two old interfaces
> Optimize the interface design to address issues
* Repeat the evaluation-reflection-optimization cycle multiple times
* Abandon the merging attempt after multiple fails

18

E.3 Prompts For Data Exploration

Explore Data by self-exploration Phase

###Instruction: Given some data and its description, please mimic these seed
requests and generate more requests. The requests you generate should be as diverse
as possible, covering more data types and common needs.

###Seed Request: {requestl, request2,...}

###parsing file for GDP-Data:{
Description: This data records China’s annual and quarterly GDP...,
Access Method: You can access the data by pro.cn-gdp(start-time, end-time, frequency,...),
start-time means....,
OQutput Schema: The data return 9 columns, including quarter: quarter, gdp: cumulative GDP,
gdp-yoy: quarterly Year-on-Year growth rate, pi,...,

Usage:{
Example: pro.cn-gdp(start-q="2018Q1’, end-q='2019Q3’, frequency=’quarter’),
First Row: {2019Q4 990865.1 6.10, ...},
Last Rows: {2018Q4 900309.5 6.60, ...}}}

###parsing file for stock_data: {...}

Interface Design:

###Instruction: You are an experienced program coder. Given a request and some
existing interfaces, you should use these interfaces to solve the request or design
new interfaces to resolve my request.

(1) You should define the name, function, inputs, and outputs of the interface.
Please describe the functionality of the interface as accurately as possible and
write complete implementation code in the new interface.

(2) Finally please explain how to resolve my request using your newly designed
interfaces or existing interfaces in the neural language.

###0utput Format:
Your newly designed interfaces:
Interfacel={Interface Name: {name},

Function description: {This interface is to ...},
Input: {argumentl: type, argument2: type, ...J},
Output: {pd.DataFrame} }
Interface2=....
The solving process for request: {To fullfil this request, I design a interface ...}

###The user request: {input request}
###Data Files: {All data parsing files}
###The existing interfaces: {all interfaces in library}

Interface Optimization

###Instruction: Please check that the interface you have designed can be merged with
any existing interfaces in the library.

(1) You should merge interfaces with similar functionality and similar input and

output formats into a new interface.

(2) You can use parameters to control the different inputs, if you want to merge two
interfaces.

(3) Please explain your reason for merging and output all interfaces in the library

after merging.

(4) If you don’t think a merge is necessary, then just add new interfaces into the

existing interface library and output them all.

###New interfaces: {interfaces}

###Existing interfaces: {interfacel, interface2, interface3, ..}

###0utput Format:

The reasons for merging: {reason}

Interfaces after merging: {interfacel, interface2, optimized interface3, ..}

19

E.4 Prompts For Workflow Deployment

Intent Analysis Phase

Analysis Prompt: Please parse the input request for time, place, object, and
output format. You should rewrite the instruction according to today’s date. The
rewritten new instruction must be semantically consistent and contain a specific
time and specific indicators.

Output Format: Rewritten Request. (Time:%s, Location:%s, Object:%s, Format:%s).

User Request: Today is {Timestamp}. The user request is {Input Request}.
Please output a Rewritten Request.

Task Selection
###Select Prompt: Please select the most suitable task according to the given
Request and generate its task_instruction in the format of task={task_name:
task_instruction}. There are four types of optional tasks. [fund_task]: used to
extract and process tasks about all public funds. [stock_task]: for extracting and
processing tasks about all stock prices, index information, company financials, etc
., [economic_task]: for extracting and processing tasks about all Chinese
macroeconomic and monetary policies, as well as querying companies and northbound
funds, [visualization_task]: for drawing one or more K-line charts, trend charts, or
outputting statistical results.

###0utput Format: taskl={%s: %s}, task2={%s: %s}

###User Request: {Rewritten Request}.
Please output a task plan for this request.

Planning Workflow

###Planning prompt: Please use the given interface (function) to complete the
Instruction step by step. At each step you can only choose one or more interfaces
from the following interface library without dependencies, and generate the
corresponding arguments for the interface, the arguments format should be strictly
in accordance with the interface description. The interface in the later steps can
use results generated by previous interfaces.

###0utput Format:

Please generate as json format for each step:stepl={"argl"”: [argl,arg2...], "
functionl1”: "%s", "outputl”: "%s", "descriptionl”: "%s"}, step2={"argl": [argl,arg2
.1, "functionl1”: "%s", "outputl”: "%s", "descriptionl”: "%s"}, ending with ###.

###User Request: {Task Instruction}.
Please output an interface invocation for this instruction.

20

E.5 Prompts For Baselines

Direct-Code LLM

###Instruction: You are an artificial intelligence assistant. Given some data access
methods and a user request, you should write a complete Python code to fulfill the
user’s request. Your code must completely fulfill all the user’s requirements

without syntax errors!

###User Request: {User request}
###Data files: {All data files}
Please solve the request by Python Code.

Step-by-Step ReAct

###Instruction: You are an artificial intelligence assistant. Given some data access
methods and a user request, please think step by step and generate your thoughts
and actions for each step, and then finally realize the user’s request.

###User Request: {User request}

###Data files: {All data files}

###Thought Prompt: Please think about the next action that should be taken to handle
the user request.

{Thought: I need to ...}

###Action Prompt: Based on your previous thoughts, please generate a complete Python
code to accomplish what you just planned.

{Action: def get-data()....}

###0bservation Prompt: Please summarize the results of the code execution just now

and think about whether this result accomplishes what you planned for this step.

{Action: Yes, I observed that this function successfully fetched the data...}

Step-by-Step Reflexion

###Instruction: You are an artificial intelligence assistant. Given some data access
methods and a user request, please think step by step and then generate your
thoughts and actions for each step. After the execution of your current action, you
need to reflect on the results until your current plan has been successfully
completed. Then you think about the next step and then generate your next action,

and finally realize the user’s request.

###User Request: {User request}

###Data files: {All data files}

###Thought Prompt: Please think about the next action that should be taken to handle
the user request.

{Thought: I need to ...}

###Action Prompt: Based on your previous thoughts, please generate a complete Python
code to accomplish what you just planned.

{Action: def get-data()....}

###0bservation Prompt: Please record the compiler’s return results just now and
think about whether this result accomplishes what you planned for this step.

{Action: No, I observe that the compiler returns an error...}

Reflection Prompt: Please reflect on the error returned by the compiler and
regenerate a new Python code to resolve the issue. If the compilation passes without
any errors, reflect on whether the current result is what you planned to do.

{Action: I revise my solution as follows: def get-data2()....}

21

Multi-agent collaboration

###Instruction For Manager: You are the manager of the project team and you need to
lead your team to fulfill user requests. You have two experienced programmers under

you (Programmer -A and -B) and you need to assign them the same or different tasks

according to the user request, then organize the discussion, and finally solve the
problem.

###Instruction For Agent1/Agent2: You are an experienced programmer. Your team has a
colleague who is also a programmer and a manager. You need to write code according

to the manager’s arrangement, discuss it with them, improve your program, and get a
consensus conclusion.

###User Request: {User request}

###Data files: {All data files}

———————— Phasel Discussion for Task Assignment -------

###Task Assignment Prompt For 3 Agents: Now let’s start discussing how to solve user
problems. The speaking order is manager, A and B. After a round of discussion, the

manager decides on a preliminary solution and assigns specific tasks to the two
programmers

###Manager Response: {To fulfill the request... }

###Programmer A Response: {Yes, I agree with the manager. We should first,....}
###Programmer B Response: {That’s a good solution. We also should...}
###Manager Response: {After discussion, Programmer A should..., B should}

———————— Phase2 Coding and Discussion-------

###Prompts For 3 Agents: Two programmers complete their respective tasks as assigned
by their manager. Then the manager organizes a discussion on whether the two

options and their running results are reasonable. Lastly, two programmers need to
regenerate the code.

###Programmer A Response: {Solutionl Generated by A}

###Programmer B Response: {Solutionl Generated by B}

###Prompts For 3 Agents: Please evaluate two solutions. {Solutionl, Resultl, Solution2,

Result2}

###Programmer A Evaluation: {I think ...}
###Programmer B Evaluation: {I agree with ...}
###Programmer A Regeneration: {Revised Solutionl}
###Programmer B Regeneration: {Revised Solution2}

———————— Phase3 Discussion-------

———————— Phase4 Final Decision-------

###Prompts For manager: Please output a complete and correct solving code for user
request based on the previous discussions of the group.

###Manager Decision: {Final Solution}

22

F.1 Cases for Data Exploration

---- The First Request: Interface Design -----
Input Request: Get the daily opening price data of Bank of Hangzhou from Jan 23,
2018 to Mar 13, 2019 and plot the trend.

Response: First, we need to design a function to get the opening price data from the
bank’s database. Then, we need another function to process this data and prepare
them for graphical representation. Finally, we need a function to plot the trend
chart.

New Design Interfaces:

{Interfacel=Name:getBankData(), Function:.., Input:.., Output:..}
{Interface2=Name:prepareDataForPlotting(), Function:.., Input:.., Output:..}
{Interface3=Name:plotData(), Function:.., Input:.., Output:..}

The solving process for request: These three new interface functions will meet your
needs. In your program, you would first get the data using getBankData, then process
the data using prepareDataForPlotting, and finally use plotData to plot the trend.

Complete code: {Complete code using three new interfaces...}

---- The Second Request: Interface Definition Phase-------
Input Request: Get the monthly closing price data of Ningde Times from January 23,
2018 to March 13, 2019, and plot the trend.

Response: To fulfill this requirement, we design a new interface function. In
addition, I need to use two existing interfaces to fulfill your requirement.

New Designed Interfaces:
{Interface4=Name: getStockData()..}

Existing Interfaces

{Interfacel=Name:getBankData(), ...}
{Interface2=Name:prepareDataForPlotting(), ...}
{Interface3=Name:plotData(), ...}

The solving process for request: You need to call these functions to meet your needs

First, use new interface {getStockData()} to get the data of Ningde Times, then use
existing interface {prepareDataForPlotting()} to process this data, and finally use {
plotData()} to plot the trend...

Complete code: {Complete code using three new interfaces...}

---- Interface Optimization Phase -------

The reason for merging: Yes, these interface functions can be merged and
reformulated to eliminate duplicate functions. We can merge getBankData() and
getStockData() into a more generic function get-financial-data(), which can fetch any
financial data, including bank and stock data. In addition, we can keep the
prepareDataForPlotting and plotData functions, as they can also be applied to
different types of financial datal

{Interfacel=Interface Name:get-financial-data(), ...}

{Interface2=Interface Name:prepareDataForPlotting(), ...}
{Interface3=Interface Name:plotData(), ...}

23

F.2 Cases for Real-time Request

Request: Today is 2019-03-13. The user request is to please help me plot the
stock price trend of Guizhou Maotai from January 23, 2018 to today.

Rewritten Request: Please help me plot the closing price of Guizhou Maotai from
Jan 23, 2018 to Mar 13, 2019 (Time:20180123-20190313, Location: China, Object:
Guizhou Maotai stock price, Format: Line).

###Plan: taskl1={"stock_task"”: "Get the time series data of Guizhou Maotai’s stock
price from 20180123 to 20190313"}, task2={"visualization_task”: "Plot the stock
price of Guizhou Maotai from 20180123 to 20190313 on a line chart"}

###Function Call:

stepl={
"argl": ["Guizhou Maotai”, "20180123", "20190313", "daily"],
"functionl1”: "get_stock_prices_data”,
"outputl”: "resultl",
"descriptionl”: "Guizhou Maotai daily stock price (open, close, high
, low, etc.) time series data"},
step2={
"argl": ["result1”,"close”"],
"function1”: "calculate_stock_index",
"outputl”: "result2v,
"descriptionl1”: "Guizhou Maotai’s closing price time series data"},
step3={
"arg": ["result2”, null, "line", "Guizhou Maotai closing price chart

from January 23, 2018 to March 13, 2019"], "function": "
plot_stock_data"”,
"output”: "resultl1”,
"description”: "Guizhou Maotai Stock Price Line Chart”
Y ##t#

24

Request: Forecasting China's GDP growth rate for the next 4 quarters

Intent Analysis: Show data and print tables for the next 4 quarters based on China's GDP growth rate
for each quarter from 20000101 to June 07, 2023 (today)

WorkFlow Planning :
stepl=: {'argl": ['20000101', '20230607', 'gdp_yoy'], 'functionl": 'get GDP data', 'outputl': 'resultl’,
'description1’: GDP historical year-over-year growth data'}
step2=: {'argl": ['resultl’, 'gdp_yoy’, 4], 'functionl": 'predict next value', 'outputl": 'result2’,
'descriptionl': ' Year-on-year GDP growth data forecast data for the next 4 quarters '}
stepl=: {'arg': ['inputl’, ' Table of GDP forecast data for the next 4 quarters ', True], 'function":
'print save table', 'output': 'resultl’, 'description': ' Print and save GDP forecast data table '}
Step3 Step2 Step1
Print and save GDP Year-on-year GDP «~——— GDP historical year-
forecast data table growth data forecast data over-year growth data
for the next 4 quarters
result2 resultl 20000101
print_save table H predict next value }'—{ get GDP_data ‘ «——— 20230607
I I T adpyoy
gdp_yoy 4

Output Summary 202104 China 8.1

First, we use the two interface)

{get GDP_data},{predict next value} to fetch the 22220 EiEie 4.8

historical GDP data and predict the GDP for the next 202202 Chon 2.5

four quarters. Then we invoke the {print save table})

interface to print and save the table. et EiEim s

Finally, we show you the historical yoy GDP and 202204 China 3

forecast data as following:

200004 China 8.4 predl predi 5.381894409937889
200003 China 8.9 pred2 pred2 5.316734121418554
200002 hins 8.9 pred3 pred3 5.251573832899219
200001 China 9 pred4 pred4 5.186413544379884

Figure F2: Data-Copilot deploys workflows to solve users’ prediction request. It invokes three interfaces step by
step and generates arguments for each interface.

25

Interface design in First Stage by LLM

Data Acquisition | Index Calculation | Table Manipulation | Visualization | General Processing Logic

Stock 11 9 4 & &
Fund 6 8 eg. eg.
C 2 8 e.g., sort_table plot_line_trend | loop_rank

g select_col generate_report | handle_missing_data
Others 5 3
Data Name: get_stock_prices_data (...)
Acquisition Function: Retrieves the daily/weekly/monthly price data for a given stock name
Interfaces during a specific time period

Input/output: (stock_name: str=", start date: str=", end_date: str=", freq:str="daily') -
> pd.DataFrame

Name: get_cpi_ppi_currency_supply_data(...)

Function: Query three types of macro-economic data: CPI, PPl and Money
Supply, each with several different indexes

Input/output: (start_month: str =", end_month: str =", type: str = ‘cpi', index: str = ")
-> pd.DataFrame

Data Name: calculate_stock_index (...)
Processing Function: Select or Calculate a index for a stock from source dataframe
Interfaces Input/output: stock_data: pd.DataFrame, index:str="close’ -> pd.DataFrame

Name: loop_rank (...)

Function: It iteratively applies the given function to each row and get a result
Input/output: (df: pd.DataFrame, func: callable, *args, **kwargs) -> pd.DataFrame
Name: output_mean_median_col

Function: It calculates the mean and median value for the specified column

Input/output: (data: pd.DataFrame, col: str = new_feature’) -> float:\n

DataFrame Name: merge_indicator_for_same_stock (...)
Manipulation Function: ~ Merges two DataFrames (two indicators of the same stock)
Interfaces Input/output: (dfl: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame
select_value_by_column (...)
Name: Selects a specific column or a specific value within a DataFrame
Function: (dfl:pd.DataFrame, col_name: str =", row_index: int = -1) ->
Input/output: Union[pd.DataFrame, Any]

Visualization Name: plot_stock_data (...)
Interfaces Function: This function plots stock data for cross-sectional data or time-series
data using Line graph or Bar graph
Input/output: (stock_data: pd.DataFrame, ax: Optional[plt.Axes] = None, figure_type:
str ="line', title_name: str =") -> plt.Axes

Name: plot_k_line (...)

Function: Plots a K-line chart of stock price, volume, and technical index: macd,
kdj, etc.

Input/output: (stock_data: pd.DataFrame, title: str = ") -> None

Name: print_save_table (...)

Function: It prints the dataframe and saves it to a CSV file at the specified file path

Input/output: (df: pd.DataFrame, title_name: str, save:bool = False file_path: str =
".Joutput/*) -> None

Data Name: predict_next_value (...)
Prediction Functi.on- Predict the next n values of a specific column in the DataFrame using
Interfaces ! linear regression

(df: pd.DataFrame, pred_index: str = 'nt_yoy', pred_num:int = 1.) ->

Input/output:
pd.DataFrame

Figure F3: We have listed some of Data-Copilot’s self-design interfaces, including five categories. Most of the
interfaces are a combination of several simple interfaces. For example, the text marked in blue indicates that the
interface includes multiple functions.

26

Request: The year-on-year net profit growth rates of the SSE 50 index constituents in the first quarter
of this year were

Intent Detecting Stage: Search the distribution of the quarterly financial indicators of the SSE 50 index
constituents' net profit growth rate (netprofit_yoy) from 01/01/2023 to 03/31/2023.

WorkFlow Planning :

stepl=: {"'argl": ['_EHE50', '20230301', '20230331'], 'functionl': 'get index constituent!, 'outputl":
‘result]’, 'descriptionl": ' Information on all SSE 50 constituents for the month '}

step2=: {'argl": ['resultl’, 'stock_name', -1], "functionl": 'sclect value by column', 'outputl': 'result2',
'descriptionl": ' Stock names of SSE 50 constituent stocks '}

step3=: {"argl": ['result2', 'get Financial data from time range','20230331','20230331",
'netprofit_yoy'], 'functionl": 'loop rank’, 'outputl': 'result3', 'descriptionl’: ' Cross-sectional data of the
year-on-year growth rate of net profit of each constituent stock of the SSE 50 for the first quarter
20230331'}

step4=: {'arg" ['inputl', None, ' bar ', 'SSES0 quarterly report 20230331 year-on-year distribution of
net profit growth of each constituent stock '], 'function": ‘plot stock data', 'output': 'resultl’,
'description': ' Plotting bar graphs '}

step5=: {'arg" ['inputl’, 'new_feature', 'SSES0 quarterly report 20230331 year-on-year distribution of
net profit growth of each constituent stock '], 'function': ‘print save table', 'output': 'result2',
'description": 'print and save table'}

Step4 Step3 Step2 Step1

plot stock data
print_save table

Workflow ~from time range |«—— 120230331'

result2 1t1
select value by get index , ,
loop rank — O e S 20230301
column constituent
— '20230331"

get Financial data |[«— '20230301"

result3

0050000000202300100102023(03031000000000000000000

m= stock_name_new_feature

200 unchanged v stock_name new_feature
stock_name REYeHE 225.43 stock_nanme iz =74.2
stock_name SEES 116.17 stock_name EnEf -75.85
m stock_name EEIAR 65.59 stock_name HRARI -77.81
stock_name RIEEE 57.78 stock_name FSBIFH -78.13

new_feature

100 i stock_name FEFER 48.89 stock_name KiaE -89.34

o "“IHI“HIHMHI“HHHI

~100

stock_name

Figure F4: For complex requests about stock financial data, Data-Copilot deploys a loop workflow to solve user
requests and finally outputs images and tables in parallel.

27

Request: Compare the change in the P/E ratio of Ningde Times and Guizhou Maotai in the last three
years

Intent Detecting Stage:

Please show the technical indicator price-to-earnings valuation (pe-ttm) charts of Ningde Times(51&
BF4X) and Guizhou Maotai (523 &) from June 6, 2020 to June 6, 2023 to compare the change in
their PE.

WorkFlow Planning :

stepl=: {'argl": ['T{EAFT', '20200606', '20230606'], 'functionl': 'get stock technical data', 'outputl':
‘resultl’, 'description]': 'Time series data of Ningde times technical indicators ', 'arg2": ["&=INF &',
'20200606', '20230606'], 'function2": 'get stock technical data', 'output2': 'result2', 'description2': '
Time series data of technical indicators of Guizhou Maotai '}

step2=: {"argl" ['resultl’, 'pe_ttm'], 'functionl": 'calculate stock index', 'outputl": 'result3',
'descriptionl": ' Ningde Time's pe value time series data ', 'arg2": ['result2', 'pe_ttm'], 'function2":
‘calculate_stock index', 'output2": 'result4', 'description2': ' Guizhou Maotai's pe value time series data '}
step3=: {"arg" ['inputl’, None, 'line', ' PE trend of Ningde Times and Guizhou Maotai from Jun 06,
2020 to Jun 06, 2023 '], "function': 'plot stock data', 'output': 'resultl’, 'description': ' Plotting the PE
trend of Ningde Times '}

stepd=: {‘arg’: ['input2', 'resultl’, ' line ', ' PE trend of Ningde Times and Guizhou Maotai from Jun 06,
2020 to Jun 06, 2023 '], 'function": 'plot stock data', 'output': 'result2', 'description': 'Plotting the PE
trend of Guizhou Maotai'}

Step4 Step3 result3 Step2 resultl Stepl
e
plot_stock data calculate stock index get stock technical data
'20200606
resultd result2 20230606
plot stock data calculate stock index "—-{ get stock technical data PR
= = == = = RMNFA
Workflow
TR M2020%06 506 E 2 5
o
— @A _pe_tim
— P _pe_tim
trade_date v stock_name 4 pe_ttm
0 20230606 B’MNFE 31.6008
20230605 BMFE 31.5631
175 20230602 EUE 31.6692
20230601 BMFa 31.0118
20230531 B’MFE 30.8787
150
e -
£ 125
S
o
50
B FA:41.0 20200608 o)
M 4:3) 6 @20230606
- owrifez] o gaeznos

rade_date

Figure F5: Data-Copilot acquires the P/E data of two stocks in parallel and plots them in a graph.

28

Request: Returns of all funds managed by fund manager Zhou Haidong (J&7&4%) this year

Intent Detecting Stage: View fund managers, showing a cross-section of returns for each fund
managed by Haidong Zhou from January 1, 2023 to June 6, 2023

WorkFlow Planning :

stepl=: {'argl": ['BEE4%'], functionl": 'query fund Manager', 'outputl': 'resultl’, 'descriptionl” ' Data
of all funds managed by Zhou Haidong '}

step2=: {'argl": ['resultl’, 'fund_code’, -1], ‘functionl": ‘select_value by column’, 'outputl": 'result2',
'description]": ‘ List of codes of all funds managed by Zhou Haidong '}

step3=: {"argl": ['result2', 'calculate_earning_between two time', '20230101', 20230606, 'adj_nav'],
‘function1’: ‘loop_rank’, 'outputl’: 'result3', ‘descriptionl': 'Cross-sectional return data from 20230101
to 20230606 for each fund managed by Haidong Zhou's'}

stepd=: {"arg": ['inputl’, None, 'bar’, ' Return of each fund managed by Haidong Zhou from January 1,
2023 to June 6, 2023 1, "function': 'plot_stock data’, 'output’: 'resultl’, 'description’: 'Plotting fund
return histogram '}

Step4 Step3 Step2 Stepl

result2 resultl

result3

select_value_by | | 'query_fund_

_column Manager

plot_stock_data loop_rank

calculate_earning_ |«—— '20230101"
Workflow between_two_time [«—— '20230606"

A1

4 fund_code 4 new_feature
= tund_code_new_feature

fund_code 630002 . 0F 0.0937
™
fund_code 000390 . OF 0.0888
- fund_code 013958.0F 0.0744
fund_code 013959.0F 0.0716
a0t
I fund_code 166301 .0F 0.0692
. o I II I fund_code 630008 . OF 0.0516
]
H I I I II I I I I I I fund_code 008488. OF 0.046
)

006 fund_code 013142.0F 0.0296

fund_code 630011.0F -0.0592

fund_code 001723.0F 0.0426
o fund_code 010761.0F 0.036
fund_code 016049.0F 0.0335
o0
fund_code 001959.0F 0.0312
PO

£ S« 2 & £«
A A R R & & E

Figure F6: Data-Copilot also has access to fund data and can query the returns of all funds managed by the fund
manager.

29

Request: Bank of Chengdu candlestick and KDJ indicator for the past year

Intent Detecting Stage: Display the latest financial news and market developments on financial
websites

WorkFlow Planning :

stepl=: {'argl": ['BERERTT, '20220606', '20230606', 'daily'], 'functionl': 'get stock prices data’,
‘outputl': 'resultl’, 'descriptionl": ' Bank of Chengdu daily stock price (open, close, high, low and other
related prices) time series data ', 'arg2": [' B &BER1T', '20220606', '20230606'], 'function2':

'get stock technical data', 'output2': 'result2', 'description2': ' Time series data of Bank of Chengdu
technical indicators '}

step2=: {"argl" ['resultl’, 'candle K'], 'functionl": 'calculate stock index', 'outputl": 'result3',
'descriptionl": ' Bank of Chengdu candlestick related data ', 'arg2": ['result2', 'KDJ'], 'function2":
‘calculate stock index!', 'output2': 'result4', 'description2": ' Time series data of Bank of Chengdu KDJ
indicator '}

step3=: {"argl": ['result3', 'result4'], 'functionl": 'merge indicator for same stock', 'outputl": 'results’,
'descriptionl": ' Bank of Chengdu Candlestick Indicator and KDJ Indicator Combined Time Series Data
"}

stepd=: {"arg": ['inputl’, 'The K plot and KDJ index for chengduyinhang from 2022/06/06 to
2023/06/06 '], 'function”: 'plot k line', 'output': 'resultl’, 'description': ' Plotting candlestick and KDJ

charts '}
Step4 Step3 Step2 resultl Step1
results iy culcul_al:‘)lock gclislml‘l\iprlccs R
: merge_indicator for Index data ;
plot k]mc}‘— - daily
— _same_stock
x\ calculate stock get stock_technical 20220606'
resu . o -
index data 20230606’
Workflow = result2 =
2 e
e
e
L |
%
"
15
g 600000 {
2 400000

Figure F7: Data-Copilot can plot multiple indicators in a single graph by deploying workflows in parallel.

30

Request: I want to see the current news or the latest news

Intent Detecting Stage: Display the latest financial news and market developments on financial
websites

WorkFlow Planning :
stepl=: {"argl": ['sina'], 'functionl": 'get latest new from web', 'outputl': 'resultl’, 'descriptionl': ' The
latest financial news data '}
step2=: {'arg" ['inputl’, ' The latest financial news and market developments ', False], 'function":
'print_save table', 'output': 'resultl’, 'description': ' Scroll to show news '}

Step2 Stepl

resultl

Workflow ‘ print_save_table }'—{ get latest new from web }'— sina

datetime

content

[datetime]: 2023-06-07 04:04:14 [content]: EHMitEM6A6H (M) WELRK10.42:%, I80.03%, 1§33573.28:; ixE500fEM6A6H (M) KR EAK9.14:%, BKIE0.21%, i84282.93; WMIHARGEIEB6A

[datetime]: 2023-06-07 04:02:19 [content]: XEMBBRERHMER— (6ASH) KWEME712{2X%, LAE (6828) 7. LREE 2%, 4R

[datetime]: 2023-06-07 04:01:34 [content]: [AIIPHMAEK BHZRHEG7%] AIPRREK, BHZHE7%, BWNFHER, FEMES, WHRHEH,

BE. BREKEN, RERR. BRER. HEEE. 5%

[datetime]: 2023-06-07 04:01:12 [content]: [RE=AIMMEMUEK RIIRRRSH K] KM= KEBEELFE, BILRKO.03%, MiEEKO.36%, IRMS00MHBRKO0.23%, MITRHRRBM R, AMDKBSY, RIFRAKEBI%,

[datetime]: 2023-06-07 ©3:56:52 [content]: FEESIC (BfLE) FHNIRY KURSRE M

[datetime]: 2023-06-07 03:52:58 [content]: MiFHME: T

[datetime]: 2023-06-07 03:52:43 [content]: LA /%ETEARKIEAS. 0%, H26959%5.

[datetime]: 2023-06-07 03:52:34 [content]: TER, 1 A= (6A6H) AYRE, RENCFHEEEMMME LK. 971 ER, 18369288
[datetime]: 2023-06-07 03:43:49 [content]: [ZMFATMMKA_ LK. 0%, FKMEBABEL.7%] B (6A6R) MNRE, BMHLIMAK0.77%, 1843.7189A. CBOTINKMHAKL. 67%, iB6.07-1/2%5/Mx

[datetime]: 2023-06-07 ©3:35:50 [content]: FABMIEF (Apolo Global Management) MICEO Marc Rowan:

[datetime]: 2023-06-07 03:26:00 [content]: MBHMIFERM, LL15T HAIARKS.00%, /K, AKIRKIRAK, 1R1882%TT/1.

[datetime]: 2023-06-07 03:11:27 [content]: WHHHE: HRIKHRedditERESVEEMATL.

[datetime]: 2023-06-07 03:07:37 [content]: EIWXART,

[datetime]: 2023-06-07 03:03:26 [content]: ZEMA

FALRESE .1180, BE—%H 171, MXWA52.55(Z%T.
[datetime]: 2023-06-07 03:03:14 [content]: BIRMABIBMIKAKL.91%, 1819351, MK251m.

[datetime]: 2023-06-07 03:00:37 [content]: FHHHE: BFRTFENRY, REMNRERTANRRPMULNRN, RERFIREAR, BINMNKE ik

Request: Introduce the Bank of Chengdu, what is the company, what is the main business

Intent Detecting Stage: Briefly introduce the listed company Bank of Chengdu and its main business

WorkFlow Planning :

stepl=: {'argl": ['BERERTT'], functionl": 'get_company info', 'outputl’: 'resultl’, 'descriptionl": '
Information of Bank of Chengdu '}

step2=: {'arg": ['inputl', 'FLERERFT R HABF#Z &', True], 'function”: 'print save table', 'output': None,
'description”: ' Information of Bank of Chengdu '

Step2 result Stepl

Workflow ‘ print_save_table }'—{ get company_info }‘— PRERRTT

BESR v BRERB + RBMAEEB 4 EARR 4 BRE . BER . EERE . EHEE

FRABARAT 601838.SH SSE i ES) B 373573.626 1997050:

FEEH 4 FifEEm + AFNE
o)1l AT ATRAN I EEREHEWRT. ASIBEREEN HERR. ERRE. MERS

Figure F8: Data-Copilot can provide the latest financial news and company information by deploying the corre-
sponding workflows.

31

Hello Data-Copilot ! © A. User Input Panel

A powerful Al system connects humans and data.
The current version only supports Chinese financial data, in the future we will support for other country data

Submit
Itis recommended to use the Openai paid API or Azure-OpenAl service, because the free Openai API will
be limited by the access speed and 3 Requests per minute.
what do you want to find? Start
SE—FE LS RIAREFERE GRS 52 @
Try these examples
ZEBRE Query stock: L5 Query Economy: & /AN 5] Query Company: EESFE Query Fund:
- i SE—FE LIEs0 -
BB BRIV RS
(" Summary and Result: Solving Step: ‘
: e B. Text Output Panel
BABENERRFD BT
ES.BEE—NES tent Detecting Stag
[stock_task], FRAEHRIRER =
IESOFTA M2 RIS —Z4R BRI LIES0RIFTA A BRAY—ZHR (2023503 A 31 H) M S54RI % F
20230331 HHYVAREFiEIE IR EILE (netprofit_yoy) D F1ER, HIIHERIRRNRIKRELLIGE
SE[EEL (netprofit_yoy) & E 7,
iR
SR S5 — ANIT A2 ——meeTarl Dlanine Chamam————
rEsoBRA C. Graph and Table Panel
m— stock_name_new_feature
Top-10 Last-10
0 unchanged 4 stock_name 4 new_feature . - e
stock_name RExnw 225.43
stock_name B921 =3 -40.83
stock_name HEEH 116.17 J— AR e
stock_name MR 65.59
150 stuck_name pr— g stock_name iyt o] -49.55
. SETR 48.89 stock_name AEE -51.11
stock_name Py 46.49 stock_name RIS -74.2
- U [38.68 stock_name Ehafk -75.85
stock_name ERE 36.55 stock_name HRBG -77.81
stock_name PEAT) 35.95 stock_name e B -78.13
° ‘ stock_name RS 32.77 stock_name KISE -89.34
\ “ll||||||I||||IIII|||...

&

TP R R UK R I R P g Tl 0 JR W SR SR O e P e v*@v@wet*y
S e B e W St A T S O N P % S0 0
BN S PR T S E S S Y G ST S I

ock namef+

Figure F9: The user interface of our system. The green box (A) is the user input panel, and the purple (B) and red
parts (C) are the results returned by the system.

32

	Introduction
	Data-Copilot
	Data Exploration
	Workflow Deployment

	Dataset Synthesis
	Environment and Data Sources
	The Creation of Dataset
	Qualitative Evaluation

	Quantitative Evaluation
	Experiments Settings
	Comparison Results
	Why Data-Copilot Brings Improvements?

	Conclusion
	Preprocessing of Workflow Deployment
	Experiments Details
	Baselines and Experiments Details
	The Definitions of Three Complexity Levels for Testset
	The Quality of Self-exploration Requests.
	The detail of GPT-4o Evaluation
	Human Evaluation on Test Benchmark
	Ablation Study
	Expanding to Other Programming Languages

	Related Works
	Visualization
	Detailed Prompts
	Example for Data Exploration
	Case Study
	Algorithm Flow For Interface Design and Optimization
	Prompts For Data Exploration

	Prompts For Workflow Deployment
	Prompts For Baselines
	Cases for Data Exploration

	Cases for Real-time Request

