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Abstract
Ad hoc teamwork poses a challenging problem, re-
quiring the design of an agent to collaborate with
teammates without prior coordination or joint
training. Open ad hoc teamwork (OAHT) further
complicates this challenge by considering envi-
ronments with a changing number of teammates,
referred to as open teams. One promising solution
in practice to this problem is leveraging the gener-
alizability of graph neural networks to handle an
unrestricted number of agents with various agent-
types, named graph-based policy learning (GPL).
However, its joint Q-value representation over a
coordination graph lacks convincing explanations.
In this paper, we establish a new theory to under-
stand the representation of the joint Q-value for
OAHT and its learning paradigm, through the lens
of cooperative game theory. Building on our the-
ory, we propose a novel algorithm named CIAO,
based on GPL’s framework, with additional prov-
able implementation tricks that can facilitate
learning. The demos of experimental results
are available on https://sites.google.
com/view/ciao2024, and the code of ex-
periments is published on https://github.
com/hsvgbkhgbv/CIAO.

1. Introduction
Multi-agent reinforcement learning (MARL) has achieved
partial success on multiple tasks including playing strategy
games (Rashid et al., 2020), power system operation (Wang
et al., 2021), and dynamic algorithm configuration (Xue
et al., 2022). These tasks fit to the training paradigm of
MARL, which requires all agents to be controllable and to
be coordinated during training. However, with this paradigm
it is difficult to tackle many real-world tasks where not all
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agents are controllable and even prior coordination may not
be possible. For example, in search and rescue, a robot
must collaborate with other robots it has not seen before
(e.g., manufactured by various companies without a com-
mon coordination protocol) or humans to rescue survivors
(Barrett & Stone, 2015). Similar situations occur in AI that
helps trading markets (Albrecht & Ramamoorthy, 2013),
as well as in the human-machine and machine-machine
collaboration emerging from the prevailing embodied AI
settings (Smith & Gasser, 2005; Duan et al., 2022) and large
language models (Brown et al., 2020; Zhao et al., 2023).

To tackle the ad hoc teamwork problem, we explore a sce-
nario where one agent, referred to as the learner, operates
under our control and seeks to collaborate without prior
coordination with teammates which have unknown types
and policies (Stone et al., 2010). When dealing with teams
of dynamic sizes, commonly termed open teams, the re-
search problem addressed in this paper is often referred to as
open ad hoc teamwork (OAHT) (Mirsky et al., 2022). One
promising solution for OAHT in practice is graph-based pol-
icy learning (GPL) (Rahman et al., 2021). GPL presents a
three-fold framework, encompassing a type inference model,
a joint action value model and an agent model. Although
GPL reaps the success of performance due to the generaliz-
ability of graph neural networks to handle an unrestricted
number of agents with various agent-types, its weakness is
that the representation of the joint Q-value over a coordina-
tion graph lacks convincing explanations. This restricts its
applicability to real-world problems requiring trustworthy
algorithms (Bhat & Alqahtani, 2021; Wang et al., 2021).

We propose to describe OAHT using a game model from co-
operative game theory, namely the coalitional affinity game
(CAG) (Brânzei & Larson, 2009). Specifically, we extend
the CAG by incorporating Bayesian games (Harsanyi, 1967)
to depict uncertain agent-types and stochastic games (Shap-
ley, 1953) to represent the long-horizon goal. The resulting
game is termed the open stochastic Bayesian coalitional
affinity game (OSB-CAG). In this game, the learner aims
to influence other teammates (via its actions) to collaborate
in achieving a shared goal. To formalize this, we extend the
standard cooperative game theory notion of strict core to a
novel solution concept which we call dynamic variational
strict core (DVSC). The DVSC transforms collaboration in
a temporary team into the task of forming a stable temporary
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team, where no agent has incentives to leave. We model the
OAHT process under the learner’s influence as a dynamic
affinity graph (equivalent to a coordination graph), gen-
eralizing the classical static CAG. Based on the dynamic
affinity graph, we further conceptualize an agent’s prefer-
ence for a temporary team to measure whether they prefer
to stay in the team under the learner’s influence. GPL’s joint
action value model is proven to be the sum of any temporary
agents’ preferences over a long horizon.

The main contributions of this paper can be summarized as
follows: (1) We conceptualize OAHT as a dynamic coali-
tional affinity game, OSB-CAG. In this model, the learner
seeks to influence teammates through its actions, without
prior coordination, to establish a stable temporary team. (2)
The theoretical model of OSB-CAG gives an understanding
of GPL’s joint action value model. It ensures collaboration
within any temporary team under open team settings. (3)
Building on the OSB-CAG theory, we derive a constraint
for representing the joint action value to facilitate learn-
ing, and an additional regularization term depending on
the graph structure to rationalize solving DVSC as an RL
problem. The novel algorithm, named CIAO (Cooperative
game theory Inspired Ad hoc teamwork in Open teams),
is implemented based on GPL and incorporates the above
novel and provable tricks. (4) We discuss and understand
the learning paradigm employed in GPL that aims to learn
the joint Q-value for open team settings. (5) We conduct
experiments, primarily comparing two instances of CIAO
(CIAO-S and CIAO-C) based on GPL framework in two
environments: Level-based Foraging (LBF) and Wolfpack
under open team settings (Rahman et al., 2021). Finally, we
conduct a comprehensive review and discussion of related
works on both theoretical and algorithmic aspects of AHT
and explore its relationship to MARL in Appendix A.

2. Background
Let ∆(Ω) indicate the set of probability distributions over a
random variable on a sample space Ω and let P(X ) denote
the power set of an arbitrary set X . To simplify the notation,
let i exclusively denote the learner and −i denote the set of
all temporary teammates at any timestep. P (X ) indicates
the generic probability distribution over a random variable
X and ∣X ∣ indicates the cardinality of an arbitrary set X .

2.1. Coalitional Affinity Game

As a subclass of non-transferable utility games, hedonic
game (Chalkiadakis et al., 2022) is defined as a tuple ⟨N ,⪰
⟩, where N is a set of all agents; and ⪰= (⪰1, ...,⪰n) is
a sequence of agents’ preferences over the subsets of N
called coalitions. C ⪰j C′ implies that coalition C is no
less preferred by agent j than coalition C′. For each agent
j ∈ N , ⪰j describes a complete and transitive preference

relation over a collection of all feasible coalitions N (j) =
{C ⊆ N ∣ j ∈ C}. The outcome of a hedonic game is a
coalition structure CS, i.e., a partition of N into disjoint
coalitions. We denote by CS(j) the coalition including
agent j. The ordinal preferences can be represented as the
cardinal form with preference values (Sliwinski & Zick,
2017). More specifically, an agent j has a preference value
function such that vj ∶ N (j) → R≥0. vj(C) ≥ vj(C′) if
C ⪰j C′, which implies that agent j weakly prefers C to
C′; vj(C) > vj(C′) if C ≻j C′, which implies that agent j
strictly prefers C to C′.
To concisely represent the preference value, a hedonic game
is equipped with an affinity graph G = ⟨N ,E⟩, where each
edge (j, k) ∈ E describes an affinity relation between agents
j and k. For each edge (j, k), it defines an affinity weight
w(j, k) ∈ R to indicate the value that agent j can receive
from agent k, while if (j, k) ∉ E , w(j, k) = 0. For any
coalition C ⊆ Nj , the preference value of agent j is speci-
fied as vj(C) = ∑(j,k)∈E,k∈C w(j, k) if C ≠ {j}, otherwise,
vj({j}) = bj ∈ R≥0.1 An affinity graph is symmetric if
w(j, k) = w(k, j), for all (j, k), (k, j) ∈ E . The hedonic
game with an affinity graph is named as coalitional affinity
game (CAG) (Brânzei & Larson, 2009). Strict core stability
is a principal solution concept of CAG (see Definition 1).

Definition 1. We say that a blocking coalition C weakly
blocks a coalition structure CS if every agent j ∈ C weakly
prefers C to CS(j) and there exists at least one agent k ∈
C who strictly prefers C to CS(j). A coalition structure
admitting no weakly blocking coalition C ⊆ N is called
strict core stable.

2.2. Graph-Based Policy Learning

We now briefly review GPL’s empirical framework (Rah-
man et al., 2021) to solve OAHT (see Appendix C.1 for
more details). GPL consists of the following modules: the
type inference model, the joint action value model and the
agent model. To align with our motivation, we transform
the framework to be adaptable to any coordination graph
structure, as opposed to being restricted to only the complete
graph as in GPL.

Type Inference Model. This is modelled as a LSTM
(Hochreiter & Schmidhuber, 1997) to infer agent-types of
a team at timestep t given the teammates’ agent-types and
the state at timestep t − 1. The agent-type is modelled as
a fixed-length hidden-state vector of LSTM, referred to as
agent-type embedding. To address the issue of variable team
size, the embedding of the agents who leave a team would
be removed at each timestep, while the type embedding of
the newly added agents would be set to a zero vector.

1In the original CAG setting (Sliwinski & Zick, 2017), vj({j})
is conventionally set to zero. Herein, we extend it to non-negative
values for generality (see Appendix E).
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Joint Action Value Model. The joint Q-value Q̂πi(st, at)
is approximated as the sum of the individual utility
Q̂πi

j (a
j
t , ∣st) and pairwise utility Q̂πi

jk(a
j
t , a

k
t ∣st):

Q̂πi

(st, at) = ∑
(j,k)∈Et

Q̂πi

jk(ajt , akt ∣st) + ∑
j∈Nt

Q̂πi

j (ajt ∣st),

(1)
where the superscript πi implies that the above terms can
only be optimized by the learner’s policy πi.

Agent Model. To address the open team setting, GNN is ap-
plied to process the joint agent-type embedding θt produced
from the type inference model, where each agent is repre-
sented as a node and the coordination graph is consistent
with that for the joint action value model. The resulting node
representation n̄t is applied as input to infer the estimated
teammates’ joint policy, denoted as π̂−i(a−it ∣st, θ−it ).
Learner’s Decision Making. The learner’s approximate
action value function Q̂πi(st, ait) is defined as follows:

Q̂πi

(st, ait) = Ea−it ∼π−it
[Q̂πi

(st, ait, a−it )] , (2)

where st is a state at timestep t, a−it is a joint action of
teammates −i at timestep t and ait is the learner i’s action at
timestep t. The learner’s decision making is conducted by
selecting the action that maximizes Q̂πi(st, ait).

3. A New Game Model to Formalize OAHT
In this section, we generalize the coalitional affinity game
framework to formalize OAHT, by integrating a graph to
represent relationships among agents. It is essential to em-
phasize that, for the sake of brevity, our focus of this work
is exclusively on fully observable scenarios.

3.1. Problem Formulation

In an environment, the learner i interacts with other un-
controllable temporary teammates −i to achieve a shared
goal. To model this process, we introduce Open Stochastic
Bayesian Coalitional Affinity Game (OSB-CAG), defined
as a tuple ⟨N ,S, (Aj)j∈N ,Θ, (Rj)j∈N , PT , PI , PA,E , γ⟩.
Here,N represents the set of all possible agents, S is the set
of states, Aj is the action set for agent j, and Θ denotes the
set of all possible agent-types. Let the joint action set under
a variable agent set Nt ⊆ N be defined as ANt = ×j∈NtAj .
Therefore, the joint action space under a variable num-
ber of agents is defined as AN = ⋃Nt∈P(N ){a∣a ∈ ANt},
while the joint agent-type space under a variable number
of agents is defined as ΘN = ⋃Nt∈P(N ){θ∣θ ∈ Θ∣Nt ∣}. A
dynamic affinity graph, denoted as Gt = ⟨Nt,Et⟩, is intro-
duced to describe the relationships among agents. Here,
Et = {(j, k) ∣ j, k ∈ Nt} ⊆ E , and E is a set of possible
edges represented by pairs (j, k). This graph is referred to
as the coordination graph in GPL.

Transition Function. We now introduce three primitive
probability distributions denoted as PT ∶ P(N ) × S ×
AN → ∆(P(N ) × S), PI ∶ P(N ) × S → [0,1], and
PA ∶ N × S → ∆(Θ). These probability functions char-
acterize the dynamics of the environment in the following
procedure: (1) At the initial timestep 0, PI(N0, s0) gener-
ates an initial set of agents N0 and an initial state s0. (2)
PA(θjt ∣{j}, st) represents a type assignment function that
randomly assigns agent-types to the generated agent set.
(3) PT (Nt, st∣Nt−1, st−1, at−1) generates the agent set Nt

and state st for the next time step t. (4) Stage 2 and 3
above are repeated. To succinctly represent the aforemen-
tioned process, we derive a composite transition function
T (Nt, st, θt∣st−1, at−1, θt−1) (see Proposition 1) in place of
stage 2 and 3 from timesteps t ≥ 1. This function can be
factorized, clarifying the GPL’s framework, as follows:

T (Nt,st, θt∣st−1, at−1, θt−1)
= PE(θt∣Nt, st)PO(Nt, st∣st−1, at−1, θt−1).

(3)

Herein, PO(Nt, st∣st−1, at−1, θt−1) is a probability distri-
bution composed of PT , PI and PA (see the sketch of
proof of Proposition 1) that generates a variable agent
set Nt and a state st, observable by the learner. In con-
trast, a joint agent-type θt generated from PE(θt∣Nt, st) =
∏∣Nt∣

j=1 PA(θjt ∣{j}, st) is unobservable by the learner. How-
ever, it plays a crucial role in the agent model for the
learner’s decision making in the empirical framework of
GPL, motivating the estimation of this term in practice, as
conducted by the type inference model (see Section 2.2). To
distinguish between and clarify the observation generated
from PO and the agent-types generated from PE during
the decision process, both functions will be concurrently
utilized to describe the composite transition function T in
the subsequent sections. To simplify the notation, we would
use PO in place of PI for t = 0 in the following sections.

Assumption 1. The following conditional independencies
are assumed to hold in any distribution P over the set of vari-
ables in an OSB-CAG: (1) (θt ⊥⊥ θt−1, st−1, at−1 ∣ Nt, st);
(2) (Nt, st ⊥⊥ θt−1 ∣ Nt−1, st−1, at−1); (3) (Nt ⊥⊥ at∣st, θt);
(4) (θjt ⊥⊥ −j, θ−jt ∣ {j}, st).
Proposition 1. T (Nt, st, θt∣st−1, at−1, θt−1) for t ≥ 1 can
be expressed in terms of the following well-defined probabil-
ity distributions: PI(N0, s0), PT (Nt, st∣Nt−1, st−1, at−1)
for t ≥ 1, and PA(θjt ∣{j}, st) for t ≥ 0.

Proof. We show the sketch of proof here. The following
derivation is obtained by Assumption 1. For validity of con-
ditions in Assumption 1, please refer to Appendix D. About
the complete version of proof, please refer to Appendix G.1.

T (Nt, st, θt∣st−1, at−1, θt−1) =
PE(θt∣Nt, st)PO(Nt, st∣st−1, at−1, θt−1),
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where PE(θt∣Nt, st) =∏∣Nt∣
j=1 PA(θjt ∣{j}, st) and

PO(Nt, st∣st−1, at−1, θt−1) =
∑
Nt−1

PT (Nt, st∣Nt−1, st−1, at−1)P (Nt−1∣st−1, θt−1).

We have

P (Nt∣st, θt) =
∑st PE(θt∣Nt, st)P (Nt, st)
∑Nt
∑st PE(θt∣Nt, st)P (Nt, st)

.

Also, we have P (N0, s0) = PI(N0, s0) and when t ≥ 1,

P (Nt, st)
= ∑
Nt−1
∑
st−1
∑
at−1
∑
θt−1

P (Nt, st,Nt−1, st−1, at−1, θt−1),

where P (Nt, st,Nt−1, st−1, at−1, θt−1) can be expressed in
terms of P (Nt−1, st−1) and the probability distributions we
have defined. The sketch of proof is completed.

Preference Reward. The function Rj ∶ AN × S → R≥0
extends an agent j’s preference value, of the original state-
less CAG, to the agent j’s preference reward Rj which
depends on the state and action. For example, Rj(at∣st)
indicates agent j’s preference reward for a temporary team
Nt ⊆ N with the corresponding joint action at = ×j∈Nt

ajt ,
whereas Rj(ajt ∣st) indicates agent j’s preference reward for
a coalition only including itself. To capture the relationship
between agents j and k in terms of both the current state and
the actions taken, the affinity weight is generalized accord-
ingly as wjk ∶ Aj ×Ak×S → R. Following the specification
of preference values through affinity weights, the preference
reward of any agent j for a coalition Nt can be represented
as Rj(at∣st) = ∑(j,k)∈Et,k∈Nt

wjk(ajt , akt ∣st). This summa-
tion aggregates the affinity weights for all pairs of agents
(j, k) in the coalition, where k is a member of Nt. The
learner’s reward function R(st, at) for any Nt is specified
by Rj(at∣st), which will be introduced in Section 3.4.

3.2. Dynamic Variational Strict Core

We now extend the game theoretical concept of strict core
from CAG to OSB-CAG as a criterion to evaluate the extent
of collaboration among the agents in a temporary team (a
coalition Nt at each timestep t), named as dynamic varia-
tional strict core (DVSC). Unlike the strict core defined in
CAG that evaluates coalition formation based on the given
preference values, DVSC evaluates whether the learner i’s
policy can influence temporary teammates’ decisions (mea-
sured by preference rewards), so that they intend to collab-
orate (so called variational). This is analogous to forming
a temporary team as a desired coalition. Next we derive a
result on strict core stability to motivate a result on DVSC.
The following two statements are equivalent when the affin-
ity graph is symmetric: Team maximizes social welfare, and

team reaches strict core stability (see Lemma 1 in Appendix
F). This inspires using the objective of maximizing social
welfare as a surrogate criterion to evaluate strict core stabil-
ity, and this criterion can be further generalized to dynamic
scenarios to derive the DVSC (see Definition 2).

Definition 2. If a dynamic affinity graph is symmetric, then
maximizing the long-horizon social welfare is equivalent to
reaching strict core stability under the variable teammates
of uncertain agent-types generated by PE and the uncertain
states generated by PO.

Following the inspiration shown in Definition 2, DVSC can
be equivalently expressed in the form shown in Eq. (4). The
detailed derivation of DVSC is left in Appendix F.

DVSC ∶= { πi,∗ ∣ Eπi,∗[
∞
∑
t=0

γt ∑
j∈Nt

Rj(at∣st)]

≥ Eπi[
∞
∑
t=0

γt ∑
j∈Nt

Rj(at∣st)],∀s0 ∈ S,∀πi },
(4)

where ait ∼ πi and a−it ∼ π−it ; Eπi[⋅] denotes the expectation
that also implicitly depends on θt ∼ PE and Nt, st ∼ PO,
and a−it ∼ π−it ; and πi,∗ indicates the solution to DVSC.

3.3. Is Stability of any Temporary Team a Reasonable
Metric for Describing Open Ad Hoc Collaboration?

Recall that all agents in AHT have a shared goal, which
implies that they intrinsically aim to collaborate on solving
a shared task (Mirsky et al., 2022), but their preferences for
collaborating with each other are not necessarily compatible.
This compatibility can be interpreted as stability of a tempo-
rary team, determined by the preferences of ad hoc agents
for collaborating with each other. If those ad hoc agents are
incompatible with each other, the temporary team becomes
unstable but still with hope of collaborating as a team to
solve the shared task. Thus, the learner’s aim is to tweak
the compatibility of a temporary team through its actions, to
influence the temporary teammates’ preferences, equivalent
to maintaining the stability of the temporary team, across
timesteps. Furthermore, the definition of DVSC in Eq. (4)
is invariant to team size, aligned to open team settings.

3.4. Solving DVSC by Reinforcement Learning

We proceed to define the learner’s reward function, initially
left blank in Section 3.1 and convert DVSC from Eq. (4)
into an RL problem. Since the learner’s objective is to
execute actions that influence any temporary teammates to
collaboratively solve a shared task, we naturally interpret the
learner’s reward function as R(st, at) = ∑j∈Nt

Rj(at∣st).
The reward function represents the social welfare of prefer-
ence rewards for a temporary team Nt, serving as a metric
to measure agents’ preferences for collaborating on a shared
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task.2 Substituting R(st, at) into Eq. (4), we derive an RL
problem equivalent to solving DVSC:

max
πi

ENt,st∼PO,θt∼PE ,a−it ∼π−it ,ai
t∼πi[

∞
∑
t=0

γtR(st, at)]. (5)

In the following section, we will explore how the optimiza-
tion problem in Eq. (5) can be solved by a novel algorithm.

4. A Novel Algorithm Building on OSB-CAG
In this section, we derive a novel graph-based RL algorithm
to solve OAHT based on the OSB-CAG, with DVSC as a
solution concept. We first derive the joint Q-value’s rep-
resentation to narrow down its hypothesis space including
the solution of DVSC. The representation aligns with and
gives an interpretation to the GPL’s heuristic joint action
value model. Note that we also acquire a condition to fur-
ther confine the joint Q-value’s hypothesis space thanks
to our theory (see Section 4.1). With the estimated type
inference model and agent model, the optimal learner’s pol-
icy obtained by GPL’s optimization problem approximately
reaches DSVC (see Section 4.2). Finally, we derive a novel
practical algorithm, named CIAO (see Section 4.3).

4.1. Representation of Joint Q-Value

An inductive bias 
[by Theorem. 1]

A task-specific goal 
[by Eq. (5)]

Our preference 
reward function

Figure 1: Illustration of the relationship between the con-
ditions for our preference reward function, ensuring the
existence of DVSC under its confined hypothesis space, and
its alignment to a task-specific reward R(st, at) in Eq. (5).

Given the joint actions generated under the influence by the
optimal learner’s policy πi,∗, we have a sufficient condition,
as an inductive bias, for any preference reward function to
narrow down its hypothesis space meeting DVSC in Theo-
rem 1. Solving the RL problem outlined in Eq. (5) based
on this condition to specify πi,∗, the preference reward
function is aligned to a task-specific reward R(st, at). The
relationship between the above conditions to generate our
preference reward function is shown in Fig. 1.

Theorem 1. In an OSB-CAG, for any dynamic affinity graph
Gt = ⟨Nt,Et⟩ at any timestep t, if there exists a joint action

2In practical scenarios, R(st, at) only needs to implicitly en-
code the shared goal that multiple agents are required to achieve.

at ∈ ANt
, for any agent j ∈ Nt, satisfying Rj(at∣st) ≥

Rj(ajt ∣st) for any st ∈ S, then DVSC always exists.

To meet the condition that Rj(at∣st) ≥ Rj(ajt ∣st) as shown
in Theorem 1, we derive a representation of wjk(ajt , akt ∣st)
in Proposition 2. Recall that an agent j’s preference reward
function for a temporary team Nt at timestep t is defined as
Rj(at∣st) = ∑(j,k)∈Et wjk(ajt , akt ∣st) (see Section 3.1).

Proposition 2. In a dynamic affinity graph Gt = ⟨Nt,Et⟩,
for any state st ∈ S and any joint action at ∈ ANt

, if for
all (j, k) ∈ Et, wjk(ajt , akt ∣st) = αjk(ajt , akt ∣st)+βjk(ajt ∣st)
with the conditions that αjk(ajt , akt ∣st) ≥ 0 and Rj(ajt ∣st) =
∑(j,k)∈Et βjk(ajt ∣st), then Rj(at∣st) ≥ Rj(ajt ∣st) for any
agent j ∈ Nt.

Proof. This result can be directly obtained by the definition
that Rj(at∣st) = ∑(j,k)∈Et,k∈Nt

wjk(ajt , akt ∣st).

Plugging in the expression of wjk(ajt , akt ∣st), we can
obtain the representation of an arbitrary agent j’s pref-
erence Q-value under the learner’s optimal policy πi,∗,
Qπi,∗

j (at∣st) = ∑(j,k)∈Et Qπi,∗
jk (a

j
t , a

k
t ∣st) + Qπi,∗

j (ajt ∣st),
and the joint Q-value under the learner’s optimal policy πi,∗,
Qπi,∗(st, at) = ∑j∈Nt

Qπi,∗
j (at∣st), outlined in Theorem 2.

Assumption 2. Suppose that αjk(ajt , akt ∣st) = 0 for t ≥
T , where T is the timestep when agent j or k leaves the
environment, and Rj(ajt ∣st) = 0 for t ≥ T ′, where T ′ is the
timestep when agent j leaves the environment.

Theorem 2. Under Assumption 2, if wjk(sτ , ajτ , akτ) =
αjk(sτ , ajτ , akτ) + βjk(sτ , ajτ), then the joint Q-value of the
learner’s policy πi can be expressed as follows:

Qπi

(st, at) = ∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) + ∑
j∈Nt

Qπi

j (ajt ∣st)

= ∑
j∈Nt

{ ∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) + ∑
j∈Nt

Qπi

j (ajt ∣st)}

∶= ∑
j∈Nt

Qπi

j (at∣st),

where Qπi

jk(a
j
t , a

k
t ∣st) = Eπi[∑∞τ=t γτ−tαjk(ajτ , akτ ∣sτ)]

and Qπi

j (a
j
t ∣st) = Eπi[∑∞τ=t γτ−tRj(ajτ ∣sτ)].

Remark 1. The result of Theorem 2 verifies that the optimal
joint Q-value representation derived from our theory is con-
sistent with the GPL’s joint action value model, as shown in
Eq. (1), but additionally with Q̂πi

jk(a
j
t , a

k
t ∣st) ≥ 0, following

our theory, which is requisite for satisfying αjk(ajt , akt ∣st) ≥
0, as shown in Proposition 2.

Recall that the condition for solving DSVC as a RL problem
is the symmetry of a dynamic affinity graph (see Definition
2). To meet this condition, we outline in Proposition 3 the
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constraints that must be fulfilled for the case of a dynamic
affinity graph being a star graph (see Remark 2 for its valid-
ity in OAHT). Similarly, we provide the relevant constraints
articulated in Proposition 4 for situations where the dynamic
affinity graph takes the form of a complete graph (as applied
to GPL). The implementation of the constraints for these
two cases are shown in Remark 3.

Definition 3. In this paper, we introduce a novel dynamic
affinity graph structured as a star graph, with the learner
serving as the internal node and temporary teammates as
the leaf nodes.

Remark 2. We introduce a novel architecture for the dy-
namic affinity graph in the context of OAHT, assuming team-
mates lack prior coordination (Mirsky et al., 2022). Given
an additional assumption that teammates cannot adapt their
policies or types in response to other agents,3 it is reason-
able to presume the absence of relationships among any
temporary teammates. Besides, this is also in line with the
assumption in AHT that the learner’s temporary teammates
might not be familiar with one another before the interac-
tion (Stone et al., 2010; Mirsky et al., 2022). In particular,
this implies that no edges between any two teammates are
necessary to form a dynamic affinity graph. However, the
learner’s goal is to establish collaboration with a variable
number of temporary teammates at each timestep, necessi-
tating the existence of edges between the learner and each
teammate. To meet all these requirements, we design the
learner’s dynamic affinity graph as a star graph, as detailed
in Definition 3. Consequently, the preference reward of
any teammate j for a temporary team Nt is determined
as Rj(st, at) = wji(st, ajt , ait), while the learner i’s pref-
erence reward for the temporary team Nt is expressed as
Ri(st, at) = ∑j∈−iwij(st, ait, ajt).
Proposition 3. For the learner i and any teammate j
or k, the constraints Ri(ait∣st) = ∑j∈−iRj(ajt ∣st) and
αjk(ajt , akt ∣st) = αkj(akt , ajt ∣st), for any at ∈ ANt

and
st ∈ S, are necessary for a star dynamic affinity graph
to be symmetric.

Proposition 4. For any two agents j or k, the con-
straints Rj(ajt ∣st) = Rk(akt ∣st) and αjk(ajt , akt ∣st) =
αkj(akt , ajt ∣st), for any at ∈ ANt

and st ∈ S, are necessary
for the complete dynamic affinity graph to be symmetric.

Remark 3. The following implementation is necessary
to satisfy the symmetry of a dynamic affinity graph: (1)
meeting Qπi

jk(a
j
t , a

k
t ∣st) = Qπi

kj(akt , a
j
t ∣st) ≥ 0 in construct-

ing preference Q-values; (2) If the dynamic affinity graph
is a star graph with the learner as the internal node,
Qπi

i (ait∣st) = ∑j∈−iQ
πi

j (a
j
t ∣st) is implemented as a reg-

ularizer. If the dynamic affinity graph is a complete graph,

3For simplicity in presenting our theory in this paper, we tenta-
tively disregard scenarios where temporary teammates can adapt
to other agents (e.g. establishing an affinity model).

Qπi

i (ait∣st) = Qπi

j (a
j
t ∣st) is implemented as a regularizer.

4.2. Bellman Optimality Equation for OSB-CAG

We now define the Bellman optimality equation for OSB-
CAG to evaluate the learner i’s optimal policy πi,∗ as a
solution of the DVSC following Theorem 3, such that

Qπi,∗
(st, at) = R(st, at) + γENt+1,st+1∼PO

[

max
ai

Eθt+1∼PE , a−it+1∼π
−i
t+1
[Qπi,∗

(st+1, a−it+1, ai)]].
(6)

The regularity condition of Eq. (6) is that Nt+1 ⊆ Nt, since
it is pathological to consider an agent j ∈ Nt+1 but, ∉ Nt at
timestep t when expanding Qπi,∗(st, at) across timesteps,
which is clarified in an illustrative example in Fig. 2.

Q1=0

Q2=0

Q3=0

Q1≠0

Q2≠0

Q3≠0

Q1≠0

Q2≠0

Q4=0

Q1≠0

Q2≠0

Q4≠0

t=1 t=2 t=3 t=4

R1 ≠ 0
R2 ≠ 0
R3 ≠ 0

R1 ≠ 0
R2 ≠ 0
R4 = 0

R1 ≠ 0
R2 ≠ 0
R4 ≠ 0

Figure 2: Illustration of the expansion of Bellman optimality
equation for OSB-CAG. The thin green arrow indicates the
time axis, while the thick black arrow indicates the expan-
sion direction of Bellman optimality equation. In the theory
of OSB-CAG, we have Qπi,∗(st, at) = ∑j∈Nt

Qπi,∗
j (at∣st),

where Qπi,∗
j is denoted by Qj in the figure. Rj indicates

the preference reward of agent j to the team, measuring the
agent’s preference to stay in the team to solve the shared
task. At each timestep, the preference Q-value Qj of an
agent j that joins the game is filled in a red box, that re-
mains in the game is filled in a blue box, and that leaves
the game filled in a grey box with the dashed outline. At
timestep 1, agent 1, 2 and 3 just join the game, so with all
preference Q-values as zeros. At timestep 2, agent 3 leaves
the game, and the expansion works as usual, since agent
3 has influence to the team. At timestep 3, agent 4 joins
the game, but it has not any influence to the team. For this
reason, it is unnecessary to consider the expansion for agent
4’s preference Q-value only at timestep 3, since it would be
trivially zero. To satisfy the more generic representation of
the joint Q-value with respect to preference Q-values (other
than the linear decomposition described in our theory), we
rule out the transition samples of Nt ⊂ Nt+1. At timestep 4,
the expansion considers all existing agents as usual.

Theorem 3. Under Assumption 2 and an arbitrary learner’s
deterministic stationary policy πi, the Bellman equa-
tion for the OSB-CAG with DVSC as a solution con-
cept is expressed as follows: Qπi(st, at) = R(st, at) +
γENt+1,st+1∼PO

[Eθt+1∼PE , at+1∼πt+1[Qπi(st+1, at+1)]].

6
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To solve Eq. (6), we further propose an operator with the
same regularity condition, such that Γ ∶ Q↦ ΓQ, specified
as follows:

ΓQπi

(st+1, a−it+1, ai) ∶= R(st, at) + γENt+1,st+1∼PO
[

max
ai

Eθt+1∼PE , a−it+1∼π
−i
t+1
[Qπi

(st+1, a−it+1, ai)]].
(7)

Eq. (7) is a standard form of Bellman operator. Therefore,
recursively running Eq. (7) converges to the Bellman opti-
mality equation in Eq. (6), following the well-known value
iteration algorithm (Sutton & Barto, 2018, Ch. 4).

Remark 4. In implementation, the effect of Nt ⊂ Nt+1 can
be omitted, due to its low proportions during the process.
Therefore, solving the GPL optimization problem of fitted
Q-learning (Ernst et al., 2005) that omits the effect of Nt ⊂
Nt+1 is a reasonable approximation of Bellman operator in
Eq. (7), which reduces the computational cost of filtering
out the transition samples of Nt ⊂ Nt+1 in practice. The
GPL optimization problem is shown as follows:

min
β

L(β) = E[1
2
(R(st, at) + γmax

ai
E θt+1∼PE ,

a−it+1∼π
−i
t+1

[

Q̂πi

(st+1, a−it+1, ai;β−)] − Q̂πi

(st, at;β))
2

],
(8)

where Q̂πi(⋅ ; β−) is the approximate target optimal joint
Q-value parameterised by β− and Q̂πi(⋅ ; β) is the approx-
imate optimal joint Q-value parameterised by β.

4.3. Practical Implementation

Based on our theory, we introduce a novel algorithm, CIAO,
representing the algorithm for Cooperative game theory
Inspired Ad hoc teamwork in Open teams. We implement
CIAO in dynamic affinity graphs as a star graph (refer to
Remark 2 for more insights into this topology) and a com-
plete graph, denoted as CIAO-S and CIAO-C, respectively,
where “S” signifies Star graph and “C” signifies Complete
graph. In addition to the joint Q-value representation model
(derived from Theorem 2) and the training losses for esti-
mating the unknown type inference model and the unknown
agent model (as detailed in Section 2.2), we introduce novel
Q losses tailored for variant dynamic affinity graphs based
on our theory. These losses incorporate regularization terms
with multipliers λ > 0.

CIAO-S. If the dynamic affinity graph is a star graph, the
training loss with the regularizer is as follows:

Ls(β) = L(β)

+ λEst,at[
1

2
( ∑
j∈−i

Q̂πi

j (ajt ∣st) − Q̂πi

i (ait∣st;β))
2].

CIAO-C. If the dynamic affinity graph is a complete graph,
the training loss with the regularizer is as follows:

Lc(β) = L(β)

+ λEst,at[ ∑
j∈−i

1

2
(Q̂πi

i (ait∣st) − Q̂πi

j (ajt ∣st;β))
2].

Note that it is also requisite to enforce that Q̂πi

jk(a
j
t , a

k
t ∣st) =

Q̂πi

kj(akt , a
j
t ∣st) ≥ 0 by Remark 3. Following our theo-

retical model, the learner’s reward R(st, at) ought to be
non-negative, while the designated reward of an environ-
ment could be negative. However, this can be adjusted
by adding the maximum difference between these two re-
wards among states and joint actions denoted by ∆R(st, at)
without changing the original goal. In practice, Eq. (8) is
solved by DQN (Mnih et al., 2013). The learner’s actions
are decided by Eq. (2), employing the estimated teammates’
agent models π̂−i (see Section 2.2) to marginalize a−it of
Q̂πi(st, at;β), as implemented in GPL. The further imple-
mentation details are left to Appendix C.

5. Experiments
We assess the effectiveness of the proposed algorithms
CIAO-S and CIAO-C in two established environments, LBF
and Wolfpack, featuring open team settings (Rahman et al.,
2021). In these settings, teammates are randomly selected
to enter the environment and remain for a certain number of
time steps. During experiments, the learner is trained in an
environment with a maximum of 3 agents at each timestep.
Subsequently, testing is conducted in environments with a
maximum of 5 and 9 agents at each timestep, showcasing
the model’s ability to handle both unseen compositions and
varied team sizes. All experiments are conducted with five
random seeds, and the results are presented as the mean
performance with a 95% confidence interval. Our experi-
mental design aims to answer the following questions: (1)
Does the joint Q-value representation outlined in our the-
ory effectively facilitate collaboration between the learner
and temporary teammates? (2) Is it necessary to generalize
the preference reward function from zero, as in CAG, to a
non-negative range in our theory (see Appendix E)? (3) Is
the claim in Remark 4 valid in practice? (4) Is CIAO able
to improve the generalization of agent-type sets?

Baselines and Ablation Variants. The state-of-the-art base-
line we use in this experiment is GPL-Q (shortened as GPL)
(Rahman et al., 2021). The ablation variants of the proposed
CIAO are as follows: CIAO-X-FI, CIAO-X-ZI and CIAO-
X-NI are variants that remove enforcement of individual
utility, enforce individual utility as zero and enforce individ-
ual utility as negative values, respectively. CIAO-X-NP is
a variant that enforces negative pairwise utility. “X” above
indicates either “S” or “C”. Further details on experimental
settings can be found in Appendix H.
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5.1. Main Results
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(a) Wolfpack: max. of 5 agents.
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(b) Wolfpack: max. of 9 agents.
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(c) LBF: max. of 5 agents.
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(d) LBF: max. of 9 agents.

Figure 3: Comparison between CIAO and GPL in Wolfpack
and LBF with a maximum of 5 and 9 agents.

We initially address Question 1 through experiments con-
ducted on the original versions of Wolfpack and LBF, as
depicted in Fig. 3. It is evident that CIAO-C outperforms
GPL in the majority of scenarios with varying maximum
numbers of agents. This not only verifies the correctness and
effectiveness of our theory, irrespective of dynamic affinity
graph structures but also demonstrates its capability in fa-
cilitating collaboration between the learner and temporary
teammates in the open ad hoc teamwork problem. Upon
comparing CIAO-C and CIAO-S, it becomes apparent that
the star graph may be more effective in scenarios with fewer
agents, whereas the complete graph exhibits greater effec-
tiveness in scenarios with more agents. This observation
aligns with the intuition that the direct influence from the
learner to each teammate may not suffice as the number of
agents increases. Instead, indirect influence, where a team-
mate is influenced by the learner to subsequently influence
another teammate, becomes crucial.

5.2. Ablation Study

We present experimental results comparing CIAO-S and its
ablations, as well as CIAO-C and its ablations. As illus-
trated in Figs. 4 and 5, both CIAO-C-NP and CIAO-S-NP
exhibit notably inferior performance compared to CIAO-C
or CIAO-S. This observation demonstrates the validity of
DVSC and confirms the accuracy of the joint Q-value rep-
resentation based on our theory. This outcome provides an
additional perspective in addressing Question 1. Adhering
to the tradition of CAG, convention mandates setting indi-
vidual utility to zero. However, in our theory, we extend its
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(a) Wolfpack: max. of 5 agents.
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(b) Wolfpack: max. of 9 agents.
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(c) LBF: max. of 5 agents.
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(d) LBF: max. of 9 agents.

Figure 4: Comparison between CIAO-C and its ablations in
Wolfpack and LBF with a maximum of 5 and 9 agents.
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(a) Wolfpack: max. of 5 agents.
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(b) Wolfpack: max. of 9 agents.
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(c) LBF: max. of 5 agents.
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Figure 5: Comparison between CIAO-S and its ablations in
Wolfpack and LBF with a maximum of 5 and 9 agents.

range to include non-zero values, enhancing its adaptability
across diverse scenarios. This adaptability is demonstrated
in the comparison between CIAO-C or CIAO-S and CIAO-
C-ZI or CIAO-S-ZI in Figs. 4 and 5. Although our theory
does not inherently provide specific insights into the range
of individual utility, we propose a hypothesis aligned with
other definitions in CAG, asserting that individual utility is
non-negative. This hypothesis ensures self-consistency in
our generalization, as detailed in Definition 4 in Appendix E.
The superior performances of CIAO-C or CIAO-S over their
ablations affirm the acceptability of our hypothesis.
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5.3. Validation for Remark 4
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(a) Wolfpack: max. of 5 agents.
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(b) LBF: max. of 5 agents.

Figure 6: Comparison of training losses for CIAO between
the implementations with omitting the effect of Nt ⊂ Nt+1
and those without (denoted as “-Va”).

We now validate our claim in Remark 4 that minimizing the
GPL training loss (omitting the effect of Nt ⊂ Nt+1) is an
approximation of Eq. (7). Based on the GPL training loss,
we implement its variant that filters out the transition sam-
ples ofNt ⊂ Nt+1, following the suggestion from Remark 4,
referred to as CIAO-C-Va and CIAO-S-Va. As shown in
Fig. 6, in both LBF and Wolfpack with the maximum of 5
agents, CIAO-C and CIAO-S trained with the GPL training
loss achieve the approximate performances to those with the
variant training loss considering the effect of Nt ⊂ Nt+1.

5.4. Generalization of Agent-Type Sets

We now evaluate the generalizability of CIAO to agent-type
sets through two scenarios: (1) the agent-type set for train-
ing has intersection of one agent-type with that for testing;
(2) the agent-type set for training is mutually exclusive to
that for testing. As seen from Fig. 7, the dynamic affin-
ity graph as the star graph is more generalizable than the
complete graph. One hypothesis for this phenomenon is
that although the complete graph may be able to capture
broader relationships among agents, it could be unnecessary
for open ad hoc teamwork (see Remark 2). The underlying
principles behind this result deserve to be investigated in
the future research. Although the generalizability of GNNs
(which is also implemented in GPL) has featured promi-
nently in generalization of agent-type sets (Rahman et al.,
2021), the overall superior performance of CIAO to GPL
still empirically shows CIAO’s effectiveness to this problem.

6. Conclusion
Discussion. In this work we address the challenging prob-
lem of open ad hoc teamwork, aiming to design an agent
capable of collaborating with teammates without prior co-
ordination under dynamically changing team compositions.
We propose a novel approach by incorporating cooperative
game theory to develop a new theory. This theory effectively
gives an interpretation to the joint Q-value representation
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(a) Wolfpack: intersection.
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(b) Wolfpack: mutual exclusion.
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(c) LBF: intersection.
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(d) LBF: mutual exclusion.

Figure 7: Comparison between CIAO and GPL on Wolfpack
and LBF, with intersecting (denoted as “intersection”) and
mutually exclusive (denoted as “mutual exclusion”) agent-
type sets in training and testing, respectively. The maximum
temporary team size is 5.

leveraged in the state-of-the-art algorithm, GPL. In addi-
tion, the learning paradigm employed in GPL’s framework
is understood based on our theory. Building upon the em-
pirical foundation of GPL, we introduce a novel algorithm,
CIAO, which includes an additional regularizer and a con-
straint for representation thanks to our theory. Consequently,
CIAO can be seen as an extension of GPL, providing extra
information through our theory to narrow down the joint
Q-value’s hypothesis space, to improve learning efficiency.
Furthermore, the incorporation of dynamic affinity graphs
into OSB-CAG opens up a new avenue of designing graphs
describing agent relationships aligned to game objectives.
Experimental results validate the effectiveness of our theory
and demonstrate the superior performance of CIAO.

Limitation and Future Work. This work is the first in
establishing both a theory and a practical algorithm rooted
in cooperative game theory to address ad hoc teamwork.
It opens up avenues of several promising future directions.
Firstly, to enhance the scope and applicability of our the-
ory, a logical next step involves exploring the adaptivity of
teammates with time-varying agent-types, a factor currently
omitted in our theory for simplicity. Another compelling
direction is investigating the design of understandable joint
Q-value representation for open ad hoc teamwork, other
than linear decomposition with pairwise relationships and
individual values justified in this work. This thread can push
forward the potential deployment of ad hoc teamwork to
safety-critical environments requiring trustworthy and cost-
saving solutions, with fewer trial-and-error interactions.
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Impact Statement
The outcomes of this paper could significantly enhance the
progress of autonomous vehicles, smart grids, and various
decision-making scenarios involving multiple independently
controlled agents under uncertainties. However, it is crucial
to acknowledge potential drawbacks. Like many machine
learning algorithms, our work may encounter challenges
related to human value alignment, when the targets in inter-
action are humans in the potential applications. Addressing
this concern is part of our ongoing research, building upon
findings from related fields that emphasize alignment issues.
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A. Related Works
Theoretical Models for Ad Hoc Teamwork. In our review of theoretical models for describing ad hoc teamwork (AHT),
we begin by discussing foundational works. Brafman & Tennenholtz (1996) pioneered the study of ad hoc teamwork by
investigating the repeated matrix game with a single teammate. Subsequent contributions extended this line of inquiry to
scenarios involving multiple teammates, as exemplified by Agmon & Stone (2012), who expanded the analysis to incorporate
multiple teammates. Agmon et al. (2014) further relaxed assumptions by allowing teammates’ policies to be drawn from
a known set. Stone et al. Stone & Kraus (2010) proposed collaborative multi-armed bandits, initially formalizing AHT
but with notable assumptions, such as knowing teammates’ policies and environments. Albrecht & Ramamoorthy (2013)
introduced the stochastic Bayesian game (SBG) as the first complete theoretical model for addressing dynamic environments
and unknown teammates in AHT. Building upon the SBG, Rahman et al. (2021) proposed the open stochastic Bayesian
game (OSBG) to address open ad hoc teamwork (OAHT). Zintgraf et al. (2021) modelled AHT as interactive Bayesian
reinforcement learning (IBRL) in Markov games, focusing on solving non-stationary teammates’ policies within episodes.
In contrast, Xie et al. (2021) introduced a hidden parameter Markov decision process (HiP-MDP) to address scenarios where
teammates’ policies vary across episodes but remain stationary within each episode. In this paper, we contribute to the
theoretical landscape of AHT by extending the coalitional affinity game (CAG) from the perspective of cooperative game
theory, under the assumptions similar to SBG and OSBG. In more details, we introduce a novel theoretical model, referred
to as Open Stochastic Bayesian Coalitional Affinity Game (OSB-CAG), shedding light on the interactive process between
the learner and temporary teammates. This theoretical model can be seen as an extension of OSBG (see Appendix B), where
the relationship between agents is conceptualized as a dynamic affinity graph in theory, moving beyond treating the graph
solely as an implementation tool.4 Our proposed solution concept, DVSC, provides a fresh perspective on how the learner
can find optimal policies to attract temporary teammates for effective collaboration. Furthermore, we introduce a more
specified transition function under our theoretical model in place of the one proposed by Rahman et al. (2021). The main
benefit of our proposed transition function is that it enjoys a strong relationship to the underlying assumptions, and explicitly
subsumes the concrete interactive process described by Rahman et al. (2021).

Algorithms for Ad Hoc Teamwork. We now review AHT from an algorithmic standpoint. The best response algorithm
(Stone et al., 2009), initially proposed under the assumptions of a matrix game and well-known teammates’ policies, laid
the foundation for algorithmic solutions in this domain. Extending this work, REACT (Agmon et al., 2014) emerged as a
solution effective for matrices where teammates’ policies are drawn from a known set. Wu et al. (2011) introduced a novel
approach using biased adaptive play to estimate teammates’ actions based on their historical actions. They combined this
with Monte Carlo tree search to plan the ad hoc agent’s actions. HBA (Albrecht & Ramamoorthy, 2013) expanded the
scope beyond matrix games, maintaining a probability distribution of predetermined agent-types and maximizing long-term
payoffs through an extended Bellman operator. PLASTIC-Policy (Barrett et al., 2017) addressed more realistic scenarios,
such as RoboCup (Kalyanakrishnan et al., 2007), by training teammates’ policies through behavior cloning and the ad hoc
agent’s policy through FQI (Ernst et al., 2005). AATEAM (Chen et al., 2020) extended PLASTIC-Policy, incorporating an
attention network (Bahdanau et al., 2014) to enhance the estimation of unseen agent-types. Rahman et al. (2021) integrated
modern deep learning techniques, including GNNs and RL algorithms, into HBA to address open ad hoc teamwork (OAHT)
and introduced GPL. ODITS (Gu et al., 2022) was proposed to handle teammates with rapidly changing behaviors under
partial observability. In this paper, we introduce CIAO, a novel algorithm based on our proposed theory (OSB-CAG
with DVSC as a solution concept). Specifically, CIAO extends the joint Q-value representation and training loss of GPL.
Additionally, CIAO generalizes the implementation of training losses to various structures of the dynamic affinity graph,
known as the coordination graph in GPL, with theoretical guarantees. This provides a design paradigm of training loss
to facilitate the investigation of diverse dynamic affinity graph structures. This paradigm not only can cater for various
scenarios of applications, but also can facilitate realizing the ideas inspired by other fields. Furthermore, we prove in theory
and demonstrate in experiments that the existing GPL training loss is a viable approximation of the exact learning paradigm
under our theory.

Relationship to Cooperative Multi-Agent Reinforcement Learning. Cooperative multi-agent reinforcement learning
(MARL) primarily aims at training and controlling agents altogether to optimally achieve a shared goal. The key research
topics are credit assignment (also known as value decomposition in some literature) (Foerster et al., 2018; Sunehag et al.,
2018; Rashid et al., 2018), reward shaping (Du et al., 2019; Mguni et al., 2022), and communication (Foerster et al., 2016;
Sukhbaatar et al., 2016; Jiang & Lu, 2018; Kim et al., 2019). In this paper, we shift the focus to AHT, where only one agent
(referred to as learner) is controllable and trained to collaborate with an unknown set of uncontrollable agents to achieve

4If the dynamic affinity graph is with no edges, the OSB-CAG will degrade to a plain OSBG.
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a shared goal. Although the teammates’ behaviours in AHT can be influenced by the learner’s action (under assumption
that they are capable of reacting to the learner’s action) (Mirsky et al., 2022), the joint policy may still be sub-optimal
owing to either the reactivity of teammates or the effectiveness to attract teammates in implementation. On the other hand, a
transferable utility game known as the convex game, belonging to cooperative game theory was introduced for employing
Shapley value as a credit assignment scheme with theoretical guarantees and interpretation, to address credit assignment
(Wang et al., 2020; 2022). In this paper, we introduce CAG, belonging to non-transferable utility games (a broader class
including transferable utility games), for establishing a graph-based joint Q-value representation with theoretical guarantees
and understandings to address OAHT.

B. Open Stochastic Bayesian Game
We now review the open stochastic Bayesian game (OSBG) that describes the open ad hoc teamwork for establishing GPL
(Rahman et al., 2021). It is defined as a tuple such that ⟨N ,S, (Aj)j∈N ,Θ,R, T, γ⟩. N is a set of all possible agents; S is a
set of states; Aj is agent j’s action set; Θ is a set of all possible agent-types. Let the joint action set under a variable agent
set Nt ⊆ N be defined as that ANt = ×j∈NtAj . Therefore, the joint action space under the variable number of agents is
defined as that AN = ⋃Nt∈P(N ){a∣a ∈ ANt}, while the joint agent-type space under the variable number of agents is defined
as that ΘN = ⋃Nt∈P(N ){θ∣θ ∈ Θ∣Nt ∣}. R ∶ S ×AN → R is the learner’s reward. T ∶ S ×ΘN ×AN → S ×ΘN is a transition
function to describe the evolution of states and agents of variable types. The learner’s action value function Qπi(st, ait) is
defined as follows:

Qπi

(st, ait) = Ea−it ∼π−it
[Qπi

(st, a−it , ait)] = Est,θt∼T,a−it ∼π
−i
t ,ai

t∼π
i[
∞
∑
t=0

γtR(st, at)],

where γ ∈ [0,1) is a discount factor; st is a state at timestep t, a−it is a joint action of teammates −i at timestep t and ait is the
learner i’s action at timestep t; πi is the learner’s stationary policy and π−it is a joint policy of teammates −i; Qπi(st, a−it , ait)
is a joint Q-value. The learner’s policy πi,∗ is optimal, if and only if Qπi,∗(st, ait) ≥ Qπi(st, ait) for all πi, st, a

i
t. The

teammates’ joint policy is expressed as that π−it ∶ S ×ΘN → ∆(AN). Although learning an additional learner’s policy
is not necessary, the definition of teammates’ joint policy still implies that the learner’s policy can be expressed as that
πi ∶ S ×Θ → ∆(Ai) for consistency. As a result, any ad hoc team’s joint policy (including the learner’s policy) can be
expressed as that πt ∶ S ×ΘN →∆(AN) for consistency. The learner is unable to observe the teammates’ types and their
policies, which can only be inferred through the history states and actions. The learner’s decision making is conducted by
selecting the actions that maximize Qπi(st, ait).

C. Further Details of Implementation
Given the learner’s lack of knowledge about PE and π−it , it is essential to discuss strategies for estimating these terms to
achieve the convergence of Eq. (7). In the GPL framework, these two terms are implemented as the type inference model
and the agent model, respectively. The implementation details are presented below.

C.1. GPL Framework

We now review the GPL’s empirical framework (Rahman et al., 2021). This framework consists of the following modules:
the type inference model, the joint action value model and the agent model. We only summarize the model specifications.
Note that while the original GPL framework is oriented towards a fixed coordination graph, specifically a complete graph,
we relax this constraint to accommodate any graph structures as needed.

Type Inference Model. This is modelled as a LSTM (Hochreiter & Schmidhuber, 1997) to infer agent-types of a team
at timestep t given that of a team at timestep t − 1. The agent-type is modelled as a fixed-length hidden-state vector of
LSTM, named as agent-type embedding. At each timestep t, the state information of an emergent team Nt is reproduced
to a batch of agents’ information Bt = [⟨ut, xt,1⟩, ..., ⟨ut, xt,∣Nt ∣⟩]⊺, where each agent is preserved a vector composing ut

and xt,i which are observations and agent specific information extracted from state st. Along with additional information
such as the agent-type embedding of Nt−1 and the cell state, LSTM estimates the agent-type embedding of Nt. To address
the situation of changing team size, at each timestep the agent-type embedding of the agents who leave a team would be
removed, while the new added agents’ agent-type embedding would be set to a zero vector.

Joint Action Value Model. The joint Q-value, denoted as Q̂πi(st, at), is approximated as the sum of the corresponding
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individual utilities, Q̂πi

j (a
j
t ∣st), and pairwise utilities, Q̂πi

jk(a
j
t , a

k
t ∣st), based on the coordination graph structure. The

approximation is expressed as follows:

Q̂πi

(st, at) = ∑
j∈Nt

Q̂πi

j (ajt ∣st) + ∑
(j,k)∈Et

Q̂πi

jk(ajt , akt ∣st).

Both Q̂πi

j (a
j
t ∣st) and Q̂πi

jk(a
j
t , a

k
t ∣st) are implemented as multilayer perceptrons (MLPs) parameterised by β and δ, denoted

as MLPβ and MLPδ. The input of MLPβ is the concatenation of the learner’s agent-type embedding θit and the teammate
j’s agent-type embedding θjt . Its output is a vector with a length of ∣Aj ∣ estimating Qπi

j (a
j
t ∣st). The detailed expression is

shown as follows:
Q̂πi

j (ajt ∣st) =MLPβ(θjt , θit)(a
j
t).

The pairwise utility Q̂πi

jk(a
j
t , a

k
t ∣st) is approximated by low-rank factorization, as follows:

Q̂πi

jk(ajt , akt ∣st) = (MLPδ(θjt , θit)⊺MLPδ(θkt , θit))(ajt , akt ),

where the input of MLPδ is the same as MLPβ ; the output of MLPδ(θjt , θit) is a matrix with the shape K × ∣Aj ∣ and
K ≪ ∣Aj ∣.
Agent Model. It is assumed that all other connected agents, as described by a coordination graph, would influence an
agent’s actions. To model this situation, GNN is applied to process the agent-type embedding of a temporary team, denoted
as θt, where each team member is represented as a node. More specifically, a GNN model called relational forward model
(RFM) (Tacchetti et al., 2019) parameterised by η is applied to transform θt (as the initial node representation) to n̄t (as the
new node representation) considering other agents’ effects. Then, n̄t is employed to infer qζ,η(a−it ∣st), as the approximation
of teammates’ joint policy, π−it (a−it ∣st, θ−it ). The detailed expression is as follows:

qζ,η(a−it ∣st) = ∏
j∈−i

qζ,η(ajt ∣st),

qζ,η(ajt ∣st) = Softmax(MLPη(n̄j
t))(a

j
t).

Learner’s Action Value Model. Substituting the agent model and the joint action value model defined above into Eq. (2),
the learner’s Q-value for its own decision making is approximated as follows:

Q̂πi(st, ait) = Q̂πi

i (ait∣st) + ∑
aj
t∈Aj ,(j,i)∈Et

(Q̂πi

j (ajt ∣st) + Q̂πi

ij (ait, ajt ∣st))qζ,η(a
j
t ∣st)

+ ∑
aj
t∈Aj ,a

k
t ∈Ak,

(j,k)∈Et

Q̂πi

jk(ajt , akt ∣st)qζ,η(a
j
t ∣st)qζ,η(a

j
t ∣st).

C.2. Overall Training Procedure of CIAO

We now summarize the overall training procedure of CIAO in Algorithm 1. Note that in the GPL framework, the type
inference model is absorbed into the joint Q-value and the agent model as a LSTM, respectively. This construction aims to
prevent these two models’ gradients from interfering against each other during training (Rahman et al., 2021).

D. Assumptions
In addition to the assumptions of ad hoc teamwork described in the survey (Mirsky et al., 2022), we also list the necessary
assumptions for this paper as follow.

Assumption 1. The following conditional independencies are assumed to hold in any distribution P over the set of
variables in an OSB-CAG: (1) (θt ⊥⊥ θt−1, st−1, at−1 ∣ Nt, st); (2) (Nt, st ⊥⊥ θt−1 ∣ Nt−1, st−1, at−1); (3) (Nt ⊥⊥ at∣st, θt);
(4) (θjt ⊥⊥ −j, θ−jt ∣ {j}, st).
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Algorithm 1 Overall training procedure of CIAO

Input: dynamic affinity graph structure G, number of training episodes e, length of an episode T , replay buffer B
repeat

Clear the replay buffer B.
Reset the environment and receive the initial observations.
for timestep = 1 to T do

Execute learner’s action by ϵ-greedy policy.
Store observations (including teammates’ actions) for the current timestep in the replay buffer B.

end for
Generate the joint Q-value and the agent model as per GPL framework, based on the dynamic affinity graph G.
Update parameters of pairwise utilities and individual utilities by the loss function proposed in Section 4.3.
Update parameters of the agent model by the following loss function:

L(ζ, η) = − 1
T

T

∑
t=1

log qζ,η(a−it ∣st).

until meeting the number of training episodes m

Assumption 1 indicates the assumptions encoding the relationships among random variables that are entailed by any
probability distribution describing the open ad hoc teamwork process, referred to as conditional independencies (Koller &
Friedman, 2009, Ch. 2).

As for conditional independence (1), it implies that the agent-types θt for the current timestep are conditionally independent
of the related variables θt−1, st−1, at−1 for the preceding timestep, given the agent set Nt and the state st for the current
timestep. This is reflected by PE(θt∣Nt, st) = P (θt∣Nt, st, st−1, at−1, θt−1).
As for conditional independence (2), it implies that the agent set Nt and the state st for the current timestep is independent
of the agent-types θt−1 for the preceding timestep, given the variables Nt−1, st−1, at−1 for the preceding timestep. This is
reflected by PT (Nt, st∣Nt−1, st−1, at−1) = P (Nt, st∣Nt−1, st−1, at−1, θt−1).
As for conditional independence (3), it implies that the agent set Nt is independent of the joint action at, given the state st
and the agent-type set θt for the same timestep. This is reflected by P (Nt∣st, θt) = P (Nt∣st, at, θt). Note that this condition
coincides with scenarios encoded by Assumption 3, where the agent j’s policy is able to be varied across timesteps, and the
policy is only correlated with its agent-type. In turn, this implies that an agent’s mind could be changed across timesteps,
which is an evidence that open ad hoc teamwork is also suitable for modelling human-AI cooperation (Shneiderman, 2020;
De Peuter & Kaski, 2023). However, for clarity and simplicity to introduce our theory, we assume in this paper that the
policy is fixed (time invariant or stationary) across timesteps, as shown in Assumption 6.

As for conditional independence (4), it implies that an agent j’s agent-type θjt for some timestep is conditionally independent
of other agents −j and their agent-types θ−jt , given itself denoted as j and the state st for that timestep. This is reflected by
∏∣Nt∣

j=1 PA(θjt ∣{j}, st) = PE(θt∣Nt, st).
Assumption 2. Suppose that αjk(ajt , akt ∣st) = 0 for t ≥ T , where T is the timestep when agent j or k leaves the environment,
and Rj(ajt ∣st) = 0 for t ≥ T ′, where T ′ is the timestep when agent j leaves the environment.

Assumption 2 introduces a metric to quantify the impact of agents leaving the environment. Essentially, it posits that an
agent that has departed from the environment no longer exerts any influence on the remaining agents within the environment.
Assumption 3. There exists an underlying agent-type set to generate ad hoc teammates in an environment which is unknown
to the learner.

Assumption 3 provides a natural framework for describing the agent-types of teammates. In scenarios where the agent-type
set is sufficiently large, traversing all possible agent-types or compositions becomes impractical. Therefore, this assumption
ensures that the generalizability of open ad hoc teamwork is not compromised.
Assumption 4. Teammates can be influenced by the learner through its decision making.

Assumption 4 constitutes a fundamental and commonly assumed property essential for rationalizing the ad hoc teamwork
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problem. Often referred to as the reactivity of teammates (Barrett et al., 2017), this assumption posits that teammates must
be capable of reacting to or being influenced by the learner. Without this interaction, the problem would regress to a scenario
akin to a single-agent problem, where teammates merely function as moving ‘obstacles.’ To avert such a pathological
situation, maintaining this assumption serves as a crucial boundary for ad hoc teamwork.

Assumption 5. The agents stay in the environment at least for a period of timesteps.

Assumption 5 is a prerequisite ensuring the feasibility of completing arbitrary tasks. Without this condition, wherein an
agent joining at a given timestep remains in the environment for a non-instantaneous duration, there would be minimal
opportunity for teams of agents to react to and influence each other effectively.

Assumption 6. Each teammate of an arbitrary agent-type is equipped with a fixed policy.

Assumption 6 serves as a simplified condition for analyzing the learner’s convergence to the optimal policy. By assuming
fixed policies for teammates, the Markov process becomes stationary from the learner’s perspective, facilitating a more
tractable analysis of convergence dynamics. However, this can be further relaxed to cater for more realistic situations.

Assumption 7. Graph neural networks are assumed to enjoy the generalizability to agent-types.

Assumption 7 serves as a justification to explain why graph neural networks as a critical component can result in better
performance for GPL as reported in the previous work (Rahman et al., 2021) and therefore CIAO (which is implemented
upon GPL) in this paper, in generalization of agent-type sets. This assumption can be further relaxed through investigating
the underlying reasons behind this phenomenon.

E. Generalization of Preference Values for Coalitional Affinity Game
At the beginning, it is worth noting that in the original work of CAG (Brânzei & Larson, 2009), the definition of the
preference value of an arbitrary agent j is as follows:

v̄j(C) =
⎧⎪⎪⎨⎪⎪⎩

0 if C = {j},
∑(j,k)∈E,k∈C w̄(j, k) otherwise.

(9)

While the condition that each agent’s preference value of a coalition including only itself, equal to zero, is convenient and
straightforward for analysis, it imposes limitations on the representational capacity for a wide variety of situations. To
address this issue, we generalize the definition of the preference value function in Eq. (9) to the form as follows:

vj(C) =
⎧⎪⎪⎨⎪⎪⎩

bj ≥ 0 if C = {j},
∑(j,k)∈E,k∈C w(j, k) otherwise.

(10)

The main difference between the definitions in Eq. (9) and Eq. (10) is that the preference value of the coalition only including
a single agent is not forced to be zero in Eq. (10). Albeit that the results shown in the original work of CAG (Brânzei &
Larson, 2009) are based on each agent’s original preference value function shown in Eq. (9), we can still generalize and
leverage the results through conducting translation to each agent’s preference value function by its preference value of the
coalition including itself, vj({j}) = bj ≥ 0 (where bj is a constant), to align with the condition of v̄j(C) in Eq. (9). In more
details, we can transform the newly defined preference value function in Eq. (10) as follows:

v̂j(C) = vj(C) − vj({j}) =
⎧⎪⎪⎨⎪⎪⎩

0 if C = {j},
∑(j,k)∈E,k∈C w(j, k) − vj({j}) otherwise.

(11)

Therefore, we can directly leverage the results from the previous work (Brânzei & Larson, 2009) by replacing v̄j(C) with
v̂j(C), and generalize the results to the newly defined preference value function in Eq. (10) by conducting the change of
variables according to Eq. (11).

The generalised preference value vj(C) plays an important role of proving the results of OSB-CAG in the following sections.

Definition 4. In a CAG with the generalised preference value function, for any agent j, its preference value of the coalition
including only itself is defined as that vj({j}) ≥ 0.
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In the conventional definition of a coalition value function5 in the cooperative game theory, the value of an empty set (empty
coalition) is defined as zero (Chalkiadakis et al., 2022). In the context of a CAG, we can formally extend the domain of an
agent j’s preference value function by considering the empty set such that vj(∅) = 0. This extension can be interpreted
as that an agent imagines a scenario where it is not included (with no incentives to join). If vj({j}) < 0, it may lead to a
paradox that an agent j would choose to disappear from the environment (e.g. suicide) to escape independence owing to
vj({j}) < vj(∅), which is apparently opposite to morality and ethics. To avoid the paradox, it is reasonable to generalise an
agent j’s preference value of the coalition including itself to only the non-negative range such that vj({j}) ≥ 0.

F. Derivation of Definition 2
Definition 5. We say that a blocking coalition C weakly blocks a coalition structure CS if every agent j ∈ C weakly prefers C
to CS(j) and there exists at least one agent k ∈ C who strictly prefers C to CS(j). A coalition structure CS = {C1, ...,Cm}
admitting no weakly blocking coalition C ⊂ Ck, for some 1 ≤ k ≤m, is called inner stable.
Theorem 4 (Brânzei & Larson (2009)). If a CAG is symmetric, then the social-welfare maximizing partition exhibits inner
stability.

Theorem 4 directly holds for the newly defined vj(C) in this paper, since it is irrelevant to the detailed representation
(feasible domain) of a preference value function (see Theorem 2 and 5 in the previous work (Brânzei & Larson, 2009)).
Lemma 1. If a CAG is symmetric, then maximizing the social welfare under a grand coalition results in strict core stability.

Proof. Following Definition 5, it is not difficult to observe that a grand coalition exhibiting strict core stability is equivalent
to a grand coalition exhibiting inner stability. Therefore, we can directly obtain the result by Theorem 4.

F.1. Derivation of Dynamic Variational Strict Core

In an OSB-CAG, at any timestep t, under an arbitrary state st ∈ S along with a temporary team (including the learner i),
denoted as Nt ⊆ N , and the temporary team’s joint action at ∈ ANt

, the coalition reward can be equivalently expressed as a
preference value of an agent belonging to a temporary team Nt such that Rj(st, at) = vj(Nt). The temporary team Nt

can be interpreted as the grand coalition at any timestep t. Thereby, reaching the strict core stability at any timestep t is
equivalent to maximizing the social welfare at the timestep. Different from the previous work (Brânzei & Larson, 2009)
that given the predetermined preference values, the coalition structure is as a decision variable to reach the strict core; in
this paper, we predetermine a temporary team, as the target coalition structure, and the learner i’s action is as an extended
decision variable to change the preference values (coalition rewards) in order to reach the variational strict core (VSC)
that is defined with the same criterion as the strict core, but with different target variables as elements to form the solution
set. The learner i’s action is generated by its policy πi. By Assumption 4, we can get that the learner’s action is able to
influence teammates’ actions. Therefore, the teammates’ coalition rewards as an evaluation of their policies will also be
varied accordingly. This explains that the learner’s action can be seen as a decision variable that is able to indirectly change
teammates’ coalition rewards. By Lemma 1, if a dynamic affinity graph at timestep t is symmetric, we can express the
VSC for any timestep t (under an arbitrary st ∈ S along with a temporary team Nt ⊆ N , a joint agent-type θt ∈ Θ∣Nt ∣, the
teammates’ policies π−it (a−it ∣st, θ−it ) with respect to their agent-types and the state) to find the learner’s optimal action
(rather than find a coalition structure in the previous work) as follows:

VSC ∶= {ai,∗ ∣ ∑
j∈Nt

Rj(st, ai,∗t , a−it ) ≥ ∑
j∈Nt

Rj(st, ait, a−it ), ∀ait ∈ Ai}. (12)

Note that the strict core defined in Eq. (12) implicitly assumes that the teammates’ reaction is instantaneous (happening
at the same timestep). Recall that our aim is to find the learner’s optimal stationary policy πi,∗ that generates actions
across timesteps (in a long horizon), in order to influence the temporary teammates occurring at any timestep to collaborate
(meeting the strict core stability). We now generalize the VSC defined in Eq. (12) by considering the process of generating
states, teammates, agent-types and teammates’ actions, named as dynamic variational strict core (DVSC). The DSVC is
defined as follows:

DVSC ∶= { πi,∗ ∣ Eπi,∗[
∞
∑
t=0

γt ∑
j∈Nt

Rj(st, at)] ≥ Eπi[
∞
∑
t=0

γt ∑
j∈Nt

Rj(st, at)],∀s0 ∈ S,∀πi }, (13)

5The preference value function of an agent can be seen as a coalition value function specifically defined for the agent.
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where ait ∼ πi and a−it ∼ π−it ; Eπi[⋅] denotes the expectation that also implicitly depends on θt ∼ PE , Nt, st ∼ PO.

Note that the VSC defined in Eq. (13) weakens the implicit assumption of the strict core defined in Eq. (12). In more details,
it allows the teammates to react at the successor timesteps instead of the mandatory instantaneous reaction at the same
timestep. Nevertheless, this requires that the learner has potential for adapting to the teammates (through interaction with
teammates for a period). By Assumption 5 and 6, the learner’s adaption to the temporary teammates is possible.

G. Mathematical Proofs
G.1. The Proof of Proposition 1

Proposition 1. T (Nt, st, θt∣st−1, at−1, θt−1) for t ≥ 1 can be expressed in terms of the following well-defined probability
distributions: PI(N0, s0), PT (Nt, st∣Nt−1, st−1, at−1) for t ≥ 1, and PA(θjt ∣{j}, st) for t ≥ 0.

Proof. To ease the proof, we assume that st and at are discrete variables with no loss of generality. We prove that
T (Nt, st, θt∣st−1, at−1, θt−1) can be expressed as the probability distributions we have defined, as follows:

T (Nt, st, θt∣st−1, at−1, θt−1)
= P (θt∣Nt, st, st−1, at−1, θt−1)PO(Nt, st∣st−1, at−1, θt−1)
= PE(θt∣Nt, st)PO(Nt, st∣st−1, at−1, θt−1) (By conditional independence (1) in Assumption 1.)

= PE(θt∣Nt, st) ∑
Nt−1

P (Nt, st,Nt−1∣st−1, at−1, θt−1)

= PE(θt∣Nt, st) ∑
Nt−1

P (Nt, st∣Nt−1, st−1, at−1, θt−1)P (Nt−1∣st−1, at−1, θt−1)

= PE(θt∣Nt, st) ∑
Nt−1

PT (Nt, st∣Nt−1, st−1, at−1)P (Nt−1∣st−1, θt−1)

(By conditional independence (2) and (3) in Assumption 1.)

=
∣Nt∣

∏
j=1

PA(θjt ∣{j}, st) ∑
Nt−1

PT (Nt, st∣Nt−1, st−1, at−1)P (Nt−1∣st−1, θt−1).

(By conditional independence (4) in Assumption 1.)

To complete the above proof, we need to further show the expression of P (Nt∣st, θt) as follows:

P (Nt∣st, θt) =
∑st PE(θt∣Nt, st)P (Nt, st)
∑Nt
∑st PE(θt∣Nt, st)P (Nt, st)

. (14)

Apparently, we require to prove that P (Nt, st) admits factorization into the probability distributions we have defined. We
now conduct this by mathematical induction as follows:

Base case: As per the definition, PI(N0, s0) is a predefined probability distribution to express P (N0, s0) for t = 0.

Induction case: Assume the induction hypothesis that P (Nt, st) admits factorization into the probability distributions we
have defined, for any t ≥ 0.

Next, we aim to prove that P (Nt+1, st+1) admits factorization into the probability distributions we have defined and
P (Nt, st) as the induction hypothesis, such that

P (Nt+1, st+1) =∑
Nt

∑
st

∑
at

∑
θt

P (Nt+1, st+1,Nt, st, at, θt),

where

P (Nt+1, st+1,Nt, st, at, θt) = P (Nt+1, st+1∣Nt, st, at, θt)P (Nt∣st, at, θt)P (at∣st, θt)P (st, θt)
= PT (Nt+1, st+1∣Nt, st, at)P (Nt∣st, θt)P (at∣st, θt)P (st, θt)

(By conditional independence (2) and (3) in Assumption 1.)
= PT (Nt+1, st+1∣Nt, st, at)P (Nt∣st, θt)πt(at∣st, θt)P (st, θt).

(By the definition of πt in Appendix B, we can use πt to specify P (at∣st, θt).)
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Since P (Nt, st) is the induction hypothesis and PE(θt∣Nt, st) is a probability distribution we have defined, we can derive
P (Nt∣st, θt) by Eq. (14). Also, by that P (Nt, st) is the induction hypothesis and PE(θt∣Nt, st) is a probability distribution
we have defined, we can obtain P (st, θt) as follows:

P (st, θt) =∑
Nt

P (Nt, st, θt)

=∑
Nt

PE(θt∣Nt, st)P (Nt, st).

Conclusion: Since both the base case and the induction step have been proved as true, P (Nt, st) is proved to admit
factorization into the probability distributions we have defined for any t ≥ 0.

G.2. The Proof of Theorem 1

Theorem 5 (Brânzei & Larson (2009)). In a CAG with an affinity graph G = ⟨N ,E⟩, if for all (j, k) ∈ E , w̄(j, k) ≥ 0, then
the grand coalition is in the strict core.
Lemma 2. In a CAG with an affinity graph G = ⟨N ,E⟩ and the generalised preference value function vj(C), if the following
conditions are satisfied such that

w(j, k) ≥ zjk({j}),
vj({j}) = ∑

(j,k)∈E,k∈N
zjk({j}),

∀(j, k) ∈ E ,

(15)

then the grand coalition is in the strict core.

Proof. Recall that we have generalised the preference value function in this paper (see Appendix E). Theorem 5 only holds
for the case where the preference value function is defined as v̄j(C) in Eq. (9). As a result, we first investigate the conditions
that makes Theorem 5 still hold for the generalised preference value function vj(C) in Eq. (10). As discussed before, we can
transform the generalised preference value function vj(C) to the feasible domain of the original preference value function
v̄j(C) by translation such that

v̂j(C) = vj(C) − vj({j}) =
⎧⎪⎪⎨⎪⎪⎩

0 if C = {j},
∑(j,k)∈E,k∈C w(j, k) − vj({j}) otherwise.

It is apparent that the domain of v̂j(C) is aligned with that of v̄j(C). Therefore, we can substitute v̂j(C) for v̄j(C). Since
Theorem 5 only considers the grand coalition, we can temporarily ignore the case of that C = {j}. For any C ≠ {j} of v̂j(C),
we can rewrite the expression ∑(j,k)∈E,k∈C w(j, k) − vj({j}) as follows:

∑
(j,k)∈E,k∈C

w(j, k) − vj({j}) = ∑
(j,k)∈E,k∈C

{w(j, k) − zjk({j})}

∶= ∑
(j,k)∈E,k∈C

ŵ(j, k),

where

ŵ(j, k) ∶= w(j, k) − zjk({j}),
vj({j}) = ∑

(j,k)∈E,k∈C
zjk({j}).

By the condition that ŵ(j, k) ≥ 0, for (j, k) ∈ E , from Theorem 5, we can directly obtain the conditions to enable the grand
coalition N being in the strict core such that

w(j, k) ≥ zjk({j}),
vj({j}) = ∑

(j,k)∈E,k∈N
zjk({j}),

∀(j, k) ∈ E .

(16)
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Theorem 1. In an OSB-CAG, for any dynamic affinity graph Gt = ⟨Nt,Et⟩ at any timestep t, if there exists a joint action
at ∈ ANt

, for any agent j ∈ Nt, satisfying Rj(at∣st) ≥ Rj(ajt ∣st) for any st ∈ S, then DVSC always exists.

Proof. To avoid losing the generality, we consider an arbitrary dynamic affinity graph Gt = ⟨Nt,Et⟩ for a temporary team
Nt ⊆ N at an arbitrary timestep t. For any state st ∈ S and any joint action at ∈ ANt

, the affinity weight wjk(ajt , akt ∣st)
of any (j, k) ∈ Et can be represented as a corresponding w(j, k) such that w(j, k) = wjk(ajt , akt ∣st). Similarly, each
agent j’s preference reward for the coalition including only itself Rj(ajt ∣st) can also be represented as a corresponding
vj({j}) such that vj({j}) = Rj(ajt ∣st). Thereafter, we can apply Lemma 2 to the situation here at a single timestep
t. Substituting the above variables into Eq. (15) in Lemma 2, it is not difficult to observe that if for any state st ∈ S,
there exists a joint action at ∈ ANt

such that ∑(j,k)∈Et,k∈Nt
wjk(ajt , akt ∣st) ≥ Rj(ajt ∣st), then there always exists a

Rj(ajt ∣st) = ∑(j,k)∈Et,k∈Nt
βjk(ajt ∣st) satisfying the condition that wjk(ajt , akt ∣st) ≥ βjk(ajt ∣st), for all (j, k) ∈ Et, for any

state st ∈ S . Analogously, we can obtain the same results for all timesteps as above, which achieves the long-horizon objective
as defined in the DVSC. Therefore, we can conclude that for any dynamic affinity graph Gt = ⟨Nt,Et⟩ at any timestep t, if
there exists a joint action at ∈ ANt

, for any agent j ∈ Nt, satisfying Rj(at∣st) = ∑(j,k)∈Et,k∈Nt
wjk(ajt , akt ∣st) ≥ Rj(ajt ∣st)

for any st ∈ S , then the DVSC defined in Eq. (4) always exists.

G.3. The Proof of Theorem 2

Lemma 3. Under Assumption 2, it is valid to have the expressions that Qπi

jk(a
j
t , a

k
t ∣st) = Eπi[∑∞τ=t γτ−tαjk(ajτ , akτ ∣sτ)]

and Qπi

j (a
j
t ∣st) = Eπi[∑∞τ=t γτ−tRj(ajτ ∣sτ)], with the learner i’s policy πi.

Proof. Suppose that agent j or k leaves the environment at timestep T , then we can have the expression that Qπi

jk(a
j
t , a

k
t ∣st) =

Eπi[∑∞τ=t γτ−tαjk(ajτ , akτ ∣sτ)] by the condition in Assumption 2 that αjk(ajτ , akτ ∣sτ) = 0 for τ ≥ T if agent j or k leaves
the environment at timestep T as follows:

Qπi

jk(ajt , akt ∣st) = Eπi[
T

∑
τ=t

γτ−tαjk(ajτ , akτ ∣sτ)]

= Eπi[
T

∑
τ=t

γτ−tαjk(ajτ , akτ ∣sτ) +
∞
∑
τ=T

γτ−tαjk(ajτ , akτ ∣sτ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by Assumption 2.

]

= Eπi[
∞
∑
τ=t

γτ−tαjk(ajτ , akτ ∣sτ)].

Similarly, by the condition in Assumption 2 that Rj(ajτ ∣sτ) = 0 for τ ≥ T ′ if agent j leaves the environment at timestep T ′,
we can derive the result that Qπi

j (a
j
t ∣st) = Eπi[∑∞τ=t γτ−tRj(ajτ ∣sτ)].

Theorem 2. Under Assumption 2, if wjk(ajτ , akτ ∣sτ) = αjk(ajτ , akτ ∣sτ) + βjk(ajτ ∣sτ), then the joint Q-value of the learner’s
policy πi can be expressed as follows:

Qπi

(st, at) = ∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) + ∑
j∈Nt

Qπi

j (ajt ∣st)

= ∑
j∈Nt

{ ∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) + ∑
j∈Nt

Qπi

j (ajt ∣st)}

∶= ∑
j∈Nt

Qπi

j (at∣st),

where Qπi

jk(a
j
t , a

k
t ∣st) = Eπi[∑∞τ=t γτ−tαjk(ajτ , akτ ∣sτ)] and Qπi

j (a
j
t ∣st) = Eπi[∑∞τ=t γτ−tRj(ajτ ∣sτ)].

Proof. By Assumption 2 and the result of Lemma 3, for any state st ∈ S and any joint action at ∈ ANt
, we can represent the
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joint Q-value under any learner i’s policy πi such as Qπi(st, at) as follows:

Qπi

(st, at) = Eπi[
∞
∑
τ=t

γτ−tR(sτ , aτ)]

= Eπi[
∞
∑
τ=t

γτ−t ∑
j∈Nτ

Rj(aτ ∣sτ)]

= Eπi[
∞
∑
τ=t

γτ−t ∑
j∈Nτ

( ∑
(j,k)∈Eτ

αjk(ajτ , akτ ∣sτ) +Rj(ajτ ∣sτ))]

= Eπi[
∞
∑
τ=t

γτ−t( ∑
j∈Nτ

( ∑
(j,k)∈Eτ

αjk(ajτ , akτ ∣sτ) +Rj(ajτ ∣sτ))

+ ∑
j∈Nt/Nτ

( ∑
(j,k)∈Et/Eτ

αjk(ajτ , akτ ∣sτ) +Rj(ajτ ∣sτ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by Assumption 2.

)]

= Eπi[
∞
∑
τ=t

γτ−t ∑
j∈Nt

( ∑
(j,k)∈Et

αjk(ajτ , akτ ∣sτ) +Rj(ajτ ∣sτ))]

= ∑
j∈Nt

{ ∑
(j,k)∈Et

Eπi[
∞
∑
τ=t

γτ−tαjk(ajτ , akτ ∣sτ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Qπi

jk
(aj

t ,a
k
t ∣st) by Lemma 3.

] +Eπi[
∞
∑
τ=t

γτ−tRj(ajτ ∣sτ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Qπi

j (a
j
t ∣st) by Lemma 3.

}

= ∑
j∈Nt

{ ∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) +Qπi

j (ajt ∣st)}

= ∑
j∈Nt

∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) + ∑
j∈Nt

Qπi

j (ajt ∣st)

= ∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) + ∑
j∈Nt

Qπi

j (ajt ∣st).

(17)

By the fashion of Bellman optimality equation, for any state st ∈ S and any joint action at ∈ ANt
, we can write out each

agent j’s preference Q-value under the learner i’s policy πi, Qπi

j (at∣st), as follows:

Qπi

j (st, at) = Eπi[
∞
∑
τ=t

γτ−tRj(aτ ∣sτ)]

= Eπi[
∞
∑
τ=t

γτ−t( ∑
(j,k)∈Eτ

αjk(ajτ , akτ ∣sτ) +Rj(ajτ ∣sτ))]

= Eπi[
∞
∑
τ=t

γτ−t( ∑
(j,k)∈Eτ

αjk(ajτ , akτ ∣sτ))] +Eπi[
∞
∑
τ=t

γτ−tRj(ajτ ∣sτ)]

= Eπi[
∞
∑
τ=t

γτ−t( ∑
(j,k)∈Eτ

αjk(ajτ , akτ ∣sτ) + ∑
(j,k)∈Et/Eτ

αjk(ajτ , akτ ∣sτ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by Assumption 2.

)] +Eπi[
∞
∑
τ=t

γτ−tRj(ajτ ∣sτ)]

= Eπi[
∞
∑
τ=t

γτ−t( ∑
(j,k)∈Et

αjk(ajτ , akτ ∣sτ))] +Eπi[
∞
∑
τ=t

γτ−tRj(ajτ ∣sτ)]

= ∑
(j,k)∈Et

Eπi[
∞
∑
τ=t

γτ−tαjk(ajτ , akτ ∣sτ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Qπi

jk
(aj

t ,a
k
t ∣st) by Lemma 3.

+Eπi[
∞
∑
τ=t

γτ−tRj(ajτ ∣sτ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Qπi

j (a
j
t ∣st) by Lemma 3.

= ∑
(j,k)∈Et

Qπi

jk(ajt , akt ∣st) +Qπi

j (ajt ∣st).

(18)
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By substituting the expression of Qπi

j (st, at) derived in Eq. (18) into Eq. (17), we can get the following relation:

Qπi

(st, at) = ∑
j∈Nt

Qπi

j (at∣st). (19)

G.4. The Proof of the Conditions of Symmetry for Various Dynamic Affinity Graphs

Proposition 3. For the learner i and any teammate j or k, the constraints Ri(ait∣st) = ∑j∈−iRj(ajt ∣st) and αjk(ajt , akt ∣st) =
αkj(akt , ajt ∣st), for any at ∈ ANt

and st ∈ S, are necessary for a star dynamic affinity graph to be symmetric.

Proof. Recall that a symmetric dynamic affinity graph Gt = ⟨Nt,Et⟩ needs to satisfy the following condition that
wjk(ajt , akt ∣st) = wkj(akt , ajt ∣st), for all (j, k) ∈ Et, for any state st ∈ S and any joint action at ∈ ANt

. In the dynamic
affinity graph as a star graph, the affinity weights of any (i, j) ∈ Et or (j, i) ∈ Et can be represented as follows:

wij(ait, ajt ∣st) = αij(ait, ajt ∣st) + βij(ait∣st),where Ri(ait∣st) = ∑
j∈−i

βij(ait∣st),

wji(ajt , ait∣st) = αji(ajt , ait∣st) + βji(ajt ∣st),where Rj(ajt ∣st) = βji(ajt ∣st).

It is not difficult to observe that for all ∀st ∈ S and at ∈ ANt
the following conditions that

αij(ait, ajt ∣st) = αji(ajt , ait∣st),
Ri(ait∣st) = ∑

j∈−i
Rj(ajt ∣st),

are necessary for that the star dynamic affinity graph is symmetric. In more details, that Ri(ait∣st) = ∑j∈−iRj(ajt ∣st) is a
necessary condition for the existence of the one-to-one correspondence that βij(ait∣st) = βji(ajt ∣st) = Rj(ajt ∣st).

Proposition 4. For any two agents j or k, the constraints Rj(ajt ∣st) = Rk(akt ∣st) and αjk(ajt , akt ∣st) = αkj(akt , ajt ∣st), for
any at ∈ ANt

and st ∈ S , are necessary for the complete dynamic affinity graph to be symmetric.

Proof. Recall that a symmetric dynamic affinity graph Gt = ⟨Nt,Et⟩ needs to satisfy the following condition that
wjk(ajt , akt ∣st) = wkj(akt , ajt ∣st), for all (j, k) ∈ Et, for any state st ∈ S and any joint action at ∈ ANt

. In the dynamic
affinity graph as a complete graph, the affinity weights of any (j, k) ∈ Et can be represented as follows:

wjk(ajt , akt ∣st) = αjk(ajt , akt ∣st) + βjk(ajt ∣st),where Rj(ajt ∣st) = ∑
k∈−j

βjk(ajt ∣st).

It is not difficult to observe that for all ∀st ∈ S and at ∈ ANt
the following conditions that

αjk(ajt , akt ∣st) = αkj(akt , ajt ∣st),
Rj(ajt ∣st) = Rk(akt ∣st),

are necessary for that the complete dynamic affinity graph is symmetric. In more details, that Rj(ajt ∣st) = ∑k∈−j βjk(ajt ∣st) =
∑j∈−k βkj(akt ∣st) = Rk(akt ∣st) is a necessary condition for the existence of the one-to-one correspondence that βjk(ajt ∣st) =
βkj(akt ∣st).

G.5. The Proof of Theorem 3

Theorem 3. Under Assumption 2 and an arbitrary learner’s deterministic stationary policy πi, the Bellman equa-
tion for the OSB-CAG with DVSC as a solution concept is expressed as follows: Qπi(st, at) = R(st, at) +
γENt+1,st+1∼PO

[Eθt+1∼PE , at+1∼πt+1[Qπi(st+1, at+1)]].
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Proof. We derive Eq. (6) as follows.

By the result of Theorem 2, we can represent the joint Q-value under an arbitrary learner’s deterministic stationary policy πi

referred to as Qπi(st, at) as follows:
Qπi

(st, at) = ∑
j∈Nt

Qπi

j (at∣st), (20)

Next, we can expand the preference Q-value of each agent j ∈ Nt following the fashion of the Bellman equation such that

Qπi

j (at∣st) = Rj(at∣st) + γENt+1,st+1∼PO
[E θt+1∼PE ,

at+1∼πt+1
[Qπi

j (at+1∣st+1)]]. (21)

Then, we can sum up Eq. (21) for all possible agents belonging to the temporary teamNt and get an equation to evaluate the
influence of the learner’s policy πi to a temporary team Nt such that

Qπi

(st, at) = ∑
j∈Nt

Qπi

j (at∣st)

= ∑
j∈Nt

Rj(at∣st) + ∑
j∈Nt

γENt+1,st+1∼PO
[E θt+1∼PE ,

at+1∼πt+1
[Qπi

j (at+1∣st+1)]]

= R(st, at) + ∑
j∈Nt+1

γENt+1,st+1∼PO
[E θt+1∼PE ,

at+1∼πt+1
[Qπi

j (at+1∣st+1)]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Since Qπi

j (at+1∣st+1) = 0 for agent j ∈Nt/Nt+1 by Assumption 2.

= R(st, at) + γENt+1,st+1∼PO
[E θt+1∼PE ,

at+1∼πt+1
[ ∑
j∈Nt+1

Qπi

j (at+1∣st+1)]]

= R(st, at) + γENt+1,st+1∼PO
[E θt+1∼PE ,

at+1∼πt+1
[Qπi

(st+1, at+1)]].

(22)

Note that Eq. (22) does not hold if Nt ⊂ Nt+1, since it is problematic to expand the preference Q-value of an agent
k ∈ Nt+1 but ∉ Nt at timestep t, which can be seen as a singularity of this equation. More specifically, 0 = Qπi

k (at∣st) =
Rk(at∣st) + γENt+1,st+1∼PO

[E θt+1∼PE ,
at+1∼πt+1

[Qπi

k (at+1∣st+1)]] > 0 is impossible, given that at least Rk(at′ ∣st′) > 0, implying

agent k’s preference for collaborating with other agents, at a timestep t′ ≥ t.

H. Experimental Settings
We evaluate our proposed CIAO in two existing environments, LBF and Wolfpack, both configured with open team settings
(Rahman et al., 2021). In these settings, teammates are randomly selected to enter the environment and remain for a specified
number of timesteps. If a teammate surpasses its allocated lifetime, it is removed from the environment and placed in a
re-entry queue with a randomly assigned waiting time. The randomized re-entry queue results in varied compositions of
teammates in a temporary team. When the number of agents in the environment does not reach its maximum, agents in the
re-entry queue are introduced to the environment. Specifically, in the Wolfpack environment, we uniformly determine the
active duration by selecting a value between 25 and 35 timesteps, while the dead duration is uniformly sampled between
15 and 25 timesteps. Conversely, the durations for LBF are somewhat shorter, with the active duration uniformly sampled
between 15 and 25 timesteps, and the dead duration between 10 and 20 timesteps.

The teammate policies adhere to the experimental settings used for testing GPL (Rahman et al., 2021), which encompass
a range of heuristic policies and pre-trained policies. Specifically, for Wolfpack, the teammate set includes the following
agents: random agent, greedy agent, greedy probabilistic agent, teammate-aware agents, GNN-Based teammate-aware
agents, graph DQN agents, greedy waiting agents, greedy probabilistic waiting agents, and greedy team-aware waiting
agents. In the case of LBF, a combination of heuristics and A2C agents is employed as the teammate policy set. For more
detailed information about teammate policies, we recommend referring to Appendix B.4 of GPL’s paper.

In our investigation of different agent-type sets within LBF experiments (see Appendix I.2), we deliberately exclude the
A2C agent from the original agent-type set, thereby establishing a distinct agent-type subset. It’s crucial to acknowledge that
the A2C agent provided by GPL is designed for scenarios with a maximum of 5 agents. Tailored to scenarios involving a
greater number of agents, specifically up to 9, we undertake the additional step of training an A2C agent tailored to these
expanded requirements.
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In our experiments of studying the generalizability of CIAO, we constructed the agent-type sets for training and testing,
respectively, for Wolfpack and LBF. The details are shown in Tab. 1.

Table 1: Variant agent-type sets for training and testing in experiments for evaluating generalizability of CIAO. The shorthand
“Int” stands for the scenario where agent-type sets for training have intersection with testing. The shrothand “Exc” stands for
the scenarios where agent-type sets for training are mutually exclusive to testing.

Scenario Name Training Testing

Wolfpack-Int

GreedyPredatorAgent,
GreedyProbabilisticAgent,
TeammateAwarePredator,

DistilledCoopAStarAgent,
GraphDQNAgent

GraphDQNAgent,
RandomAgent,

GreedyWaitingAgent,
GreedyProbabilisticWaitingAgent,

TeammateAwareWaitingAgent

Wolfpack-Exc

GreedyPredatorAgent,
GreedyProbabilisticAgent,
TeammateAwarePredator,

DistilledCoopAStarAgent,
GraphDQNAgent

RandomAgent,
GreedyWaitingAgent,

GreedyProbabilisticWaitingAgent,
TeammateAwareWaitingAgent

LBF-Int H8, H7, H6, H5, A2C0 A2C0, H1, H2, H3, H4

LBF-Exc H8, H7, H6, H5, A2C0 H1, H2, H3, H4

H.1. Detailed Hyperparameters and Computing Resources

We summarize the values of the common hyperparameters of algorithms that are used in our experiments, as shown in
Tabs. 2 and 3. The optimizer we use during training is Adam (Kingma & Ba, 2014), with the default hyperparameters except
learning rate. All algorithms in experiments are implemented in PyTorch (Paszke et al., 2019).

Then, we list the exclusive hyperparameters of all algorithms implemented in this work, as shown in Tab. 4. All experiments
have been run on Xeon Gold 6230 with 30 CPU cores and 30 GB primary memory. An experiment conducted on Wolfpack
requires approximately 11 hours, whereas an experiment on LBF typically takes around 12 hours.

I. Additional Experimental Results
I.1. Additional Evaluation on Small Number of Agents
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(a) LBF including A2C agent.
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(b) LBF excluding A2C agent.
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(c) Wolfpack.

Figure 8: Comparison between CIAO and GPL in evaluation, across different scenarios of a maximum of 3 agents.

We present a performance comparison between CIAO and GPL across various scenarios involving a maximum of 3 agents, as
illustrated in Fig. 8. The results indicate comparable performances on LBF, while CIAO-S significantly outperforms the other
algorithms in the Wolfpack scenario. This observation leads to the conclusion that the star graph structure is better suited for
Wolfpack. The rationale behind this outcome is that, in instances with a small number of agents in Wolfpack, conveying the
learner’s ’instructions’ through one teammate to another is less effective. This contrasts with the scenario depicted in Fig. 3b,
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Table 2: Shared hyperparameters for LBF. Note that the arguments intersection generalization,
exclusion generalization and exclude A2Cagent cannot be simultaneously set to be True.

Hyperparameter Value

lr 0.00025
gamma 0.99

max num steps 1000000
eps length 200

update frequency 4
saving frequency 50

pair comp bmm
num envs 16

tau 0.001
eval eps 5

weight predict 1.0
num players train 3

num players test 5 for a maximum of 5 agents
9 for a maximum of 9 agents

exclude A2Cagent True for the agent-type set excluding A2C agent
False for the default agent-type sets

intersection generalization True for the agent-type sets for training and testing are intersected
False for the default agent-type sets

exclusion generalization True for the agent-type sets for training and testing are mutually exclusive
False for the default agent-type sets

seed 0
eval init seed 2500

Table 3: Shared hyperparameters for Wolfpack. Note that the arguments intersection generalization and
exclusion generalization cannot be simultaneously set to be True.

Hyperparameter Value

lr 0.00025
gamma 0.99

num episodes 4000
update frequency 4
saving frequency 50

pair comp bmm
num envs 16

tau 0.001
eval eps 5

weight predict 1.0
num players train 3

num players test 5 for a maximum of 5 agents
9 for a maximum of 9 agents

intersection generalization True for the agent-type sets for training and testing are intersected
False for the default agent-type sets

exclusion generalization True for the agent-type sets for training and testing are mutually exclusive
False for the default agent-type sets

seed 0
eval init seed 2500
close penalty 0.5

where a larger number of agents necessitates transmitting the learner’s instructions through an intermediary teammate. The
consistency of these findings reinforces the argument for the star graph structure’s superiority in Wolfpack scenarios.
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Table 4: Exclusive hyperparameters of all algorithms implemented in this paper.

Algorithm weight regularizer graph pair range indiv range

GPL 0.0 complete free free
CIAO-S 0.5 star pos pos

CIAO-S-NP 0.5 star neg pos
CIAO-S-FI 0.5 star pos free
CIAO-S-ZI 0.5 star pos zero
CIAO-S-NI 0.5 star pos neg

CIAO-C 0.5 complete pos pos
CIAO-C-NP 0.5 complete neg pos
CIAO-C-FI 0.5 complete pos free
CIAO-C-ZI 0.5 complete pos zero
CIAO-C-NI 0.5 complete pos neg

I.2. LBF with Agent-Type Sets Excluding A2C Agent
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(a) LBF: max. of 5 agents.
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(b) LBF: max. of 9 agents.

Figure 9: Comparison between CIAO and GPL on LBF with the agent-type set excluding the agent-type generated by RL
algorithms, in scenarios with a maximum of 5 and 9 agents.

We extend our evaluation of CIAO to LBF considering the agent-type set without the agent-type trained by RL (A2C agent),
as depicted in Fig. 9. A comparison between Fig. 9 and Fig. 3 leads to the conclusion that CIAO-S exhibits comparatively
robust performance across different agent-type sets, whereas CIAO-C demonstrates robustness primarily in scenarios with
a larger number of agents. The underlying reasons for CIAO-C’s limited robustness in situations with a small number of
agents remain a topic for future investigation. Additionally, exploring the correlation between the performance of these
algorithms in testing and RL-based agent-types is a valuable topic for further research.

I.3. Additional Ablation Study on LBF with Agent-Type Sets Excluding A2C Agent

We present a comprehensive performance comparison among CIAO-C, CIAO-S, and their respective ablation variants on
LBF, excluding the A2C agent. Figs. 10 and 11 illustrate the results for CIAO-C and CIAO-S, respectively. In the majority
of situations, our hypothesis regarding the non-negative individual utility range is validated. However, we note that the
unregularized individual utility exhibits satisfactory performance but is prone to instability. Additionally, our theoretical
expectation of a non-negative pairwise utility range is violated for CIAO-C in scenarios involving a maximum of 3 and 5
agents. The root cause of this deviation requires further investigation, suggesting a potential avenue for future research into
dynamic affinity graph structures.
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(a) Maximum of 3 agents.
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(b) Maximum of 5 agents.
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(c) Maximum of 9 agents.

Figure 10: Comparison between CIAO-C and its ablations in evaluation, on LBF excluding A2C agent, across scenarios of
various maximum numbers of agents as 3, 5 and 9, respectively.
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(a) Maximum of 3 agents.
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(b) Maximum of 5 agents.
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(c) Maximum of 9 agents.

Figure 11: Comparison between CIAO-S and its ablations in evaluation, on LBF excluding A2C agent, across scenarios of
various maximum numbers of agents.

I.4. Additional Ablation Study on CIAO with No Regularizers
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(a) LBF including A2C agent.
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(b) LBF excluding A2C agent.
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(c) Wolfpack.

Figure 12: Comparison between CIAO and its ablation variant with no consideration of regularizers, denoted as CIAO-X-NR
(“X” is either “C” or “S”), on the regularization loss during training, across different scenarios where the training is
conducted with a maximum of 3 agents.

We conduct a performance comparison between CIAO and its ablation variant, excluding considerations of regularizers.
In Fig. 12, the regularization losses during training are depicted, affirming the importance of incorporating regularizers.
Notably, the effectiveness of regularizers is not consistently robust in the context of LBF, as shown in Figs. 13 and 14. Two
potential explanations arise: (1) unique properties of the LBF environment may diminish the impact of regularizers, and (2)
the regularization, driven by a sufficient condition to address DVSC as an RL problem, may lack consideration of other
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(a) LBF including A2C agent.
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(b) LBF excluding A2C agent.
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(c) Wolfpack.

Figure 13: Comparison between CIAO and its ablation variant with no consideration of regularizers, denoted as CIAO-X-NR
(“X” is either “C” or “S”), across different scenarios where the evaluation is conducted with a maximum of 5 agents.
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(a) LBF including A2C agent.
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(b) LBF excluding A2C agent.
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(c) Wolfpack.

Figure 14: Comparison between CIAO and its ablation variant with no consideration of regularizers, denoted as CIAO-X-NR
(“X” is either “C” or “S”), across different scenarios where the evaluation is conducted with a maximum of 9 agents.

eligible conditions. The exploration of these possibilities is deferred to the future research.
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