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Abstract

Recent studies explored integrating state-space search algorithms with Language Models
(LM) to perform look-ahead on the token generation process, the “Tree-of-Thoughts” (ToT),
generated by LMs, thereby improving performance on problem-solving tasks. However, the
affiliated search algorithms often overlook the significant computational costs associated
with LM inference, particularly in scenarios with constrained computational budgets. Con-
sequently, we address the problem of improving LM performance on problem-solving tasks
under limited computational budgets. We demonstrate how the probabilities assigned to
thoughts by LMs can serve as a heuristic to guide search within the ToT framework, thereby
reducing the number of thought evaluations. Building on this insight, we adapt a heuristic
search algorithm, Levin Tree Search (LTS), to the ToT framework, which leverages LMs
as policies to guide the tree exploration efficiently. We extend the theoretical results of
LTS by showing that, for ToT (a pruned tree), LTS guarantees a bound on the number of
states expanded, and consequently, on the number of thoughts generated. Additionally, we
analyze the sensitivity of this bound to the temperature values commonly used in the final
softmax layer of the LM. Empirical evaluation under a fixed LM query budget demonstrates
that LTS consistently achieves comparable or higher accuracy than baseline search algo-
rithms within the ToT framework, across three domains (Blocksworld, PrOntoQA, Array
Sorting) and four distinct LMs. These findings highlight the efficacy of LTS on ToT, par-
ticularly in enabling cost-effective and time-efficient problem-solving, making it well-suited
for latency-critical and resource-constrained applications.

1 Introduction

Language Models (LMs) have demonstrated promising performance across a wide range of natural language
processing tasks (Brown et al.,2020; Chowdhery et al., [2023; [Achiam et al.,[2023). Although LMs are effective
on a wide range of language understanding and generation tasks, complex problem-solving tasks such as
reasoning tasks remain challenging and often require additional techniques to improve performance. Recent
prompting strategies, such as Chain-of-Thought (CoT) prompting (Wei et al., |2022)), improve performance
on such tasks by eliciting intermediate reasoning steps before producing a final response. Building on this
idea, methods such as Tree-of-Thoughts (ToT) (Yao et al [2023)) (see Figure[l)) and Reasoning-and-Planning
(RAP) (Hao et al.,2023|) generate structured reasoning trajectories in the form of search trees. These trees are
formed by exploring multiple coherent intermediate sequences of tokens, or thoughts, at each decision point.
Furthermore, approaches like ToT and RAP employ state-space search (referred to as “search”) algorithms
to navigate the generated search trees and produce a final response. For instance, ToT (Yao et al.| 2023)
method proposed using depth first search (DFS) (Cormen et al., [2022) or beam search (BS) (Sutskever et al.,
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2014) while RAP (Hao et al., 2023) used Monte-Carlo Tree Search (MCTS) (Kocsis & Szepesvari, 2006) as

the search algorithm. These approaches have demonstrated significant improvements on complex reasoning
tasks compared to standard LM decoding methods that generate responses by greedily selecting tokens

without additional exploration.

While these approaches can be effective, the im-
provements come at the cost of increased inference-
time computation. Generating and evaluating mul-
tiple reasoning paths requires repeated LM queries,
which can be expensive, especially as the size of LMs
increases, as highlighted in recent work
[2024; [Muennighoff et al. [2025)). To address this is-
sue, we focus on improving LM performance under
a strictly constrained computational budget, where
compute is measured by the number of generated
thoughts. Since each thought consists of a sequence
of tokens, minimizing the number of thoughts also
reduces the total number of LM queries, assuming
the average length of each thought remains approx-
imately constant. To this end, we explore adapta-
tions of search algorithms within the ToT framework
to elicit better LM responses when the number of al-
lowable thought generations is limited.

We begin with an observation: explicitly evaluating
intermediate thoughts using LMs, commonly per-
formed to rank and pick thoughts to expand, re-
quires additional LM queries. Given this under-
standing, we propose using the LM as a policy, map-
ping from a partial sequence of thoughts (state) to a
distribution over next thoughts (neighboring states),
thereby guiding the search without requiring addi-
tional evaluation queries. Building on this obser-
vation, we adapt Levin Tree Search (LTS)
to the ToT framework, which directly
leverages LM as a policy to effectively guide the
search. Further, we extend the theoretical guarantee
on the number of state expansions, and consequently
on the number of thoughts generated, from the orig-
inal LTS formulation on generic search trees (Orseau
to the ToT framework. Note that
the original LTS theoretical expansion bound does
not directly apply to the ToT framework due to its
pruned structure. Moreover, we analyze the sensi-

-

Prompt x: "Rubik's Cube is a puzzle
with 6 faces ... Give step by step
instructions to solve the problem"

Other Thoughts

Thought:
Rotate Top Face Counter
Clockwise

Thought: Rotate
Rear Face Counter
Clockwise

Thought:
Rotate Center

Thought: Thought:

Rotate Bottom Rotate Front Face
Face Clockwise Clockwise

Thought: Rotate
Back Face
Clockwise

Thought:
Rotate Bottom
Face Clockwise

Thought: Rotate Right
Face Clockwise

Valid Response y: "Rotate Top Face
Clockwise. Rotate Bottom Face Clockwise.
Rotate Back Face Clockwise."

Figure 1: Illustration of the Tree-of-Thoughts (ToT)
framework applied to a Rubik’s Cube domain. Cube
states with red or green backgrounds represent termi-
nal states as determined by the LM, while gray indi-
cates intermediate states. The green background de-
notes a goal state. States marked with a cross repre-
sent invalid states (not known during search) resulting
from thoughts that are infeasible for the domain.

tivity of the bound on the number of thoughts generated, to the temperature parameter, commonly used in
the final softmax layer of LMs. Experimental results on three representative domains (Blocksworld, PrOn-
toQA, Array Sorting) demonstrate that LTS consistently matches or exceeds the accuracy of guided DFS
and beam search, search algorithms considered in the original ToT work (Yao et al., 2023), under tight
computational budgets. Further, the results show that LTS is competitive or better than guided DFS across

three domains and four different LMs. [1

1See https://github.com/sumedhpendurkar/Search-LLM-inference for our code.
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2 Preliminaries

2.1 Problem Formulation

Let X denote a discrete space of all possible tokens, where a token refers to a basic unit of text such as
a word, subword, or punctuation mark. The definition of a token is specific to the tokenizer of a given
language model (see for example (Grattafiori et al.| |2024))). A single token is denoted with a non-bold letter,
e.g. x € X, while a sequence of tokens is denoted with a bold letter, e.g., x = (z1,22,...,2,). A language
model (LM), p, defines a probability distribution over a token given a sequence of previous tokens. Formally,
p: X" — A(X), where A(X) is the probability simplex over X and n is the maximum context lengthﬂ
Given a language model p and an input sequence x = (x1,Z2,...,Z,), an autoregressive decoding method,
ALG, generates a response y = ALG(p,x). For example, this can be done in a greedy way by selecting
p(yi|x) = arg max p(yi|y1, Y2 - - - ¥i—1, X). In this paper, we assume an access to an evaluator that determines
whether a response is valid or not (see Section [ for details). In our experiments, we consider a fixed
sized test set D = {x1,X2,...,X,}. The decoding methods solve problem-solving tasks, represented by an
input sequence x;, by generating responses y,; such that y, can be considered “valid” by the domain-specific
evaluator.

We consider the Tree-of-Thoughts (ToT) (Yao et al. [2023) framework for decoding by generating a tree
over thoughts. Following (Yao et all [2023)), a sequence of tokens (t1,ts,...,t,) is said to be a thought t
if it is a coherent language sequence. The probability of a thought being selected is given by p(t|x) =
[y p(tilta, ta ... ti—1,z). A sequence of thoughts generated in an autoregressive manner, with the final
thought being the end-of-sequence token, constitutes a response y. The original ToT framework suggests two
ways of generating next thoughts, (1) sampling — by sampling from the distribution t; ~ p(t;|t1, t2, .., t;—1, X),
(2) propose-prompts — using specially designed prompts to generate multiple next thoughts in one go, for
example, sequentially listing all actions by appending to output as a part of the LM response. Initially,
we consider an alternate strategy, where we consider all possible thoughts that could be generated given
{t1,t2,..,t;_1,x}. This generates a tree, T, where each node, referred to as a state s € S, is a function of the
input query x and the thoughts considered up to that point. The thoughts, t, are edges in 7. The neighbor
states of s are obtained by appending LM generated thoughts to s.thoughts, where s.thoughts denotes the
sequence of thoughts generated up to state s. This process of generating the neighbors (thoughts) is referred
to as expansion. Note, in T, each state commonly has very high out-degree (referred as branching factor).
The sampling and propose-prompts based thought generation methods could reduce the branching factor
and consequently the search space. We discuss the impact of such methods in Section [3] The descendants
of a state in a tree are all states reachable by traversing one or more edges originating from that state. We
denote the start state (root node) as sg where sg.thoughts = ¢. The depth of a state in a tree T is given
by g(s) and we denote depth of the start state as 0, that is, g(sg) = 0. Let H C S be set of terminal states
where the final thought generated consists solely of the end-of-sequence token. A subset of the terminal
states Z C H are valid goal states where Vz € Z the final response, z.thoughts, is considered valid by the
evaluator. The goal of the decoding method is to generate a final response y by finding a start-to-goal path
in tree 7. See Figure [I] for an example ToT.

Note, previous methods (Yao et al) [2023) have considered generating multiple start-to-goal paths, and
selecting one path (response) by using heuristic driven (LM based) scoring of responses. As we concerned
with limited-budget scenarios we only consider the case where the search algorithms return the first solution
found as additional calls to LMs are expensive.

2.2 Background

Our proposed methods integrates and extends prior work from the LM and heuristic search literature. As
such, we discuss the relevant methods.

Prompt-Based and Search-Based Problem Solving: Chain-of-Thought (CoT) prompting and its vari-
ants (Wei et al., |2022; Kojima et al.,|2022)) have shown that complex problem solving tasks such as reasoning

2If the input to a given LM is smaller than n the input is padded.
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tasks can be more effectively solved by decomposing the solution process into a sequence of intermediate
thoughts. Since CoT selects the next thoughts greedily, it can get stuck in locally optimal paths. Self-
Consistency (Wang et al.l |2023) mitigates this by sampling multiple paths and selecting the final answer
through majority voting. Least-to-Most prompting (Zhou et al.| [2023)) decomposes the original question
into simpler sub-questions, which are then answered sequentially to build up to the final solution. Tree-
of-Thoughts (ToT) (Yao et al.l 2023) generalizes CoT by treating problem-solving as a tree search over
thoughts, allowing backtracking and exploration of multiple paths over the tree using search algorithms,
namely, beamn search (BS) and guided Depth First Search (DFS). Guided Depth-First Search (referred to as
DFS henceforth) is a variant of the standard DFS algorithm in which states are evaluated, and the top-ranked
state, according to the evaluation function, is selected for expansion. Beam Search is a search algorithm
that maintains a fixed number of top-ranked states at each depth, and expands them in parallel. Both DFS
and Beam Search use LM to evaluate the states. Reasoning-and-Planning (RAP) (Hao et al, 2023 further
extends this line of work by using LMs as reward functions to evaluate partial reasoning chains, for Monte-
Carlo Tree Search (MCTS) (Kocsis & Szepesvari, [2006), enabling better performance. Our paper tackles
problem-solving tasks similar to those addressed by the Tree-of-Thoughts (ToT) framework, but under a
highly limited computational budget. Note, (Zhuang et al.||2024) also address the problem of efficient tree
space navigation by leveraging the A* search algorithm (Hart et all [1968). However, their method assumes
access to well-defined cost functions for evaluating states in the search tree. These cost functions are either
task-specific or derived from heuristics built on demonstration memory and the LM itself. Thus, they could
be hard to obtain for general LM problem-solving tasks. In contrast, our proposed approach relaxes this
requirement by operating directly over the probabilistic structure induced by the LM (ToT), avoiding the
need for handcrafted or retrieved cost functions.

LMs for Planning Problems: Given the recent advancements in LMs (Grattafiori et al., [2024; |Achiam
et al., |2023) and the integration of ML with planning problems (Orseau et al., 2018} |Agostinelli et al., [2019;
Pendurkar et al., [2024), recent work has examined integrating LMs and planning solvers. Examples of such
integration include (Singh et al.|2023; Ding et al.2023; Liu et al.| [2023; Katz et al.,[2024). For instance, (Liu
et al.,|2023)) translates natural language instructions into symbolic planning languages like Planning Domain
Description Language (PDDL) (McDermott, |2000) and uses classical planning algorithms. Further, recent
work (Koh et al};2024; |[Zhou et al.l 2024)), has explored using LMs to navigate the internet (web automation).
However, such methods restrict the environment by enforcing a structure on LM-generated actions (or
thoughts) (Liu et al., |2023) or by using a fixed set of actions (Koh et al.| [2024) thereby reducing their
applicability to domains such as mathematics and logical reasoning. In contrast, our method, built upon
the ToT framework, imposes no such constraints, making it broadly applicable to domains where such
representations may be infeasible.

Learning and Search-Based Problem Solving with LMs: Another line of work also supports the
general idea of scaling test-time compute but relies on additional learning (Muennighoff et al.,|2025; [Li, 2025)).
For instance, the Policy-Guided Tree Search (PGTS) approach (Li, 2025) investigates using a learned policy
to navigate the reasoning search space. However, their method requires additional training of the policy,
which can be challenging in settings where supervised signals or reward functions are sparse or expensive to
obtain. In contrast, our approach avoids such additional training overhead and remains applicable even in
low-resource or inference only scenarios.

2.2.1 Levin Tree Search (LTS)

Levin Tree Search (LTS) (Orseau et al., |2018) is a policy-guided search algorithm used to solve state-space
search problems. LTS uses a policy 7w : S — A(S), that maps a state s € S to a distribution over next
possible states, as a heuristic to effectively navigate the search space. Note, this mapping can be viewed
as a distribution over the actions (thoughts) following the original formulation (Orseau et al., [2018]). LTS
follows a breadth-first search or A* (Hart et all |1968]) like structure where the priority of each state is given

by min cost(s). Here, cost(s;) = 797((5;))

where 7(s;) is defined as the probability of being at state s; where

m(s;) = H;Zl 7(s; | so0,81,...,8j-1), where {sg,s1,...,8;} is the path from sy to s; in the tree. In the
context of state-space search literature, a search algorithm is said to expand in best-first order with respect
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Figure 2: Comparison of states expanded by DFS and LTS. State s denotes the starting state and the green
state indicates a goal state. The values on edges denote the probability of the next state being selected given
the previous state. DFS uses these probabilities as rewards to guide the search. The value inside each state
for LTS represents cost = g(s)/m(s). The blue and purple states represent the states expanded by DFS and
LTS, respectively.

to a cost function cost(s) if, for all states s; and sa, whenever cost(s1) < cost(sa), then s; is expanded before
S9.

The following results from (Orseau et al], 2018, Theorem 2, Theorem 3) hold for any tree[]

Theorem 1. LTS expands states in best-first order.

Theorem 2. Given a tree T and terminal states H, LTS with a policy m ensures that the number of state
expansions N before reaching any of the terminal states is bounded by

2.2.2 Problems with Depth First Search on ToT

In this section, we present a case (with an illustrative example) that suggests DFS, although efficient in
its use of LM queries, may not always be the most effective search algorithm for problem-solving tasks.
Consider the simple instance depicted in Figure [2| with one goal state (and no additional terminal states)
highlighted in green. We restrict our attention to a binary tree, where each state has exactly two successors.
Here we assume that the probability values are used as rewards for DFS to select states for expansion. Since
DFS follows a greedy strategy, it commits to one (the left, without loss of generality) subtree first and ends
up exploring all the states in that subtree. Only after failing to find the goal state does it backtrack and
explore the right subtree, where it eventually finds the goal. Whereas for LTS, the successors of the root’s
left successor each have a cost of 3/(0.51*%0.5) ~ 11.76, which is higher than right successor of root which has
a cost of &~ 6.12 and the goal state with cost ~ 8.16. As a result, LTS switches to exploring the right subtree,
finding the goal state without ever exploring the remainder of the left subtree. Additionally, if we consider
the case when all leaf states are terminal states, DFS will return the left most leaf state as the encountered
terminal state, which is not a goal state, thereby returning the incorrect solution. Whereas for LTS, the
behavior remains unchanged from the previous case, and it will find the goal state (though potentially
requiring more exploration than DFS). This case is reflected in our experimental findings (Section , where
DFS might reach a terminal state more quickly than LTS but often fails to find the goal state, resulting in
lower overall accuracy. We refer to this as the initial-commitment problem of DFS.

3While the Theorem [2| holds more generally for graphs with re-expansions, we state it here in the context of trees, which
aligns with ToT framework.
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3 Levin Tree Search with ToT

Guided DFS has two main limitations (1) It requires additional LM queries to determine which state to
expand further, and (2) the problem of initial-commitment as discussed in Section To overcome
these limitations, we extend LTS to the ToT framework. We use the LM p as a policy that provides
a distribution over possible next thoughts, conditioned on the previously generated token sequence, as
described in Section In order to adapt to ToT, we propose the following changes. First, given the high
vocabulary size of LMs (# tokens) i.e., high branching factor, we use the sampling technique to generate next
thoughts t; ~ p(t;|t1, t2,..,t;—1,%), as discussed by|Yao et al.| (2023). We sample a total of by, thoughts per
expansion. Note that, since we use the LM to guide the search, propose-prompt-based thought generation
methods are not applicable to LTS. This is because such methods generate thoughts sequentially (and not
independently). As a result, the probability values assigned by the LM during generation are conditioned on
previously generated thoughts and, therefore, cannot be directly interpreted as independent heuristic scores.
Second, following (Hao et al., [2023]), we remove duplicate thoughts generated by sampling. We denote such a
subtree of 7 as T'. Lastly, since LTS operates over a tree (rather than a graph), including state-cuts (Orseau
et al.l 2018) is not meaningful due to the absence of cycles and are, therefore, excluded. The adapted LTS
algorithm is presented in Algorithm

Algorithm 1 Levin Tree Search

1: Input: Query budget b, start state sg, LM p

2: Output: start-to-terminal state path sq to h € H > (sequence of tokens/LM response)
3: Initialize F < {so}

4: while F # ¢ and LM queries < b do

§ < argmin . » frg‘z))

remove s from F
if s is terminal state then
return path sg to s
end if
10: A « p(-|s).sample() > Generate Thoughts
11: Generate neighbor states C' by applying a € A to s
12: F+—Ful
13: end while

Sampling-based methods may expand states in 7 in an order that does not follow best-first order. This
follows as sampling can potentially prune the best states (with respect to the cost function), and thus the
state and its descendants might not be expanded. Therefore, Theorem [I] and thus Theorem [2] do not hold
(as originally stated) for the ToT framework. Nevertheless, by following a similar line of reasoning, we can
derive an analogous bound in which the minimum is taken over the set of terminal states in the sampled
subtree T', rather than over H.

Proposition 1. Given a tree T, H as the terminal states of T, a subtree T generated by sampling, and
H' C H as terminal states in T, LTS with a policy © ensures that the number of state expansions N before
reaching any of the terminal states in H' is bounded by

/ - 9(s)
N(TH) < seH m(s)

Proof. Let T, represent the partial search tree consisting only of those states that have been expanded by

the time the first terminal state s, = argmin, g, % is expanded during the search process on 7. Let

L(T,) denote the leaves of the partial search tree T,. Let ¢ = minge g % be the cost of s,. When the first
terminal state s, is expanded, all other states expanded by LTS have a lower cost than ¢. Thus g(n) < m(n)c
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for all states n € T, expanded by LTS. Therefore,

N(T,H') < Z g(n) < Z w(n)cgc:minﬁ

seH’ 7T(8)
neL(T,) neLl(T.)

O

Given Proposition[I]and a maximum branching factor byax, the number of thoughts generated can be upper
bounded as follows

Corollary 1. Given a tree T, H as the terminal states of T, a subtree T generated by sampling with byax
branching factor, and H' C H as terminal states in T, LTS with a policy m ensures that the number of
thoughts generated, M, before reaching any of the terminal states in H' is bounded by

Note on Renormalization: It might seem intuitive to re-normalize the sampled thoughts using a method
like softmax. However, comparing cost of states with different parents (Line 6, Algorithm [1) can be coun-
terintuitive. For example, if the children of a state have a uniform probability distribution, after renormal-
ization, each thought would have a 1/by.x probability of being selected. These values are overestimated
when compared to other states where probability density is concentrated in top bpnax thoughts (sorted with
non-increasing probability). This overestimation can mislead the search by making uniformly low confidence
thoughts appear more favorable than genuinely high confidence thoughts from other parts of the tree.

3.1 Sensitivity to Temperature Parameter

In this section, we analyze the sensitivity of the number of thought generations with respect to the tem-
perature parameter 7 in the final LM softmax layer. We consider a vocabulary of size V', where token y;
corresponds to the i*" index in the vocabulary. The probability of selecting y;, given the context (not shown
for brevity), is given by

e@{, /T
I 1
) = W
where ¢1, ..., 0y are the logits of the final layer for a vocabulary of size V.
We assume that we have a single goal state s, and no other terminal states. For a solution path {so,...,s4}

from sy to s4, we define a sufficiently accurate LM as

Definition 1. A language model (LM) is said to be sufficiently accurate if the following condition holds
for all tokens y9 € Y9, where Y9 is the sequence of tokens selected along the solution path from sg to sg:

v
> o)l — ) = AT
j=1

for some non-negative scalar AT > 0, where the i-th index corresponds to a token along the solution path.

Theorem 3. For a sufficiently accurate LM with a fized parameter 7, let the sampling distribution of tokens
be specified by Equation . Let each thought consist of at most k tokens and assume that the state sg
achieving the minimum for Corollary[1) is unique. We have

OM (T, H') b g(sg)2 EAT
or - mamﬂ'(sg)2 T2
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Proof. We first consider the partial derivative of p,(y;).

Ip-(yi) B (%SZi/T) (Z;'/Zl eﬁ'iﬁ) o (eli/T) ((‘% Z;’/:l elj/T)

2
aT (Z;/ZI eej/T)
—4; Zi/‘r)S ei/r( Vo4 éj/f)
( 7.2 € + € Z =1 7'2
_ — (Let S =321, et/7)
elil™ 4/

v
(&
=3 —zi+;@-- S

.
p‘r(yi) ) e
-T2 —Li + j:z]_gjpT(yj) (Since p,(y;) = €4/7/S)

_ ) [y . v B I
== > o) (L — ) (Since 3°;_; pr(y;) =1, use —4; = =31 Lip-(y;))
j=1

Next, we consider the derivativek for the probability of generating a thought of at most k tokens, t =
{v',---,¥*}. We have p,(t) = TT;_, p-(v/ly=?).

k J
(9p({;£t) = Z 3pé(Ty ) 'Hpr ") (Product rule)
i=1 i#]
k j
<2 (6]93(;1’ )) (I, plws) < 1)

Now we analyze the derivative of number of thoughts generated with respect to temperature. Consider a
state s at depth g(s) and we have that 7(s) = p,(s). Each state before this state consists of at most g(s)
thoughts, each containing at most k tokens. Since there is a unique path to any state s, simply extending
the calculation above, we obtain

Note, we ignore indexing notation for the outer summation for brevity.

From Corollary M(T,H") < byax minge g %. Since we assume that the minimum is achieved at a unique
state sq4, using Danskin’s theorem (Danskin, [1969) we obtain
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OM (T, H') 0 0 <g(sg)>

or T \n(sy)

_ _9(39) 87"(3g)

=t or

Denoting token along solution path with y9 with j*" token in the thought

k 9,J
< —bmax 75((;5))2 Z Z: (%éi)) (From Eq 2.)

Si

14

k 95J )
= —bmax g((sg))2 E E (pT(yz) ( E pr (Y37 (b, — £1)>> (7 is the optimal token index)
m(sg T
j=1

Si 7= a=1

m(sg

9(sq)  EATg(sy)

k 9,3
—bmax g(s_,,))z Z Z_: <])T(7%/2)(—A+)) (From Definition 1)

m(s59)” 7
- maxﬂ_(sg)z 7_2

O

Remark: The gradient depends inversely on the square of the probability of state s, that is, 7(s4), and
the temperature 7. Based on this dependence, we note that the number of thought generations depend
on the values of 7(sy) and 7. Increasing 7 causes the probabilities to become more uniform and, in turn,
decreases m(sg) when the path from s to s, is the most likely path. If the change is such that the product
m(sg) - T remains relatively stable, we can expect the number of expansions to be somewhat robust to a
change in the temperature. The main inference that can be drawn is that the upper bound is a non-negative
number. This suggests that increasing 7 will lead to an increase in the number of LM queries, given that the
LM is sufficiently accurate. In experiments we observed that it was often the case that the ToT had multiple
goal nodes, as opposed to the theoretical assumption. As such, the theoretical results should be viewed as a
general guidance for temperature tuning and not as a strict bound.

4 Experiments

This section aims to compare the performance of LTS, DFS, and beam search across multiple domains under
varying but constrained LM query budgets.

4.1 Setup

This work builds upon the implementation by |[Hao et al.| (2023). The thought generation temperature
parameter 7 was set to 0.8. Top-k sampling (Fan et al.l|2018) was used with k=50. The maximum branching
factor by, for all search algorithms was set to 3. Duplicate thoughts were removed, as duplication is possible
during sampling. These hyperparameters were selected following the literature (Hao et al., [2023). For LTS,
the temperature for state evaluation (distinct from thought generation) was set to 1 unless stated otherwise.
A small value (~ 1071%) was added to the denominator of the cost function (to ) in the LTS algorithm
to avoid division by 0. All search algorithms were terminated when either (1) the first terminal state was
expanded or (2) a predefined budget was exceeded. The budget is measured as the number of thoughts
generated, where each thought is counted twice if additional LM queries are made for state evaluation.
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The budget was counted twice for DFS and beam search, as it requires additional LM queries to evaluate
the state. This assumes the cost of thought generation is similar to that of state-evaluation. Algorithms
were terminated when the first terminal state was found, instead of expanding multiple terminal states and
selecting the best, as done in (Hao et al. 2023)), to avoid the additional computational overhead from extra
LM queries. Our focus is on scenarios with highly limited compute budgets, such as edge-device deployments.
Therefore, our experiments and comparisons are restricted to low-budget settings to evaluate performance
under tight-computational constraints. We use the Llama 3 instruct models (Grattafiori et all 2024) (1B,
3B, and 8B), as well as Qwen 2 models (7B) (Team et all 2024) as LMs in our experiments for two main
reasons. First, we aim to evaluate our method under constrained inference settings, and smaller models
allow us to rigorously assess test-time compute efficiency in compute-limited scenarios, which is a core focus
of this work. Second, Llama and Qwen models are open-weight, high-quality LMs that offer competitive
performance (Grattafiori et al., [2024]). We note that our method is general and agnostic to the choice of LM,
and we expect our findings to extend to other small-scale models beyond Llama models.

4.2 Domains

We selected benchmarks following established practices in the ToT literature (Yao et al.l 2023; |[Hao et al.|
2023)), using PrOntoQA, Blocksworld and a novel Sort as our primary evaluation domains. We did not
evaluate all domains from prior work due to practical constraints with small LMs. Specifically, domains such
as Game of 24 and Crosswords were excluded because preliminary experiments with Llama-3.2-1B showed
high rates of invalid action generation (>40% for Game of 24), where the model produced syntactically
incorrect operations or malformed outputs. Since our focus is evaluating search algorithms rather than
action validity mechanisms, domains where the base model cannot reliably generate valid actions prevent
meaningful algorithmic comparison. StrategyQA was excluded following [Yao et al.|(2023), who noted that
“CoT is already very good on such tasks, and StrategyQA’s bottleneck is external knowledge, not reasoning.”
Creative writing was not included as it involves relatively shallow search trees, limiting our ability to study
the effectiveness of search algorithms.

Blocksworld (BW): We consider the Blocksworld domain (Valmeekam et al., 2022} 2023)), commonly used
in heuristic search literature (Pendurkar et al., [2022; [2023]), which involves arranging blocks on an infinite
table. Given start and goal configurations, the task is to perform a sequence of actions (represented as
thoughts) that transition the system from the start to the goal arrangement. The prompt specifies the
available actions, which include stack, unstack, put, and pickup, each potentially taking block names as
arguments depending on the action. A state is said to be terminal if the most recent thought starts with
[PLAN END] or the max search depth has reached. We follow the same instance grouping strategy as Hao
et al.| (2023), where BW (step 2) denotes instances solvable with a search depth of 2. We evaluate depths 2,
4, 6, 8, 10, and 12 in our experiments.

PrOntoQA: We consider the PrOntoQA (Saparov & He,|2023)) domain and follow the same setup as in |[Hao
et al.| (2023]). Specifically, we adopt the ‘true’ ontology setting and the ‘random’ ordering of rules, and merge
examples requiring 3 to 5 reasoning hops. A state is terminal if the most recent thought begins with The
answer is. We use the same 500 sampled instances as Hao et al|(2023)), generated using the script provided
by |Saparov & Hel (2023)). The maximum search depth was set to 10.

Array Sorting (Sort): We consider the task of sorting an array with a fixed size of 5 elements, referred to
as the Sort domain. The input prompt instructs the LM to perform the sorting using only pairwise swaps,
i.e., each thought involves swapping exactly two elements. The array elements may be negative or positive
and can include a single decimal point. A terminal state is a state where the most recent thought begins
with Answer:. The prompt includes instructions so LM is properly instructed. The dataset consists of 100
instances, with the numbers randomly generated. The maximum search depth was set to 10.

4.3 Baselines

We consider DF'S and beam search as the primary baselines for our experiments. The self-evaluation strategy
used to guide DF'S and beam search follows [Hao et al.| (2023) for both the BW and PrOntoQA domains. In
these domains, the reward for each generated thought is computed by combining two components: (1) the
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log probability assigned by the LM to the thought, and (2) a self-evaluation score derived from a secondary
LM prompt that explicitly asks whether the current thought, as an intermediate thought, is valid, using
yes/no candidates. For the Sort domain, we rely solely on the LM log probabilities to guide DFS. As a
result, each thought is counted as one toward the budget in this setting, since no additional LM queries are
required for state evaluation. The beam size used for the beam search algorithm was set to 3, as we observed
it offered the best performance for the budgets considered. That is, a higher beam size made beam search
sample-inefficient, while a lower beam size acted greedily, similar to DFS.

We exclude MCTS discussed in Hao et al.| (2023 due to its known sample inefficiency (Borges & Oliveiray,
2021). Furthermore, we do not compare against the approach of |Zhuang et al.| (2024)), which applies the
A* search algorithm, because it assumes access to well-defined cost functions that are either handcrafted or
derived from demonstrations and heuristics. In contrast, we only consider algorithms that operate directly
on the probabilistic structure induced by the LM (ToT), without assuming access to any domain-specific
cost functions, as discussed in Section Consequently, such methods cannot be compared directly to
approaches requiring cost functions that are typically unavailable in most domains.

4.4 Evaluation

We consider accuracy (success rate) as a metric of evaluation. To determine the correctness of the solution,
we assume access to an evaluator, specific to each domain. Note, we do not assume access to an evaluator
in real-life scenarios - we select domains where evaluators are accessible to verify the performance of the
methods following the literature (Hao et al.; |2023} [Yao et al., 2023).

BW: The generated sequence of thoughts is validated as a plan using a PDDL planner (Valmeekam et al.,
2022). If the plan reaches the specified goal configuration, the terminal state is considered a goal state.

PrOntoQA: For evaluation, we compare the entire sequence of thoughts against the ground truth answer
(with intermediate thoughts) provided in the dataset (Saparov & He, [2023)), following the ‘entire proof’
evaluation proposed by [Hao et al.| (2023).

Sort: The evaluator parses the generated sequence of thoughts to retrieve the sorted array. The evaluator
further checks if this array is a sorted version of the input. If the resultant array is sorted, the state is
considered a goal state.

4.5 Results: Comparison with Increasing LM Query Budget

In this section, we compare the performance of LTS, DFS, and beam search on the ToT framework with
increasing budgets. We focus on three representative settings: BW (step 2), BW (step 4), and PrOntoQA
(first 100 instances) using the LLaMA 3.2 3B Instruct model. We include BW (step 4) instead of the Sort
domain, as the Sort domain typically requires very few thoughts to be generated, making performance trends
difficult to observe. The results are presented in Figure [3

As expected, accuracy increases with the budget and eventually stagnates. The stagnation is clearly seen
for all algorithms for BW (step 2), and for DFS for (step 4). Initially, higher budgets allow the algorithm
to solve problem instances that were previously unsolved. Once all instances reach their respective terminal
states, additional budget does not yield further improvements. For instance, in BW (step 2), accuracy
increases until it plateaus at a budget of 15. We observe that LTS generally outperforms DFS across the
settings considered, highlighting the advantages of LTS under both low and high budget regimes. The
improvement in the high budget regime can be attributed to the issues with DFS outlined in Section
that is, initial-commitment. Further, the improvement in the low budget regime can be attributed to two
factors: initial-commitment, and DFS typically requiring additional LM queries for state evaluation. These
results suggest that LTS generally performs better than DFS across varying LM query budgets.

An exception occurs at intermediate budget ranges, specifically BW (step 4) at a budget of 15, where DFS
slightly outperforms LTS. This can be explained by the greedy nature of DF'S, which favors deeper expansions
and is more likely to reach a terminal state earlier. If the LM is accurate, DFS may solve instances with
fewer state expansions than LTS. It is also worth noting that LTS with a temperature parameter of zero
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Figure 3: Comparison of accuracy of LTS, DFS, and beam search with increasing budgets across 3 different
settings.

(used during search) can emulate DFS behavior if a stability term is added at each level and ties in cost are
broken in favor of higher g(s) values. LTS can thus offer flexibility across different regimes by interpolating
between greedy and balanced exploration of ToT.

On the other hand, when comparing with the performance of beam search, we can see that for BW (step
2) the accuracy is higher than DFS (comparable to LTS) suggesting that exploration helps beam search.
However, as 3 states are expanded at each depth, beam search requires a significant budget for search
especially with increasing complexity resulting in poor accuracy.

In summary, the results suggest that LTS outperforms or matches DFS across varying LM query budgets.
This advantage likely stems from LTS avoiding initial-commitment and incurring fewer LM queries. While
beam search performs reasonably well on easier instances (e.g., BW step 2), its performance tends to degrade
on harder problems due to sample inefficiency.

4.6 Results: Comparison with Increasing Time Budget
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Figure 4: Comparison of accuracy of LTS, DFS, and beam search with increasing time budgets across 3
different settings.

In this section, we compare the performance of LTS and DFS using wall-clock time for LM queries (thought
generation and evaluation) as the budget metric, rather than the number of LM queries.

Figure [4] presents the accuracy of LTS, DFS, and beam search across three settings: BW (step 2), BW
(step 4), and PrOntoQA (first 100 instances) using the LLaMA 3.2 3B Instruct model. The time budget is
measured in seconds.

The results show trends similar to those observed with query-based budgets (Section . LTS generally
achieves comparable or higher accuracy than DFS across different time budgets. For BW (step 4) and
PrOntoQA, LTS demonstrates consistent improvements over DFS. In BW (step 2), we observe that DFS
achieves slightly higher accuracy at certain intermediate time budgets, which aligns with the query-based
results and can be attributed to DFS’s greedy exploration strategy reaching terminal states more quickly
when the LM provides accurate guidance.
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Table 1: Accuracy (%) of LTS and DFS across different domain settings and models.

Task Model Size LTS Accuracy DFS Accuracy
BW (step 2)  Llama 3.2 Instruct 1B 8.9% 8.9%
BW (step 4)  Llama 3.2 Instruct 1B 2.4% 2.4%
W (step 2)  Llama 3.2 Instruct 3B 15.5% 11.1%
W (step 4)  Llama 3.2 Instruct 3B 14.3% 9.5%
W (step 6)  Llama 3.2 Instruct 3B 3.9% 3.3%
W (step 8)  Llama 3.2 Instruct 3B 1.3% 0.0%
W (step 10) Llama 3.2 Instruct 3B 0.0% 0.0%
W (step 12) Llama 3.2 Instruct 3B 0.0% 0.0%
W (step 2)  Llama 3.1 Instruct 8B 33.3% 20.0%
W (step 4)  Llama 3.1 Instruct 8B 28.6% 19.0%
W (step 6)  Llama 3.1 Instruct 8B 17.8% 9.2%
W (step 8)  Llama 3.1 Instruct 8B 10.6% 4.6%
W (step 10) Llama 3.1 Instruct 8B 8.0% 7.1%
W (step 12) Llama 3.1 Instruct 8B 6.5% 0.0%
W (step 2) Qwen 2 7B 31.1% 26.7%
W (step 4) Qwen 2 7B 11.9% 10.7%
W (step 6) Qwen 2 7B 6.6% 2.0%
W (step 8) Qwen 2 7B 2.6% 2.6%
W (step 10) Qwen 2 7B 1.8% 0.9%
BW (step 12) Qwen 2 7B 0.0% 0.0%
Sort Llama 3.2 Instruct 1B 5.0% 2.0%
Sort Llama 3.2 Instruct 3B 20.0% 15.0%
Sort Llama 3.1 Instruct 8B 47.0% 47.0%
Sort Qwen 2 Instruct 7B 26.0% 22.0%
PrOntoQA Llama 3.2 Instruct 1B 18.6% 15.6%
PrOntoQA Llama 3.2 Instruct 3B 27.8% 18.8%
PrOntoQA Llama 3.1 Instruct 8B 70.4% 49.0%
PrOntoQA Qwen 2 Instruct 7B 21.6% 12.8%

These findings confirm that the advantages of LTS over DFS extend beyond query efficiency to practical
wall-clock time constraints, making it well-suited for latency-critical applications.

4.7 Results: Comparison when DFS can reach a terminal state

In this section, we compare the performance of DFS and LTS across all domain settings and the four LMs
considered. We do not consider beam search due to its sample inefficiency, as discussed in previous section.
The budget for each domain—LM pair was configured such that DFS could reach a terminal state for every
instance. In other words, the budget was tuned to maximize DFS performance, but not for LTS, as LTS
typically stagnates later than DFS (see Figure . The results are summarized in Table Results for
higher-step settings in BW with the 1B and 3B LMs are omitted, as both algorithms achieved 0% accuracy.
Overall, LTS performed comparably to or better than DFS in all settings. The largest improvement was
observed on PrOntoQA and Llama 3.1 8B, with a 21.4% gain in accuracy. Note, since the proposed method
is purely inference-only, its performance is inherently constrained by the quality of the heuristic provided by
the underlying LM. Consequently, when the LM heuristic is weak, we do not expect dramatic improvements
in absolute accuracy across tasks. These findings suggest that LTS is generally more effective than DFS
under constrained budgets and can offer further benefits as the budget increases.
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4.8 Results: Sensitivity of LTS to Temperature

Figure [f] presents the performance of LTS across different temperature values for the cost func-
tion (r € {0.01,0.5,1.0,1.5,2.0}) as a function of time budget on Blocksworld Step 4 using Llama
3.2 3B Instruct. Note that the same temperature (7 = 0.8) was used for thought genera-
tion across all experiments; the varied temperature parameter applies only to the cost function
computation in LTS (Line 6, Algorithm , affecting which states are prioritized for expansion.
The results reveal three distinct behavioral regimes. Low Temper-

ature (1 = 0.01): At very low temperature, LTS exhibits behav- BW Step 4

ior similar to DFS. The cost function becomes highly sensitive to =~ **?
probability differences, causing the algorithm to strongly commit to
high-probability paths. This results in good performance at low bud-
gets (4.5% at 5 seconds), but accuracy plateaus early and reaches
only ~8.5% at 20 seconds. This plateau occurs due to the initial-
commitment problem. Intermediate Temperature (T = 0.5-1.5): At 000l -

moderate temperatures, LTS demonstrates improved exploration- 50 75 100 125 150 17.5 20.0
exploitation balance. These configurations show relatively poor per- Time Budget (in seconds)
formance at lower budgets (3.5-3.8% at 5 seconds) but steadily im-
prove as budget increases, ultimately achieving the highest accura-
cies (10.5-12% at 20 seconds). The initial performance deficit occurs
because intermediate temperatures encourage broader exploration
rather than immediate commitment to high-probability paths. However, this exploratory behavior enables
discovery of superior solutions that low-temperature search misses, resulting in continued accuracy improve-
ments across the entire budget range. High Temperature (T = 2.0): At very high temperature, LTS exhibits
breadth-first search (BFS)-like behavior. The flattened probability distribution causes the algorithm to ex-
plore states more uniformly, with minimal preference for high-probability paths. This results in the poorest
performance at low budgets and modest final accuracy (~2.1% at 20 seconds). While this temperature could
eventually achieve competitive performance, it requires substantially more computational budget to reach
accuracy levels that intermediate temperatures achieve more efficiently.

0.10
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Figure 5: LTS performance with vary-
ing temperature 7 values.

These results suggest that temperature selection involves a trade-off between early performance and ultimate
solution quality. In this domain, 7 = 0.5-1.0 offers reasonable early performance while maintaining capacity
for continued improvement under budget constraints. When maximizing final accuracy is prioritized over
early results, 7 ~ 0.5-1.5 shows promise, though optimal values may slightly vary based on domain under
consideration.

5 Summary

This work addresses the challenge of improving Language Model (LM) performance on problem-solving tasks
under strict LM query constraints. Specifically, it focuses on the Tree-of-Thoughts (ToT) framework, where
a search tree is generated with edges representing sequences of tokens, or thoughts. The paper adapts Levin
Tree Search (LTS), a policy-guided search algorithm, to this framework. It also extends the theoretical
guarantees of LTS to ToT by bounding the number of state expansions and, consequently, the number of LM
generated thoughts. Empirical results suggest that LTS achieves accuracy that is comparable to or better
than guided depth first search (DFS) and beam search, which were originally proposed by Yao et al.| (2023).
Further, the results across three domains and four different LMs show that LTS achieves accuracy that
is comparable to or better than guided DFS under tight computational budgets. These findings highlight
the effectiveness of LTS within the ToT framework and its applicability to cost-sensitive and time-sensitive
settings.
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