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Abstract

Despite participants engaging in single modality stimuli, such as watching images1

or silent videos, recent work has demonstrated that multi-modal Transformer2

models can predict visual brain activity impressively well, even with incongruent3

modality representations. This raises the question of how accurately these multi-4

modal models can predict brain activity when participants are engaged in multi-5

modal stimuli. As these models grow increasingly popular, their use in studying6

neural activity provides insights into how our brains respond to such multi-modal7

naturalistic stimuli, i.e., where it separates and integrates information from different8

sensory modalities. We investigate this question by using multiple unimodal9

and two types of multi-modal models—cross-modal and jointly pretrained—to10

determine which type of models is more relevant to fMRI brain activity when11

participants were engaged in watching movies (videos with audio). We observe that12

both types of multi-modal models show improved alignment in several language13

and visual regions. This study also helps in identifying which brain regions14

process unimodal versus multi-modal information. We further investigate the15

impact of removal of unimodal features from multi-modal representations and16

find that there is additional information beyond the unimodal embeddings that17

is processed in the visual and language regions. Based on this investigation, we18

find that while for cross-modal models, their brain alignment is partially attributed19

to the video modality; for jointly pretrained models, it is partially attributed to20

both the video and audio modalities. The inability of individual modalities in21

explaining the brain alignment effectiveness of multi-modal models suggests that22

multi-modal models capture additional information processed by all brain regions.23

This serves as a strong motivation for the neuro-science community to investigate24

the interpretability of these models for deepening our understanding of multi-modal25

information processing in brain.26

1 Introduction27

The study of brain encoding aims at predicting the neural brain activity recordings from an input28

stimulus representation. Recent brain encoding studies use neural models as a powerful approach to29

better understand the information processing in the brain in response to naturalistic stimuli (Oota30

et al., 2023a). Current encoding models are trained and tested on brain responses captured from31

participants who are engaged in a single stimulus modality, using stimulus representations extracted32

from AI systems that are pretrained on single modality, such as language (Wehbe et al., 2014; Jain &33

Huth, 2018; Toneva & Wehbe, 2019; Caucheteux & King, 2020; Schrimpf et al., 2021; Toneva et al.,34

2022; Aw & Toneva, 2023), vision (Yamins et al., 2014; Eickenberg et al., 2017; Schrimpf et al.,35

2018; Wang et al., 2019) or speech (Millet et al., 2022; Vaidya et al., 2022; Tuckute et al., 2023). In36

this paper, we build encoding models where participants are engaged with multi-modal stimuli (e.g.,37

watching movies that also include audio). We explore multi-modal stimulus representations extracted38
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Figure 1: (A) Overview of our proposed Multi-modal Brain Encoding Pipeline. (B) Residual Analysis.

using Transformer (Vaswani et al., 2017) based multi-modal models. Our analysis focuses on their39

alignment with both uni- and multi-modal brain regions.40

There is a growing evidence that the human brain’s ability for multi-modal processing is underpinned41

by synchronized cortical representations of identical concepts across various sensory modalities (Gau-42

thier et al., 2003; Bracci & Op de Beeck, 2023). Reflecting similar principles, the recent advances in43

AI systems have led to the development of multi-modal models (like CLIP (Radford et al., 2021),44

ImageBind (Girdhar et al., 2023), and TVLT (Tang et al., 2022)) using massive interleaved image-text45

data, speech-text data or video-audio-text data to represent multi-modal input. This recent progress in46

AI has stimulated advancements in brain encoding models (Doerig et al., 2022; Oota et al., 2022;47

Popham et al., 2021; Wang et al., 2022; Tang et al., 2024; Nakagi et al., 2024) that learn effectively48

from multiple input modalities, despite participants being engaged with single stimulus modality49

during experiments, e.g., watching natural scene images, or silent movie clips. However, these studies50

have experimented with subjects engaged with single-modality stimulus, leaving the full potential of51

these models in true multi-modal scenarios still unclear.52

Using brain recordings of participants watching several popular movies included with audio (St-53

Laurent et al., 2023), we investigate several research questions. First, we investigate the effectiveness54

of multi-modal stimulus representations obtained using multi-modal models versus unimodal models55

for brain encoding. Multi-modal models are of two broad types: (i) cross-modal pretrained models,56

where first individual modality encoders are trained and then cross-modal alignment is performed, and57

(ii) jointly pretrained models, which involve combining data from multiple modalities and training a58

single joint encoder. Hence, we also investigate which of the two types (cross-modal versus joint) are59

better for encoding. In this work, we focus on one cross-modal (ImageBind), one jointly pretrained60

(TVLT), three video and two speech models. Additionally, we explore which modality representations61

are more brain relevant, and identify which brain regions process uni- and multi-modal information.62

Overall, this research utilizes various modality representations to develop encoding models based on63

fMRI responses within a multi-modal model framework (see Fig. 1 for workflow).64

Using our multi-modal brain encoding approach, we examine several insights. First, we use previous65

neuroscience findings that have identified brain regions involved in visual, language and auditory66

processing, and investigate how well our model aligns with these regions when both the model and a67

human participant watch the same multi-modal video stimuli. Second, we expect that multi-modal68

models which can learn cross-modal and joint embeddings across modalities in a brain-relevant69

way would significantly align with these regions. However, alignment with these brain regions70

doesn’t necessarily mean that the model is effectively learning from multiple modalities, as unimodal71

models for vision or language or audio have also been shown to significantly align with these brain72

regions (Wehbe et al., 2014; Toneva et al., 2022; Schrimpf et al., 2021; Millet et al., 2022; Vaidya73

et al., 2022). To check the second aspect, we investigate this question via a direct approach, closely74

related to previous studies (Toneva et al., 2022; Oota et al., 2023b,c). For each modality, we analyze75

how the alignment between brain recordings and multi-modal model representations is affected by76

the elimination of information related to that particular modality from the model representation.77

Our analysis of multi-modal brain alignment leads to several key conclusions: (1) Both cross-modal78

and jointly pretrained models demonstrate significantly improved brain alignment with language79

2



regions (AG, PCC, PTL, and IFG) and visual regions (EVC and MT) when analyzed against unimodal80

video data. In contrast, compared to unimodal speech-based models, all multi-modal embeddings81

show significantly better brain alignment, except in the OV (object visual processing) region. This82

highlights the ability of multi-modal models to capture additional information—either through83

knowledge transfer or integration between modalities—which is crucial for multi-modal brain84

alignment. (2) Using our residual approach, we find that the improved brain alignment in cross-85

modal models can be partially attributed to the removal of video features alone, rather than auditory86

features. On the other hand, the improved brain alignment in jointly pretrained models can be partially87

attributed to the removal of both video and auditory features.88

Overall, we make the following contributions in this paper. (1) To the best of our knowledge, this89

study is the first to leverage both cross-modal and jointly pretrained multi-modal models to perform90

brain alignment while subjects are engaged with multi-modal naturalistic stimuli. (2) We evaluate the91

performance of several unimodal Transformer models (three video and two audio) and measure their92

brain alignment. (3) Additionally, we remove unimodal features from multi-modal representations93

to explore the impact on brain alignment before and after their removal. We will release code upon94

publication of this paper.95

2 Related Work96

Multi-modal models. Pretrained Transformer-based models have been found to be very effective in97

various tasks related to language (Devlin et al., 2019; Radford et al., 2019), speech (Baevski et al.,98

2020), and images (Dosovitskiy et al., 2020). To learn associations between pairs of modalities,99

Transformer models have been pretrained on multiple modalities, showing excellent results in multi-100

modal tasks like visual question answering and visual common-sense reasoning. These multi-modal101

models are pretrained in two different ways: (i) cross-modal models that integrate information102

from multiple modalities and learn a joint encoder, such as VisualBERT (Li et al., 2019) and103

ImageBind (Girdhar et al., 2023), and (ii) jointly pretrained models like LXMERT (Tan & Bansal,104

2019), CLIP (Radford et al., 2021), ViLBERT (Lu et al., 2019), and TVLT (Tang et al., 2022) which105

fuse individual modality encoders at different stages, transferring knowledge from one modality106

to another. In this work, we investigate how the representations extracted from cross-modal and107

jointly-pretrained Transformer models align with human brain recordings when participants engage108

with multi-modal stimuli.109

Brain Encoding using Multi-modal Models. Since human brain perceives the environment using110

information from multiple modalities (Gauthier et al., 2003), examining the alignment between111

language and visual representations in the brain by training encoding models on fMRI responses,112

while extracting joint representations from multi-modal models, can offer insights into the relation-113

ship between the two modalities. For instance, it has been shown that multi-modal models like114

CLIP (Radford et al., 2021) better predict neural responses in the high-level visual cortex as compared115

to previous vision-only models (Doerig et al., 2022; Wang et al., 2022). Additionally, Tang et al.116

(2024) demonstrate the use of multi-modal models in a cross-modal experiment to assess how well117

the language encoding models can predict movie-fMRI responses and how well the vision encoding118

models can predict narrative story-fMRI. Nakagi et al. (2024) analyzed fMRI related to video content119

viewing and found distinct brain regions associated with different semantic levels, highlighting the120

significance of modeling various levels of semantic content simultaneously. However, these studies121

have experimented with subjects engaged with single-modality stimulus, leaving the full potential of122

these models in true multi-modal scenarios still unclear. Recently, Dong & Toneva (2023) interpreted123

the effectiveness of pretrained versus finetuned multi-modal video transformer using video+text124

stimuli-based brain activity. However, they did not perform any cross-modal vs jointly-pretrained125

model analysis or analysis of multi-modal versus unimodal models, leaving it unclear which type126

of multi-modal models perform best for brain activity prediction. Further, unlike them, we study127

video+audio stimuli, and perform comprehensive residual analysis.128

3 Dataset Curation129

Brain Imaging Dataset. We experiment with a multi-modal naturalistic fMRI dataset, Movie10 (St-130

Laurent et al., 2023) obtained from the Courtois NeuroMod databank. This dataset was collected131

while six human subjects passively watched four different movies: The Bourne supremacy (∼100132
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mins), The wolf of wall street (∼170 mins), Hidden figures (∼120 mins) and Life (∼50 mins). Among133

these, Hidden figures and Life are repeated twice, with the repeats used for testing and the remaining134

movies for training. In this work, we use Life movie for testing where we average the two repetitions135

to reduce noise in brain data. This dataset is one of the largest publicly available multi-modal fMRI136

dataset in terms of number of samples per participant. It includes 4024 TRs (Time Repetitions) for137

The Bourne supremacy, 6898 TRs for The wolf of wall street used in train and 2028 TRs for Life in138

test. The fMRI data is collected every 1.49 seconds (= 1TR).139

The dataset is already preprocessed and projected onto the surface space (“fsaverage6”). We use the140

multi-modal parcellation of the human cerebral cortex based on the Glasser Atlas (which consists141

of 180 regions of interest in each hemisphere) to report the ROI (region of interest) analysis for the142

brain maps (Glasser et al., 2016). This includes four visual processing regions (early visual (EV),143

object-related areas (LO), face-related areas (OFA) and scene-related areas (PPA)), one early auditory144

area (AC), and eight language-relevant regions, encompassing broader language regions: angular145

gyrus (AG), anterior temporal lobe (ATL), posterior temporal lobe (PTL), inferior frontal gyrus (IFG),146

inferior frontal gyrus orbital (IFGOrb), middle frontal gyrus (MFG), posterior cingulate cortex (PCC)147

and dorsal medium prefrontal cortex (dmPFC), based on the Fedorenko lab’s language parcels (Milton148

et al., 2021; Desai et al., 2022). We list the detailed sub-ROIs of these ROIs in Appendix B.149

Estimating dataset cross-subject prediction accuracy. To account for the intrinsic noise in150

biological measurements, we adapt Schrimpf et al. (2021)’s method to estimate the cross-subject151

prediction accuracy for a model’s performance for the Movie10 fMRI datasets. By subsampling152

fMRI datasets from 6 participants, we generate all possible combinations of s participants (s ∈ [2,6])153

for watching movies, and use a voxel-wise encoding model (see Sec. 5) to predict one participant’s154

response from others. Note that the estimated cross-subject prediction accuracy is based on the155

assumption of a perfect model, which might differ from real-world scenarios, yet offers valuable156

insights into model’s performance. We estimate cross-subject prediction accuracy in three settings:157

(i) training with The Bourne supremacy and testing with Life data, (ii) training with The wolf of wall158

street and testing with Life data, and (iii) training with both The Bourne supremacy and The wolf159

of wall street and testing with Life data. We present the average cross-subject prediction accuracy160

across voxels for the Movie10 fMRI dataset and across the three settings in Appendix A.161

4 Methodology162

4.1 Multi-modal models163

To analyse how human brain process information while engaged in multi-modal stimuli, we use recent164

popular deep learning models to explore multiple modalities information and build the encoding165

models in two different ways: “cross-modality pretraining" and “joint pretraining".166

Cross-modality Pretrained Multi-modal Models. Cross-modality representations involve transfer-167

ring information or learning from one modality to another. For example, in a cross-modal learning168

scenario, text descriptions can be used to improve the accuracy of image/video recognition tasks.169

This approach is often used in scenarios where one modality might have limited data or less direct170

relevance but can be informed by another modality.171

Recently, a cross-modal model called ImageBind (IB) (Girdhar et al., 2023) has shown immense172

promise in binding data from six modalities at once, without the need for explicit supervision.173

ImageBind model uses separate encoders for each individual modality and learns a single shared174

representation space by leveraging multiple types of image-paired data. ImageBind consists of 12175

layers and outputs a 1024 dimensional representation for each modality.176

Jointly Pretrained Multi-modal Models. Jointly pretrained multi-modal model representations,177

on the other hand, involve combining data from multiple modalities to build a more comprehensive178

joint understanding to improve decision-making processes. The system processes these diverse inputs179

concurrently to make more informed and robust decisions.180

TVLT (Zellers et al., 2022) is an end-to-end Text-less Vision-Language multi-modal Transformer181

model for learning joint representations of video and speech from YouTube videos. This joint encoder182

model consists of a 12-layer encoder (hidden size 768) and uses masked autoencoding objective for183

both videos and speech. Given the video-speech pairs, the TVLT model provides 768 dimensional184

representations for each modality across 12 layers.185
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Extraction of multi-modal features. To extract video and audio embedding representations from186

multi-modal models for the brain encoding task, we input video and audio pairs at each TR and187

obtain the aligned embeddings for the two modalities. Here, we first segment the input video and188

audio into clips corresponding to 1.49 seconds, which matches the fMRI image rate. For both the189

models, ImageBind and TVLT, we use the pretrained Transformer weights. ImageBind generates190

an embedding for each modality (IB video and IB audio) in an aligned space. We concatenate these191

embeddings to create what we refer to as IB concat embeddings. On the other hand, TVLT provides192

a joint embedding across all modalities at each layer. Only for the last layer, TVLT provides an193

embedding for each modality.194

4.2 Unimodal Models195

To investigate the effectiveness of multi-modal representations in comparison to representations for196

individual modalities, we use the following methods to obtain embeddings for individual modalities.197

Video-based models. To extract representations of the video stimulus, we use three popular pretrained198

Transformer video-based models from Huggingface (Wolf et al., 2020): (1) Vision Transformer Base199

(ViT-B) (Dosovitskiy et al., 2020), (2) Video Masked Autoencoders (VideoMAE) (Tong et al., 2022)200

and (3) Video Vision Transformer (ViViT) (Arnab et al., 2021). Details of each model are reported in201

Table 1 in Appendix.202

Speech-based models. Similar to video-based models, we use two popular pretrained Transformer203

speech-based models from Huggingface: (1) Wav2Vec2.0 (Baevski et al., 2020) and (2) AST (Baade204

et al., 2022). Details of each model are reported in Table 1 in Appendix.205

Extraction of video features. ViT-B (Dosovitskiy et al., 2020), the underlying video encoder model206

for ImageBind is used for extracting representations for all frames in each TR for every video. To207

extract embedding at each TR, we average all frame embeddings and obtain the corresponding video208

representation. For VideoMAE and ViViT, we directly obtain the video embeddings for each TR. All209

3 models provide 768 dimensional representations and all of them are 12-layer Transformer encoders.210

Extraction of speech features. To explore whether speech models incorporate linguistic information,211

we extract representations beyond 1.49 secs, i.e., we considered context window of 16 secs with212

stride of 100 msecs and considered the last token as the representative for each context window. The213

pretrained speech-based models output token representations at different layers. Both Wav2Vec2.0214

and AST models provide 768 dimensional representations and all of them are 12-layer Transformer215

encoders. Finally, we align these representations with the fMRI data acquisition rate by downsampling216

the stimulus features with a 3-lobed Lanczos filter, thus producing chunk-embeddings for each TR.217

5 Experimental Setup218

Encoding Model. We train bootstrap ridge regression based voxel-wise encoding models (Deniz219

et al., 2019) to predict the fMRI brain activity associated with the stimulus representations obtained220

from the individual modalities (speech and video) and multi-modal embeddings from cross-modal and221

jointly pretrained multi-modal models. For each subject, we account for the delay in the hemodynamic222

response by modeling hemodynamic response function using a finite response filter (FIR) per voxel223

with 5 temporal delays (TRs) corresponding to ∼7.5 seconds (Huth et al., 2022). Formally, at each224

time step t, we encode the stimuli as Xt ∈ RD and brain region voxels Yt ∈ RV , where D denotes225

the dimension of the concatenation of delayed 5 TRs, and V denotes the number of voxels. Overall,226

with N such TRs, we obtain N training examples.227

Train-test Setup. We build encoding models in three settings: (i) We used all data samples from228

10 training sessions of the The Bourne supremacy movie for training and tested generalization on229

samples from the test sessions (5 sessions) of the Life movie. (ii) We used data from 17 training230

sessions of the The wolf of wall street movie for training, with the Life movie used for testing. (iii)231

We combined data from the The Bourne supremacy and The wolf of wall street movies for training,232

and tested on the Life movie.233

Removal of a single modality features from multi-modal representations. To remove features234

for a particular modality m from multi-modal model representations, we rely on a simple method235

proposed previously by Toneva et al. (2022) and Oota et al. (2023b), in which the linear contribution236
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of the features to the multi-modal model activations is removed via ridge regression. Specifically, for237

this ridge regression the feature vector corresponding to modality m is considered as input and the238

multi-modal representations are the target. We compute the residuals by subtracting the predicted239

multi-modal feature representations from the actual multi-modal features resulting in the (linear)240

removal of feature vector for modality m from the pretrained multi-modal embeddings. Because241

the brain prediction method is also a linear function, this linear removal limits the contribution of242

features for modality m to the eventual brain alignment. See Fig. 1(B).243

Evaluation Metrics. We evaluate our models using Pearson Correlation (PC) which is a standard244

metric for evaluating brain alignment (Jain & Huth, 2018; Schrimpf et al., 2021; Goldstein et al.,245

2022). Let TR be the number of time repetitions in the test set. Let Y = {Yi}TR
i=1 and Ŷ = {Ŷi}TR

i=1246

denote the actual and predicted value vectors for a single voxel. Thus, Y and Ŷ ∈ RTR. We use247

Pearson Correlation (PC) which is computed as corr(Y, Ŷ ) where corr is the correlation function.248

The final measure of a model’s performance is obtained by calculating Pearson’s correlation between249

the model’s predictions and neural recordings. This correlation is then divided by the estimated250

cross-subject prediction accuracy and averaged across voxels, regions, and participants, resulting in251

a standardized measure of performance referred to as normalized brain alignment. For calculating252

normalized alignment, we select the voxels whose cross-subject prediction accuracy is ≥ 0.05.253

Implementation Details for Reproducibility. All experiments were conducted on a machine with254

1 NVIDIA GeForce-GTX GPU with 16GB GPU RAM. We used bootstrap ridge-regression with255

the following parameters: MSE loss function; L2-decay (λ) varied from 101 to 103; the best λ was256

chosen by tuning on validation data that comprised a randomly chosen 10% subset from the train set257

used only for hyper-parameter tuning.258

Statistical Significance. To determine if normalized predictivity scores significantly higher than259

chance, we run a permutation test using blocks of 10 contiguous fMRI TRs (considering the slowness260

of hemodynamic response) rather than individual TRs. By permuting predictions 5000 times, we261

create an empirical distribution for chance performance, from which we estimate the p-value of262

the actual performance. To estimate the statistical significance of performance differences, such263

as between the model’s predictions and chance or residual predictions and chance, we utilized the264

Wilcoxon signed-rank test (Conover, 1999), applying it to the mean normalized predictivity for the265

participants. In all cases, we denote significant differences (p≤ 0.05) with a ∗ or ∧.266

6 Results267

6.1 How effective are multi-modal representations obtained from multi-modal models?268

In Fig. 2, we present the average normalized brain alignment scores for both multi-modal and269

individual modality features. Specifically, we show the normalized brain alignment for cross-modality270

(ImageBind), jointly pretrained multi-modal (TVLT), and the average from individual video and271

speech models. The results are shown for whole brain, and also for average across language and272

visual ROIs. Results for individual ROIs are in Fig. 3.273

Baseline comparison. To compare the brain predictivity of multi-modal and unimodal models against274

baseline performance, we employ randomly generated vector embeddings to predict brain activity as275

baseline. We observe that the brain alignment from a random vector is significantly lower than that276

of both multi-modal and unimodal models across the whole brain and language-visual processing277

regions. This shows that the representations from these multi-modal models are significant enough278

for learning non-trivial alignment with the fMRI recordings of multi-modal stimuli.279

Cross-modal vs. Jointly pretrained multi-modal models vs. Unimodal Models. Fig. 2(left)280

displays results for whole brain analysis, where the IB Concat bar plot corresponds to results for281

representations from a cross-modal model, while TVLT Joint bar plot corresponds to results for282

representations from a jointly pretrained multi-modal model. From Fig. 2(left), we make the following283

observations: (i) At the whole brain level, the Wilcoxon signed-rank test shows that the differences in284

embeddings from the IB Concat and TVLT models are not statistically significant. (ii) The multi-285

modal embeddings show improved brain alignment compared to unimodal models. Specifically,286

cross-modal embeddings are significantly better than both unimodal video and speech models, while287

jointly pretrained embeddings are significantly better than speech models. This implies that cross-288

6



* ^ ^

Whole brain
0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 b
ra

in
 a

lig
nm

en
t

* ^ ^

Language
0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 b
ra

in
 a

lig
nm

en
t

^ ^

Visual
0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 b
ra

in
 a

lig
nm

en
t

Figure 2: Average normalized brain alignment for both multi-modal and individual modality features
across whole brain, language, and visual regions. Error bars indicate the standard error of the mean
across participants. ∗ indicates cases where multi-modal embeddings are significantly better than
unimodal video models (VM), i.e., p≤ 0.05. ∧, indicates cases where multi-modal embeddings are
significantly better than unimodal speech models (SM), i.e., p≤ 0.05.

modal embeddings contain additional information beyond the two modalities, while embeddings289

from a jointly pretrained model do not provide extra information beyond unimodal visual information290

but do contain additional information beyond unimodal speech.291

We also present average results across language and visual regions in Figs. 2 (middle), and 2(right),292

respectively. The Wilcoxon signed-rank test shows that the differences in embeddings from the IB293

Concat and TVLT models are not statistically significant when averaged across language and visual294

regions. Similar to whole brain performance, in the language regions, cross-modal embeddings295

are significantly better than both unimodal video and speech models, while jointly pretrained em-296

beddings are significantly better than unimodal speech models. In contrast, for the visual regions,297

the normalized brain alignment of cross-modal and jointly pretrained embeddings is similar to the298

performance of unimodal video models. This implies that when we average across visual regions,299

there is no additional information beyond unimodal video features. However, when compared to300

unimodal speech features, both multi-modal embeddings show significant improvement.301

Since we didn’t observe any significant difference at the whole brain level and when averaged across302

language and visual regions, between cross-modal and jointly pretrained multi-modal models, we303

attempt to seek if there any any differences when we pay a closer look at the individual ROIs. We304

present results for language and visual regions such as Angular gyrus (AG), the posterior temporal305

lobe (PTL), and the inferior frontal gyrus (IFG) in Fig. 3. Additionally, we cover visual regions306

like early visual cortex (EVC), scene visual areas (SV) and middle temporal gyrus (MT), as well307

as early auditory cortex (AC). In this figure, we also report the average normalized brain alignment308

of each modality obtained from multi-modal models. Unlike the whole brain analysis, we observe309

some differences between cross-modal and jointly pretrained models in several language and visual310

ROIs. Results for other ROIs are in Fig. 7 in Appendix. Our observations are as follows: (i) Cross-311

modal IB Concat embeddings are significantly better than TVLT Joint embeddings in semantic312

regions such as AG and PCC, as well as the multi-modal processing region MT. (ii) Conversely,313

TVLT Joint embeddings are significantly better than IB Concat embeddings in dmPFC regions.314

While considering both joint and each modality embeddings from multi-modal models, we make the315

following observations from Fig. 3: (1) Cross-modal IB video embeddings exhibit improved brain316

alignment compared to unimodal video in the AG and MT regions with the exceptions of the PTL317

and AC regions. But this is not the case for IB audio vs unimodal audio. This suggests that video318

modality information is more relevant and beneficial in the brain for IB Concat embeddings from319

cross-modality models. (2) TVLT video embeddings show improved brain alignment in the AG, PTL,320

PCC, dmPFC and EVC regions, with other regions displaying similar normalized brain alignment321

unimodal video embeddings. (3) Consistent with the cross-modality models, in jointly pretrained322

TVLT models, TVLT video embeddings significantly outperform TVLT audio embeddings, except in323

PTL region. These observations indicate that video information is advantageous for both cross-modal324

and jointly pretrained models, whereas audio embeddings mainly benefit the PTL region.325

6.2 Which brain regions process uni- and multi-modal information?326

From Fig. 3, we observe that multi-modal video embeddings exhibit improved brain alignment not327

only in the whole brain but also in various language, visual and multi-modal regions. For instance,328

the cross-modal IB Concat embeddings demonstrate superior brain alignment compared to unimodal329

video-based models in areas such as the AG, PTL, IFG, and PCC. Moreover, TVLT-joint embeddings330
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Figure 3: Average normalized brain alignment for video and audio modalities from multi-modal and
individual modality features across whole brain and several ROIs of language (AG, PTL and IFG),
visual (EVC, SV and MT) and auditory cortex (AC). Error bars indicate the standard error of the
mean across participants. ∗ indicates cases where multi-modal embeddings are significantly better
than unimodal video models (VM), i.e., p≤ 0.05. ∧ indicates cases where multi-modal embeddings
are significantly better than unimodal speech models (SM), i.e., p≤ 0.05.3

the cross-modal IB Concat embeddings demonstrate superior brain alignment compared to unimodal330

video-based models in areas such as the AG, PTL, IFG, and PCC. Moreover, TVLT-joint embeddings331

show notable enhancements in the AG, PTL, IFG, PCC, dmPFC and EVC regions. In contrast,332

compared to unimodal speech-based models, all multi-modal embeddings display significantly better333

brain alignment, except the OV (object visual processing) region. Overall, this observation suggests334

that integrating multiple modalities leads to transferring information from one modality to another,335

resulting in improved brain predictability. Based on these, it can be inferred that these multi-modal336

models can indeed learn multi-modal linkages that are relevant to the brain.337

When subjects engage with multi-modality stimuli, we observe that multi-modal embeddings show338

improvements in semantic regions such as the AG, PCC and dmPFC, and syntactic regions such as339

the PTL and IFG. Overall, we find that multi-modal information is processed in only a few regions.340

Furthermore, several regions, including the SV (scene visual area), EVC (early visual cortex), ATL341

(anterior temporal lobe), IFGOrb, MFG, and dmPFC, exhibit similar brain alignment with both342

unimodal and multi-modal embeddings.343

6.3 How is the brain alignment of multi-modal features affected by the elimination of a344

particular modality?345

To understand the contribution of each modality to the multi-modal brain alignment for multi-modal346

naturalistic stimulus, we perform residual analyses by removing the unimodality features from347

multi-modal joint representations as well as multi-modal video or audio representations from joint348

representations and measure the differences in brain alignment before and after removal modality-349

specific features. Fig. 4 displays the normalized brain alignment for language (AG) and visual regions350

(MT). We note a decrease in brain alignment for both the AG and MT regions following the removal351

of video embeddings from cross-modality models, whereas the removal of audio embeddings does352

not affect the brain alignment. On the other hand, for jointly pretrained models, removal of both353

video and audio embeddings partially impacts the brain alignment. We observe similar findings for354

language ROIs such as PTL, MFG, ATL, PCC and visual regions EVC, OV and FV, as shown in355

Figs. 8 and 9 in Appendix. These results suggest that there is additional information beyond the356

unimodal embeddings considered in this study that is processed in the visual and language regions.357

Qualitative analysis. We compute the percentage decrease in alignment for each voxel following the358

removal of unimodal video embeddings from the IB Concat (cross-modality) and the TVLT Joint359

(jointly pretrained model), with projections onto the brain surface averaged across participants, as360

depicted in Fig. 5. The colorbar shows the percentage decrease in brain alignment, where red voxels361

indicate a higher percentage decrease and white voxels indicate areas where unimodal video features362

do not contribute any shared information within the multi-modal context. We observe that removal of363

8

Figure 3: Average normalized brain alignment for video and audio modalities from multi-modal and
individual modality features across whole brain and several ROIs of language (AG, PTL and IFG),
visual (EVC, SV and MT) and auditory cortex (AC). Error bars indicate the standard error of the
mean across participants. ∗ indicates cases where multi-modal embeddings are significantly better
than unimodal video models (VM), i.e., p≤ 0.05. ∧ indicates cases where multi-modal embeddings
are significantly better than unimodal speech models (SM), i.e., p≤ 0.05.3

show notable enhancements in the AG, PTL, IFG, PCC, dmPFC and EVC regions. In contrast,331

compared to unimodal speech-based models, all multi-modal embeddings display significantly better332

brain alignment, except the OV (object visual processing) region. Overall, this observation suggests333

that integrating multiple modalities leads to transferring information from one modality to another,334

resulting in improved brain predictability. Based on these, it can be inferred that these multi-modal335

models can indeed learn multi-modal linkages that are relevant to the brain.336

When subjects engage with multi-modality stimuli, we observe that multi-modal embeddings show337

improvements in semantic regions such as the AG, PCC and dmPFC, and syntactic regions such as338

the PTL and IFG. Overall, we find that multi-modal information is processed in only a few regions.339

Furthermore, several regions, including the SV (scene visual area), EVC (early visual cortex), ATL340

(anterior temporal lobe), IFGOrb, MFG, and dmPFC, exhibit similar brain alignment with both341

unimodal and multi-modal embeddings.342

6.3 How is the brain alignment of multi-modal features affected by the elimination of a343

particular modality?344

To understand the contribution of each modality to the multi-modal brain alignment for multi-modal345

naturalistic stimulus, we perform residual analyses by removing the unimodality features from346

multi-modal joint representations as well as multi-modal video or audio representations from joint347

representations and measure the differences in brain alignment before and after removal modality-348

specific features. Fig. 4 displays the normalized brain alignment for language (AG) and visual regions349

(MT). We note a decrease in brain alignment for both the AG and MT regions following the removal350

of video embeddings from cross-modality models, whereas the removal of audio embeddings does351

not affect the brain alignment. On the other hand, for jointly pretrained models, removal of both352

video and audio embeddings partially impacts the brain alignment. We observe similar findings for353

language ROIs such as PTL, MFG, ATL, PCC and visual regions EVC, OV and FV, as shown in354

Figs. 9 and 10 in Appendix. These results suggest that there is additional information beyond the355

unimodal embeddings considered in this study that is processed in the visual and language regions.356

AG
0.1

0.2

0.3

0.4

0.5

0.6

IB Concat TVLT Joint
IB Concat - IB Video TVLT Joint - TVLT Video
IB Concat - IB Audio TVLT Joint - TVLT Audio
IB Concat - Unimodal VM TVLT Joint - Unimodal VM
IB Concat - Unimodal SM TVLT Joint - Unimodal SM

N
or

m
al

iz
ed

 b
ra

in
 a

lig
nm

en
t

MT
0.1

0.2

0.3

0.4

0.5

0.6

IB Concat TVLT Joint
IB Concat - IB Video TVLT Joint - TVLT Video
IB Concat - IB Audio TVLT Joint - TVLT Audio
IB Concat - Unimodal VM TVLT Joint - Unimodal VM
IB Concat - Unimodal SM TVLT Joint - Unimodal SM

N
or

m
al

iz
ed

 b
ra

in
 a

lig
nm

en
t

Figure 4: Residual analysis: Average normalized brain alignment was computed across participants
before and after removal of video and audio embeddings from both jointly pretrained and cross-
modality models. Error bars indicate the standard error of the mean across participants.
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Figure 5: Percentage decrease of brain alignment after removal of (left) Unimodal VM embeddings
from IB-Concat (middle) Unimodal VM embeddings from jointly pretrained TVLT, and (right)
Unimodal SM embeddings from TVLT Joint. Colorbar indicates the percentage of decrease where
red denotes higher and white denotes zero.

Qualitative analysis. We compute the percentage decrease in alignment for each voxel following the357

removal of unimodal video embeddings from the IB Concat (cross-modality) and the TVLT Joint358

(jointly pretrained model), with projections onto the brain surface averaged across participants, as359

depicted in Fig. 5. The colorbar shows the percentage decrease in brain alignment, where red voxels360

indicate a higher percentage decrease and white voxels indicate areas where unimodal video features361

do not contribute any shared information within the multi-modal context. We observe that removal of362

unimodal video features leads to a significant drop (40-50%) in performance in the visual regions for363

IB Concat, and in language regions (PTL & MFG) for TVLT Joint.364

7 Discussion365

Using multi-modal model representations, including both cross-modal and jointly pretrained types,366

we evaluated how these representations can predict fMRI brain activity when participants are367

engaged in multi-modal naturalistic stimuli. Further, we compared both multi-modal and unimodal368

representations and observed their alignment with both unimodal and multi-modal brain regions.369

This is achieved by removing information related to unimodal stimulus features (audio and video)370

and observing how this perturbation affects the alignment with fMRI brain recordings acquired while371

participants are engaged in watching multi-modal naturalistic movies.372

Our analysis of multi-modal brain alignment yields several important conclusions: (1) The improved373

brain alignment of the multi-modal models over unimodal models, across several language, visual, and374

auditory regions is only partially attributable to the video and audio stimulus features presented to the375

model. A deeper understanding of these models is required to shed light on the underlying information376

processing of both unimodal and multi-modal information. (2) Cross-modal representations have377

significantly improved brain alignment in language regions such as AG, PCC and PTL. This variance378

can be partially attributed to the removal of video features alone, rather than auditory features. (3)379

Video embeddings from multi-modal models exhibit higher brain alignment than audio embeddings,380

except in the PTL and AC regions. This suggests that audio-based models may encode weaker brain-381

relevant semantics. (4) Both cross-modal and jointly pretrained models demonstrate significantly382

improved brain alignment with language regions (AG, PCC, PTL and IFG) compared to visual regions383

when analyzed against unimodal video data. In contrast, when compared to unimodal audio-based384

models, all multi-modal embeddings display significantly better brain alignment, with the exception385

of the OV region. This underscores the capability of multi-modal models to capture additional386

information—either through knowledge transfer or integration between modalities—crucial for387

multi-modal brain alignment.388

Limitations. The low alignment scores clearly show that despite the increasing popularity of multi-389

modal models in tackling complex tasks such as visual question answering, we are still far from390

developing a model that fully encapsulates the complete information processing steps involved391

in handling multi-modal naturalistic information in the brain. In the future, by fine-tuning these392

multi-modal models on specific tasks such as generating captions for videos, we can better leverage393

their alignment strengths. This approach will allow us to explore task-level brain alignment of three394

modalities—video, audio, and text—more effectively. Further, multi-modal large language models395

(MLLMs) (Zhang et al., 2023; Ataallah et al., 2024; Wu et al., 2023) that align visual features from396

video frames into the LLM embedding space via a trainable linear projection layer, offer promise for397

enhanced multi-modal capabilities. We would further extend this work by comparing the region-wise398

brain alignment performance of these multi-modal LLM models with existing approaches.399
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is low or images are taken in low lighting. Or a speech-to-text system might not be590

used reliably to provide closed captions for online lectures because it fails to handle591

technical jargon.592

• The authors should discuss the computational efficiency of the proposed algorithms593

and how they scale with dataset size.594

• If applicable, the authors should discuss possible limitations of their approach to595

address problems of privacy and fairness.596

• While the authors might fear that complete honesty about limitations might be used by597

reviewers as grounds for rejection, a worse outcome might be that reviewers discover598

limitations that aren’t acknowledged in the paper. The authors should use their best599

judgment and recognize that individual actions in favor of transparency play an impor-600

tant role in developing norms that preserve the integrity of the community. Reviewers601

will be specifically instructed to not penalize honesty concerning limitations.602

3. Theory Assumptions and Proofs603

Question: For each theoretical result, does the paper provide the full set of assumptions and604

a complete (and correct) proof?605
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Answer: [NA]606

Justification: Our paper does not require any explicit theorems and proofs.607

Guidelines:608

• The answer NA means that the paper does not include theoretical results.609

• All the theorems, formulas, and proofs in the paper should be numbered and cross-610

referenced.611

• All assumptions should be clearly stated or referenced in the statement of any theorems.612

• The proofs can either appear in the main paper or the supplemental material, but if613

they appear in the supplemental material, the authors are encouraged to provide a short614

proof sketch to provide intuition.615

• Inversely, any informal proof provided in the core of the paper should be complemented616

by formal proofs provided in appendix or supplemental material.617

• Theorems and Lemmas that the proof relies upon should be properly referenced.618

4. Experimental Result Reproducibility619

Question: Does the paper fully disclose all the information needed to reproduce the main ex-620

perimental results of the paper to the extent that it affects the main claims and/or conclusions621

of the paper (regardless of whether the code and data are provided or not)?622

Answer: [Yes]623

Justification: The paper has delineated all the information related to the experimental setup624

in the experimental setup section.625

Guidelines:626

• The answer NA means that the paper does not include experiments.627

• If the paper includes experiments, a No answer to this question will not be perceived628

well by the reviewers: Making the paper reproducible is important, regardless of629

whether the code and data are provided or not.630

• If the contribution is a dataset and/or model, the authors should describe the steps taken631

to make their results reproducible or verifiable.632

• Depending on the contribution, reproducibility can be accomplished in various ways.633

For example, if the contribution is a novel architecture, describing the architecture fully634

might suffice, or if the contribution is a specific model and empirical evaluation, it may635

be necessary to either make it possible for others to replicate the model with the same636

dataset, or provide access to the model. In general. releasing code and data is often637

one good way to accomplish this, but reproducibility can also be provided via detailed638

instructions for how to replicate the results, access to a hosted model (e.g., in the case639

of a large language model), releasing of a model checkpoint, or other means that are640

appropriate to the research performed.641

• While NeurIPS does not require releasing code, the conference does require all submis-642

sions to provide some reasonable avenue for reproducibility, which may depend on the643

nature of the contribution. For example644

(a) If the contribution is primarily a new algorithm, the paper should make it clear how645

to reproduce that algorithm.646

(b) If the contribution is primarily a new model architecture, the paper should describe647

the architecture clearly and fully.648

(c) If the contribution is a new model (e.g., a large language model), then there should649

either be a way to access this model for reproducing the results or a way to reproduce650

the model (e.g., with an open-source dataset or instructions for how to construct651

the dataset).652

(d) We recognize that reproducibility may be tricky in some cases, in which case653

authors are welcome to describe the particular way they provide for reproducibility.654

In the case of closed-source models, it may be that access to the model is limited in655

some way (e.g., to registered users), but it should be possible for other researchers656

to have some path to reproducing or verifying the results.657

5. Open access to data and code658
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Question: Does the paper provide open access to the data and code, with sufficient instruc-659

tions to faithfully reproduce the main experimental results, as described in supplemental660

material?661

Answer: [NA]662

Justification: We will release the code upon acceptance. The dataset is publicly available663

through a licence.664

Guidelines:665

• The answer NA means that paper does not include experiments requiring code.666

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/667

public/guides/CodeSubmissionPolicy) for more details.668

• While we encourage the release of code and data, we understand that this might not be669

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not670

including code, unless this is central to the contribution (e.g., for a new open-source671

benchmark).672

• The instructions should contain the exact command and environment needed to run to673

reproduce the results. See the NeurIPS code and data submission guidelines (https:674

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.675

• The authors should provide instructions on data access and preparation, including how676

to access the raw data, preprocessed data, intermediate data, and generated data, etc.677

• The authors should provide scripts to reproduce all experimental results for the new678

proposed method and baselines. If only a subset of experiments are reproducible, they679

should state which ones are omitted from the script and why.680

• At submission time, to preserve anonymity, the authors should release anonymized681

versions (if applicable).682

• Providing as much information as possible in supplemental material (appended to the683

paper) is recommended, but including URLs to data and code is permitted.684

6. Experimental Setting/Details685

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-686

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the687

results?688

Answer: [Yes]689

Justification: We provide all the training and test details in the experimental setup.690

Guidelines:691

• The answer NA means that the paper does not include experiments.692

• The experimental setting should be presented in the core of the paper to a level of detail693

that is necessary to appreciate the results and make sense of them.694

• The full details can be provided either with the code, in appendix, or as supplemental695

material.696

7. Experiment Statistical Significance697

Question: Does the paper report error bars suitably and correctly defined or other appropriate698

information about the statistical significance of the experiments?699

Answer: [Yes]700

Justification: We conducted our experiments multiple times across 6 participants and took701

the average results. We also include error bars in the plots.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• The authors should answer "Yes" if the results are accompanied by error bars, confi-705

dence intervals, or statistical significance tests, at least for the experiments that support706

the main claims of the paper.707

• The factors of variability that the error bars are capturing should be clearly stated (for708

example, train/test split, initialization, random drawing of some parameter, or overall709

run with given experimental conditions).710
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• The method for calculating the error bars should be explained (closed form formula,711

call to a library function, bootstrap, etc.)712

• The assumptions made should be given (e.g., Normally distributed errors).713

• It should be clear whether the error bar is the standard deviation or the standard error714

of the mean.715

• It is OK to report 1-sigma error bars, but one should state it. The authors should716

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis717

of Normality of errors is not verified.718

• For asymmetric distributions, the authors should be careful not to show in tables or719

figures symmetric error bars that would yield results that are out of range (e.g. negative720

error rates).721

• If error bars are reported in tables or plots, The authors should explain in the text how722

they were calculated and reference the corresponding figures or tables in the text.723

8. Experiments Compute Resources724

Question: For each experiment, does the paper provide sufficient information on the com-725

puter resources (type of compute workers, memory, time of execution) needed to reproduce726

the experiments?727

Answer: [Yes]728

Justification: We have included the specifications of the hardware and software environments729

to ensure the reproducibility of our results.730

Guidelines:731

• The answer NA means that the paper does not include experiments.732

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,733

or cloud provider, including relevant memory and storage.734

• The paper should provide the amount of compute required for each of the individual735

experimental runs as well as estimate the total compute.736

• The paper should disclose whether the full research project required more compute737

than the experiments reported in the paper (e.g., preliminary or failed experiments that738

didn’t make it into the paper).739

9. Code Of Ethics740

Question: Does the research conducted in the paper conform, in every respect, with the741

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?742

Answer: [Yes]743

Justification: The research conducted in this paper fully conforms with the NeurIPS Code of744

Ethics in every respect.745

Guidelines:746

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.747

• If the authors answer No, they should explain the special circumstances that require a748

deviation from the Code of Ethics.749

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-750

eration due to laws or regulations in their jurisdiction).751

10. Broader Impacts752

Question: Does the paper discuss both potential positive societal impacts and negative753

societal impacts of the work performed?754

Answer: [Yes]755

Justification: The paper explores how the advancements and applications of our findings756

could benefit society in terms of computational neuroscience research by specifically inves-757

tigating the effectiveness of the current state of the art multimodal models in encoding brain758

activity.759

Guidelines:760

• The answer NA means that there is no societal impact of the work performed.761
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• If the authors answer NA or No, they should explain why their work has no societal762

impact or why the paper does not address societal impact.763

• Examples of negative societal impacts include potential malicious or unintended uses764

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations765

(e.g., deployment of technologies that could make decisions that unfairly impact specific766

groups), privacy considerations, and security considerations.767

• The conference expects that many papers will be foundational research and not tied768

to particular applications, let alone deployments. However, if there is a direct path to769

any negative applications, the authors should point it out. For example, it is legitimate770

to point out that an improvement in the quality of generative models could be used to771

generate deepfakes for disinformation. On the other hand, it is not needed to point out772

that a generic algorithm for optimizing neural networks could enable people to train773

models that generate Deepfakes faster.774

• The authors should consider possible harms that could arise when the technology is775

being used as intended and functioning correctly, harms that could arise when the776

technology is being used as intended but gives incorrect results, and harms following777

from (intentional or unintentional) misuse of the technology.778

• If there are negative societal impacts, the authors could also discuss possible mitigation779

strategies (e.g., gated release of models, providing defenses in addition to attacks,780

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from781

feedback over time, improving the efficiency and accessibility of ML).782

11. Safeguards783

Question: Does the paper describe safeguards that have been put in place for responsible784

release of data or models that have a high risk for misuse (e.g., pretrained language models,785

image generators, or scraped datasets)?786

Answer: [NA]787

Justification: Our research does not pose any risks for misuse.788

Guidelines:789

• The answer NA means that the paper poses no such risks.790

• Released models that have a high risk for misuse or dual-use should be released with791

necessary safeguards to allow for controlled use of the model, for example by requiring792

that users adhere to usage guidelines or restrictions to access the model or implementing793

safety filters.794

• Datasets that have been scraped from the Internet could pose safety risks. The authors795

should describe how they avoided releasing unsafe images.796

• We recognize that providing effective safeguards is challenging, and many papers do797

not require this, but we encourage authors to take this into account and make a best798

faith effort.799

12. Licenses for existing assets800

Question: Are the creators or original owners of assets (e.g., code, data, models), used in801

the paper, properly credited and are the license and terms of use explicitly mentioned and802

properly respected?803

Answer: [Yes]804

Justification: We have explicitly cited the datasets, code and models used.805

Guidelines:806

• The answer NA means that the paper does not use existing assets.807

• The authors should cite the original paper that produced the code package or dataset.808

• The authors should state which version of the asset is used and, if possible, include a809

URL.810

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.811

• For scraped data from a particular source (e.g., website), the copyright and terms of812

service of that source should be provided.813
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• If assets are released, the license, copyright information, and terms of use in the814

package should be provided. For popular datasets, paperswithcode.com/datasets815

has curated licenses for some datasets. Their licensing guide can help determine the816

license of a dataset.817

• For existing datasets that are re-packaged, both the original license and the license of818

the derived asset (if it has changed) should be provided.819

• If this information is not available online, the authors are encouraged to reach out to820

the asset’s creators.821

13. New Assets822

Question: Are new assets introduced in the paper well documented and is the documentation823

provided alongside the assets?824

Answer: [NA]825

Justification: We will try to opensource the code and provide complete documentation for826

our assets upon acceptance.827

Guidelines:828

• The answer NA means that the paper does not release new assets.829

• Researchers should communicate the details of the dataset/code/model as part of their830

submissions via structured templates. This includes details about training, license,831

limitations, etc.832

• The paper should discuss whether and how consent was obtained from people whose833

asset is used.834

• At submission time, remember to anonymize your assets (if applicable). You can either835

create an anonymized URL or include an anonymized zip file.836

14. Crowdsourcing and Research with Human Subjects837

Question: For crowdsourcing experiments and research with human subjects, does the paper838

include the full text of instructions given to participants and screenshots, if applicable, as839

well as details about compensation (if any)?840

Answer: [NA]841

Justification: We use publicly available fMRI dataset and do not collect any new data.842

Guidelines:843

• The answer NA means that the paper does not involve crowdsourcing nor research with844

human subjects.845

• Including this information in the supplemental material is fine, but if the main contribu-846

tion of the paper involves human subjects, then as much detail as possible should be847

included in the main paper.848

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,849

or other labor should be paid at least the minimum wage in the country of the data850

collector.851

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human852

Subjects853

Question: Does the paper describe potential risks incurred by study participants, whether854

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)855

approvals (or an equivalent approval/review based on the requirements of your country or856

institution) were obtained?857

Answer: [NA]858

Justification: We use publicly available fMRI dataset and do not collect any new data.859

Guidelines:860

• The answer NA means that the paper does not involve crowdsourcing nor research with861

human subjects.862

• Depending on the country in which research is conducted, IRB approval (or equivalent)863

may be required for any human subjects research. If you obtained IRB approval, you864

should clearly state this in the paper.865

19

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions866

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the867

guidelines for their institution.868

• For initial submissions, do not include any information that would break anonymity (if869

applicable), such as the institution conducting the review.870

A Cross-subject prediction accuracy871

We estimate cross-subject prediction accuracy in three settings: (i) training with The Bourne872

supremacy and testing with Life data, (ii) training with The wolf of wall street and testing with873

Life data, and (iii) training with both The Bourne supremacy and The wolf of wall street and testing874

with Life data. We present the average cross-subject prediction accuracy across voxels for the875

Movie10 fMRI dataset and across the three settings in Fig. 6.876
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Figure 6: Cross-subject prediction accuracy: (top) across whole brain, (bottom) across language,
visual and auditory regions.

B Detailed sub-ROIs of language, visual and auditory regions877

The data covers seven brain regions of interest (ROIs) in the human brain with the following sub-878

divisions: (i) early visual (EV: V1, V2, V3, V3B, and V4); (ii) object-related areas (LO1 and LO2);879

(iii) face-related areas (OFA), (iv) scene-related areas (PPA), (v) middle temporal (MT: MT, MST,880

LO3, FST and V3CD), (vi) late language regions, encompassing broader language regions: angular881

gyrus (AG: PFm, PGs, PGi, TPOJ2, TPOJ3), lateral temporal cortex (LTC: STSda, STSva, STGa,882

TE1a, TE2a, TGv, TGd, A5, STSdp, STSvp, PSL, STV, TPOJ1), inferior frontal gyrus (IFG: 44, 45,883

IFJa, IFSp) and middle frontal gyrus (MFG: 55b) (Baker et al., 2018; Milton et al., 2021; Desai et al.,884

2022).885
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C Details of pretrained Transformer models886

Table 1: Pretrained Transformer-based Encoder Models. All models have 12 layers.

Model Name Pretraining
Cross-modal Pretrained (ImageBind) Video & Audio
Jointly Pretrained (TVLT) Video & Audio
ViT-B Image
VideoMAE Video
ViViT Video
Wav2Vec2.0-base Speech
AST Speech

D Effectiveness of multi-modal vs unimodal representations for various brain887

regions888

We now present the results for per unimodal video model and per speech model in Fig. 8. Similar to889

the average results of unimodal video and speech models, we observe that multi-modal models exhibit890

better normalized brain alignment than individual unimodal video and speech models across language891

and visual regions. Among unimodal speech models, the AST model shows better normalized brain892

alignment than the Wav2vec2.0 model. Among unimodal video models, each unimodal video model893

displays notably consistent performance across regions.894
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Figure 7: Average normalized brain alignment for per video and audio modalities from multi-modal
and individual modality features across whole brain and several ROIs of language (ATL, IFGOrb,
MFG, PCC, dmPFC) and visual (OV, FV). Error bars indicate the standard error of the mean across
participants.

E How is the brain alignment of multi-modal features affected by the895

elimination of a particular modality?896

To understand the contribution of each modality to the multi-modal brain alignment for multi-modal897

naturalistic stimulus, we perform residual analyses by removing the unimodality features from898

multi-modal joint representations as well as multi-modal video or audio representations from joint899

representations and measure the differences in brain alignment before and after removal modality-900

specific features. Figs. 9 and 10 display the normalized brain alignment for language ROIs such as901

PTL, MFG, ATL, PCC and visual regions EVC, OV and FV. We note a decrease in brain alignment902

for these regions following the removal of video embeddings from cross-modality models, whereas903

the removal of audio embeddings does not affect the brain alignment. On the other hand, for jointly904

pretrained models, removal of both video and audio embeddings partially impacts the brain alignment.905
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F Layerwise brain alignment906

We now plot the layer-wise normalized brain alignment for the Unimodal models and TVLT joint907

model, as shown in Fig. 11. Observation from Fig. 11 indicates a consistent drop in performance from908

early to lower layers, specifically for both TVLT joint and unimodal video models. The key finding909

here is that our results that TVLT joint embeddings showcase improved brain alignment across all the910

layers compared to unimodal video and speech embeddings.911
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Figure 8: Average normalized brain alignment for video and audio modalities from multi-modal
and individual modality features across whole brain and several ROIs of language (ATL, ATL, PTL,
IFG, PCC, dmPFC) and visual (EVC, MT). Error bars indicate the standard error of the mean across
participants.
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Figure 9: Residual analysis for ATL, PTL, IFG, MFG, IFGOrb, PCC and dmPFC regions: Average
normalized brain alignment was computed across participants before and after removal of video and
audio embeddings from both jointly pretrained and cross-modality models. Error bars indicate the
standard error of the mean across participants.
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Figure 10: Residual analysis for EVC, OV, SV, FV and AC regions: Average normalized brain
alignment was computed across participants before and after removal of video and audio embeddings
from both jointly pretrained and cross-modality models. Error bars indicate the standard error of the
mean across participants.
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Figure 11: Normalized brain alignment across layers for multi-modal model (TVLT joint embeddings)
and unimodal video and speech models.

26


	Introduction
	Related Work
	Dataset Curation
	Methodology
	Multi-modal models
	Unimodal Models

	Experimental Setup
	Results
	How effective are multi-modal representations obtained from multi-modal models?
	Which brain regions process uni- and multi-modal information?
	How is the brain alignment of multi-modal features affected by the elimination of a particular modality?

	Discussion
	Cross-subject prediction accuracy
	Detailed sub-ROIs of language, visual and auditory regions
	Details of pretrained Transformer models
	Effectiveness of multi-modal vs unimodal representations for various brain regions
	How is the brain alignment of multi-modal features affected by the elimination of a particular modality?
	Layerwise brain alignment

