
Generalization Bounds for Meta-Learning via
PAC-Bayes and Uniform Stability

Alec Farid Anirudha Majumdar
Department of Mechanical and Aerospace Engineering, Princeton University

{afarid, ani.majumdar}@princeton.edu

Abstract

We are motivated by the problem of providing strong generalization guarantees in
the context of meta-learning. Existing generalization bounds are either challenging
to evaluate or provide vacuous guarantees in even relatively simple settings. We
derive a probably approximately correct (PAC) bound for gradient-based meta-
learning using two different generalization frameworks in order to deal with the
qualitatively different challenges of generalization at the “base” and “meta” levels.
We employ bounds for uniformly stable algorithms at the base level and bounds
from the PAC-Bayes framework at the meta level. The result of this approach is
a novel PAC bound that is tighter when the base learner adapts quickly, which is
precisely the goal of meta-learning. We show that our bound provides a tighter
guarantee than other bounds on a toy non-convex problem on the unit sphere and a
text-based classification example. We also present a practical regularization scheme
motivated by the bound in settings where the bound is loose and demonstrate
improved performance over baseline techniques.

1 Introduction

A major challenge with current machine learning systems is the need to acquire large amounts of
training data in order to learn a new task. Over the past few decades, meta-learning [62, 70] has
emerged as a promising avenue for addressing this challenge. Meta-learning relies on the intuition
that a new task often bears significant similarity to previous tasks; hence, a learner can learn to
perform a new task very quickly by exploiting data from previously-encountered related tasks. The
meta-learning problem formulation thus assumes access to datasets from a variety of tasks during
meta-training. The goal of the meta learner is then to learn inductive biases from these tasks in order
to train a base learner to achieve few-shot generalization on a new task.

Over the past few years, there has been tremendous progress in practical algorithms for meta-
learning (see, e.g., [61, 55, 25, 32]). Techniques such as model-agnostic meta-learning (MAML)
[25] have demonstrated the ability to perform few-shot learning in a variety of supervised learning
and reinforcement learning domains. However, our theoretical understanding of these techniques
lags significantly behind successes on the empirical front. In particular, the problem of deriving
generalization bounds for meta-learning techniques remains an outstanding challenge. Current
methods for obtaining generalization guarantees for meta-learning [5, 34, 77] either (i) produce
bounds that are extremely challenging to compute or (ii) produce vacuous or near-vacuous bounds in
even highly simplified settings (see Section 5 for numerical examples). Indeed, we note that existing
work on generalization theory for meta-learning techniques do not explicitly report numerical values
for generalization bounds. This is in contrast to the state of generalization theory in the supervised
learning setting, where recent techniques demonstrate the ability to obtain non-vacuous generalization
guarantees on benchmark problems (e.g. visual classification problems [24, 78, 54]).

The generalization challenge in meta-learning is similar to, but distinct from, the supervised learning
case. In particular, any generalization bound for meta-learning must account for two levels of
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generalization. First, one must account for generalization at the base level, i.e., the ability of the
base learner to perform well on new data from a given task. This is particularly important in the
few-shot learning setting. Second, one must account for generalization at the meta level, i.e., the
ability of the meta learner to generalize to new tasks not encountered during meta-training. Moreover,
the generalization performance at the two levels is coupled since the meta learner is responsible for
learning inductive biases that the base learner can exploit for future tasks.

The key technical insight of this work is to bound the generalization error at the two levels (base
and meta) using two different generalization theory frameworks that each are particularly well-suited
for addressing the specific challenges of generalization. At the base level, we utilize the fact that a
learning algorithm that exhibits uniform stability [14, 15] also generalizes well in expectation (see
Section 4.1 for a formal statement). Intuitively, uniform stability quantifies the sensitivity of the
output of a learning algorithm to changes in the training dataset. As demonstrated by [29], limiting
the number of training epochs of a gradient-based learning algorithm leads to uniform stability. In
other words, a gradient-based algorithm that learns quickly is stable. Since the goal of meta-learning
is precisely to train the base learner to learn quickly, we posit that generalization bounds based on
stability are particularly well-suited to bounding the generalization error at the base level. At the meta
level, we employ a generalization bound based on Probably Approximately Correct (PAC)-Bayes
theory. Originally developed two decades ago [43, 38], there has been a recent resurgence of interest
in PAC-Bayes due to its ability to provide strong generalization guarantees for neural networks
[24, 8, 54]. Intuitively, the challenge of generalization at the meta level (i.e., generalizing to new
tasks) is similar to the challenge of generalizing to new data in the standard supervised learning setting.
In both cases, one must prevent over-fitting to the particular tasks/data that have been seen during
meta-training/training. Thus, the strong empirical performance of PAC-Bayes theory in supervised
learning problems makes it a promising candidate for bounding the generalization error at the meta
level.

Contributions. The primary contributions of this work are the following. First, we leverage the
insights above in order to develop a novel generalization bound for gradient-based meta-learning
using uniform stability and PAC-Bayes theory (Theorem 3). Second, we develop a regularization
scheme for MAML [25] that explicitly minimizes the derived bound (Algorithm 1). We refer to
the resulting approach as PAC-BUS since it combines PAC-Bayes and Uniform Stability to derive
generalization guarantees for meta-learning. Third, we demonstrate our approach on two meta-
learning problems: (i) a toy non-convex classification problem on the unit-ball (Section 5.1), and
(ii) the Mini-Wiki benchmark introduced in [34] (Section 5.2). Even in these relatively small-scale
settings, we demonstrate that recently-developed generalization frameworks for meta-learning provide
either near-vacuous or loose bounds, while PAC-BUS provides significantly stronger bounds. Fourth,
we demonstrate our approach in larger-scale settings where it remains challenging to obtain non-
vacuous bounds (for our approach as well as others). Here, we propose a practical regularization
scheme which re-weights the terms in the rigorously-derived PAC-BUS upper bound (PAC-BUS(H);
Algorithm 3 in the appendix). Recent work [77] introduces a challenging variant of the Omniglot
benchmark [35] which highlights and tackles challenges with memorization in meta-learning. We
show that PAC-BUS(H) is able to prevent memorization on this variant (Section 5.3).

2 Problem formulation

Samples, tasks, and datasets. Formally, consider the setting where we have an unknown meta
distribution Pt over tasks (roughly, “tasks” correspond to different, but potentially related, learning
problems). A sampled task t ⇠ Pt induces an (unknown) distribution Pz|t over sample space
Z . We assume that all sampling is independent and identically distributed (i.i.d.). Note that the
sample space Z is shared between tasks, but the distribution Pz|t may be different. We then sample
within-task samples z ⇠ Pz|t and within-task datasets S = {z1, z2, . . . , zm} ⇠ Pm

z|t. We assume
that each sample z has a single corresponding label o(z), where the function o is an oracle which
outputs the correct label of z. At meta-training time, we assume access to l datasets, which we call
S = {S1, S2, . . . , Sl}. Each dataset Si in S is drawn by first selecting a task ti from Pt, and then
drawing Si ⇠ Pm

z|ti .

Hypotheses and losses. Let h denote a hypothesis and L(h, z) be the loss incurred by hypothesis h
on sample z. The loss is computed by comparing h(z) with the true label o(z). For simplicity, we
assume that there is no noise on the labels; we can thus assume that all loss functions have access to
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the label oracle function o and thus the loss depends only on hypothesis h and sample z. We note that
this assumption is not required for our analysis and is made for the ease of exposition. Overloading
the notation, we let L(h, Pz|t) := Ez⇠Pz|tL(h, z) and bL(h, S) := 1

|S|
P|S|

i=1 L(h, zi).

Meta-learning. As with model-agnostic meta-learning (MAML) [25], we let meta parameters
✓ 2 Rn✓ correspond to an initialization of the base learner’s hypothesis. Let h✓ be the ✓-initialized
hypothesis. Generally, the initialization ✓ is learned from the multiple datasets we have access to at
meta-training time. In this work, we will learn a distribution P✓ over initializations so that we can
use bounds from the PAC-Bayes framework. At test time, a new task t ⇠ Pt is sampled and we are
provided with a new dataset S ⇠ Pm

z|t. The base learner uses an algorithm A (e.g., gradient descent),
the dataset S, and the initialization ✓ ⇠ P✓ in order to fine-tune the hypothesis and perform well on
future samples drawn from Pz|t. We denote the base learner’s updated hypothesis by hA(✓,S). More
formally, our goal is to learn a distribution P✓ with the following objective:

min
P✓

L(P✓, Pt) := min
P✓

E
t⇠Pt

E
S⇠Pm

z|t

E
✓⇠P✓

L(hA(✓,S), Pz|t). (1)

We are particularly interested in the the few-shot learning case, where the number of samples which
the base learner can use to adapt is small. A common technique to improve test performance in the
few-shot learning case is to allow for validation data at meta-training time. Thus, in addition to a
generalization guarantee on meta-learning without validation data, we will derive a bound when
allowing for the use of validation data Sva ⇠ Pn

z|t during meta-training.

3 Related work
Meta-learning. Meta-learning is a well-studied technique for exploiting similarities between learning
tasks [62, 70]. Often used to reduce the need for large amounts of training data, a number of
approaches for meta-learning have been explored over decades [11, 13, 16, 31, 72, 61, 55, 32].
Recently, methods based on model-agnostic meta-learning (MAML) [25] have demonstrated strong
performance across different application domains and benchmarks such as Omniglot [35] and Mini-
ImageNet [74]. These methods operate by optimizing a set of initial parameters that can be quickly
fine-tuned via gradient descent on a new task. The approaches mentioned above typically do not
provide any generalization guarantees, and none of them compute explicit numerical bounds on
generalization performance. Our approach has the structure of gradient-based meta-learning while
providing guarantees on generalization.

Generalization bounds for supervised learning. Multiple frameworks have been developed for
providing generalization guarantees in the classical supervised learning setting. Early breakthroughs
include Vapnik-Chervonenkis (VC) theory [71, 6], Rademacher complexity [65], and the minimum
description length principle [12, 56, 36]. More recent frameworks include algorithmic stability
bounds [14, 19, 29, 57, 1] and PAC-Bayes theory [67, 43, 64]. The connection between stability and
learnability has been established in [66, 73, 29], and suggests that algorithmic stability bounds are
a strong choice of generalization framework. PAC-Bayes theory in particular provides some of the
tightest known generalization bounds for classical supervised learning approaches such as support
vector machines [64, 38, 26, 57, 4, 48]. Since its development, researchers have continued to tighten
[38, 42, 54] and generalize the framework [17, 18, 59]. Exciting recent results [24, 45, 46, 10, 8, 54]
have demonstrated the promise of PAC-Bayes to provide strong generalization bounds for neural
networks on supervised learning problems (see [33] for a recent review of generalization bounds
for neural networks). It is also possible to combine frameworks such as PAC-Bayes and uniform
stability to derive bounds for supervised learning [39]. We will use these two frameworks to bound
generalization in the two levels of meta-learning. In contrast to the standard supervised learning
setting, generalization bounds for meta-learning are less common and remain loose.

Generalization bounds for meta-learning. As described in Section 1, meta-learning bounds must
account for two “levels” of generalization (base level and meta level). The approach presented in
[41] utilizes algorithmic stability bounds at both levels. However, this requires both meta and base
learners to be uniformly stable. This is a strong requirement that is challenging to ensure at the meta
level. Another recent method, known as follow-the-meta-regularized-leader (FMRL) [34], provides
guarantees for a regularized meta-learning version of the follow-the-leader (FTL) method for online
learning, see e.g. [30]. The generalization bounds provided are derived from the application of
online-to-batch techniques [3, 22]. A regret bound for meta-learning using an aggregation technique
at the meta-level and an algorithm with a uniform generalization bound at the base level is provided
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in [3]. The techniques mentioned do not present an algorithm which makes use of validation data
(in contrast to our approach). Using validation data (i.e., held-out data) is a common technique for
improving performance in meta-learning and is particularly important for the few-shot learning case.

Another method for deriving a generalization bound on meta-learning is to use PAC-Bayes bounds
at both the base and meta levels [52, 53]. In [5], generalization bounds based on such a framework
are provided along with practical optimization techniques. However, the method requires one to
maintain distributions over distributions of initializations, which can result in large computation times
during training and makes it extremely challenging to numerically compute the bound. Moreover,
the approach also does not allow one to incorporate validation data to improve the bound. Recent
work has made progress on some of these challenges. In [60], the computational efficiency of
training is improved but the challenges associated with numerically computing the generalization
bound or incorporating validation data are not addressed. State-of-the-art work tightens the two-level
PAC-Bayes guarantee, addresses computation times for training and evaluation of the bound, and
allows for validation data [77]. However, all of the two-level PAC-Bayes bounds require a separate
PAC-Bayes bound for each task, and thus a potentially loose union bound.

We present a framework which, to our knowledge, is the first to combine algorithmic stability and
PAC-Bayes bounds (at the base- and meta- levels respectively) in order to derive a meta-learning
algorithm with associated generalization guarantees. As outlined in Section 1, we believe that
the algorithmic stability and PAC-Bayes frameworks are particularly well-suited to tackling the
specific challenges of generalization at the different levels. We also highlight that none of the
approaches mentioned above report numerical values for generalization bounds, even for relatively
simple problems. Here, we empirically demonstrate that prior approaches tend to provide either
near-vacuous or loose bounds even in relatively small-scale settings while our proposed method
provides significantly stronger bounds.

4 Generalization bound on meta-learning
We use two different frameworks for the two levels of generalization required in a meta-learning
bound. We utilize the PAC-Bayes framework to bound the expected training loss on future tasks, and
uniform stability bounds to argue that if we have a low training loss when using a uniformly stable
algorithm, then we achieve a low test loss. The following section will introduce these frameworks
independently. We then present the overall meta-learning bound and associated algorithm to find a
distribution over initialization parameters (i.e., meta parameters) that minimizes the upper bound.

4.1 Preliminaries: two generalization frameworks

4.1.1 Uniform stability

Let S = {z1, z2, . . . , zm} 2 Zm be a set of m elements of Z . Let Si = {z1, . . . , zi�1, z0i, zi+1,
. . . , zm} be identical to dataset S except that the ith sample zi is replaced by some z0i 2 Z . Note
that our analysis can be extended to allow for losses bounded by some finite M , but we work with
losses bounded within [0, 1] for the sake of simplicity. With these precursors, we define an analogous
notion of uniform stability to [29, Definition 2.1] for deterministic algorithms A and distributions P✓
over initializations.1

Definition 1 (Uniform Stability) A deterministic algorithm A has � > 0 uniform stability with respect
to loss L if 8 z 2 Z, 8 S 2 Zm, 8 i 2 {1, . . . ,m}, and all distributions P✓ over initializations, the
following holds:

E
✓⇠P✓

|L(hA(✓,S), z)� L(hA(✓,Si), z)|  �. (2)

We define �US as the minimal such �.

In this work, we will bound �US as a function of the algorithm, form of the loss, and number of
samples that the algorithm uses (See Appendix A.4 for further details on the bounds on �US for our
setup). We then establish a relationship between uniform stability and generalization in expectation.
The following is adapted from [29, Theorem 2.2] for the notion of uniform stability presented in
Definition 1:

1We use deterministic algorithms to avoid excess computation when calculating the provided meta-learning
upper bounds. See Appendix A.4 for further details.
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Theorem 1 (Algorithmic Stability Generalization in Expectation) Fix a task t ⇠ Pt. The following
inequality holds for hypothesis hA(✓,S) learned using �US uniformly stable algorithm A with respect
to loss L:

E
S⇠Pm

z|t

E
✓⇠P✓

L(hA(✓,S), Pz|t)  E
S⇠Pm

z|t

E
✓⇠P✓

bL(hA(✓,S), S) + �US. (3)

Proof. The proof is similar to the one presented for [29, Theorem 2.2] and is presented in Appendix
A.1.

4.1.2 PAC-Bayes theory

For the meta-level bound, we make use of the PAC-Bayes generalization bound introduced in [43].
Note that other PAC-Bayes bounds such as the quadratic variant [58] and PAC-Bayes-� variant [69]
may be used and substituted in the following analysis. We first present a general version of the
PAC-Bayes bound and then specialize it to our meta-learning setting in Section 4.2. Let f(✓, s) be an
arbitrary loss function which only depends on parameters ✓ and the sample s which has been drawn
from an arbitrary distribution Ps. The following bound is a tightened version of the bound presented
in [43] for when l � 8.

Theorem 2 (PAC-Bayes Generalization Bound [40]) For any data-independent prior distribution
P✓,0 over ✓, some loss function f where 0  f(✓, s)  1, 8 s, 8 ✓, l � 8, and � 2 (0, 1), with
probability at least 1�� over a sampling of {s1, s2, . . . , sl} ⇠ P l

s, the following holds simultaneously
for all distributions P✓ over ✓:

E
s⇠Ps

E
✓⇠P✓

f(✓, s)  1

l

lX

i=1

E
✓⇠P✓

f(✓, si) +RPAC�B(P✓, P✓,0, �, l), (4)

where the PAC-Bayes “regularizer” term is defined as follows

RPAC�B(P✓, P✓,0, �, l) :=

s
DKL(P✓kP✓,0) + ln 2

p
l

�

2l
, (5)

and DKL is the Kullback-Leibler (KL) divergence.

4.2 Meta-learning bound

In order to obtain a generalization guarantee for meta-learning, we utilize the two frameworks above.
We first specialize the PAC-Bayes bound in Theorem 2 to bound the expected training loss on future
tasks. We then utilize Theorem 1 to demonstrate that if we have a low expected training loss when
using a uniformly stable algorithm, then we achieve a low expected test loss. These two steps allow
us to combine the generalization frameworks above to derive an upper bound on (1) which can be
computed with known quantities. With the following assumption, the resulting generalization bound
is presented in Theorem 3.

Assumption 1 (Bounded loss.) The loss function L is bounded: 0  L(h, z)  1 for any h in the
hypothesis space for the given problem, and any z in the sample space.

Theorem 3 (Meta-Learning Generalization Guarantee) For hypotheses hA(✓,S) learned with �US

uniformly stable algorithm A, data-independent prior P✓,0 over initializations ✓, loss L which
satisfies Assumption 1, l � 8, and � 2 (0, 1), with probability at least 1� � over a sampling of the
meta-training dataset S ⇠ P l

S , the following holds simultaneously for all distributions P✓ over ✓:

L(P✓, Pt) 
1

l

lX

i=1

E
✓⇠P✓

bL(hA(✓,Si), Si) +RPAC�B(P✓, P✓,0, �, l) + �US. (6)

Proof. The proof can be split into three steps:
Step 1.
Let Ps in Theorem 2 be the marginal distribution PS over datasets of size m (see Appendix A.2 for
details) and note that sampling S ⇠ PS is equivalent to first sampling t ⇠ Pt and then sampling
S ⇠ Pm

z|t. Additionally let f(✓, S) := bL(hA(✓,S), S) where A(✓, S) is any deterministic algorithm.
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Plugging in these definitions into Inequality (4) results in the following inequality which holds under
the same assumptions as Theorem 2, and with probability at least 1� � over the sampling of S ⇠ P l

S :

E
S⇠PS

E
✓⇠P✓

bL(hA(✓,S), S) = E
t⇠Pt

E
S⇠Pm

z|t

E
✓⇠P✓

bL(hA(✓,S), S)

 1

l

lX

i=1

E
✓⇠P✓

bL(hA(✓,Si), Si) +RPAC�B(P✓, P✓,0, �, l). (7)

Step 2.
Now assume that algorithm A is �US uniformly stable. For a fixed task t ⇠ Pt we have the following
by Theorem 1:

E
S⇠Pm

z|t

E
✓⇠P✓

L(hA(✓,S), Pz|t)  E
S⇠Pm

z|t

E
✓⇠P✓

bL(hA(✓,S), S) + �US.

Take the expectation over t ⇠ Pt. We then have:

E
t⇠Pt

E
S⇠Pm

z|t

E
✓⇠P✓

L(hA(✓,S), Pz|t)  E
t⇠Pt

E
S⇠Pm

z|t

E
✓⇠P✓

bL(hA(✓,S), S) + �US, (8)

since Et⇠Pt �US = �US. This establishes a bound on the true expected loss for a new task after
running algorithm A on a training dataset corresponding to the new task.
Step 3.
Note that (7) provides an upper bound on the first term of the RHS of (8) when algorithm A is �US

uniformly stable. Thus we have the following by plugging (7) in the RHS of (8):
Under the same assumptions as both Theorems 1 and 2, and with probability at least 1� � over the
sampling of S ⇠ P l

S :

E
t⇠Pt

E
S⇠Pm

z|t

E
✓⇠P✓

L(hA(✓,S), Pz|t) 
1

l

lX

i=1

E
✓⇠P✓

bL(hA(✓,S), Si) +RPAC�B(P✓, P✓,0, �, l) + �US,

completing the proof.

Theorem 3 is presented for any distributions P✓ and P✓,0 over initializations. However, in practice we
will use multivariate Gaussian distributions for both. The specialization of Theorem 3 to Gaussian
distributions is provided in Appendix A.3.1. Next, we allow for validation data Sva ⇠ Pn

z|t at
meta-training time so that the bound is more suited to the few-shot learning case. We compute the
upper bound using the evaluation data Sev = {S, Sva} sampled from the marginal distribution PSev

over datasets of size m+n. However, we still only require m samples at meta-test time; see Appendix
A.3.2 for the derivation. Note that the training data S is often excluded from the data used to update
the meta-learner. However, this is necessary for our approach to obtain a guarantee on few-shot
learning performance. The result is a guarantee with high probability over a sampling of Sev ⇠ P l

Sev
:

L(P✓, Pt) 
1

l

lX

i=1

E
✓⇠P✓

bL(hA(✓,Si), Sev,i) +RPAC�B(P✓, P✓,0, �, l) +
m�US

m+ n
. (9)

4.3 PAC-BUS algorithm

Recall that we aim to find a distribution P✓ over initializations that minimizes L(P✓, Pt) as stated in
Equation (1). We cannot minimize L(P✓, Pt) directly due to the expectations taken over unknown
distributions Pt and Pz|t for sampled task t, but we may indirectly minimize it by minimizing the
upper bounds in Inequalities (6) or (9).

Computing the upper bound requires evaluating an expectation taken over ✓ ⇠ P✓. In general, this
is intractable. However, we aim to minimize this upper bound to provide the tightest guarantee
possible. Similar to the method in [24], we use an unbiased estimator of E✓⇠P✓L(hA(✓,S), ·). Let P✓
be a multivariate Gaussian distribution over initializations ✓ with mean µ and covariance diag(s);
thus P✓ = N (µ, diag(s)) and P✓,0 = N (µ0, diag(s0)). Further, let  := (µ, log(s)), and use the
shorthand N 0 for the prior and N for the posterior distribution over initializations. We use the
following estimator of E✓⇠P✓L(hA(✓,S), ·):

L(hA(✓,S), ·), ✓ ⇠ N . (10)
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Algorithm 1 PAC-BUS: meta-learning via PAC-Bayes and Uniform Stability
Input: Fixed prior distribution N 0 over initializations
Input: �US uniformly stable Algorithm A
Input: Meta-training dataset S, learning rate �
Initialize:    0

Output: Optimized  ⇤

B( , ✓01, ✓
0
2 . . . , ✓

0
l) :=

1
l

Pl
i=1

bL(h✓0i , Si) +RPAC-B(N ,N 0 , �, l) + �US

while not converged do
Sample ✓ ⇠ N 

for i = 1 to l do
✓0i  A(✓, Si)

end for
   � �r B( , ✓01, ✓

0
2 . . . , ✓

0
l)

end while

We present the resulting training technique in Algorithm 1. This algorithm can be used to learn
a distribution over initializations that minimizes the upper bound presented in Theorem 3 and its
specializations. This is presented for the case when A is �US uniformly stable for some �US. For
gradient-based algorithms, the learning rate ↵ often appears directly in the bound for �US [29]. Thus
it is potentially beneficial to update ↵ as well. We present Algorithm 1 without learning the learning
rate. To meta-learn the learning rate, we can augment  0 to include a parameterization of a prior
distribution over learning rates and update it using the same gradient step presented in 1 for  .

Determining the gradient of B( , ✓01, ✓
0
2 . . . , ✓

0
l) with respect to  requires computing the Hessian of

the loss function if algorithm A(✓, S) uses a gradient update to compute ✓0i. First order approximations
often perform similarly to the second-order meta-learning techniques [27, 25, 47], and can be used
to speed up the training. Additionally, Algorithm 1 can be modified to use mini-batches of tasks
instead of all tasks in the meta update to improve training times; we present an algorithm which uses
mini-batches of tasks in Appendix A.5.1.

In practice, we are interested in algorithms such as stochastic gradient descent (SGD) and gradient
descent (GD) for the base learner. We can obtain bounds on the uniform stability constant �US when
using gradient methods with the results from [29]. See Appendix A.4 for details on the �US bounds
we use in this work. With a bound on �US, we can calculate all the terms in B( , ✓01, ✓

0
2 . . . , ✓

0
l) and

use Algorithm 1 to minimize the meta-learning upper bound. When evaluating the upper bound, we
use the sample convergence bound [37, 24] to upper bound the expectation taken over ✓ ⇠ P✓. See
Appendix A.6 for details.

5 Examples
We demonstrate our approach on three examples below. All examples we provide are few-shot meta-
learning problems. To adapt at the base level, m examples from each class are given for an “m-shot”
learning problem. If applicable, n samples can be given as validation data for each task during
the meta-training step. In the first two examples, our primary goal is to demonstrate the tightness
of our generalization bounds compared to other meta-learning bounds. We also present empirical
test performance on held-out data; however, we emphasize that the focus of our work is to obtain
improved generalization guarantees (and not necessarily to improve empirical test performance).
In the third example, we present an algorithm that is motivated by our theoretical framework and
demonstrate its ability to improve empirical performance on a challenging task. All the code required
to run the following examples is available at https://github.com/irom-lab/PAC-BUS.

5.1 Example: classification on the unit ball

We evaluate the tightness of the generalization bound in Equation (9) on a toy two-class classification
problem where the sample space Z is the unit ball B2(0, 1) in two dimensions with radius 1 and
centered at the origin. Data points for each task are sampled from Pz|t, where a task corresponds
to a particular concept which labels the data as (+) if within B2(ct, rt) and (�) otherwise. Center
ct is sampled uniformly from the y � 0 semi-ball B2

y�0(0, 0.4) of radius 0.4. The radius rt is then
sampled uniformly from [0.1, 1� kctk]. Notably, the decision boundary between classes is nonlinear.
Thus, generalization bounds which rely on convex losses (such as [34]) will have difficulty with
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Table 1: We present the generalization bounds (for � = 0.01) provided by each method if applicable,
and use the sample convergence bound [37] for MR-MAML, and PAC-BUS, but not MLAP-M.2
Note that for these methods, we specifically minimize their respective meta-learning bounds. We
also report the meta-test loss (the softmax activated cross-entropy loss – CELs) for all methods. We
present the mean and standard deviation after 5 trials. We highlight that our approach provides the
strongest generalization guarantee.

Classification on Ball MAML [25] MLAP-M [5] MR-MAML [77] PAC-BUS (ours)

Bound # None 1.0538± 0.00122 0.3422± 0.0006 0.2213± 0.0012
Test Loss # 0.1701± 0.0070 0.1645± 0.0045 0.1584± 0.0012 0.1657± 0.0014

providing guarantees for networks that perform well. We choose the softmax-activated cross-entropy
loss, CELs, as the loss function. Before running Algorithm 1, we address a few technical challenges
that arise from Assumption 1 as well as computing cL and cS . We address these in Appendix A.5.

We then apply Algorithm 1 using the few-shot learning bound in Inequality (9). We present the
guarantee on the meta-test loss associated with each training method in Table 1. In addition, we
present the average meta-test loss after training with 10 samples. We compare our bounds and
empirical performance with the meta-learning by adjusting priors (MLAP) technique [5] and the
meta-regularized MAML (MR-MAML) technique [77]. All methods are given held-out data to learn
a prior before minimizing their respective upper bounds (see Appendix A.11.1 for further details on
the prior training step). Additionally, since all bounds require the loss to be within [0, 1], networks N
are constrained such that the Frobenius norm of the output is bounded by r, i.e., kN(z)kF  r. We
compare the aforementioned methods’ meta-test loss to MAML with weights constrained in the same
manner (note that MAML does not provide a guarantee). Upper bounds which use the PAC-Bayes
framework are computed with many evaluations from the posterior distribution. This allows us to
apply the sample convergence bound [37] (as in Equation (35) for our bound) unless otherwise noted.

We find that PAC-BUS provides a significantly stronger guarantee compared with the other methods.
Note that the guarantee provided by MLAP-M [5] is vacuous because the meta-test loss is bounded
between 0 and 1, while the guarantee is above 1.

5.2 Example: Mini-Wiki

Next, we present results on the Mini-Wiki benchmark introduced in [34]. This is derived from the
Wiki3029 dataset presented in [9]. The dataset is comprised of 4-class, m-shot learning tasks with
sample space Z = {z 2 Rd | kzk2 = 1}. Sentences from various Wikipedia articles are passed
through the continuous-bag-of-words GloVe embedding [51] into dimension d = 50 to generate
samples. For this learning task, we use a k-class version of CELs and logistic regression. Since this
example is convex, we can use GD and bound �US with Theorem 4 in the appendix [29]. We keep
the loss bounded by constraining the network kN(z)kF  r and scale the loss as in the previous
example. The tightness of the bounds on cL and cS affected the upper bound in Inequality (9) more
than in the previous example, so we bound them as tightly as possible. See Appendix A.9 for the
calculations.

We apply Algorithm 1 using the bound which allows for validation data, Inequality (9), to learn on
4-way Mini-Wiki m = {1, 3, 5}-shot. The results are presented in Table 2. We compare our results
with the FMRL variant which provides a guarantee [34], follow-the-last-iterate (FLI)-Batch, and
with MR-MAML [77]. FLI-Batch does not require bounded losses explicitly, but requires that the
parameters of the network lie within a ball of radius r. For the logistic regression used in the example,
this is equivalent to kN(z)kF  r. Thus, we scale the loss and use the same r for each method to
provide a fair comparison. We also show the results of training with MAML constrained in the same
way for reference. Each method is given the same amount of held-out data for training a prior (see
Appendix A.11.2 for further details on training the prior).

2Due to high computation times associated with estimating the MLAP upper bound, this value is not
computed with the sample convergence bound as the other upper bounds are. Thus, the value presented does not
carry a guarantee, but would be similar if computed with the sample convergence bound. The value is shown to
give a qualitative sense of the guarantee.
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Table 2: We compare the generalization bounds (for � = 0.01) provided by each method where appli-
cable and use the sample convergence bound for MR-MAML and PAC-BUS. Since we specifically
minimize these methods’ upper bounds, we can fairly compare the relative tightness of each bound.
We also report the meta-test loss (CELs) for each method for exposition. We report the mean and
standard deviation after 5 trials. We highlight that our approach provides the strongest guarantee.

4-Way Mini-Wiki 1-shot # 3-shot # 5-shot #
FLI-Batch Bound [34] 0.6638± 0.0011 0.6366± 0.0006 0.6343± 0.0014
MR-MAML Bound [77] 0.7400± 0.0003 0.7312± 0.0003 0.7283± 0.0005
PAC-BUS Bound (ours) 0.4999± 0.0003 0.5058± 0.0002 0.5101± 0.0002

MAML [25] 0.3916± 0.0009 0.3868± 0.0005 0.3883± 0.0005
FLI-Batch [34] 0.4091± 0.0008 0.4078± 0.0005 0.4097± 0.0012
MR-MAML [77] 0.3922± 0.0009 0.3869± 0.0003 0.3884± 0.0005
PAC-BUS (ours) 0.3922± 0.0009 0.3878± 0.0003 0.3895± 0.0005

As in the previous example, PAC-BUS provides a significantly tighter guarantee than the other
methods (Table 2). We see similar empirical meta-test loss for MAML [25], MR-MAML [77], and
PAC-BUS with slightly higher loss for FLI-Batch [34]. In addition, we computed the meta-test
accuracy as the percentage of correctly classified sentences. See Table 4 in Section A.11.2 for these
results along with other experimental details.

5.3 Example: memorizable Omniglot

We have demonstrated the ability of our approach to provide strong generalization guarantees for
meta-learning in the settings above. We now consider a more complex setting where we are unable
to obtain strong guarantees. In this example, we employ a learning heuristic based on the PAC-
BUS upper bound, PAC-BUS(H); see Appendix A.5.2 for the details and the Algorithm. We relax
Assumption 1 and no longer constrain the network as in previous sections. Instead, we maintain
and update estimates of the Lipschitz and smoothness constants of the network, using [68], and
incorporate them into the uniform stability regularizer term, �US. We then scale each regularizer term
(i.e., RPAC�B(P✓, P✓,0, �, l) and �US) by hyper-parameters �1 and �2 respectively. Analogous to the
technique described in [77], we aim to incorporate the form of the theoretically-derived regularizer
into the loss, without requiring it to be as restrictive during learning. The result is a regularizer that
punishes large deviation from the prior P✓,0 and too much adaptation at the base-learning level.

We test our method on Omniglot [35] for 20-way, m = {1, 5}-shot classification in the non-mutually
exclusive (NME) case [77]. In [77], the problem of memorization in meta-learning is explored
and demonstrated with non-mutually exclusive learning problems. NME Omniglot corresponds to
randomization of class labels for a task at test time only. This worsens the performance of any network
that memorized class labels; see [77] for more details.3 We compare our method to an analogous
heuristic presented in [77], which also has a DKL(P✓kP✓,0) term in the loss. Thus, this heuristic
(referred to as MR-MAML(W) [77]) regularizes the change in weights of the network. Additionally,
we compare to the heuristic described in [34] (FLI-Online) which performs better in practice than the
FLI-Batch method. We do not provide data for training a prior in this case since we do not aim to
compute a bound in this example. We use standard MAML as a reference. See Table 3 for the results.

We see that MAML [25] and FLI-Online [34] do not prevent memorization on NME Omniglot [77].
This is especially apparent in the 1-shot learning case, where their performance suffers significantly
due to this memorization. Both MR-MAML(W) [77] and PAC-BUS(H) prevent memorization, with
PAC-BUS(H) outperforming MR-MAML(W). Note that PAC-BUS(H) outperforms MR-MAML(W)
by a wider margin in the 1-shot case as compared with the 5-shot case. We believe this is due to the
effectiveness of the uniform stability regularizer at the base level. MR-MAML(W) suffers more in
the 1-shot case because over-adaptation is more likely with fewer within-task examples.

6 Conclusion and discussion
We presented a novel generalization bound for gradient-based meta-learning: PAC-BUS. We use
different generalization frameworks for tackling the distinct challenges of generalization at the two

3We use a slightly different task setup as the one in [77]; see Appendix A.11.3 for the details of our setup.
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Table 3: We present the meta-test accuracy as a percentage on non-mutually-exclusive Omniglot [77].
In contrast to the previous examples, here we aim to achieve the best empirical performance for each
method. In particular, this task compares each methods’ ability to prevent memorization. We report
the mean and standard deviation after 5 trials.

20-WAY Omniglot NME 1-SHOT " NME 5-SHOT "
MAML [25] 23.4± 2.2 75.1± 4.8
FLI-ONLINE [34] 22.4± 0.5 39.1± 0.5
MR-MAML(W) [77] 84.2± 2.2 94.3± 0.3
PAC-BUS(H) (OURS) 87.9± 0.5 95.0± 0.9

levels of meta-learning. In particular, we employ uniform stability bounds and PAC-Bayes bounds
at the base- and meta-learning levels respectively. On a toy non-convex problem and the Mini-Wiki
meta-learning task [34], we provide significantly tighter generalization guarantees as compared to
state-of-the-art meta-learning bounds while maintaining comparable empirical performance. To our
knowledge, this work presents the first numerically-evaluated generalization guarantees associated
with a proposed meta-learning bound. On memorizable Omniglot [35, 77], we show that a heuristic
based on the PAC-BUS bound prevents memorization of class labels in contrast to MAML [25], and
better performance than meta-regularized MAML [77]. We believe our framework is well suited
to the few-shot learning problems for which we present empirical results, but our framework is
potentially applicable to a broad range of different settings (e.g., reinforcement learning).

We note a few challenges with our method as motivation for future work. Our bound is vacuous
on larger scale learning problems such as Omniglot. This is partially caused by a larger KL-
divergence term in the PAC-Bayes bound when using deep convolutional networks (due to the
increased dimensionality of the weight vector). In addition, we do not have a theoretical analysis
on the convergence properties of the algorithms presented, so we must experimentally determine
the number of samples required for tight bounds. In the results of Section 5.1 and 5.2, despite
an improved bound over other methods, our method does not necessarily improve empirical test
performance. We emphasize that our focus in this work was on deriving stronger generalization
guarantees rather than improving empirical performance. However, obtaining approaches that provide
both stronger guarantees and empirical performance is an important direction for future work.

Future work can also explore ways in which to incorporate tighter PAC-Bayes bounds or those with
less restrictive assumptions. One interesting avenue is to extend PAC-BUS by using a PAC-Bayes
bound for unbounded loss functions for the meta-generalization step (e.g. as presented in [28]).
Another promising direction is to incorporate regularization on the weights of the network directly
(e.g., L2 regularization or gradient clipping) to create networks with smaller Lipschitz and smoothness
constants. Additionally, it would be interesting to explore learning of the base-learner’s algorithm
while maintaining uniform stability. For example, one could parameterize a set of uniformly stable
algorithms and learn a posterior distribution over the parameters.

Broader impact. The approach we present in this work aims to strengthen performance guarantees
for gradient-based meta-learning. We believe that strong generalization guarantees in meta-learning,
especially in the few-shot learning case, could lead to broader application of machine learning in
real-world applications. One such example is for medical diagnosis, where abundant training data for
certain diseases may be difficult to obtain. Another example on which poor performance is not an
option is any safety critical robotic system, such as ones which involve human interaction.

Meta-learning methods typically require a lot of data and training time, and ours is not an exception.
In our case, it took multiple weeks of computation time on Amazon Web Services (AWS) instances
to train and compute all networks and results we present in this paper. This creates challenges with
accessibility and energy usage.
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[54] Marı́a Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter Risk
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