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Abstract

Scaling the effective context length is essential for advancing large language
models (LLMs) toward artificial general intelligence (AGI). However, the quadratic
increase in computational complexity inherent in traditional attention mechanisms
presents a prohibitive overhead. Existing approaches either impose strongly biased
structures, such as sink or window attention which are task-specific, or radically
modify the attention mechanism into linear approximations, whose performance in
complex reasoning tasks remains inadequately explored.

In this work, we propose a solution that adheres to the “less structure” principle,
allowing the model to determine where to attend autonomously, rather than intro-
ducing predefined biases. We introduce Mixture of Block Attention (MoBA), an
innovative approach that applies the principles of Mixture of Experts (MoE) to the
attention mechanism. This novel architecture demonstrates superior performance
on long-context tasks while offering a key advantage: the ability to seamlessly
transition between full and sparse attention, enhancing efficiency without the risk
of compromising performance. MoBA has already been deployed to handle actual
production workloads with long-context requirements, demonstrating significant
advancements in efficient attention computation for LLMs. Our code is available
athttps://github.com/MoonshotAI/MoBA.

1 Introduction

The pursuit of artificial general intelligence (AGI) has driven the development of large language
models (LLMs) to unprecedented scales, with the promise of handling complex tasks that mimic
human cognition. A pivotal capability for achieving AGI is the ability to process, understand, and
generate long sequences, which is essential for many applications, from historical data analysis
to complex reasoning and decision-making processes. This growing demand for extended context
processing can be seen not only in the popularity of long input prompt understanding, as showcased
by models like Kimi [1]], Claude [2] and Gemini [3]], but also in recent explorations of long chain-of-
thought (CoT) output capabilities in Kimi k1.5 [4], DeepSeek-R1 [5]], and OpenAl o1/03 [6]].

However, extending the sequence length in LLMs is non-trivial due to the quadratic growth in
computational complexity associated with the vanilla attention [7]]. This challenge has spurred a wave
of research aimed at improving efficiency without sacrificing performance. One prominent direction
capitalizes on the inherent sparsity of attention scores. This sparsity arises both mathematically
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— from the softmax operation, where various sparse attention patterns have be studied [8] — and
biologically [9], where sparse connectivity is observed in brain regions related to memory storage.

Existing approaches often leverage predefined structural constraints, such as sink-based [10] or
sliding window attention [[L1]], to exploit this sparsity. While these methods can be effective, they tend
to be highly task-specific, potentially hindering the model’s overall generalizability. Alternatively,
a range of dynamic sparse attention mechanisms, exemplified by Quest [12]], Minference [8], and
Retrieval Attention [[13], select subsets of tokens at inference time. Although such methods can reduce
computation for long sequences, they do not substantially alleviate the intensive training costs of
long-context models, making it challenging to scale LLMs efficiently to contexts on the order of
millions of tokens. Another promising alternative way has recently emerged in the form of linear
attention models, such as Mamba [[14]], RWKYV [15[16], and RetNet [17]. These approaches replace
canonical softmax-based attention with linear approximations, thereby reducing the computational
overhead for long-sequence processing. However, due to the substantial differences between linear
and conventional attention, adapting existing Transformer models typically incurs high conversion
costs [18,[19} 20} 21] or requires training entirely new models from scratch [22]. More importantly,
evidence of their effectiveness in complex reasoning tasks remains limited.

Consequently, a critical research question arises: How can we design a robust and adaptable attention
architecture that retains the original Transformer framework while adhering to a “less structure”
principle, allowing the model to determine where to attend without relying on predefined
biases? Ideally, such an architecture would transition seamlessly between full and sparse attention
modes, thus maximizing compatibility with existing pre-trained models and enabling both efficient
inference and accelerated training without compromising performance.

Thus, we introduce Mixture of Block Attention (MoBA), a novel architecture that builds upon the
innovative principles of Mixture of Experts (MoE) [23] and applies them to the attention mechanism.
MOoE has been used primarily in the feedforward network (FFN) layers of Transformers [24, 25| 26]],
but MoBA pioneers its application to long context attention, allowing dynamic selection of historically
relevant KV blocks for each query token. This approach not only enhances the efficiency of LLMs
but also enables them to handle longer and more complex prompts without a proportional increase
in resource consumption. MoBA addresses the computational inefficiency of traditional attention
mechanisms by partitioning the context into blocks and employing a gating mechanism to selectively
route query tokens to the most relevant blocks. This block sparse attention significantly reduces the
computational costs, paving the way for more efficient processing of long sequences. The model’s
ability to dynamically select the most informative blocks of keys leads to improved performance and
efficiency, particularly beneficial for tasks involving extensive contextual information.

In this paper, we detail the architecture of MoBA, firstly its block partitioning and routing strategy,
and secondly its efficient implementation. We further present experimental results that demonstrate
MoBA’s superior performance in tasks requiring the processing of long sequences. Our work
contributes a novel approach to efficient attention computation, pushing the boundaries of what is
achievable with LLMs in handling complex and lengthy inputs.

2 Method

In this work, we introduce a novel architecture, termed Mixture of Block Attention (MoBA), which
extends the capabilities of the Transformer model by dynamically selecting historical KV blocks for
attention computation. MoBA is inspired by techniques of Mixture of Experts (MoE) and sparse
attention. The former technique has been predominantly applied to the feedforward network (FFN)
layers within the Transformer architecture, while the latter has been widely adopted in scaling
Transformers to handle long contexts. Our method is innovative in applying the MoE principle to the
attention mechanism itself, allowing for more efficient and effective processing of long sequences.

Preliminaries: Standard Attention in Transformer. We first revisit the standard Attention [[7] in
Transformers. For simplicity, we revisit the case where a single query token g € R'*¢ attends to the
N key and value tokens, denoting K, V' € RV 4 respectively. The standard attention is computed
as Attn(g, K, V) = Softmax(gK ")V, where d denotes the dimension of a single attention head.
We focus on the single-head scenario for clarity. The extension to multi-head attention involves
concatenating the outputs from multiple such single-head attention operations.
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Figure 1: Illustration of mixture of block attention (MoBA). (a) A running example of MoBA; (b)
Integration of MoBA into Flash Attention.
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Algorithm 1 MoBA (Mixture of Block Attention) Implementation

Require: Query, key and value matrices Q, K,V € RY*"*<; MoBA hyperparameters (block size B and
top-k); h and d denote # attention heads and head dimension. Also denote n = N/B to be # blocks.

1: {K;, V;} = split_blocks(K, V, B), where K;, V; € REX"*? j ¢ [n]
2: K = mean_pool(K, B) € R"*hx4

3. S = QKT c RNXth

4: M = create_causal_mask(N,n)

5: G =topk(S + M, k)

6: Q°,K*,V* = get_self_attn_block(Q, K,V)

7: Q™ K™, V™ = index_select_moba_attn_block(Q, K,V, G)
8: O° = flash_attention_varlen(Q?, KS,VS,causalzTrue)

9: O™ = ﬂash_attention_varlen(Qm,Km,\?m,causal:False)
10: O = combine_with_online_softmax(O®, O™)

11: return O
2.1 MoBA Architecture

Different from standard attention where each query tokens attend to the entire context, MoBA enables
each query token to only attend to a subset of keys and values:

MoBA(q, K, V) = Softmax(qK[I]T)V[I], )

where I C [N] is the set of selected keys and values. The key innovation in MoBA is the block
partitioning and selection strategy. We divide the full context of length N into n blocks, where
each block represents a subset of subsequent tokens. Without loss of generality, we assume that the
length N is divisible by the number of blocks n. We further denote B = % to be the block size and
I; =[(i—1) x B+ 1,i x B] to be the range of the i-th block. By applying the top-k gating from
MoE, we enable each query to selectively focus on a subset of tokens from different blocks, rather
than the entire context, namely I = Uy, ~ol;. Here the model employs a gating mechanism, denoted
by g;, to select the most relevant blocks for each query token. The MoBA gate first computes the
affinity score s; measuring the relevance between query g and the i-th block, and applies a top-k



gating among all blocks. More formally, the gate value for the ¢-th block g; is computed by

g = 1 s; € Topk ({s;]j € [n]}. k) )

! 0 otherwise ’
where Topk(-, k) denotes the set containing & highest scores among the affinity scores calculated
for each block. In this work, the score s; is computed by the inner product between g and the mean
pooling of K [I;] along the sequence dimension s; = (g, mean_pool(K|[I;])).

It is important to maintain causality in autoregressive language models, as they generate text by
next-token prediction based on previous tokens. This sequential generation process ensures that a
token cannot influence tokens that come before it, thus preserving the causal relationship. MoBA
preserves causality through two specific designs:

Causality: No Attention to Future Blocks. MoBA ensures that a query token cannot be routed to
any future blocks. By limiting the attention scope to current and past blocks, MoBA adheres to the
autoregressive nature of language modeling. More formally, denoting pos(q) as the position index of
the query g, we set s; = —oo and g; = 0 for any blocks i such that pos(q) < i x B.

Current Block Attention and Causal Masking. We define the “current block™ as the block that
contains the query token itself. The routing to the current block could also violate causality, since
mean pooling across the entire block can inadvertently include future information. To address this, we
enforce that each token must be routed to its respective current block and apply a causal mask during
the current block attention. This strategy not only avoids any leakage of information from subsequent
tokens but also encourages attention to the local context. More formally, we set g; = 1 for the block
1 where the position of the query token pos(q) is within the interval I;. From the perspective of
Mixture-of-Experts (MoE), the current block attention in MoBA is akin to the role of shared experts
in modern MoE architectures [27, [28]], where static routing rules are added when expert selection.

Next, we discuss some additional key design choices of MoBA, such as its block segmentation
strategy and the hybrid of MoBA and full attention.

Fine-Grained Block Segmentation. The positive impact of fine-grained expert segmentation in
improving mode performance has been well-documented in the Mixture-of-Experts (MoE) litera-
ture [27, 28]. In this work, we explore the potential advantage of applying a similar fine-grained
segmentation technique to MoBA. MoBA, inspired by MoE, operates segmentation along the context-
length dimension rather than the FFN intermediate hidden dimension. Therefore our investigation
aims to determine if MoBA can also benefit when we partition the context into blocks with a finer
grain. More experimental results can be found in Section 3.1}

Hybrid of MoBA and Full Attention. MoBA is designed to be a substitute for full attention,
maintaining the same model parameters without any addition or subtraction. This feature inspires
us to conduct smooth transitions between full attention and MoBA. Specifically, at the initialization
stage, each attention layer has the option to select full attention or MoBA, and this choice can be
dynamically altered during training if necessary. A similar idea of transitioning full attention to
sliding window attention has been studied in [29]]. More results can be found in Section @

Implementation. We provide a high-performance implementation of MoBA, by incorporating
optimization techniques from FlashAttention [30] and MoE [31]]. Figure[2]demonstrates the high
efficiency of MoBA, while we defer the detailed experiments on efficiency and scalability to Sec-
tion[3.4] Our implementation consists of five major steps: (1) Determine the assignment of query
tokens to KV blocks according to the gating network and causal mask; (2) Arrange the ordering of
query tokens based on their assigned KV blocks; (3) Compute attention outputs for each KV block
and the query tokens assigned to it. This step can be optimized by FlashAttention with varying
lengths; (4) Re-arrange the attention outputs back to their original ordering; (5) Combine the cor-
responding attention outputs using online Softmax (i.e., tiling), as a query token may attend to its
current block and multiple historical KV blocks. The detailed algorithmic workflow is formalized
in Algorithm[I]and visualized in Figure [Ib] illustrating how MoBA can be implemented based on
MOoE and FlashAttention. First, the KV matrices are partitioned into blocks (Line 1-2). Next, the
gating score is computed, which measures the relevance between query tokens and KV blocks (Lines
3-7). A top-k operator is applied on the gating score (together with causal mask), resulting in a sparse
query-to-KV-block mapping matrix G to represent the assignment of queries to KV blocks (Line 8).
Then, query tokens are arranged based on the query-to-KV-block mapping, and block-wise attention
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Figure 2: Efficiency of MoBA. (a) Sequence length speedup evaluation: Computation time scaling
of MoBA v.s. Flash Attention with increasing sequence lengths (8K-1M). (b) Fixed Sparsity Ratio
scaling: Computation time scaling comparison between MoBA and Flash Attention across increasing
sequence lengths (8K-10M), maintaining a constant sparsity ratio of 95.31% (fixed 64 MoBA blocks
with variance block size and fixed top-k=3).
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Figure 3: Scaling Law (the fitted scaling law curve can be found in Tableof Appendix). (a) LM loss
on validation set (seqlen=8K); (b) trailing LM loss on validation set (seqlen=32K, last 2K tokens).

outputs are computed (Line 9-12). Notably, attention to historical blocks (Line 11 and 14) and the
current block attention (Line 10 and 13) are computed separately, as additional causality needs to be
maintained in the current block attention. Finally, the attention outputs are rearranged back to their
original ordering and combined with online softmax (Line 16) [32,[33].

Overall, MoBA allows the model to adaptively and dynamically focus on the most informative blocks
of the context. This is particularly beneficial for tasks involving long documents or sequences, where
attending to the entire context may be unnecessary and computationally expensive. MoBA’s ability to
selectively attend to relevant blocks enables more nuanced and efficient processing of information.

3 Experiments

3.1 Scaling Law Experiments and Ablation Studies

Scalability w.r.t. LM Loss. To assess the effectiveness of MoBA, we perform scaling law experiments
by comparing the validation loss of language models trained using either full attention or MoBA.
Following the Chinchilla scaling law [34]], we train five language models of varying sizes with a
sufficient number of training tokens to ensure that each model achieves its training optimum. Detailed
configurations of the scaling law experiments can be found in Table [2] of Appendix. Both MoBA
and full attention models are trained with a sequence length of 8K. For MoBA models, we set the
block size to 512 and select the top-3 blocks for attention, resulting in a sparse attention pattern with
sparsity up to 1 — 212x3 — 81.25‘7 In particular, MoBA serves as an alternative to full attention,

. . 8192, .. . . . .
meaning that it does not introduce new parameters or remove existing ones. This design simplifies our

2Since we set top-k=3, thus each query token can attend to at most 2 history block and the current block.
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Figure 5: Hybrid of MoBA and full attention. (a) position-wise LM loss for MoBA, full attention,
and MoBA/full hybrid training; (b) SFT LM loss w.r.t # full attention layers in layer-wise hybrid; (c)
SFT trailing LM loss (seqlen=32K, last 2K) w.r.t # full attention layers in layer-wise hybrid.

comparison process, as the only difference across all experiments lies in the attention modules, while
all other hyperparameters, including the learning rate and batch size, remain constant. As shown
in Figure [3a] the validation loss curves for MoBA and full attention display very similar scaling
trends. Specifically, the validation loss differences between these two attention mechanisms remain
consistent within a range of le-3. This suggests that MoBA achieves scaling performance that is
comparable to full attention, despite its sparse attention pattern with sparsity up to 75%.

Long Context Scalability. However, LM loss may be skewed by the data length distribution [35]],
which is typically dominated by short sequences. To fully assess the long-context capability of
MoBA, we assess the LM loss of trailing tokens (trailing LM loss, in short), which computes
the LM loss of the last few tokens in the sequence. We count this loss only for sequences that
reach the maximum sequence length to avoid biases that may arise from very short sequences. A
detailed discussion on the scale law regarding trailing LM loss can be found in Appendix [A.2] These
metrics provide insights into the model’s ability to generate the final portion of a sequence, which
can be particularly informative for tasks involving long context understanding. Therefore, we adopt
a modified experimental setting by increasing the maximum sequence length from 8k to 32k. This
adjustment leads to an even sparser attention pattern for MoBA, achieving a sparsity level of up to
1- ‘?31227?5’ = 95.31%. As shown in Figure , although MoBA exhibits a marginally higher trailing
LM loss compared to full attention in all five experiments, the loss gap is progressively narrowing.
This experiment implies the long-context scalability of MoBA.

Ablation Study on Fine-Grained Block Segmentation. We carry
out a series of experiments using a 1.5B parameter model with a
32K context length. The hyperparameters of block size and top-k are
adjusted to maintain a consistent level of attention sparsity. Specif-
ically, we divide the 32K context into 8, 16, 32, 64, and 128 blocks,
and correspondingly select 2, 4, 8, 16, and 32 blocks, ensuring an at-
tention sparsity of 75%. As shown in Figured] MoBA’s performance
is significantly affected by block granularity. Specifically, there is a
performance difference of 1e-2 between the coarsest-grained setting
(selecting 2 blocks from 8) and the settings with finer granularity (se-
lecting 32 blocks from 128). These findings suggest that fine-grained ~Figure 4: Fine-Grained Block
segmentation appears to be a general technique for enhancing the ~Segmentation.

performance of models within the MoE family, including MoBA.

Pareto Frontier in terms of Efficiency and Long-context Capability. We investigate the pareto
frontier by studying the relationship between attention sparsity and LM loss. We pre-train an 800M
parameter model in 32K context length. We divide the 32k context length into different number of
blocks (ranging from 16 to 256), and let MoBA select a fixed number of topk=3 blocks. As shown
in Table[7) of Appendix, a sparsity around 3/32 turns out to be a good choice to balance efficiency
(sparsity) and long-context capability.



3.2 Hybrid of MoBA and Full Attention

As discussed in Section E], we design MoBA to be a flexible substitute for full attention, so that it
can easily switch from/to full attention with minimal overhead and achieve comparable long-context
performance. In this section, we first show seamless transition between full attention and MoBA can
be a solution for efficient long-context pre-training. Then we discuss the layer-wise hybrid strategy,
mainly for the performance of supervised fine-tuning (SFT).

MoBA/Full Hybrid Training. We train three models, each with 1.5B parameters, on 30B tokens
with a context length of 32K tokens. For the hyperparameters of MoBA, the block size is set to 2048,
and the top-k parameter is set to 3. The detailed training recipes are as follows: (1) MoBA/full hybrid:
This model is trained using a two-stage recipe. In the first stage, MoBA is used to train on 90% of the
tokens. In the second stage, the model switches to full attention for the remaining 10% of the tokens;
(2) Full attention: This model is trained using full attention throughout the entire training; (3) MoBA:
This model is trained exclusively using MoBA.

We evaluate their long-context performance via position-wise language model (LM) loss, which is a
fine-grained metric to evaluate Im loss at each position within a sequence. Unlike the vanilla LM
loss, which is computed by averaging the LM loss across all positions, the position-wise LM loss
breaks down the loss for each position separately. Similar metrics have been suggested by [3}136],
who noticed that position-wise LM loss follows a power-law trend relative to context length. As
shown in Figure[5al the MoBA-only recipe results in higher position-wise losses for trailing tokens.
Importantly, our MoBA/full hybrid recipe reaches a loss nearly identical to that of full attention,
which highlights the effectiveness of the hybrid training recipe in balancing training efficiency with
model performance. More interestingly, we have not observed significant loss spikes during the
switch between MoBA and full attention, again demonstrating the flexibility and robustness of MoBA.

Layer-wise Hybrid. This flexibility of MoBA encourages us to delve into a more sophisticated
strategy — the layer-wise hybrid of MoBA and full attention. We investigate this strategy with
a particular focus on its application during the supervised fine-tuning (SFT). The motivation for
investigating this strategy stems from our observation that MoBA sometimes results in suboptimal
performance during SFT, as shown in Figure [5b] We speculate that this may be attributed to the
loss masking in SFT — prompt tokens are typically excluded from the loss calculation which can
pose a sparse gradient challenge for sparse attention methods like MoBA (because it may hinder
the backpropagation of gradients, which are calculated only from unmasked tokens, throughout the
entire context). To address this issue, we propose a hybrid approach — switching the last several
Transformer layers from MoBA to full attention, while the remaining layers continue to employ
MoBA. As shown in Figure [Sb|and Figure [5c this strategy can significantly reduce SFT loss.

3.3 Large Language Modeling Evaluation

We assess MoBA across a variety of real-world downstream tasks, evaluating its performance in
comparison to full attention models. For ease of verification, our experiments begin with the Llama
3.1 8B Base Model, which is used as the starting point for long-context pre-training. This model,
termed Llama-8B-1M-MoBA, is initially trained with a context length of 128K tokens, and we
gradually increase the context length to 256K, 512K, and 1M tokens during the continual pre-training.
To ease this transition, we use position interpolation method [37] at the start of the 256K continual
pre-training stage. This technique enables us to extend the effective context length from 128K tokens
to 1M tokens. After completing the 1M continuous pre-training, MoBA is activated for 100B tokens.
We set the block size to 4096 and the top-K parameter to 12, leading to an attention sparsity of up to
1 — 4096x12 — 95 .31%. To preserve some full attention capabilities, we adopt the layer-wise hybrid
strategy — the last three layers remain as full attention, while the other 29 full attention layers are
switched to MoBA. For supervised fine-tuning, we follow a similar strategy that gradually increases
the context length from 32K to 1M. The baseline full attention models (termed Llama-8B-1M-Full)
also follow a similar training strategy as shown in Figure[§] with the only difference being the use of
full attention throughout the process. This approach allows us to directly compare the performance of
MoBA with that of full attention models under equivalent training conditions.

In particular, across all evaluation tasks, we conduct two distinct inference configurations for MoBA.
In the first configuration (termed as MoBA-Prefill-MoBA-Decode), we apply MoBA consistently
throughout both the prefill and generation phases, maintaining the same settings as during training



Benchmark MoBA-Prefill | MoBA-Prefill Full
MoBA-Decode | Full-Decode

AGIEval [0-shot] 0.5268 0.5144 0.5146
BBH [3-shot] 0.6584 0.6573 0.6589
CEval [5-shot] 0.6298 0.6273 0.6165
GSMS8K [5-shot] 0.7324 0.7278 0.7142
HellaSWAG [0-shot] 0.8262 0.8262 0.8279
Loogle [0-shot] 0.3333 0.4209 0.4016
Competition Math [0-shot] 0.4454 0.4254 0.4324
MBPP [3-shot] 0.5220 0.5380 0.5320
MBPP Sanitized [0-shot] 0.6498 0.6926 0.6615
MMLU [0-shot] 0.4968 0.4903 0.4904
MMLU Pro [5-shot][CoT] 0.4343 0.4295 0.4328
OpenAl HumanEval [0-shot][pass@1] 0.6890 0.6951 0.7012
SimpleQA [0-shot] 0.0460 0.0465 0.0492
TriviaQA [0-shot] 0.5610 0.5673 0.5667
LongBench @32K [0-shot] 0.4807 0.4828 0.4821
RULER @ 128K [0-shot] 0.7690 0.7671 0.8031

Table 1: Performance comparison of Llama-8B-1M-MoBA and Llamma-1M-Full. Llama-8B-1M-
MoBA has two inference configurations: MoBA-Prefill-MoBA-Decode and MoBA-Prefill-Full-
Decode. Details of the RULER benchmark can be found in TableEl of Appendix.

(@) (b)

Figure 6: Performance of (a) LLama-8B-1M-MoBA-Prefill-Full-Decode and (b) LLama-8B-1M-
MoBA-Prefill-MoBA-Decode on the Needle in the Haystack benchmark (upto 1M context length).

where the last three layers use full attention. For the second configuration (termed as MoBA-
Prefill-Full-Decode), we employ MoBA exclusively during the prefill phase while switching to full
attention during generation. As shown in Table [T} MoBA, across both its configurations, exhibits
performance levels that are highly comparable to those of the Llama-8B-1M-Full model. It is
particularly noteworthy that in the longest benchmark, RULER, where MoBA operates at a sparsity
level of upto 1— 401926T§(12 = 62.5%, MoBA with both two inference configurations nearly matches the
performance of full attention, with scores of 0.7690/0.7671 compared to 0.8031. For context lengths
of up to 1M tokens, we evaluate the model using the traditional Needle in the Haystack benchmark. As
shown in Figure[6] MoBA demonstrates satisfactory performance, while MoBA-Prefill-Full-Decode

is slightly better than MoBA-Prefill-MoBA-Decode.

3.4 Efficiency and Scalability

The above experimental results show that MoBA achieves comparable performance not only regarding
language model losses but also in real-world tasks. To further investigate its efficiency, we compare
the forward pass time (prefill time) of the attention layer in two models trained in Section [3.3] —
Llama-8B-1M-MoBA and Llama-8B-1M-Full. We mainly focus on the attention layer, as all other
layers (e.g., FFN) have identical FLOPs in both models. As shown in Figure [2a] MoBA is more
efficient than full attention across all context lengths, demonstrating a sub-quadratic computational
complexity. In particular, it achieves a speedup ratio of up to 6.5x when prefilling 1M tokens.
Furthermore, the end-to-end forward time of Llama-8B-1M-MoBA and Llamma-8B-1M-Full can be
found in Table[6]of Appendix.



We also explore the length scalability of MoBA by gradually increasing the context length to 10
million tokens. To maintain a constant attention sparsity, we keep the top-k value and number of
MoBA Block fixed while proportionally increasing the block size. To reach the 10M context length,
we expanded tensor parallelism [38]] toward the query head level, Specifically, we broadcast key and
value tensors across distributed query heads, addressing GPU memory limitations while preserving
computational efficiency. As shown in Figure[2b] MoBA demonstrates superior efficiency compared
to standard Flash Attention when scaling to longer sequences. Specifically, at 10M tokens moba
achieves a speedup ratio of 16x reduction in attention computation time. The inset graph in the
Figure focusing on shorter sequences (32K to 512K), shows that even though both methods
perform comparably at smaller scales, MoBA’s computational advantage becomes increasingly
evident as sequences grow longer, highlighting its particular strength in processing extremely long
sequences.

Overall, the high efficiency of MoBA can be attributed to two key innovations: (1) the block sparse
attention mechanism, and (2) the optimized implementation combining MoE and FlashAttention, as
described in Section 2.1} These techniques effectively address the quadratic complexity limitation of
full attention, reducing it to a more economical sub-quadratic scale.

4 Related Work

The development of efficient attention [39] mechanisms has been a critical area of research in the
field of natural language processing, particularly with the rise of Large Language Models (LLMs).
We review related work in this section:

Static Sparse Patterns: Significant efforts [40, 411 42| [11], 431 44| |45] 46| [47]] have been dedicated
to the design of static attention patterns in LLMs. Their choices of static attention patterns can
encompass strided and fixed attention, window attention, global token attention, random attention,
dilated attention, block sparse attention, or any combinations of them. In the realm of multimodal
models, static sparse attention mechanisms have also been developed, such as axial attention [48]] for
2D images and spatial-temporal attention [49] for 3D videos.

Dynamic Sparse Patterns: Different from static patterns, dynamic sparse attention techniques adap-
tively determine which tokens to attend. Reformer [S0] and Routing Transformer [51] respectively
employ locality-sensitive hashing (LSH) and K-means to cluster tokens, and attend to clusters rather
than the full context. Memorizing Transformers [52] and Unlimiformer [S3]] dynamically attend to
tokens selected by the k-nearest-neighbor (kNN) algorithms. CoLT5 [54] designs a routing modules
to select the most important queries and keys. Sparse Sinkhorn Attention [55] learns to permute
blocks from the input sequence, allowing dynamic block sparse attention computation. Notably,
DeepSeek NSA [56] is a most recent work that studies dynamic sparse attention, whose selected
attention branch is similar to MoBA’s block selection mechanism. We believe that the emergence of
dynamic sparse attention underscores its significance for the future of long-context LLMs

Training-free Sparse Attention. There are also strategies designed to incorporate sparse attention to
model inference. During model inference, the complete prompt can be utilized for attention profiling,
which allows for the exploration of more intricate sparse attention patterns. For instance, MoA [57],
Minference [8], and SeerAttention [58] have investigated sparse attention configurations such as
A-shape, vertical-slash, and dynamic block sparsity. Besides, considerable work has been dedicated to
compressing and pruning the KV-cache to achieve a balance between the quality and speed. Notable
efforts in this area include [59, 10, 160, 61} |12, 162]].

Beyond Traditional Attention Architecture: Another line of research investigates novel architec-
tures that deviate from the conventional attention mechanism. Studies in this domain have explored
architectures that are inspired by Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), State Space Models (SSMs), or Linear Attention, such as [63} 164! 165,166l (15,67} 117, 168]].

5 Conclusion

In this paper, we introduce Mixture of Block Attention (MoBA), a novel attention architecture inspired
by the principles of Mixture of Experts (MoE) that aims to enhance the efficiency and scalability of
large language models (LLMs) for long-context tasks. MoBA addresses the computational challenges



associated with traditional attention mechanisms by partitioning the context into blocks and employing
a dynamic gating mechanism to selectively route query tokens to the most relevant KV blocks.
This approach not only reduces computational complexity but also maintains model performance.
Moreover, it allows for seamless transitions between full and sparse attention. Through extensive
experiments, we demonstrated that MoBA achieves performance comparable to full attention while
significantly improving computational efficiency. Our results show that MoBA can scale effectively to
long contexts, maintaining low LM losses and high performance on various benchmarks. Additionally,
MoBA’s flexibility allows it to be integrated with existing models without substantial training cost,
making it a practical continual pre-training solution for enhancing long-context capabilities in LLMs.
In summary, MoBA represents a significant advancement in efficient attention, offering a balanced
approach between performance and efficiency.

Limitations. Firstly, the router of MoBA is parameter-free. This design choice may limit its ability to
capture more nuanced long-context patterns. Future work could explore the development of learnable
router, which allows more sophisticated and adaptive block selection mechanisms. Secondly, this work
focuses on text inputs. Extending MoBA to other modalities, such as images, audio, or multimodal
inputs, could significantly broaden its applicability. Finally, investigating MoBA’s potential for
improving generalization in complex reasoning tasks, such as long chain-of-thought (CoT) reasoning,
could provide further insights into its capabilities.

Broader Impact. The development of MoBA has the potential to significantly enhance the efficiency
and scalability of large language models (LLMs), enabling more powerful and resource-efficient
processing of long-context tasks. This advancement could positively impact various applications,
such as natural language understanding, complex reasoning, and decision-making processes, leading
to more capable Al systems. However, it is important to consider potential negative societal impacts,
such as the misuse of enhanced language models for generating disinformation or the unintended
consequences of deploying models with biases. To mitigate these risks, future work should focus on
developing robust safeguards and ensuring transparency in model deployment and usage.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We show Mixture of Block Attention (MoBA), an innovative approach that applies
the principles of Mixture of Experts (MoE) to the attention mechanism, achieves significant
advancements in efficient attention computation for LLMs.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the main limitations in Section [5
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We list the pseudocode of MoBA in Algorithm [T] and include the code in the
Supplementary Material. Implementation details and experimental settings are described in
Section 2.1 and Section 3] respectively.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the
model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
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Justification: We include our code in Supplementary Material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

» At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We provide the training and test details in Section [3|and Appendix Section[A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments follow the standard protocol in long-context LLM tasks, and thus
did not report statistical significance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error of the
mean.
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8.

10.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We confirm that all necessary computational resource information is provided in
Section[A.T|and Section[A.3] including the GPU types, cluster network architecture, and training
durations for our various experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

» The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts of our work in Section[3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks, because the main contribution of this work is novel
architecture, therefore we do not release data or models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We properly cite the original paper that produced the code packages or datasets
that are used in this paper.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
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16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our new assets include the code of this work, which will be released under The
MIT License (MIT).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Scaling Law

For our validation experiments in the Section [3.]and Section[3.2] we utilized a distributed computing
infrastructure consisting of 8 server nodes, each equipped with 8 NVIDIA H800 GPUs (64 GPUs
in total). Within each node, the GPUs were interconnected via NVLink for high-bandwidth intra-
node communication, while Remote Direct Memory Access (RDMA) was employed for efficient
inter-node communication across the cluster. The learning rate schedule followed the optimal decay
pattern established during the training phase. Each experiment was terminated upon completion of
the expected number of training tokens.

No-Emb Model Param | Head | Layer | Hidden | Training Token | Block size | TopK

545M 14 14 1792 10.8B 512 3
822M 16 16 2048 15.3B 512 3
1.1B 18 18 2304 20.6B 512 3
1.5B 20 20 2560 27.4B 512 3
2.1B 22 22 2816 36.9B 512 3

Table 2: Configuration of Scaling Law Experiments

L(©) | MoBA | Full
LM loss (seqlen=8K) | 2.625 x C~%%%% | 2.622 x C~%:0%

Trailing LM loss (seqlen=32K, last 2K) \ 1.546 x ¢'~0-108 \ 1.464 x ¢ ~0:097
Table 3: Fitted scaling law curve.

A.2 Long Context Scalability

To address the bias in natural data distribution that favors short contexts, we strategically segmented
the overall sequences into discrete segments based on their actual positions. For example, the segment
spanning positions 30K-32K exclusively reflects losses associated with documents exceeding 30K
context lengths and also masks the positions from 30K to 32K. This approach ensures a more
balanced and representative evaluation across different context lengths. In our exploration of long-
context scalability, we made a pivotal discovery: the trailing tokens account for the majority of the
performance discrepancy between the full context baseline and the newly proposed sparse attention
architectures. Consequently, we streamlined the long-context scaling process by focusing on trailing
token scaling. This not only simplifies the computational requirements but also significantly enhances
the efficiency and effectiveness of investigating long-context scenarios. This finding holds substantial
implications for the development of more efficient and scalable attention mechanisms in the future.

A.3 Large Language Modeling Evaluation

For our validation experiments in the Section we utilized a distributed computing infrastructure
consisting of 128 GPU server nodes, each equipped with 8 NVIDIA H800 GPUs (1024 GPUs in
total). Within each node, the GPUs were interconnected via NVLink for intra-node communication,
while Remote Direct Memory Access (RDMA) was employed for inter-node communication. We
trained our model following the recipe outlined in Figure [8] requiring over 30 days to complete
training recipe of the Full model with a context length of 1M tokens. The MoBA variant achieved a
significantly reduced training time by leveraging the same pretrained checkpoint established prior to
the 1M context length training phase.
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(a) Scaling law (0-2k)

(e) Scaling law (8-10k)

(m) Scaling law (24-26k)

........................

(b) Scaling law (2-4k) (c) Scaling law (4-6k)

rrrrrrrrrrrr

(f) Scaling law (10-12k) (g) Scaling law (12-14k) (h) Scaling law (14-16k)

Figure 7: Scaling laws for positions 0-16k

(j) Scaling law (18-20k) (k) Scaling law (20-22k) (1) Scaling law (22-24k)

(n) Scaling law (26-28k) (0) Scaling law (28-30k) (p) Scaling law (30-32k)

Figure 7: Scaling laws for positions 16-32k
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LM Loss Position Range |

MoBA

Full

0K - 2K
2K - 4K
4K - 6K
6K - 8K
8K - 10K
10K - 12K
12K - 14K
14K - 16K
16K - 18K
18K - 20K
20K - 22K
22K - 24K
24K - 26K
26K - 28K
28K - 30K
30K - 32K

3.075 x ¢ 0078
2.415 x ¢ 0-084
2.085 x ¢ 0081
1.899 x C'~0-092
1.789 x ¢ ~0-091
1.721 x ¢ 0092
1.670 x C' 0089
1.630 x ¢ —0-089
1.607 x C' 0090
1.586 x ¢ 0091
1.571 x C'~0:093
1.566 x C' 0089
1.565 x ¢ 0091
1.562 x ¢ ~0-:095
1.547 x ¢ 70097
1.546 x C'~0-108

3.068 x ¢ 0078
2.411 x ¢ 0083
2.077 x ¢ 0081
1.894 x ¢—0-092
1.774 x C—0-089
1.697 x ¢ ~0-087
1.645 x C'—0-088
1.600 x C~0-087
1.567 x C' 0087
1.542 x C'~0-087
1.519 x ¢'—0-086
1.513 x ¢ ~0.085
1.502 x C—0-085
1.493 x ¢ —0-088
1.471 x ¢ 0091
1.464 x C~0-097

Table 4: Loss scaling with different positions

MoBA-Prefill

MoBA-Prefill

Ruler Tasks MoBA-Decode Full-Decode Full
Avg. \ 0.769 \ 0.767 \ 0.803
niah_multikey_1 0.982 0.982 | 1.000
niah_multikey_2 0.762 0.754 | 0.992
niah_multikey_3 0.944 0.948 | 0.994
niah_multiquery 0.819 0.812 | 0.765
niah_multivalue 0.558 0.559 | 0.571
niah_single_1 1.000 1.000 | 1.000
niah_single_2 0.992 0.984 | 1.000
niah_single_3 0.966 0.958 | 0.982
ruler_cwe 0.009 0.010 | 0.010
ruler_fwe 0.882 0.881 | 0.905
ruler_ga_hotpot 0.510 0.518 | 0.542
ruler_qa_squad 0.604 0.602 | 0.753
ruler_vt 0.968 0.965 | 0.926

Table 5: Ruler Test Result @ 128K

Context Length | Full Prefill Time (sec) | MoBA Prefill Time (sec) | Speed-up

256 K 5.67 3.55 1.60x
512K 19.59 8.40 2.33x%
1M 73.97 22.15 3.34%

Table 6: End-to-end Efficiency of Llama-8B-1M-MoBA and Llamma-1M-Full (Note that Llama-8B-
IM-MoBA is a hybrid model with the last 3 layers to be full attention).

#Blocks | 4 | 8 | 32 | 128 | 512

LM loss | 248 | 2.48 | 2.47 | 253 | 2.60
Table 7: The relationship between attention sparsity and LM loss.
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Figure 8: The continual pre-training and SFT recipes.
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