
Learning to Repair: Repairing model output errors after deployment using
a dynamic memory of feedback

Anonymous ACL submission

Abstract

Large language models (LMs), while power-001
ful, are not immune to mistakes, but can be002
difficult to retrain. Our goal is for an LM to003
continue to improve after deployment, without004
retraining, using feedback from the user. Our005
approach pairs an LM with (i) a growing mem-006
ory of cases where the user identified an output007
error and provided general feedback on how008
to correct it (ii) a corrector model, trained to009
translate this general feedback into specific ed-010
its to repair the model output. Given a new,011
unseen input, our model can then use feedback012
from similar, past cases to repair output errors013
that may occur. We instantiate our approach014
using an existing, fixed model for script gen-015
eration, that takes a goal (e.g., “bake a cake”)016
and generates a partially ordered sequence of017
actions to achieve that goal, sometimes contain-018
ing errors. We show that our memory-enhanced019
system, FBNET, learns to apply user feedback020
effectively to repair such errors (up to 30 points021
improvement), while making a start at avoiding022
similar past mistakes on new, unseen examples023
(up to 7 points improvement in a controlled set-024
ting). This is a first step towards strengthening025
deployed models, potentially broadening their026
utility.1027

1 Introduction028

While language models (LMs) have achieved re-029

markable success for many tasks (Wang et al.,030

2018; Talmor et al., 2019), they are still prone to031

mistakes (Bender and Koller, 2020). Correcting032

such mistakes by retraining is not always easy due033

to the cost and/or unpredictability of how additional034

training data will change the model. Instead, our035

goal is to allow users to correct such errors directly036

through interaction, without retraining – by giving037

corrective feedback on the model’s output. Our ap-038

proach is to maintain a growing, dynamic memory039

1Our code and data is available at https://
anonymous.4open.science/r/interscript

Figure 1: Given a frozen model B, we train a corrector
model G to apply feedback from a user about errors
made by the original model. In the example, B has
generated a script with an error in, stating that “driving”
and “getting in a car” can occur in any order (red box).
The user provides general feedback (“Get in a car be-
fore driving”), and G operationalizes this to generate
a corrected graph (by predicting and applying a graph
edit operation) in which “get in car” happens first (green
box). The feedback is stored in a memoryM so it can
also be retrieved to repair similar, future errors.

of such feedback, and use a trained corrector model 040

to apply such feedback to repair the model output. 041

By doing so, the system can also potentially fix 042

output errors for new unseen inputs using feedback 043

from similar, past cases. 044

We consider the class of problems where the 045

model’s output is repairable, namely a structured 046

output that is (typically) nearly correct, and fix- 047

able through a small number of edit operations. 048

Specifically, we apply our approach to the task of 049

script generation, using an existing, fixed model 050

called proScript (Sakaguchi et al., 2021) that sat- 051

isfies this constraint. proScript takes as input a 052

goal to achieve (expressed in natural language), 053

and outputs a partially ordered sequence of steps - 054

a script - required to achieve that goal. Our interest 055

here is not in proScript itself, but what to do when 056

proScript’s output contains an error. 057

1

https://anonymous.4open.science/r/interscript
https://anonymous.4open.science/r/interscript

This instantiation of our approach is illustrated058

in Figure 1. Here, proScript has generated a script059

x to achieve the goal “see an alligator”, but the060

script contains an error: it states that the steps of061

“driving to the zoo” and “get in car” can be applied062

in any order. To repair this, the user provides the063

general feedback “Get in a car before driving”. The064

corrector model G then takes that feedback and the065

erroneous script, translates it into appropriate edit066

operations on the script, and applies those edits to067

generate a corrected script (y in Figure 1). The068

feedback is stored in memory M so it can also069

be retrieved in the future. Our system, FBNET,070

comprises of the corrector module G, the memory071

M, and searching and writing operations. To train072

our system, we collect examples of bad outputs,073

general feedback, and specific edits that the feed-074

back should translate to (Section 4.2). This allows075

G to learn how to translate general feedback into076

specific edits to apply. Further, pairing G with the077

memoryM allows FBNET to repair new, unseen078

scripts containing similar errors to the one the user079

corrected.080

Our approach loosely follows some early AI sys-081

tems that maintained a memory of the output prob-082

lems and how to fix them (Sussman, 1973; Ham-083

mond, 1986; Riesbeck, 1981), but here, we use084

neural methods and interact with a user to provide085

corrective feedback. It also builds on the idea of086

allowing users to specify edits in natural language,087

e.g., NLEdit (Elgohary et al., 2021), except we use088

general user feedback (then translated to example-089

specific edits by G) and add a memory so that090

feedback can also be automatically reused.091

We evaluate FBNET along two dimensions: (a)092

How well does FBNET interpret NL feedback?093

(b) How well can FBNET learn from prior mis-094

takes? We find that (a) FBNET can use NL feed-095

back effectively to repair script errors, with +30%096

(absolute) improvement over a baseline that does097

not use feedback, and that (b) the system makes098

a start at avoiding past mistakes (+7% (absolute)099

improvement in a controlled setting). Although100

these results are only for a single deployment of our101

general approach, they suggest that memory-based102

architectures can help deployed models continue to103

improve with time, without retraining, potentially104

broadening their utility.105

2 Related work 106

There have been numerous approaches to using 107

user feedback to improve model performance, 108

including: 109

(1) Providing additional training examples: 110

Dasgupta et al. (2019) show how a user can correct 111

bad model behavior by carefully selecting new 112

training examples for the system to learn from, a 113

style of interactive active learning (Settles, 2012). 114

(2) Marking/scoring the system’s answer(s): 115

In SHRDLURN, the user provides feedback by 116

identifying which of the system’s alternative 117

interpretations of a user command is correct (Wang 118

et al., 2016). 119

(3) Providing hints: (Mehta and Goldwasser, 120

2019) show how a system can learns to understand 121

regional (e.g., ”top left”) and directional (e.g., 122

”move down”) hints from the user for a (simulated) 123

robot. 124

(4) Provide additional information: In TeachY- 125

ourAI (Talmor et al., 2020), given a wrong answer 126

to a question, users can enter NL facts and rules 127

to use as context when reasking the question, to 128

(ideally) produce the correct answer. 129

(5) Correcting bad answers: In the semantic 130

parsing task of NL-to-SQL, NLEdit learns to 131

interpret and apply syntactic edit operations from 132

the user expressed in NL, e.g., ”replace course id 133

with program id.” (Elgohary et al., 2021). 134

135

These methods all augment/replace the standard 136

use of automated answer feedback (if available), 137

e.g., testing whether a semantic parse correctly ex- 138

ecutes to the correct answer, e.g., (Zettlemoyer and 139

Collins, 2005), sometimes using unsupervised tech- 140

niques to generate additional training data, e.g., 141

BIFI (Yasunaga and Liang, 2021). 142

Our work expands on the above approaches in 143

two important ways. First, users provide general 144

feedback in NL, that can potentially be applied to 145

multiple cases (rather than just correcting a specific 146

instance). The corrector model G is trained to oper- 147

ationalize that advice in different ways for different 148

examples appropriately, in contrast to (say) NLEdit 149

where the user-provided specific corrective edits 150

for a single example only. 151

Second, we use a feedback memory, allowing 152

feedback to be reused. While adding external mem- 153

ory to neural systems is not new, e.g., RAG (Lewis 154

et al., 2020), REALM (Guu et al., 2020), ours is 155

the first to utilize a memory of prior user feedback 156

2

Figure 2: Proposed architecture: (left) B does not ac-
count for user feedback. (right) FBNET maintains a
memory M of corrective feedback, and searches for
feedback from prior queries with similar error intent as
x using a retrieval function Ω. x is then concatenated to
the retrieved feedback to form the input to the corrector
model G. Users can also give new feedback which is
added toM.

to improve future neural model performance. This157

can be viewed as a modern approach to failure-158

driven reminding, an essential theme in earlier AI159

and Cognitive Science research (Riesbeck, 1981;160

Schank and Leake, 1989; Ross, 1984).161

3 FBNET162

3.1 Overview of the Architecture163

Fig. 2 gives an overview of FBNET. The input164

is a potentially noisy graph x generated by a base165

model B and the output y is a corrected graph. At166

inference time, i.e., after deployment, a user can167

critique y by providing natural language feedback168

fb on an error e. As output, the model generates169

the corrected graph y that accounts for fb.170

The corrector model G is responsible for im-171

proving the potentially noisy output from B. G172

achieves it using user feedback stored in a continu-173

ously updated memoryM.174

The Memory M is a growing lookup table of175

key-value pairs: key (xi) - value (fbi), where xi176

is a particular incorrect graph, and fbi is the corre-177

sponding feedback. This memory supports lookup178

(read) and write operations. Given a new query179

x, FBNET uses feedback fb from similar, prior180

queries in the memory to enrich x. This feedback181

fb is retrieved using the lookup function Ω(x,M).182

The corrector then combines fb with x, and gen-183

erates y. The write operation is used whenever a184

user gives new feedback.185

3.2 Assumptions 186

We make two assumptions on the characteristics of 187

the feedback and the input. 188

A1. Base model B’s output is repairable: B 189

typically produces syntactically correct output 190

graph but can have semantic errors that the user 191

can recognize and describe using natural feed- 192

back. 193

A2. Feedback is reusable: If two examples i, j 194

have similar errors ei and ej then the feedback 195

fb for one should apply to the other, i.e., (ei ∼ 196

ej ⇔ fbi ∼ fbj) 197

3.3 MemoryM and Ω 198

As mentioned, the feedback is stored in a memory 199

of key (x), value (fb) pairs. Ω is a retrieval function 200

that matches a query key (xj) to a similar xi in 201

memory implicitly on the similarity of the errors ei 202

and ej . 203

3.4 Corrector model G 204

The graph corrector model G generates an im- 205

proved output y given a noisy graph x and fb. This 206

is done in a two-step process, (i) learning to predict 207

a graph edit operation ye given x and fb (ii) using 208

simple graph operations to apply ye to x to produce 209

y. Our approach of generating an edit instead of 210

directly generating the corrected graph is beneficial 211

for two reasons. First, generating edits is simpler 212

for the model than generating entire graphs. Sec- 213

ond, it simplifies evaluation metrics as it is much 214

simpler to compare two smaller generated edits. 215

Note that given an edit we can deterministically 216

fix a script, and thus the two-step process helps us 217

achieve the same end goal (corrected scripts from 218

noisy scripts and feedback). 219

3.5 Training and Inference 220

As mentioned, the graph corrector G first generates 221

an edit ye, which is applied to the incorrect graph x 222

to generate the correct graph y. We need a corpus 223

of (x, fb,y) to train this system. Specifically, we 224

extract an edit from each such tuple, where edit ye 225

is the difference between the output y and the input 226

x. x and y can be expressed in a string represen- 227

tation using a graph description language such as 228

DOT. We then train a language model to estimate 229

Pθ(y
e | x, fb), which allows us to generate an edit 230

for a given (x, fb) using greedy sampling, where θ 231

denotes the parameters of the language model. 232

3

4 Application: Script Generation233

4.1 Task234

We instantiate our framework for the task of script235

generation. Formally, the script generation task236

(Sakaguchi et al., 2021) takes as input a scenario237

and generates a script G(V,E), where V is a set238

of essential events {v1, ...vi, ...v|V |} and E is a set239

of temporal ordering constraints between events240

{eij} which means that the events vi must precede241

the event vj (vi ≺ vj). Partial ordering of events242

is possible, e.g., you can wear a left sock and a243

right sock in any temporal order. To solve this task,244

script generation models are required to generate245

events (V) and predict the edges (E) jointly. See246

Figure 3 for an example.247

find the cake recipe

gather the ingredients

turn on the oven
mix the ingredients

put the cake batter in the oven

bake for the right amount of time

take the cake out of the oven

Scenario: bake a cake

Figure 3: An example of a script in Sakaguchi et al.
(2021). In a script generation task, models take the goal
as the input and generate a (possibly) partial-order graph,
which consists of essential steps and their ordering.

PROSCRIPTgen (Sakaguchi et al., 2021) is a re-248

cently released model that, given a goal, generates249

V and predicts the edge structure E jointly. It is250

based on the T5-XXL model (11B parameters) and251

generates the script as a graph in DOT format. The252

authors report that the DOT format is always valid253

at inference time and that V and the graph structure254

are generally of high quality. They characterize the255

graph edits required to correct a generated script256

(such as removing a node, adding a node, changing257

edge order, etc.). Mechanical Turk workers could258

repair most of the generated scripts within a few259

edits (typically an edit distance of 5) - we further260

validate this in Appendix §8.1. This makes for an261

attractive use-case for interactive learning because262

the generated content from the model is repairable263

through user feedback.264

4.2 Feedback Data Collection 265

To train the corrector G, as well as evaluate our 266

approach, we collected a set of (x, fb, y) tuples us- 267

ing crowdworkers, where x is a possibly erroneous 268

script generated by PROSCRIPTgen, fb is general 269

feedback about the error (if any), and y is the cor- 270

rected script. In practice, crowdworkers specified 271

the edits to x to create y (using simple graph oper- 272

ations we can generate y from ye– see Table 7 for 273

an example). We collected 1542 tuples of data, ran- 274

domly splitting it into 843 train, 154 validation, and 275

545 test points. Examples of the resulting dataset 276

are shown in Table 1. 277

4.3 Training the Corrector Model 278

We initialize θ with a checkpoint from the text- 279

to-text pre-trained T5 transformer (Raffel et al., 280

2020) and fine-tune on our dataset. We use the 281

default hyperparameters (including the Adafactor 282

optimizer) in the T5 library.2 We fine-tune a T5- 283

XXL model for the main results, fine-tuned for 284

5,000 steps (batch size 8), selecting the checkpoint 285

with the highest validation score (usually the fi- 286

nal step). To implement the memoryM, we use 287

a BERT-based Sentence Transformer to encode x 288

(Reimers and Gurevych, 2019), and use cosine dis- 289

tance with a threshold of 0.9 to find a matching key 290

xm. We leave the investigation of more complex 291

retrieval functions (e.g., using attention mechanism 292

to future work.) 293

5 Experiments 294

We empirically evaluate two questions: 295

RQ1. How well does FBNET interpret NL feed- 296

back? Specifically, we measure how well 297

FBNET can translate general feedback fb from 298

a user into the correct repair edit on an imper- 299

fect script x. The main focus of RQ1 is to test 300

the performance of G in the pipeline (Fig. 2) 301

RQ2. How well can FBNET learn from prior 302

mistakes? We make the same measurement, 303

but using feedback fb recalled from similar, 304

previous examples. The main focus of RQ2 is 305

to test the performance ofM and Ω. 306

Metrics To compare the gold edit ye∗ and the 307

generated edit yê, we use standard metrics used to 308

evaluate generated text. We report the following 309

metrics: 310

2https://github.com/google-research/text-to-text-transfer-
transformer

4

Error type Input script x Feedback fb Expected edit
ye∗

Generated
edit yê

score

EM EMtype EMloc

missing step
1. get out of car
2. stop in front of car
3. turn body toward back of car
4. walk to back of car
5. take blanket out of car
6. walk to desired location
7. throw blanket down

a person needs
to open the
door before
they take an
object out

insert node
‘open the back
door of the car’
before ‘take
blanket out of
car’

insert node
‘open car door’
before ‘take
blanket out of
car’

0 1 1

missing step
1. buy a video game
2. talk to the cashier
3. make the transaction
4. get the receipt
5. load video game into the car
6. get into the car
7. take xbox home

after a person
makes a trans-
action, they
then head to
their car

insert node
‘walk to the car’
after ‘get the
receipt’

insert node ‘get
into the car’ af-
ter ‘make the
transaction’

0 1 0

wrong step
1. make a bunch of cards
2. grab a pen
3. grab some paper
4. pick up a pen
5. place the paper on the table
6. pick up the pen
7. write names on the cards

good plans
shouldn’t
include redun-
dant steps

remove node
‘pick up the
pen’

remove node
‘pick up the
pen’

1 1 1

wrong order
1. leave home and get in car
2. remem. destination address
3. look around for the car
4. walk towards the car
5. open the car door
6. sit down in the car
7. put on the seatbelt

you wouldn’t
look for some-
thing you’re al-
ready with

reorder edge
between ‘⟨
leave home
and get in car ,
look around for
the car ⟩’

remove node
‘look around
for the car’

0 0 0

Table 1: Some examples of the data points and model predictions. ye takes the form: <EDIT TYPE> over
[<ARG>] at <LOCATION> The dataset contains partial order points as well, but they are omitted here for
simplicity.

• Exact match: EM gives a score of 1 if ye∗ is311

equal to yê and 0 otherwise.312

• Generation metrics: We report standard gen-313

eration metrics BLEU (Papineni et al., 2002)314

and ROUGE (Lin, 2004) to account for similar315

but not exact matches. We use the implemen-316

tation released in the metrics package of the317

GEM-benchmark (Gehrmann et al., 2021).3318

We report these metrics over the entire edit: EM,319

BLEU, ROUGE. The components of ye broadly fol-320

low a template: <EDIT TYPE> over [ARG]321

at <LOCATION> (see Table 1). This allows com-322

parison of the location or edit type in ye∗ and yê:323

EM loc, BLEU loc, ROUGE loc and EM type, BLEU324

type, ROUGE type325

3https://github.com/GEM-benchmark/
GEM-metrics/

Baseline As baseline, we train a model that does 326

not use any feedback (we call this, NO-FB) and 327

is trained only with input = erroneous script and 328

output = edit. The language model used in this 329

baseline and FBNET is the same (T5-XXL), allow- 330

ing a meaningful comparison. 331

5.1 RQ1: How well does FBNET interpret NL 332

feedback? 333

To measure how well the graph corrector G learns 334

to interpret NL feedback, we provide oracle feed- 335

back to FBNET, and we call this FBNETo . Table 2 336

shows that FBNETo learns to react to the feedback. 337

Further, we note that the model is good at identify- 338

ing the error type that the feedback indicates. Still, 339

it is difficult for the model to localize the error in 340

the graph, probably because the location is not ex- 341

plicitly mentioned in the feedback, and the model 342

needs to infer it. 343

5

https://github.com/GEM-benchmark/GEM-metrics/
https://github.com/GEM-benchmark/GEM-metrics/

EM EMloc EMtype BLEU ROUGE

NO-FB 3.5 9.7 30.4 21.7 39.0
FBNETo 38.6 45.8 69.3 54.2 70.6

Table 2: Interpreting NL Feedback: Correctness of
Predicted Edits Given an erroneous script x, and
general feedback fb from the user, FBNet perfectly pre-
dicts the specific repair edits 38% of the time (EM ,
exact match) - an order of magnitude better than a base-
line NO-FB predicting the repair from x alone. EMloc

and EMtype compare just parts of the edit sequences (lo-
cations/types of the required edits, respectively), while
BLEU and ROUGE are softer matching metrics.

How consistently does FBNET interpret similar344

feedback? In ∼15% of the data points, multiple345

fb can lead to the same (x,y) pair. FBNET is ex-346

pected to behave consistently for such re-phrasings347

of fb. The model consistently produces exactly348

the same y for fb re-phrasings ∼ 60% of the time.349

Furthermore, we observe majority agreement as350

the number of fb re-phrasings for a (x,y) pair in-351

creases. In our analysis, a large proportion of the352

inconsistent edits occur because different fb phras-353

ings prompt the model to generate slightly different,354

but semantically similar edits: see Table 3 for an355

example.356

feedback predicted edit
The feedback is if a
person is going to open
a book, they need to
choose one first

insert node ’choose a
book to read’ before
’open the book’

The feedback is you
can’t open something
you’re not holding

insert node ’get the
book out of the bag’ be-
fore ’open the book’

Table 3: Multiple feedbacks for the same (x, y). Here,
x is: You are given a plan to read to child. decide which
books to read, open the book, read the book to the child,
turn the pages ye is insert node ’pick a book off the
shelf’ before ’open the book’

How well can FBNET handle wrong feedback?357

While the ability to react to feedback is a desired358

trait of FBNET, we also want to ensure that the per-359

formance of FBNET is proportional to the quality360

of feedback. This will ensure that FBNET can act361

faithfully in settings where the feedback might be362

potentially misleading. We investigate this ques-363

tion by identifying lexically similar scripts but ir-364

relevant feedback from the training set for each test365

example. Note that our setup easily allows us to test 366

this hypothesis since the train/test/val splits were 367

carefully designed to ensure no overlap between 368

the examples. Thus the feedback from one exam- 369

ple will typically not apply to another example. 370

We find that with irrelevant feedback, the perfor- 371

mance of FBNET drops to 3%. This shows that 372

FBNET is sensitive to the quality of feedback, and 373

no feedback is better than misleading and irrelevant 374

feedback. 375

How well does FBNET perform across error 376

types FBNETo gets the highest performance 377

(EM 63.0%) on wrong-step error type where fb 378

typically contains negative words that signal the 379

error type, and the model learns to localize the er- 380

ror node. One of the most challenging error types 381

is partial order removal or addition (EM 10.5%). 382

This can be attributed to the challenging localiza- 383

tion involving multiple nodes that participate in a 384

partial order. The lowest-performing is the missing 385

step error type (EM 2.73). The reason for this low 386

EM score is that the edit is generates the missing 387

node, and EM undercounts the correctness. Other 388

metrics such as ROUGE are much higher validat- 389

ing that the model performs well on this error type. 390

Section §9 Table 8 breaks down the performance 391

of FBNET by error type. 392

5.1.1 Error analysis 393

We randomly sampled 50 instances from the test 394

set where the model generates an incorrect edit (i.e., 395

EM = 0). Our goal is to understand the typical 396

errors made by the model and use the analysis to 397

calibrate the findings in Table 2. 398

•Lexical variation (36%) Exact match underesti- 399

mates the performance of our model (as the task 400

is involves generation). We find that more than 401

35% of the predicted edits are semantically similar 402

(typically lexical variation) to the reference gold 403

edit. Some examples include: insert node pick- 404

ing a book... vs, insert node choosing a book to 405

read. Another kind of example is model suggest- 406

ing swapping the order of edges A and B while the 407

reference edit swaps edges B and A - but both of 408

these are equivalent. 409

•Challenging feedback (24%) This type of error 410

occurs when the model fails to interpret a feedback 411

because it is difficult to interpret e.g., the feedback 412

is expressed abstractly. For example, for the goal 413

“go to locker room,” the generated script repeats the 414

step “walk to the locker room.”. The feedback is 415

6

‘you can’t go where you already are’, and FBNET416

generates the edit “reorder edge between ‘⟨ walk417

towards the locker room , walk to the locker room418

⟩’ ” , failing to interpret the feedback.419

•Error not localized (20%) In about 20% of the420

failures, FBNET fails to localize the error given421

the feedback. For example, consider the erroneous422

input script about the goal buy an xbox: 1. go to the423

store 2. talk to the cashier 3. make the transaction424

4. get the receipt 5. load the video game into the425

car 6. get into the car 7. take xbox home The426

feedback is after a person makes a transaction,427

they then head to their car. The expected edit428

is: insert node ‘walk to the car’ after ‘get the429

receipt’, but the predicted edit insert node ‘get430

into the car’ after ‘make the transaction’ does431

not correctly identify the erroneous node. The432

feedback is pointing to making a transaction, but433

it also involves getting the receipt.434

•Alternative answers (16%) We also encounter435

cases where there are multiple ways to correct a436

script. For example, an edit can be expressed as437

insert node ‘X’ before ‘step 4’ or insert node ‘X’438

after ‘step 3’. This comprises ∼ 16% of the errors.439

In ∼32% cases, the model generates a correct440

edit that differs from the gold. Extrapolating this441

performance under-counting to the entire test set,442

the accuracy of FBNET in Table 2 would increase443

to ∼70% (+32%).444

5.2 RQ2: How well can FBNET learn from445

prior mistakes?446

EM EMloc EMtype BLEU ROUGE

NO-FB 6.94 15.3 34.7 24.1 44.2
FBNET 16.72 20.9 56.9 32.5 48.5
FBNETo 22.2 27.8 72.2 44.6 65.8

Table 4: Learning from prior mistakes: On the reuse
dataset, given an erroneous script x, and feedback fb
recalled from similar, prior examples, FBNet perfectly
predicts the specific repair edits 16.7% of the time (or
20.9% the edit location and 56.9% the edit type), a
promising start to learning from prior mistakes.

Section §5.1 shows that the corrector G can uti-447

lize user-supplied feedback to fix an incorrect struc-448

ture. FBNET combines G with a memoryM of449

feedback, allowing us to leverage past feedback on450

new examples. This section presents a setup where451

feedback on previously seen inputs is used to fix452

new, unseen examples.453

0 20 40 60 80 100 120

0

5

10

Memory size

A
cc

ur
ac

y

FBNET
NO-FB

Figure 4: Performance on unseen examples (number
of correct data points) improves as memory size grows.
NO-FB baseline performance remains static.

To investigate this setting, we create a new test 454

set, called the interaction-reuse set or ISET. To 455

create it, we randomly sample 72 test points (re- 456

ferred as interaction-reuse set-genesis or ISET- 457

SOURCE) and perturb them linguistically to gener- 458

ate interaction-reuse set(also referred as ISET). The 459

perturbations are performed on the salient entities 460

in the script, including (i) linguistic perturbation on 461

∼20% samples (e.g., box→ carton, package) and 462

(ii) the relatively harder analogical perturbation on 463

the remaining ∼80% samples (e.g., bus → train, 464

and how to lift blinds → how to open oven door 465

because the event structure is analogical). The ye 466

to the original script also applies to the substituted 467

script. We ensured that the perturbations did not 468

introduce additional errors in the substituted script. 469

This ensures that the interaction-reuse setnow con- 470

tains similar examples to the original test set, a con- 471

dition that our original splits do not satisfy. There 472

are a total of 72 data points in interaction-reuse set. 473

Continually learning using a memory of errors 474

Examples in interaction-reuse set are randomly 475

mixed with the original test set. This combined test 476

set of queries Q is then evaluated using our setup 477

as shown in Algorithm 1. Intuitively, interaction- 478

reuse set allows us to simulate a setting where 479

the system has been deployed in the wild, and end- 480

users can query. Algorithm 1 runs the memory- 481

based inference described in Section §3 (Figure 2). 482

As the system is run through the stream of queries, 483

we expect that i) the overall performance of the sys- 484

tem will be better than no feedback, as some of the 485

7

Algorithm 1: FBNET inference on a
stream of inputs with growing memory
Given: FBNET,M, Ω
Given: Set {ISET ∪ ISET-SOURCE} of N

queries.
for i← 1, 2, . . . , N do

/* Check memory for feedback */

f̄bi = Ω(xi,M);
/* Get corrected structure from

FBNET. f̄bi can be empty. */

yi = FBNET (xi, f̄bi);
/* Get user feedback */

fbi = User feedback on yi;
/* Grow memory with new

feedback */

Write fbi toM
end

examples in the interaction set will provide mean-486

ingful feedback, and ii) the running performance487

of the system will improve with growing memory:488

the probability of relevant feedback being present489

for an unseen example increases with time, thus490

boosting the performance.491

Our experiments show that FBNET meets both492

these expectations. First, Table 4 shows that re-493

trieved feedback improves over no feedback by494

10 points (exact match) and similarly in terms of495

BLEU and ROUGE scores, respectively. Further,496

Figure 4 shows a graph confirming that FBNET497

can improve continuously as memory grows.498

6 Scope499

In principle, we could apply FBNET to any task500

that satisfies the assumptions (§3.2). However, our501

approach has some limitations in practice, several502

of which merit further detailed follow-up work.503

• On Assumption A1: We assume that the out-504

put of B is repairable. Such an assumption is505

only possible for models that generate mostly506

correct outputs and have errors that are easy to507

highlight for humans. In practice, this implies508

that our approach will most efficiently work509

in conjunction with modern language models510

(Bommasani et al., 2021) that are shown to be511

syntactically correct in form, but can produce512

output that lacks commonsense (Bender and513

Koller, 2020), making their output repairable).514

• On Assumption A2: Having reusable, general515

feedback is costly and requires careful instruc-516

tions to collect from general users and crowd- 517

workers (e.g., we asked the crowdworkers how 518

they would explain the model error to a five- 519

year-old). As the domain of the task becomes 520

more specialized, such as database query gener- 521

ation (Elgohary et al., 2021) or code correction 522

(Yasunaga and Liang, 2020), collecting data to 523

train G becomes difficult. Systems that pro- 524

duce structured explanations are better suited 525

to our model (see Wiegreffe and Marasović 526

(2021) for an overview), rather than specialized 527

domains that require expert users to provide 528

feedback (e.g., in database query generation). 529

• Consistent memory: We show in Section §5.1 530

that FBNET is sensitive to the appropriateness 531

of the feedback. However, adversarial or in- 532

correct feedback could pollute the memory and 533

possibly make it inconsistent. There has been 534

some recent work to ensure consistency of be- 535

liefs of a model (Kassner et al., 2021), and more 536

effort is required in this direction to apply to 537

more complex settings like ours. 538

• Using multiple feedbacks: Ω can be enhanced 539

with more complex attention mechanisms that 540

aggregate from multiple relevant memory en- 541

tries and possibly generalize them. We con- 542

ducted an initial experiment using attention and 543

found that we would need a larger dataset to 544

train Ω effectively. 545

Advancements in these directions would further 546

increase the applicability of FBNET. Still, there 547

are several applications (Wiegreffe and Marasović, 548

2021) where our approach would currently apply 549

in principle, or is easy to set up. 550

7 Summary 551

Our goal is to create a system that can continu- 552

ously improve the structured output of a model. 553

Our approach is to train an error correction model 554

that uses natural language (NL) feedback to correct 555

errors in that output. We have presented the first 556

step towards this goal, showing that an error cor- 557

rection module can learn to interpret NL feedback 558

successfully, resulting in 40% fewer errors in script 559

generation. We have also described ongoing work 560

on the next step, namely adding a memory layer 561

where human feedback is stored and later retrieved 562

efficiently. Together, these offer a possible path to 563

systems that can continuously improve their output 564

over time, with progressively less feedback and 565

without retraining. 566

8

References567

Emily M. Bender and Alexander Koller. 2020. Climbing568
towards nlu: On meaning, form, and understanding569
in the age of data. In ACL.570

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,571
Russ Altman, Simran Arora, Sydney von Arx,572
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-573
lut, Emma Brunskill, et al. 2021. On the opportuni-574
ties and risks of foundation models. arXiv preprint575
arXiv:2108.07258.576

S. Dasgupta, Daniel J. Hsu, Stefanos Poulis, and Xiaojin577
Zhu. 2019. Teaching a black-box learner. In ICML.578

Ahmed Elgohary, Christopher Meek, Matthew579
Richardson, Adam Fourney, Gonzalo Ramos, and580
Ahmed Hassan Awadallah. 2021. Nl-edit: Correcting581
semantic parse errors through natural language582
interaction. arXiv preprint arXiv:2103.14540.583

Sebastian Gehrmann, Tosin Adewumi, Karmanya Ag-584
garwal, Pawan Sasanka Ammanamanchi, Aremu585
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi586
Chandu, Miruna Clinciu, Dipanjan Das, Kaustubh D587
Dhole, et al. 2021. The gem benchmark: Natural lan-588
guage generation, its evaluation and metrics. arXiv589
preprint arXiv:2102.01672.590

Kelvin Guu, Kenton Lee, Z. Tung, Panupong Pasu-591
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-592
augmented language model pre-training. ArXiv,593
abs/2002.08909.594

K. Hammond. 1986. Chef: A model of case-based595
planning. In AAAI.596

Nora Kassner, Oyvind Tafjord, Hinrich Schutze, and597
Peter Clark. 2021. Beliefbank: Adding memory to a598
pre-trained language model for a systematic notion599
of belief. In EMNLP.600

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio601
Petroni, V. Karpukhin, Naman Goyal, Heinrich Kut-602
tler, M. Lewis, Wen tau Yih, Tim Rocktäschel, Se-603
bastian Riedel, and Douwe Kiela. 2020. Retrieval-604
augmented generation for knowledge-intensive nlp605
tasks. In NeurIPS.606

Chin-Yew Lin. 2004. Rouge: A package for automatic607
evaluation of summaries. In Text summarization608
branches out, pages 74–81.609

Nikhil Mehta and Dan Goldwasser. 2019. Improving610
natural language interaction with robots using advice.611
In NAACL-HLT.612

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-613
Jing Zhu. 2002. Bleu: a method for automatic eval-614
uation of machine translation. In Proceedings of615
the 40th annual meeting on association for compu-616
tational linguistics, pages 311–318. Association for617
Computational Linguistics.618

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 619
Lee, Sharan Narang, M. Matena, Yanqi Zhou, W. Li, 620
and Peter J. Liu. 2020. Exploring the limits of trans- 621
fer learning with a unified text-to-text transformer. J. 622
Mach. Learn. Res., 21:140:1–140:67. 623

Nils Reimers and Iryna Gurevych. 2019. Sentence- 624
BERT: Sentence embeddings using Siamese BERT- 625
networks. In Proceedings of the 2019 Conference on 626
Empirical Methods in Natural Language Processing 627
and the 9th International Joint Conference on Natu- 628
ral Language Processing (EMNLP-IJCNLP), pages 629
3982–3992, Hong Kong, China. Association for Com- 630
putational Linguistics. 631

C. Riesbeck. 1981. Failure-driven reminding for incre- 632
mental learning. In IJCAI. 633

B. Ross. 1984. Remindings and their effects in learning 634
a cognitive skill. Cognitive Psychology, 16:371–416. 635

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le 636
Bras, Niket Tandon, Peter Clark, and Yejin Choi. 637
2021. proscript: Partially ordered scripts generation 638
via pre-trained language models. 639

R. Schank and David B. Leake. 1989. Creativity and 640
learning in a case-based explainer. Artif. Intell., 641
40:353–385. 642

Burr Settles. 2012. Active learning. In Active Learning. 643

G. Sussman. 1973. A computational model of skill 644
acquisition. Technical Report AITR-297, MIT. 645

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 646
Jonathan Berant. 2019. CommonsenseQA: A ques- 647
tion answering challenge targeting commonsense 648
knowledge. In Proceedings of the 2019 Conference 649
of the North American Chapter of the Association for 650
Computational Linguistics: Human Language Tech- 651
nologies, Volume 1 (Long and Short Papers), pages 652
4149–4158, Minneapolis, Minnesota. Association for 653
Computational Linguistics. 654

Alon Talmor, Oyvind Tafjord, P. Clark, Y. Goldberg, and 655
Jonathan Berant. 2020. Teaching pre-trained mod- 656
els to systematically reason over implicit knowledge. 657
NeurIPS. 658

Alex Wang, Amanpreet Singh, Julian Michael, Felix 659
Hill, Omer Levy, and Samuel R. Bowman. 2018. 660
Glue: A multi-task benchmark and analysis plat- 661
form for natural language understanding. ArXiv, 662
abs/1804.07461. 663

Sida I. Wang, Percy Liang, and Christopher D. Manning. 664
2016. Learning language games through interaction. 665
In Proceedings of the 54th Annual Meeting of the 666
Association for Computational Linguistics (Volume 667
1: Long Papers), pages 2368–2378, Berlin, Germany. 668
Association for Computational Linguistics. 669

Sarah Wiegreffe and Ana Marasović. 2021. Teach me 670
to explain: A review of datasets for explainable nlp. 671
ArXiv, abs/2102.12060. 672

9

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/2104.08251
http://arxiv.org/abs/2104.08251
http://arxiv.org/abs/2104.08251
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/P16-1224

Michihiro Yasunaga and Percy Liang. 2020. Graph-673
based, self-supervised program repair from diagnos-674
tic feedback. ArXiv, abs/2005.10636.675

Michihiro Yasunaga and Percy Liang. 2021. Break-676
it-fix-it: Unsupervised learning for program repair.677
arXiv preprint arXiv:2106.06600.678

Luke Zettlemoyer and Michael Collins. 2005. Learning679
to map sentences to logical form: Structured classi-680
fication with probabilistic categorial grammars. In681
UAI.682

10

8 Appendix683

8.1 Initial study on the errors of B684

(PROSCRIPT)685

On PROSCRIPT’s test set, we performed inference686

using the released checkpoint (both GPT-2 and T5-687

XXL based model). We then randomly sampled688

30 generated graphs and manually wrote feedback689

for them. Similar to Sakaguchi et al. (2021), we690

found that the model makes repairable mistakes691

(leading to assumption A1 being satisfied). Further,692

we found there instances where a general principle693

feedback applies across more than one instances694

(e.g., you have to be near something to use it). (see695

Table 5).696

What was the error General principle feed-
back

Script was missing the step
of not turning off the alarm
after waking up

People don’t leave their
alarms ringing all day.

Script mentioned coming to
the doorway and passing
through it

One cannot walk through
the doorway without open-
ing the door first.

Script tells that getting in
car and drive in zoo can be
done in any order

People must get into a ve-
hicle, before driving to any
place.

Script is looking for a but-
terfly after placing it

You don’t need to look for a
butterfly if it’s already in a
container.

Table 5: Sample error and the corresponding general
principle feedback that could, in principle, repair the
model output.

On an average, there were about two mistakes697

present in the graphs. Often, the error was that the698

script was using an entity before having it (e.g.,699

write on the paper comes before the node find the700

paper or reach for the paper). Thus, there seems701

to be a possibility of applying similar feedback to702

more than one example. We also found some cases703

where the script might have to be changed to adapt704

to special cases. For example, for a script visit Dis-705

neyland, an event obtain a visa might be required706

for some users. We believe the original ProScript707

dataset aims to generate widely applicable scripts708

and grounded in commonsense; rather than cover709

all possible outcomes.710

On the surface, the generated scripts were of711

good quality. However, a closer look at the mis-712

takes revealed that most of them could be attributed713

to the model lacking basic commonsense. For ex-714

ample, Figure 1 shows a typical mistake the model715

makes. This underscores the gap between the syn-716

tax and semantic correctness of machine-generated717

output in the context of automatic script generation. 718

This observation is in-line with other NLP tasks 719

(Bender and Koller, 2020) that distinguish the suc- 720

cess of recent models on the correctness of form 721

rather than the far-from-over goal of understanding 722

of meaning. 723

8.2 Data collection 724

An average user could point out mistakes in the 725

generated scripts, as a majority of the errors in 726

generated scripts are caused by a lack of basic com- 727

monsense (§8.1). Consequently, we designed a 728

Mechanical Turk task to provide feedback on mis- 729

takes. A broad overview of the annotation process 730

is shown in Figure 5. 731

Figure 5: A broad overview of the annotation process.
For actual annotation task (including the M-turk task
template), see our code repository.

Annotation Now we discuss our crowdsourcing 732

setup to collect the data. To maximize the opportu- 733

nity to get more feedbacks for a predicted script, we 734

filtered a subset of the test set in ProScript where 735

the human evaluated graph edit distance was likely 736

to be high (i.e., there were likely to be more er- 737

rors). The ProScript authors released the graph 738

edit value for the set of test set samples they evalu- 739

ated. We performed inference using their released 740

PROSCRIPTgen model on those data points with 741

high graph edit distance value (≥ 8). With this 742

we collected about 400 (predicted graph, expected 743

gold graph) tuples. The ProScript paper describes 744

that their expected gold graph is also imperfect and 745

might contain about 20% noise. Nevertheless, hav- 746

ing the gold reference graph guides and constrains 747

an annotator about the common script for a sce- 748

nario rather than the wide open space of solving 749

the task using multiple potentially correct scripts. 750

(e.g., one could go to a zoo without driving the 751

car by hiring a taxi and then they won’t need to 752

drive or park the car). As mentioned in §8.1 our 753

annotation process must focus on scripts that are 754

widely applicable and grounded in commonsense. 755

The annotators are shown the model-generated 756

11

Figure 6: The mechanical turk page for annotation. We show the generated and the expected ProScript gold
reference. The annotator must answer which script is worse and why. They must point out an egregious mistake
(and not any trivial errors that have minor grammatical errors), and annotate: the error type (missing step, wrong
step, wrong order, wrong partial order), localize the error by providing the node or edge id, and give feedback why
it is wrong, and finally to gather the general principle behind the feedback they are asked to explain the feedback to
a five-year-old.

12

and expected gold (reference) scripts, and are re-757

quired to answer which script is worse and why. It758

is possible that the gold script is marked as worse.759

However, we later post-process and remove such760

cases, as our focus is to get errors on the generated761

scripts and not the manually created scripts. The762

annotators must point out an obvious mistake (e.g.,763

an event or an edge that does not follow common-764

sense). They were asked to ignore grammatical and765

fluency errors, and focus on critical errors of four766

types:767

• Wrong ordering: the order in the sequence768

of steps is not correct (e.g., wearing shoes is769

described before wearing socks).770

• Flexible ordering: some steps can be done in771

a flexible order (e.g., you can wear left sock or772

right sock first). A good script captures such773

flexibility.774

• Missing critical steps: a bad script might have775

missed critical steps (e.g., the script can say:776

“wait for a plane” followed by “get off the plane”777

– here an obvious step “get on the plane” is778

missing) . There is no strict definition for a779

critical step, so the annotators were instructed780

to use their commonsense judgment.781

• Wrong step: a bad script might have irrelevant782

and wrong steps (e.g., the script describing “go783

to a party” might describe an irrelevant step784

such as read a book, open a book, etc.).785

For every data point, the annotators were asked786

to answer the following:787

• Explicit feedback type-1: the error type (miss-788

ing step, wrong step, wrong order, wrong par-789

tial order)790

• Explicit feedback type-2: localize the error by791

providing the erroneous node or edge id792

• Implicit feedback type-1: give feedback in a793

few words, explaining the error794

• Implicit feedback type-2: An explanation of795

the error that would potentially make sense to796

a five-year-old. Such an explanation of the797

feedback helped gather the general principle798

that is violated, and is targeted in the feedback.799

Fig. 6 shows a sample of our Mechanical Turk task.800

Annotators were required to list only one critical801

error that they believe was most important. Each802

data point is annotated by three annotators, adding803

some diversity in the errors. The annotators were804

paid $15 an hour. The annotators were English805

speaking crowdworkers on Mechanical Turk from 806

USA. The average time for completion of one script 807

was 2 minutes. 808

fb type count example
explicit fb
type-1

1,553 Remove node ‘put the shirt on’

explicit fb
type-2

1,553 The following step is not right: put
the shirt on

implicit fb
type-1

1,553 It tells you to iron your shirt while
it’s still on your body.

implicit fb
type-2

1,553 If you hold a hot iron against the
clothes you’re currently wearing,
you’ll get terrible burns.

total 6,212 https://anonymous.4open.
science/r/interscript/
data.json

Table 6: Dataset statistics. In this paper, we use the hard-
est feedback (implicit-feedback-type-2). This example
is from the input script: input script for the following
table (goal: press the wrinkles out) = 1. put the shirt on,
2. find place to press, 3. grab iron from drawer, 4. place
iron on shirt, 5. wait for iron to heat up, 6. use iron to
smooth out wrinkles, 7. press the wrinkles out

We measured the agreement on labels (which 809

graph is worse), and on explicit feedback type-1 810

and type-2. It was difficult to measure agreement 811

on implicit feedback because it is not easy to per- 812

form binary comparison on the generated text with- 813

out accounting for linguistic variations. On the 814

labels, the Fleiss Kappa agreement was 0.90 (al- 815

most perfect agreement) and on explicit feedback 816

the agreement was 0.75 Fleiss Kappa (substantial 817

agreement). This also shows that there is some 818

diversity in what the users perceive as a serious 819

mistake in ybad. 820

Eventually, we compiled these annotations into a 821

dataset of 1,553 4-tuples where each entry consists 822

of (explicit feedback type-1, explicit feedback type- 823

2, implicit feedback type-1, implicit feedback type- 824

2). 825

8.3 Model Output Examples 826

Table 7 provides some sample model outputs. 827

9 Performance of FBNET by error type 828

Table 8 breaks down the performance of FBNET 829

by error type. 830

13

https://anonymous.4open.science/r/interscript/data.json
https://anonymous.4open.science/r/interscript/data.json
https://anonymous.4open.science/r/interscript/data.json

x fb ye∗ y

1. ...
2. set alarm for early morning
3. get out of bed
4. prepare for yoga
5. go to the bathroom
6. do yoga
7. do yoga in the morning

People don’t leave
their alarms ring-
ing all day.

insert node ‘wake
up and turn off
alarm’ before ‘get
out of bed’

1. ...
2. set alarm for early morning
3. wake up and turn off alarm
4. get out of bed
5. ...
6. ...
7. ...

1. ...
3. put on shoes ...
5. open the door
6. drive to the train station
7. get into the car
8. reach the train station

You must get into
a vehicle, before
driving to any
place.

reorder edge be-
tween ‘⟨ drive to
the train station,
get into the car ⟩’

1. ...
3. ...
5. open the door
6. get into the car.
7. drive to the train station
8. ...

1. ...
3. pick up the butterfly
4. put the butterfly in container
5. look for a butterfly ...
6. Take the butterfly home ...

You don’t need to
look for a butterfly
if it’s already in a
container.

remove node ‘look
for a butterfly’ 1. ...

3. pick up the butterfly
4. put the butterfly in container
5. Take the butterfly home
6. ...

Table 7: Task: Applying the graph edit to the bad script.

Edit type EM%

Overall 38.6

Add partial order exactmatch 10.5
Add partial order type 44.7
Missing step exactmatch 2.8
Missing step type 65.5
Remove partial order exactmatch 0.0
Remove partial order type 0.0
Wrong ordering exactmatch 45.1
Wrong ordering type 72.8
Wrong step exactmatch 63.0
Wrong step type 78.6

Table 8: Performance of FBNET by error type

14

