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Abstract
We develop a technique to analyze representations learned by deep networks when
they are trained on different tasks using supervised, meta- and contrastive learning.
We develop a technique to visualize such representations using an isometric
embedding of the space of probabilistic models into a lower-dimensional space,
i.e., one that preserves pairwise distances. We discover the following surprising
phenomena that shed light upon the structure in the space of learning tasks:
(1) the manifold of probabilistic models trained on different tasks using different
representation learning methods is effectively low-dimensional; (2) supervised
learning on one task results in a surprising amount of progress on seemingly
dissimilar tasks; progress on other tasks is larger if the training task has diverse
classes; (3) the structure of the space of tasks indicated by our analysis is consistent
with parts of the Wordnet phylogenetic tree; (4) fine-tuning a model upon a sub-task
does not change the representation much if the model was trained for a large number
of epochs; (5) episodic meta-learning algorithms fit similar models eventually as
that of supervised learning, even if the two traverse different trajectories during
training; (6) contrastive learning methods trained on different datasets learn similar
representations. We use classification tasks constructed from the CIFAR-10 and
Imagenet datasets to study these phenomena.

1 Introduction
Exploiting data from related tasks to reduce the sample complexity of learning a desired task, is an idea
that lies at the heart of burgeoning fields like transfer, multi-task, meta, few-shot, and self-supervised
learning. These algorithms have shown an impressive ability to learn representations that can predict
well on new tasks. The algorithms are very diverse in how they work but it stands to reason they must
be exploiting some shared structure in the space of learning tasks. Although there is a large body of
work that seeks to understand relatedness among tasks and how these algorithms exploit it (see §4
for a discussion of related work), we do not know what this shared structure precisely is. Our work
makes the following contributions to advancing this line of research.

We develop a technique to analyze the learned representation on a task, and its relationship
to other tasks. Our key technical innovation is to use ideas from information geometry to characterize
the geometry of the space of probabilistic models fit on different tasks. We develop methods to embed
training trajectories of probabilistic models into a lower-dimensional space isometrically, i.e., while
preserving pairwise distances. This allows us to faithfully visualize the geometry of these very high
dimensional spaces (for Imagenet, our probabilistic models are in ∼107 dimensions) and thereby
interpret the geometry of the space of learning tasks. These technical tools are very general and shed
light on the shared structure among tasks.

We point these technical tools to study how algorithms that learn from multiple tasks work.
We provide evidence for the following phenomena.

(1) The manifold of probabilistic models trained on different tasks using different representation
learning methods is effectively low-dimensional, and this dimensionality is rather small; For
Imagenet, a 3-dimensional subspace preserves 80.02% of the pairwise distances between
models, which we define (in Appendix D) as the “explained stress”;

(2) Supervised learning on one task results in a surprising amount of progress (informally,
“progress” means that the representation learned on one can be used to make accurate
predictions on other tasks; this is defined precisely in (4)) on seemingly dissimilar tasks;
progress on other tasks is larger if the training task has diverse classes;

(3) The structure of the space of tasks indicated by our analysis is consistent with parts of the
Wordnet phylogenetic tree;

(4) Fine-tuning a model upon a sub-task does not change the representation much if the model
was trained for a large number of epochs;
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(5) Episodic meta-learning algorithms fit similar models eventually as that of supervised learning,
even if the two traverse different trajectories during training;

(6) Contrastive learning methods trained on different datasets learn similar representations.
We demonstrate these findings on image classification tasks constructed from CIFAR-10 and

Imagenet datasets.

2 Methods

Modeling the task We define a task P as a joint distribution on inputs x ∈ Rd and outputs
y ∈ {1, . . . , C} corresponding to C classes. Suppose we have N independent and identically
distributed samples {(xn, y∗n)}

N
n=1 from P . Let y⃗ = (y1, . . . , yN ) denote any sequence of outputs on

these N samples and y⃗∗ denote the sequence of ground-truth labels. We may now model the task as

Pw(y⃗) =

N∏
n=1

pnw(yn) (1)

where w are the parameters of the model and we have used the shorthand pnw(yn) ≡ pw(yn | xn). The
true probability distribution which corresponds to the ground-truth labels is denoted by P∗ ≡ P (y⃗∗).
In the same way, let us denote by P0 the probability distribution that corresponds to pn(y) = 1/C for
all n and all y, i.e., P0 predicts accurately on a fraction 1/C of the samples.

Bhattacharyya distance Given two modelsPu andPv parameterized by weights u and v respectively,
we define the Bhattacharyya distance (Bhattacharyya, 1946) between them averaged over samples as

dB(Pu, Pv) := −N−1 log
∑
y⃗

∏
n

√
pu(yn) pv(yn)

(∗)
= −N−1 log

N∏
n=1

C∑
c=1

√
pnu(c) p

n
v (c)

= −N−1
∑
n

log
∑
c

√
pnu(c) p

n
v (c);

(2)

see Appendix C for more details on (∗). Our model (1) involves a product over the proba-
bilities of N samples. Typical distances for probability distributions, e.g., Hellinger distance
2
(
1−

∏
n

∑
c

√
pnu(c) p

n
v (c)

)
, saturate when the number of samples N is large (because random

high-dimensional vectors are nearly orthogonal). It is thus difficult to use such distances to understand
high-dimensional probabilistic models. However, the Bhattacharyya distance is well-behaved for
large N due to the logarithm (Quinn et al., 2019; Teoh et al., 2020), and that is why it is well suited
to our problem.

Distances between trajectories of probabilistic models Consider a trajectory (w(k))k=0,...,T

that records the weights after T updates of the optimization algorithm, e.g., stochastic gradient
descent. This trajectory corresponds to a trajectory of probabilistic models τ̃w = (Pw(k))k=0,...,T .
We are interested in calculating distances between such training trajectories. First, consider τ̃u =
(u(0), u(1), u(2), . . . , u(T )) and another trajectory τ̃v ≡ (u(0), u(2), u(4), . . . , u(T ), u(T ), . . . , u(T ))
which trains twice as fast but to the same end point. If we define the distance between these trajectories
as, say,

∑
k dB(Pu(k), Pv(k)), then the distance between τ̃u and τ̃v will be non-zero—even if they are

fundamentally the same. This issue is more pronounced when we calculate distances between training
trajectories of different tasks. It arises because we are recording each trajectory using a different time
coordinate, namely its own training progress.

To compare two trajectories correctly, we need a notion of time that can allow us to uniquely
index any trajectory. The geodesic between the start point P0 and the true distribution P∗ is a natural
candidate for this purpose. Geodesics are locally length-minimizing curves in a metric space. For the
product manifold in (1), we can obtain a closed-form formula for the geodesic as follows. We can
think of the square root of the probabilities

√
pnu(c) as a point on a C-dimensional sphere. Given

two models Pu and Pv the geodesic connecting them under the Fisher information metric is the great
circle on this sphere (Ito & Dechant, 2020, Eq. 47):√

Pλ
u,v =

∏
n

(
sin
(
(1− λ)dnG

)
sin
(
dnG
) √

pnu +
sin
(
λdnG

)
sin
(
dnG
) √pnv

)
; for λ ∈ [0, 1], (3)
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where dG =
∑

n cos−1
(∑

c

√
pnu(c)

√
pnv (c)

)
is one half of the great-circle distance on the N-way

product manifold of probability distributions pnu(·) and pnv (·).
Every point w on the trajectory τ̃w can now be reindexed by a new time which we call

“progress”
tw = inf

λ∈[0,1]
dG(Pw, P

λ
0,∗). (4)

Note that the progress tw ∈ [0, 1] for any point on any trajectory. In practice, we solve (4) using
bisection search (Brent, 1971). Observe that (3) also allows us to calculate the geodesic between
two successive points Pw(k) and Pw(k+1) of the trajectory. Any point on this geodesic Pλ

w(k),w(k+1)

for λ ∈ [0, 1] can be assigned a progress tw(k) + λ(tw(k+1) − tw(k)). We have effectively converted
our trajectory which is a discrete sequence of models τ̃w = (Pw(k))k=0,...,T into a continuous curve
τw = (Pw(t))t∈[0,1]. We can now calculate the distance between trajectories τu and τv as

dtraj(τu, τv) =

∫ 1

0
dB(Pu(t), Pv(t)) dt ; (5)

we approximate this integral in practice using a uniform grid on [0, 1].

Riemann length of a trajectory of probabilistic models Divergences like the Bhattacharyya
distance or the Kullback-Leibler (KL) distance (which is exactly the cross-entropy loss)

dKL(P∗, Pw) = −N−1
∑
n

∑
c

pn∗ (c) log p
n
w(c)−H(P∗);

where H(P∗) is the entropy of P∗ (and independent of w) can be used to define a Riemannian structure
in the space of probabilistic models (Amari, 2016). The distance between two models Pw and Pw+dw

parametrized by infinitesimally different weights is
ds2 = 4dB(Pw, Pw+dw) = ⟨dw , g(w) dw⟩+ O(∥dw∥2),

where g(w) = N−1∑
y⃗(Pw)

−1∂2Pw is the Fisher Information Matrix (FIM). This FIM is therefore
the metric of the space of the probability distributions and weights w play the role of the coordinates
in this space. The Bhattacharyya distance and the KL-divergence induce the same metric up to a
scalar factor. We can therefore calculate the Riemann length of a trajectory τw by integrating the
infinitesimal lengths

Length(τw) = 2

∫ 1

0

√
dB(Pw(t), Pw(t+dt)). (6)

Observe that we do not need the FIM to calculate the length. We can think of the length of a trajectory
taken by a model to reach the solution P∗ compared to the length of the geodesic as a measure of
the inefficiency of the training procedure. This inefficiency can arise because: (a) not all probability
distributions along the geodesic can be parametrized by our model class (approximation error), and
(b) the training process may take steps that are misaligned with the geodesic (e.g., due to the loss
function, mini-batch updates, supervised vs. some other form of representation learning, etc.).

Mapping a model trained on one task to another task using “imprinting” We will consider
different tasks {P k}k=1,..., with the same input domain but possibly different number of classes Ck.
Given a model P 1

w parametrized by weights w for one task, we are interested in evaluating its learned
representation on another task, say, P 2. There are many ways of doing so, e.g., one could fine-tune
the weights using data from P 2. We use a simple technique that re-initializes the final layer of the
model. Let us separate the weights into two parts w = (w1, w2) for the backbone and the classifier
respectively. Let φ(x;w1) denote the features of the penultimate layer corresponding to an input x.
To clarify, the logits are given by RC1

∋ w2
⊤φ(x;w1) (with perhaps an added bias) and the output

pw(c | xn) for c = 1, . . . , C1 is computed using a softmax applied to these logits.
If we have learned w from one task P 1, then we can re-initialize each row of the classifier weights

(w2)
′
c for c = 1, . . . , C2 to maximize the cosine similarity with the average feature of samples from

task P 2 with ground-truth class c:
(w2)

′
c = h/∥h∥2 where h =

∑
{x:y∗

x=c} φ(x;w1). (7)
The new model w = (w1, w2

′) can now be used to make predictions on the task P 2. This technique for
mapping the learned representation from one task to another is motivated from previous work (Dhillon
et al., 2020; Qi et al., 2018; Hu et al., 2015) which initializes the final layer of a model before adapting
it to new classes using fine-tuning. It is called imprinting because rows of the classifier’s weights can
be thought of as templates of different classes against which features are compared.
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Using imprinting, we can map a trajectory τ1w of a model being trained on task P 1 to another task
P 2 by mapping each point along the trajectory; let us denote this mapped trajectory by τ1→2

w .

Remark 1 (Imprinting vs. training the final layer). We are interested in mapping 1000s of models
across different trajectories to other tasks. Training the final layer for all these models is cumbersome
and we can avoid doing so using imprinting. Note that if we were to train the classifier w2 (with
backbone w1 fixed) using samples from the other task under the constraint that rows of w2 have unit
ℓ2 norm, then we would obtain the imprinted weights as our solution (see Appendix E).

How to choose an appropriate task to map different models to? Consider the training trajectory
τ1u of a model trained on task P 1 and another trajectory τ2v of a model trained on task P 2. Using the
procedure in (7), we can map these trajectories to the other task to get τ1→2

u and τ2→1
v . This allows

us to calculate dtraj(τ
1→2
u , τ2v ) which is the distance of the trajectory of the model trained on P 1 and

then mapped to P 2 with respect to the trajectory of a model trained on task P 2; we can calculate
dtraj(τ

2→1
v , τ1u) analogously. Roughly speaking, if the two learning tasks P 1 and P 2 are very different,

(e.g., Animals in CIFAR-10 and Vehicles in CIFAR-10), then these distances will be large.
The distances dtraj(τ

1→2
u , τ2v ) and dtraj(τ

2→1
v , τ1u) are reasonable candidates to study similarities

between tasks P 1 and P 2, but they are not equal to one another. We are also interested in doing such
calculations with models trained on many different tasks, and mapping them to each other will lead to
an explosion of quantities. To circumvent this, we map to a unique task whose output space is the
union of the output spaces of the individual tasks, e.g., to study P 1 (Animals) and P 2 (Vehicles), we
will map both trajectories to PU which is all of CIFAR-10. We calculate quantities like

dtraj(τ
1→U
u , τ2→U

v ). (8)

Embedding a probabilistic model in lower-dimensions We use a technique called intensive
principal component analysis (InPCA) (Quinn et al., 2019) to embed a probabilistic model into a
lower-dimensional space. This enables us to visually inspect relationships between different tasks and
representation learning methods. For m probability distributions, consider a matrix D ∈ Rm×m with
entries Duv = dB(Pu, Pv) and

W = −LDL/2 (9)
where Lij = δij − 1/m is the centering matrix. An eigen-decomposition of W = UΣU⊤ where
the eigenvalues are sorted in descending order of their magnitudes |Σ00| ≥ |Σ11| ≥ . . . allows us
to compute the embedding of these m probability distributions into an m-dimensional space as
Rm×m ∋ X = U

√
Σ. Unlike standard PCA where eigenvalues are non-negative, eigenvalues of

InPCA can be both positive and negative. There are technical reasons for this (Quinn et al., 2019).
But such an embedding into a Minkowski space allows InPCA to be an isometry:∑

i(X
i
u −Xi

v)
2 = dB(Pu, Pv) ≥ 0 (10)

for embeddings Xu, Xv of any two probability distributions Pu and Pv. This property of InPCA is
akin to that standard PCA, where if we preserve all the eigenvectors (i.e., k = n), then (10) holds,
but if we use fewer eigenvectors to project the points, then pairwise distances can be distorted. We
only use InPCA for visualization, all our findings are quantitative and do not rely on embedding into
lower dimensions. We quantify how well pairwise distances are preserved by a k-dimensional InPCA
embedding using a quantity called “explained stress” (χk):

χk = 1− ∥W−
∑k

i=1 Σii UiU
⊤
i ∥F

∥W∥F
= 1−

√∑m
i=k+1 Σ2

ii∑m
i=1 Σ2

ii
.

Appendix A.2 describes how we implement InPCA for very high-dimensional probabilistic models.

3 Results
We next discuss our key results. Our experiments were conducted using multiple neural architectures
and image-classification tasks created from the CIFAR-10 and Imagenet datasets; see Appendix A.

All the analysis in this paper (except Fig. 2) was conducted using the test data. All models were
trained using the training data, but all mapped models, distances between trajectories, quantitative
evaluation of progress and InPCA embeddings were computed using the test dataset. The reason
for this is that we would like to study the geometry of tasks as evidenced by samples that were not
a part of training. To emphasize, we do not develop any new algorithms for learning in this paper
and therefore using the test data to quantify relationships between tasks is reasonable; see similar
motivations in Kaplun et al. (2022) among others. Our findings remain valid when training data is
used for analysis; this is primarily because in most of our experiments, a representation is trained on
one task but makes predictions on a completely new task after mapping.
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Figure 1: (a) InPCA embedding of training trajectories of probabilistic models trained on 6 tasks from Imagenet.
Each point is one network, bold lines connect the averages of probabilities of 5 training trajectories of each task
(5 random initializations in weight space). The point P0 denotes start of training (complete ignorance) and P∗ is
drawn to show the model that predicts perfectly (truth). All trajectories move towards the end point of training
on the entire Imagenet. Training on one task makes a remarkable amount of progress on unseen, seemingly
dissimilar, classes. Trajectories of models trained on a random set of 333 classes are similar to those of the entire
Imagenet. Some classes (Instrumentality) are closer to this trajectory while others such as Vertebrates and Dogs
are farther away. Dogs is a semantic subset of Vertebrates; it splits at the beginning but seems to eventually reach
a similar representation as one of the intermediate points of Vertebrates. See Result 1.
(b) Percentage explained stress (defined in (12)) captured by subspace spanned by the top k InPCA eigenvectors.
Explained stress measures if the Bhattacharyya distances between models are accurately captured in this
sub-space. Top 3 dimensions capture more than 80% of the explained stress, and thus the manifold is effectively
low-dimensional. See Result 1.
(c) If we train a model on Vertebrates, do we make progress on unseen classes? This plot measures the progress
made by each model on classes seen during training (left half, lighter shade) and on novel classes (right half,
darker shade). We compute tcw which is the progress tw of images restricted to a single class c. This quantity tcw
measures the quality of the representation for class c. The violin plots that denote the distribution of tcw indicate
that we make more progress on classes seen during training. If the model sees a larger diversity of classes (like
with random 333 classes), more progress is made on the novel classes. Surprisingly, even if we train on just the
“Dogs”, we make some progress on novel classes.
(d) Progress tw (4) on the Y-axis against the number of epochs of training on the X-axis. The progress tw
increases with more epochs of training—all models make non-trivial progress towards the truth P∗ (tw = 1).
Surprisingly, even if we train on only Dogs (118 classes) we make progress on the entire Imagenet. (e) .
Validation accuracy as a function of epochs. See Result 2.
(f) Trajectories of models trained on different phyla of Wordnet (colors match those of the inset graph). The
model manifold is again effectively low-dimensional (78.72% explained stress in 3 dimensions). Trajectories of
tasks that are nearby in Wordnet are also nearby, and vice-versa. (g) Bhattacharya distance between the mean
trajectories (over random initializations) on different tasks and the mean trajectory of Conveyance. This distance
is normalized by the average of the tube radii (maximum distance of one of the 5 trajectories from the mean,
computed at each progress) of the two trajectories. Such quantities allow us to make precise statements about the
differences between representations and show some very surprising conclusions. E.g., trajectories of random 333
classes (light orange) are closer to Conveyance (as expected), but those of Vertebrates (red) are equally far away
for more than 60% (tw ≈ 0.25) of the progress. In other words, training on Vertebrates (reptiles, dog, bird)
makes a remarkable progress on Conveyance (cars, planes). See Result 2.
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Result 1. The manifold of models trained on different tasks, and using different representation
learning methods, is effectively low-dimensional. We trained multiple models on 6 different
sub-tasks of Imagenet (from 5 random initializations each) to study the dimensionality of the manifold
of probabilistic models along the training trajectories (100 points equidistant in progress (4)) after
mapping all models to all Imagenet classes (∼ 108 dimensions). We use the explained stress (defined
in Appendix D), to measure if the distances are preserved by the first k dimensions of the embedding
of the models. The first 3 dimensions of InPCA (Fig. 1a) preserve 80% of the explained stress (Fig. 1b
shows more dimensions). This is therefore a remarkably low-dimensional manifold. It is not exactly
low-dimensional because the explained stress is not 100%, but it is an effectively low-dimensional
manifold. This experiment also indicates that the individual manifolds of models trained on one task
are low-dimensional, even if they start from different random initializations in the weight space. Such
low-dimensional manifolds are seen in all our experiments, irrespective of the specific method used
for representation learning, namely, supervised, transfer (fine-tuning), meta and contrastive learning.

Result 2. Supervised learning on one task results in a surprising amount of progress on
seemingly dissimilar tasks. Progress on other tasks is larger if the training task has diverse
classes. We studied the progress tw (4) made by models (Fig. 1d) trained on tasks from Result 1.
Training on the task “Dogs” makes progress on other tasks, even seemingly dissimilar ones like
“Instruments” (which contains vehicles, devices and clothing). In fact, it makes progress on the entire
Imagenet (about 63.38% of the progress of a model trained directly on Imagenet). Progress is larger
for larger phyla of Imagenet (Vertebrates and Instruments). But what is surprising is that if we train on
a random subset of 333 classes (a third of Imagenet), then the progress on the entire Imagenet is very
large (92%). This points to a remarkably strong shared structure among classes even for large datasets
such as Imagenet. Note that this does not mean that tasks such as Vertebrates and Instruments are
similar to each other. Even if training trajectories are similar for a while, they do bifurcate eventually
and the final models are different (Fig. 1g).

To study this further, we projected models trained on one task onto the geodesics of unseen classes
(Fig. 1c) calculated using (3)). A model trained on the entire Imagenet makes uneven progress on the
various classes (but about 80% progress across them, progress is highly correlated with test error of
different classes). Models trained on the 6 individual tasks also make progress on other unseen classes.
As before, training on Instruments, Vertebrates, Dogs makes smaller progress on unseen classes
compared to training on a random subset of 333 classes. This is geometric evidence that the more
diverse the training dataset, the better the generalization to unseen classes/tasks; this phenomenon has
been widely noticed and utilized to train models on multiple tasks as we discuss in §4.

Result 3. The structure of the space of tasks indicated by our visualization technique is consistent
with parts of the Wordnet phylogenetic tree To obtain a more fine-grained characterization of how
the geometry in the space of learnable tasks reflects the semantics of these tasks, we selected two
particular phyla of Imagenet (Animals, Artifacts) and created sub-tasks using classes that belong
to these phyla (Fig. 1f). Trajectories of models trained on Instruments and Conveyance are closer
together than those of Animals. Within the Animals phylum, trajectories of Vertebrates (Dog, Reptile,
Bird) are closer together than those of Invertebrates (Fig. 1g for quantitative metrics). Effectively, we
can recover a part of the phylogenetic tree of Wordnet using our training trajectories. We speculate that
this may point to some shared structure between visual features of images and natural language-based
semantics of the corresponding categories which was used to create Wordnet (Miller, 1998) of the
corresponding categories. This alignment with a natural notion of relatedness also demonstrates the
effectiveness of our methods to understand the structure in the space of visual tasks.

Result 4. Fine-tuning a pre-trained model on a sub-task does not change the representation much.
To understand how models train on multiple tasks, we selected two binary classification sub-tasks of

CIFAR-10 (Airplane vs. Automobile, and Bird vs. Cat). We selected models at different stages of
standard supervised learning on CIFAR-10 (i.e., using 10-way output and softmax cross-entropy loss)
and fine-tuned each of these models on two sub-tasks (the entire network is fine-tuned without freezing
the backbone). As Fig. 3 shows, models that were fine-tuned from earlier parts of the trajectory travel
a large distance and move away from trajectories of the supervised learned CIFAR-10 models. As
we fine-tune later and later models, the distance traveled away from the trajectory is smaller and
smaller, i.e., changes in the representation are smaller. For a fully-trained CIFAR-10 model which
interpolates the training data, the distance traveled by fine-tuning is very small (the points are almost
indistinguishable in the picture); this is because both P 1 and P 2 are subsets of CIFAR-10.

Algorithms for transfer learning train on a source task before fine-tuning the model on the target
task. If two tasks share a large part of their training trajectory, then we may start the fine-tuning from
many shared intermediate points—there are many such points. If the chosen point is farther along
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Figure 2: (a) Training trajectories for supervised learning
(black), 2-way (pink) and 5-way episodic meta-learning (pur-
ple). Trajectories of 5-way meta-learning are very similar
to those of supervised learning and eventually reach very
similar models and high test accuracy. In contrast, 2-way
meta-learning has a much longer trajectory (about 40× longer
in Riemann length than black) and does not reach a good
test accuracy (on all 10 CIFAR-10 classes). Representations
are similar during early parts of training even if these are
quite different learning mechanisms. (b) Trajectories of 2-way
(blue), 5-way (green), 7-way (yellow) meta-learning compared
to supervised learning (red). For large “way”, trajectories
are similar to supervised learning but they deviate from the
red trajectories quickly for small ways. (c) Average distance
between two k-way meta-learning trajectories decreases with
k, this is a geometric evidence of the variance of predictions of
learned representations. (d) Training with a small way leads
to models that predict poorly on test data (large distances from
truth). These embeddings were calculated using the training
dataset. The rationale being that we wanted to show how
different meta-learning and supervised learning are during
training.

Figure 3: (a) Fine-tuning trajectories
on Airplane vs. Automobile, and Bird
vs. Cat sub-tasks of CIFAR-10 (warm
and cold hues) pre-trained from differ-
ent points along the trajectory of su-
pervised learning. If the pretrained
model has progressed further towards
the truth P∗, then fine-tuning it on a sub-
task does not change the representation
much. The final trajectory (fine-tuning
from epoch 100) is indistinguishable
from P∗. (b) Bhattacharyya distance
between the mean trajectories normal-
ized by the average of the tube radii
(like Fig. 1g). Models (say, fine-tuned
after Epoch 5 on Task 1) go backwards
in progress, i.e., they unlearn the pre-
trained representation in order to fit the
new task. This occurs as early as Epoch
1 here. It suggests that learning occurs
extremely rapidly at the beginning and
determines the efficiency of fine-tuning.
Some curves here are not visible be-
cause they are overlapping heavily.

in terms of progress then the efficiency resulting from using the source task is higher because the
trajectory required to fit the target task is shorter; such trajectories were used in (Gao & Chaudhari,
2021) to define a distance between tasks. As we saw in Result 2, trajectories of different tasks
bifurcate after a shared part. The resultant deviation less for related tasks and more for dissimilar
tasks (Fig. 3a, Fig. 1a,f). Therefore it is difficult to know a priori from which point one should start
the fine-tuning from without knowing the manifold of the target task. In particular, our geometric
picture indicates that fine-tuning from a fully-trained model can be detrimental to the accuracy on the
target task. This has been noticed in a number of places in the transfer learning literature, e.g., Li
et al. (2020), and has also been studied theoretically (Gao & Chaudhari, 2020).
Result 5. Episodic meta-learning algorithms fit a similar model eventually as that of supervised
learning, even if the two traverse very different trajectories during training. Meta-learning
methods build a representation which can be adapted to a new task (Thrun & Pratt, 2012). We studied a
common variant, the so-called episodic training methods (Bengio et al., 1992), through the perspective
of few-shot learning (Vinyals et al., 2016). In these methods, each mini-batch consists of samples
from Cw classes (called “way”, chosen randomly out of the C classes) split into two parts: a “support
set” Ds of s samples/class (called “shot”), and a “query set” Dq of q samples/class. Typical methods,
say prototypical networks of Snell et al. (2017b), implement a clustering loss on features of the query
samples using the averaged features of the support samples φc = s−1∑

{x∈Ds,y∗(x)=c} φ(x;w1) for
all c = 1, . . . , Cw as the cluster centroids. This involves maximizing the likelihood

∀x ∈ Dq, if y∗(x) = c : p(φ(x;w1)) ∝ exp
(
−∥φc − φ(x;w1)∥2/2

)
(11)
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over query samples. If features φ lie on an ℓ2 ball of radius 1, then maximizing this likelihood is akin
to maximizing the cosine similarity between cluster centroids computed from the support samples
and features of the query samples. At the end of training, the same clustering loss with the learned
backbone w1 is used to predict on unseen classes (using “few” support samples to compute centroids).

We compared trajectories of episodic meta-learning to the trajectory taken by supervised learning
using the cross-entropy loss over all C classes in Fig. 2. Episodic meta-learning methods are quite
different from supervised learning so it seems surprising that both arrive at the same solution;
see Fig. 2a,b and Fig. A3 for distances between trajectories. But this is consistent with recent literature
which has noticed that the performance of few-shot learning methods using supervised learning
(followed by fine-tuning) is comparable to or better than episodic meta-learning (Dhillon et al., 2020;
Kolesnikov et al., 2020; Fakoor et al., 2020). The supervised learned representation also minimizes
the clustering loss (11). We find that the trajectory length of episodic training is about 40× longer
than that of supervised learning.

Few-shot accuracy of episodic training is better with a large way (Gidaris & Komodakis, 2018).
We trained models with different ways to study this (Fig. 2b). We find that the radius of the tube that
encapsulates the models of 2-way meta-learning around their mean trajectory is very large, almost as
large as the total length of the trajectory, i.e., different models trained with a small way learn very
different representations. Tube radius decreases as the way increases (Fig. 2c). Further, the distance of
models from the truth P∗ (which is close to the end point of the supervised learning model) is higher
for a small way (Fig. 2d). This is geometric evidence of the widely used empirical practice of using a
large number of way in episodic meta-learning. Observe that as the way increases, the trajectory of
the episodic meta-learning becomes more and more similar to that of supervised learning.

Result 6. Contrastive learning methods trained on different datasets learn similar representations
Contrastive learning (Becker & Hinton, 1992) learns representations without using ground-truth

labels (Gutmann & Hyvärinen, 2010; Chen et al., 2020a). It has been extremely effective for
self-supervised learning (Doersch & Zisserman, 2017; Kolesnikov et al., 2019), e.g., prediction
accuracy with 1–10% labeled data is close to that of supervised learning using all data (Chen et al.,
2020b). We compared representations learned using contrastive learning with those from supervised
learning to understand some aspects of why the former are so effective.

Consider a task P and a set of augmentations G (e.g., cropping, resizing, blurring,
color/contrast/brightness distortion etc.). Given inputs (say images) x from P , contrastive learning
forces the representation φ(g(x);w1) and φ(g′(x);w1) (shortened to φ(g(x)) below) of the same input
for two different augmentations g, g′ to be similar. And forces it to be different from representations
of other augmented inputs x′ (Zbontar et al., 2021; Bachman et al., 2019; Dosovitskiy et al., 2014).

We used a popular method called SimCLR (Chen et al., 2020a) to perform contrastive learning on
images from four sets of classes (airplane-automobile, bird-cat, ship-truck) and all of CIFAR-10. We
compared the learned representation to that from supervised learning on two tasks (airplane-automobile
and all of CIFAR-10) in Fig. 4. Models trained using contrastive learning on two-class datasets learn
very different representations from models trained on the same task but using supervised learning.
Models trained using contrastive learning on different datasets learning similar representations
(trajectories of all three two-class datasets are very close to each other). This is reasonable because
contrastive learning does not use any information from the labels. It is surprising however that the
trajectory of models from contrastive learning on these two-class datasets is similar to trajectories of
models from contrastive learning on the entire CIFAR-10.

We also performed an experiment where we compare the representations of semi-supervised
(Fixmatch (Sohn et al., 2020)), contrastive (SimCLR (Chen et al., 2020a), Barlow-twins (Zbontar et al.,
2021)) and supervised learning; see Appendix G. All three trajectories are similar to the trajectory
of supervised learning. We find that the trajectory for semi-supervised learning deviates from the
supervised learning trajectory initially, but the two are very similar for larger values of progress (tw).

4 Related Work and Discussion

Understanding the space of learning tasks. A large body of work has sought to characterize
relationships between learning tasks, e.g., domain specific methods (Zamir et al., 2018; Cui et al.,
2018; Pennington et al., 2014), learning theoretic work (Baxter, 2000; Maurer, 2006; Ben-David et al.,
2010; Ramesh & Chaudhari, 2022; Tripuraneni et al., 2020; Hanneke & Kpotufe, 2020; Caruana,
1997), random matrix models (Wei et al., 2022), neural tangent kernel models (Malladi et al., 2022)
and information-theoretic analyses (Jaakkola & Haussler, 1999; Achille et al., 2019a;b). Broadly
speaking, this work has focused on understanding the accuracy of a model on a new task when it is
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trained upon a related task, e.g., relationships between tasks are characterized using the excess risk of
a hypothesis.

Figure 4: (a) Trajectories of contrastive learning (Sim-
CLR) on 3 datasets (two classes each) and entire CIFAR-
10 compared to those of supervised learning. SimCLR
on entire CIFAR-10 learns a similar representation as
that of the supervised learned model P∗ (which fits the
training data perfectly). SimCLR trajectories are close
to each other even if different datasets were used to train
them. It may seem from the embedding that SimCLR
trajectories are similar to that supervised learning, which
would be very surprising because the former does not
use any labels, but see below. (b) Bhattacharyya dis-
tance between the mean trajectories of all models and
the mean trajectory of SimCLR on all CIFAR-10. This
distance is normalized by the average of the tube radii
(like Fig. 1g). SimCLR trajectories of two-class datasets
are indeed very close to each other (mean distance is
∼ 5× more than their tube radii for about 45% of the
way (tw ≈ 0.2)). This plot indicates that two-class Sim-
CLR trajectory (light blue) is close to SimCLR on all of
CIFAR-10. But two-class supervised learning trajectory
(darker blue) is much farther away from SimCLR on all
of CIFAR-10.

Like these above works, our methods also
allow us to say things like “task P 1 is far from
P 2 as compared to P 3”. But we heavily exploit
information geometry and can go much further.
Our methods shed light on the geometric struc-
ture in the space of tasks using the geometry
of probabilistic models of these tasks. This al-
lows us to make quantitative conclusions such as
“the divergence between P 1 and P 2 eventually is
more than that of P 1 and P 3, but representations
learned on these tasks are similar for 30% of
the way”. Therefore our methods allow us to
paint a picture of the space of the tasks that is
quantitative and globally consistent.

There is strong structure in typical inputs,
e.g., recent work on understanding generaliza-
tion (Yang et al., 2022; Bartlett et al., 2020)
as well as older work such as (Simoncelli
& Olshausen, 2001; Field, 1994; Marr, 2010)
has argued that visual data is effectively low-
dimensional. Our works suggests that tasks
also share a low-dimensional structure. Just
like the effective low-dimensionality of inputs
enables generalization on one task, effective
low-dimensionality of the manifold of models
trained on different tasks could perhaps explain
generalization to new tasks.

Relationships between tasks in computa-
tional neuroscience. Our results are conceptu-
ally close to those on organization and represen-
tation of semantic knowledge (Mandler & Mc-
Donough, 1993). Such work has primarily used
simple theoretical models, e.g., linear dynamics
of Saxe et al. (2019) (who also use MDS). Our
tools are very general and paint a similar picture
of ontologies of complex tasks. There is some
resemblance in how our different networks learn
the task in a similar fashion (low-dimensional
manifold, trajectories across different random
seeds and similar tasks are very close to each
other), and how different individuals share the
same notion of what constitutes a task (Rosch
& Mervis, 1975). Concept formalization and
specialization over age (Vosniadou & Brewer, 1992) also resembles our experiment in how fine-tuning
models trained for longer periods changes the representation marginally. Our goals are similar to those
of works like Sorscher et al. (2021) but our focus is very different. We have focused our techniques on
studying how representation learning on multiple tasks works.

Visualizing training trajectories of deep networks. A large number of works have investigated
trajectories of deep networks and the energy landscape during or after training using dimensionality
reduction techniques (Horoi et al., 2021; Li et al., 2018; Huang et al., 2020) and study if learning occurs
in a low-dimensional sub-space (Gur-Ari et al., 2018; Antognini & Sohl-Dickstein, 2018). The key
distinction with respect to this existing work—and our key technical innovation—is that we visualize
the function space, not the weight space. We study the function space of deep networks by evaluating
the underlying probabilistic model on finite samples. While the weight space has symmetries (Freeman
& Bruna, 2017; Garipov et al., 2018) and nontrivial dynamics (Tanaka & Kunin, 2021; Chaudhari
& Soatto, 2018), the function space, i.e,. our large vector [0, 1]N×C ∋ {pw(c | xi)} completely
characterizes the output of the model. In comparison, the loss or the error which are typically used to
reason about relationships between tasks, are very coarse summaries of the predictions. Any two
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models trained on the same task can be rigorously studied in our “finite-dimensional function space”
to understand their predictions. Another key innovation is that our mapping procedure allows us to
study the representation of the penultimate layer of any two models, even if they were trained on
different tasks.
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A Details of the experimental setup
Data
We performed experiments using two datasets.

1. CIFAR10 (Krizhevsky, 2009) has 10 classes (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck) with RGB images of size 32×32, and

2. Imagenet (Deng et al., 2009) has 1000 classes each with about 1000 RGB images of size
224×224.

Architectures We use a Wide-Resnet (Zagoruyko & Komodakis, 2016) architecture for supervised
learning experiments on CIFAR-10 (WRN-16-4 with depth 16 and widening factor of 4) and a
Resnet-18 (He et al., 2016) to train a model using SimCLR. All experiments on Imagenet use the
Resnet-50 architecture.

All convolutional layers are initialized using the Kaiming-Normal initialization. For the Wide-
Resnet, the final pooling layer is replaced with an adaptive pooling layer in order to handle input
images of different sizes.

We make three modifications to these architectures.
1. We remove the bias from the final classification layer; this helps keep the logits of the

different tasks on a similar scale.
2. In the experiments pertaining to Results 4 and 5, we replace batch normalization with

layer norm in the Wide-Resnet. This is because we found in preliminary experiments that
batch-normalization parameters make training meta-learning models very sensitive to choices
of hyper-parameters (e.g., the support or query shot), and that the learned representations of
new tasks were quite different in terms of their predictions (and thereby the Bhattacharyya
distance) but all the difference was coming from modifications to the BN parameters.

3. In the Resnet-50, we replace the pooling layers with BlurPool (Zhang, 2019). The bias
parameter in batch normalization is set to zero with the affine scaling term set to one.

Training procedure All models are trained in mixed-precision (32-bit weights, 16-bit gradients)
using stochastic gradient descent (SGD) with Nesterov’s acceleration with momentum coefficient
set to 0.9 and cosine annealing of the learning rate schedule. Batch-normalization parameters are
excluded from weight decay.

CIFAR10 datasets use padding (4 pixels) with random cropping to an image of size 28×28 or
32×32 respectively for data augmentation. CIFAR10 images additionally have random left/right flips
for data augmentation. Images are finally normalized to have mean 0.5 and standard deviation 0.25.

Supervised learning models (including fine-tuning) for CIFAR10 are trained for 100 epochs with
a batch-size of 64 and weight decay of 10−5 using the Wide-Resnet.

Episodic meta-learners are trained using a Wide-Resnet and with the prototypical loss (Snell et al.,
2017a). For the 2-way meta-learner, each episode contains 20 query samples and 10 support samples.
For the 5-way meta-learner, each episode contains 50 query samples and 10 support samples. We
found Result 5 to hold across different choices of these hyper-parameters in small-scale experiments.
Models are trained for around 750 epoch and the episodic learner is about 5 times slower to train with
respect to wall-clock time.

We train models using SimCLR on CIFAR10 and on tasks created from CIFAR10. For the
augmentations, we use random horizontal flips, random grayscale, random resized crop and color
jitter. Models are trained for 200 epochs for 2-way classification problems and for 500 epochs when
trained on the entirety of CIFAR10 with the Adam optimizer and an initial learning rate of 0.001.

A.1 Experiments on Imagenet
We make use of FFCV (Leclerc et al., 2022). which is a data-loading library that replaces the pytorch
Dataloader. FFCV reduces the training time on Imagenet to a few hours, which allows us to train
100s of models on Imagenet, or on tasks created from it. Our implementation of Imagenet training
builds on the FFCV repository 1.

Imagenet models are trained for 40 epochs with progressive resizing – the image size is increased
from 160 to 224 between the epochs 29 and 34. Models are trained on 4 GPUs with a batch-size of
512. The training uses two types of augmentations – random-resized crop and random horizontal
flips. Additionally, we use label smoothing with the smoothing parameter set to 0.1.

1https://github.com/libffcv/ffcv-imagenet/tree/main/
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A.2 Implementing InPCA in very high dimensions
We calculate an InPCA embedding of models along multiple trajectories, e.g., a typical experiment
has about 25 trajectories (multiple random seeds, tasks, or representation learning methods) and
about 50 models (checkpoints) along each trajectory. Each model is a very high-dimensional object
(with dimensionality NC where N ∼ 105 and C ∼ 10-103). Even if the matrix D in (9) is relatively
manageable with n ∼ 1250, each entry of D is dB(Pu, Pv) and therefore requires ∼ 108 operations
to compute. Implementing InPCA—or even PCA—for such large matrices requires a large amount
of RAM. We reduced the severity of this issue to an extent using Numpy’s memmap functionality
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html. Also note that calculating
only the top few eigenvectors of (9) suffices to visualize the models, we do not need to calculate all.

The formula (2) is an effective summary of the discrepancies between how the predictions made
by two probabilistic models differ; even small differences in two models, e.g., even if both Pu and Pv

make mistakes on exactly the same input samples, if pnu(c) is slightly different than pnv (c) for even one
of n or c, the divergence is non-zero. InPCA is capable of capturing the differences between two
such models (9). However, when the number of classes is extremely large, the number of terms in
the summation is prohibitively large and analyzing the discrepancies or calculating the embedding
becomes rather difficult.

We also developed a method to work around this issue. We can use a random stochastic matrix
(whose columns sum up to 1) to project the outputs for each sample {pnu(c)}c=1,...,C into a smaller
space before calculating (2). This amounts to pretending as if the model predicts not the actual classes
but a random linear combination of the classes (even if the model is trained on the actual classes).
This is a practical trick that is necessary only when we are embedding a very large number of very
high-dimensional probabilistic models. We checked in our Imagenet experiments that using this trick
gives the same embeddings.

In this paper, we did not need to use this projection trick.

B Calculating mean trajectories
We defined the distance between two trajectories to be dtraj(τ

1→U
u , τ2→U

v ), i.e., the integral of the
Bhattacharyya distance between the trajectories after mapping them to the same task and re-indexing
them using the geodesic. This quantity is key in our work. Say we wish to compare a model trained
on two tasks: cats vs. dogs and airplane vs. truck from CIFAR-10. We initialize multiple models for
each of these two supervised learning problems (and we do so for every experiment in this paper) and
train these 10 models. We can now calculate the mean trajectory of models on a task

argmin
τ1
µ

1

K

K∑
k=1

dtraj(τ
1
uk

, τ1µ).

This optimization problem is very challenging because the variable is a trajectory of probabilistic
models in a high-dimensional space. Even if we were to split this minimization and do it independently
across time, this is still difficult because the solution is the so-called Bhattacharyya centroid on the
product manifold defined in (1) and cannot be computed in closed form. See (Nielsen & Boltz, 2011)
for an iterative formula. We therefore simply take the arithmetic mean of the probability distributions,
i.e., Pµ(t) =

1
K

∑K
k=1 Pwi(t). This is similar to ensembling. We use the radius of the tube around the

mean trajectory, i.e.,
ru = max

k
dtraj(τ

1
uk

, τ1µ)

to normalize distances (more precisely, we normalize using the average of the radii of the two
trajectories being compared). Note that this radius depends upon time (and is computed after mapping
and reindexing the trajectories). If the distance between the means of two sets of trajectories is smaller
than their individual average radii, then the tubes around the means intersect each other. In such cases,
one can say that the representations learned (at that time point) are not distinguishable. We next show
all distances between reindexed points along the trajectories discussed in Figs. 1, 3 and 4. Note that
each curve gives the integrands in (5), not the integral.

C Bhattacharyya Distance
In this section, we provide additional details regarding (2). Let ȳ = (y1, · · · yN ), denote the labels
assigned to each of the N samples. Since there are C classes in total, ȳ can take a total of Nc different
values denoted by the set Y C . Given, two models Pu and Pv, the Bhattacharyya averaged over the
samples is
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Figure A1: This figure shows the extended version of the distances between trajectories of probabilistic models;
two of them are identical to the ones in Fig. 3b and Fig. 4b.
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dB(Pu,Pv) := −N−1 log

 ∑
ȳ∈Y C

√
Pu(ȳ)Pv(ȳ)


= −N−1 log

∑
y⃗

N∏
n=1

√
pu(yn) pv(yn)


= −N−1 log

 C∑
y1=1

C∑
y2=1

· · ·
C∑

yN=1

(
N∏

n=1

√
pu(yn) pv(yn)

)
= −N−1 log

 C∑
y1=1

· · ·
C∑

yN−1=1

(
N−1∏
n=1

√
pu(yn) pv(yn)

) C∑
yN=1

√
pu(yN ) pv(yN )


=

...

= −N−1 log

 C∑
y1=1

· · ·
C∑

yN−k=1

(
N−k∏
n=1

√
pu(yn) pv(yn)

)
N∏
i=

N−k+1

 C∑
yi=1

√
pu(yi) pv(yi)




=
...

= −N−1 log

 N∏
i=1

 C∑
yi=1

√
pu(yi) pv(yi)


= −N−1

N∑
i=1

log

 C∑
yi=1

√
pu(yi) pv(yi)


D Measuring Goodness-of-fit of an Inpca embedding using Explained

Stress
We would like to measure if a k-dimensional sub-space accurately preserves the true distances. For
this purpose, we define a quantity called the “explained stress” that estimates the fraction of pairwise
distances in the original space that are preserved in the k-dimensional embedding. This is analogous to
the explained variance in principal component analysis (PCA); but explained variance is a measure of
the how well the original points are preserved in the embedding whereas explained stress approximates
how well pairwise Bhattacharyya distances are preserved. If we consider the embedding to be given
by first k eigen-vectors, then the explained stress (χk) is

χk = 1−

∥∥∥W −
∑k

i=1 Σii UiU
⊤
i

∥∥∥
F

∥W∥F
= 1−

√∑m
i=k+1 Σ

2
ii∑m

i=1 Σ
2
ii

. (12)

Note that InPCA finds an embedding that exactly maximizes the objective χk.

E Imprinting results in weights that maximize the log-probability under a
norm constraint

Consider a total of C classes. In this section, we show that imprinting results in weights {wc}Cc=1
that maximize the log-probability of the samples while satisfying the constraint ||wc|| = 1. Hence,
imprinting can be used instead of training the last layer.

Let the set of all samples in class c be {xci}
nc
i=1. We define the log-probability with which sample

xi belongs to c, as ωc · φ(xi), where φ(xi) are the feature of sample xi. Hence,
nc∑
i=1

log p(y = c | xci ) =
nc∑
i=1

w · ϕ(xci ) = wc ·
nc∑
i=1

φ(xci ). (13)

If we don’t have a constraint on the norm of wc, then we can maximize (13) by sending wc → ∞. Let

w∗
c = argmax

w:||w||=1

wc ·
nc∑
i=1

φ(xci ),

18



Under review as a conference paper at ICLR 2023

denote the weights that maximize the log-probability under the ℓ2 norm constraint. Since w = x/||x||
maximizes the objective w · x, subject to the constraint that ||w|| = 1, the optimal value for wc is∑

i ϕ(x
c
i )/||

∑
i ϕ(x

c
i )||.

F Comparing different semi-supervised, contrastive and supervised
learning methods
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Figure A2: We consider 4 methods for training on CIFAR10: supervised learning, SimCLR (Chen et al.,
2020a), Barlow-twins (Zbontar et al., 2021) and Fixmatch (Sohn et al., 2020). Fixmatch is a semi-supervised
learning method and has access to 2500 labeled samples in addition to 47500 unlabeled samples. SimCLR and
Barlow-twins are contrastive learning methods that use all the 50,000 unlabeled samples for training.
(a) We plot the trajectories for supervised, semi-supervised and contrastive learning. The trajectory of semi-
supervised learning (Fixmatch) eventually resembles supervised learning in comparison to contrastive
learning methods. All methods result in remarkably similar trajectories although some of these methods are
clearly trained using only unlabeled data.
(b) We plot the normalized distance of trajectories corresponding to contrastive and semi-supervised learning to
the trajectory of supervised learning. Semi-supervised learning (Fixmatch) deviates considerably from the
other methods at the beginning. We speculate that this is because the trajectory of Fixmatch is influenced by
the 2500 labeled samples. As, training progresses, Fixmatch becomes increasingly similar to supervised learning
as evidenced by the dip in the blue line for larger values of progress (tw).

G Distance between trajectories of episodic meta-learning and
supervised learning
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Figure A3: Distance between trajectories of supervised and meta-learning at different values of progress.
Distances between the average trajectories of different algorithms (e.g., 2-way episodic learning and supervised
learning, and 5-way episodic learning and supervised learning in the leftmost panel) are normalized by the
average of the radii of the tubes corresponding to each trajectory. We find that trajectories of 2-way meta-learning
deviate significantly from those of supervised learning for a large fraction of the trajectory. On the other hand,
5-way meta-learning is similar to the supervised learning trajectory for almost the entirety of the trajectory.
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