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Abstract—A frame for a Hilbert space H , like an ortho-
normal basis, gives a continuous, linear, and stable reconstruction
formula for any vector x ∈ H . However, the redundancy of
frames allows for more adaptability to different applications.
For example, in order to do phase retrieval to recover a vector
from only the magnitudes of a collection of linear measurements
(such as in coherent diffraction imaging), one must use a frame
because a basis cannot recover any loss of information. Frames
are also useful when working with a coordinate system for
a vector bundle which moves continuously over a manifold.
Although topological restrictions often prevent the existence of
a continuously moving basis for a vector bundle, every vector
bundle over a paracompact manifold has a moving redundant
frame. We consider a combination of these two situations where
one must recover a section of a vector bundle (up to an
equivalence relation) from only the magnitudes of a collection
of linear measurements on each fiber. Furthermore, we consider
how to approximate a section from only finitely many samples.

Index Terms—Frame theory, moving Parseval frames, sam-
pling, perturbations.

I. INTRODUCTION

Let (fi)i∈I be a family of vectors in a Hilbert space H . We
say that (fi)i∈I is a frame if there exist constants 0 < A ≤
B < ∞ such that

A∥v∥2 ≤
∑
i∈I

|⟨v, fi⟩|2 ≤ B∥v∥2 for all v ∈ H.

We call A and B the lower and upper frame bounds, respec-
tively. If A = B = 1, then (fi)i∈I is called a Parseval frame.
A frame is called equi-norm if all the vectors have the same
norm. Parseval frames can be characterized as orthogonal pro-
jections of ortho-normal bases for higher-dimensional spaces
[28]. That is, projecting an ortho-normal basis onto a subspace
gives a Parseval frame for that subspace, and every Parseval
frame can be constructed in such a way. The famous Parseval’s
identity for ortho-normal bases then holds as well for Parseval
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frames. That is, if (fi)i∈I is a collection of vectors in a Hilbert
space H then (fi)i∈I is a Parseval frame of H if and only if

v =
∑
i∈I

⟨v, fi⟩fi for all v ∈ H. (1)

Instead of working with a single fixed Hilbert space, we
consider a vector bundle over a manifold. Intuitively, we think
of a manifold M as a topological space which is locally
homeomorphic to Euclidean space. Given manifolds E and M ,
a rank n vector bundle π : E → M is a continuous map such
that for each x ∈ M , the fiber π−1(x) takes on the structure
of an n-dimensional vector space. As we will be working with
frames, we add the additional assumption that each fiber is a
Hilbert space and the inner product ⟨·, ·⟩ varies continuously
over the manifold. Further, we fix a metric d which generates
the topology on M . A section of a vector bundle π : E → M
is a continuous map f : M → E such that for all x ∈ M ,
f(x) is a vector in the fiber π−1(x). We now consider how the
idea of a Parseval frame for a single fixed Hilbert space can
be extended to a Parseval frame which moves continuously
over a vector bundle, which has previously been studied in
[7], [22], [23], [29], [30].

Definition 1. Let π : E → M be a rank n-vector bundle over
a smooth manifold M with a given inner product ⟨·, ·⟩. Let
k ≥ n, and fi : M → E be a section of π for all 1 ≤ i ≤ k.
We say that (fi)ki=1 is a moving Parseval frame for π if for
all x ∈ M we have that (fi(x))ki=1 is a Parseval frame for
the fiber π−1(x). That is, for all x ∈ M , the reconstruction
formula gives,

v =

k∑
i=1

⟨v, fi(x)⟩fi(x) for all v ∈ π−1(x). (2)

The following theorem extends the characterization of Par-
seval frames as orthogonal projections of ortho-normal bases
to the continuous setting of vector bundles.



Theorem 1. [23] Let π1 : E1 → M be a rank n-
vector bundle over a paracompact manifold M with a moving
Parseval frame (fi)

k
i=1. Then, there exists a rank k−n vector

bundle π2 : E2 → M with a moving Parseval frame (gi)
k
i=1

so that (fi ⊕ gi)
k
i=1 is a moving ortho-normal basis for the

vector bundle π1 ⊕ π2 : E1 ⊕ E2 → M .

Hence, a moving Parseval frame of k-sections may be lifted
to a moving ortho-normal basis of a rank k vector bundle. By
identifying the moving ortho-normal basis with a fixed ortho-
normal basis for a k-dimensional Hilbert space Hk, we may
treat each fiber π−1(x) as a subspace of Hk. This allows for
Parseval frames to measure the distance between vectors in
different fibers. Let (fi)ki=1 be a moving Parseval frame for a
vector bundle π : E → M . For each x, y ∈ M , vx ∈ π−1(x),
and uy ∈ π−1(y) we consider the distance between vx and uy

to be

∥vx − uy∥ =
( k∑

i=1

|⟨vx, fi(x)⟩ − ⟨uy, fi(y)⟩|2
)1/2

. (3)

Note that as (fi)
k
i=1 is a moving Parseval frame, we have that

(3) corresponds to the distance induced by the norm on the
fiber π−1(x) when x = y.

II. SAMPLING AND SECTIONS OF VECTOR BUNDLES

In applications, one must often approximate a function
using only finitely many samples from the domain, such as
in quadrature rules for numerical integration, and there has
been many recent advances in this direction in approximation
theory and frame theory [9], [10], [17], [21], [24], [25], [35],
[32]. We consider how a moving Parseval frame for a vector
bundle π : E → M can be used to approximate a section
from finitely many samples in the manifold M . That is,
given finitely many sampling points (xj)1≤j≤N ⊆ M , how
can we approximate a section f from the frame coefficients
(⟨f(xj), fi(xj)⟩)1≤i≤k;1≤j≤N?

Note that we cannot approximate every section from finitely
many sampling points as given any finite set (xj)

N
j=1 ⊆ M

we can choose a section f : M → E which gets arbitrarily
large but that f(xj) = 0 for all 1 ≤ j ≤ N . Because of this,
we will restrict ourselves to only considering sections with a
given bound on their modulus of continuity. This restricts how
much a section can change between different sampling points.

Definition 2. Let M be a compact manifold endowed with
a metric ρ, and let π : E → M be a vector bundle with a
moving Parseval frame. The modulus of uniform continuity
of a section f : M → E, is the function ωf : (0,∞) → [0,∞]
given by

ωf (δ) = sup{∥f(y)− f(x)∥ : x, y ∈ M,ρ(x, y) ≤ δ}. (4)

The remark after Theorem 1 ensures that (4) is well-defined
as we can consider f(x) and f(y) to be elements of the same
Hilbert space.

By enforcing a bound on the modulus of uniform con-
tinuity of f , we can guarantee that if x is sufficiently

close to a sampling point xj then the frame coefficients
for f(x) will be closely approximated by the frame coef-
ficients for f(xj). That is, we can approximate f(x) with∑k

i=1⟨f(xj), fi(xj)⟩fi(x) ∈ π−1(x). Obtaining estimates
for this depends on the idea of perturbations of frames as
developed in [14]. Given ε > 0, we say that a family of vectors
(gi)

k
i=1 is an ε-perturbation of a frame (fi)

k
i=1 for a Hilbert

space H if
∑k

i=1 ∥fi − gi∥2 < ε. We will need the following
perturbation theorem.

Lemma 1. Let ε > 0 and let (fi)ki=1 and (gi)
k
i=1 be frames of

a Hilbert space H which satisfy
∑k

i=1 ∥fi − gi∥2 < ε. Let B
be an upper frame bound for (fi)

k
i=1. Then for all v, u ∈ H

we have that∥∥∥ k∑
i=1

⟨v, fi⟩fi −
k∑

i=1

⟨u, gi⟩fi
∥∥∥ ≤ B1/2∥v − u∥+B∥u∥ε1/2.

Proof. ∥∥∑⟨v, fi⟩fi −
∑

⟨u, gi⟩fi
∥∥∥

≤
∥∥∑⟨v − u, fi⟩fi

∥∥+
∥∥∥∑⟨u, fi − gi⟩fi

∥∥∥
≤ B∥v − u∥+B

(∑
|⟨u, gi − fi⟩|2

)1/2
≤ B∥v − u∥+B∥u∥

(∑
∥gi − fi∥2

)1/2
≤ B∥v − u∥+B∥u∥ϵ1/2.

Lemma 1 allows us to use the values (⟨f(xj), fi(xj)⟩)1≤i≤k

to approximate f(x) when x is in a small neighborhood of
xj . A partition of unity can be used to combine these local
approximations into a global approximation over the manifold.

Definition 3. Given an open cover (Uj)
N
j=1 of a compact

manifold M , we say that a sequence of continuous functions
(Ψj)

N
j=1 from M to [0, 1] is a partition of unity subordinate

to (Uj)
N
j=1 if supp(Ψj) ⊆ Uj for all 1 ≤ j ≤ N and∑N

j=1 Ψj(x) = 1 for all x ∈ M.

We now use Lemma 1 with a partition of unity argument
to obtain the following theorem, which gives a linear ap-
proximation formula for a section f from the sampled frame
coefficients (⟨f(xj), fi(xj)⟩)1≤i≤k;1≤j≤N . If x ∈ M and
δ > 0, then we denote Uδ(x) ⊆ M to be the open ball of
radius δ centered at x.

Theorem 2. Let (fi)
k
i=1 be a moving Parseval frame for a

vector bundle π : E → M over a compact manifold M
and let ε, δ′ > 0. Choose δ > 0 such that δ′ ≥ δ and
max1≤i≤k ωfi(δ

′) < k−1/2ε/2. Choose any δ-dense subset
(xj)

N
j=1 ⊆ M and a partition of unity (Ψj)

N
j=1 which is

subordinate to (Uδ(xj))
N
j=1. Then for any section f of π

satisfying ωf (δ) < ε/2 and supy∈M ∥f(y)∥ ≤ 1, we have
for all x ∈ M that∥∥∥f(x)− N∑

j=1

Ψj(x)
( k∑

i=1

⟨f(xj), fi(xj)⟩fi(x)
)∥∥∥ < ε.



Proof. Consider x ∈ M and 1 ≤ j ≤ N such that
d(x, xj) < δ. As max1≤i≤k ωfi(δ) < k−1/2ε/2, we have∑k

i=1 ∥fi(x) − fi(xj)∥2 < ε2/4. Hence, (fi(xj))
k
i=1 is an

(ε2/4)-perturbation of (fi(x))
k
i=1. Further, ωf (δ) < ε/2 and

hence ∥f(x) − f(xj)∥ < ε/2. As (fi(x))
k
i=1 is a Parseval

frame, f(x) =
∑k

i=1⟨f(x), fi(x)⟩fi(x)⟩. Lastly, we assumed
∥f(xj)∥ ≤ 1. Lemma 1 now gives that

∥∥f(x)− k∑
i=1

⟨f(xj), fi(xj)⟩fi(x)
∥∥ < ε/2 + ε/2. (5)

As M is a compact manifold, we may choose (Ψj)
N
j=1 to be

a partition of unity subordinate to (Uδ(xj))
N
j=1. This gives,

for x ∈ M and 1 ≤ j ≤ N that if ∥x − xj∥ < δ then
(5) is satisfied, and if ∥x − xj∥ ≥ δ then Ψ(x) = 0. As∑N

j=1 Ψj(x) = 1, we have

∥∥f(x)− N∑
j=1

Ψj(x)

k∑
i=1

⟨f(xj), fi(xj)⟩fi(x)
∥∥

≤
N∑
j=1

Ψj∥f(x)−
k∑

i=1

⟨f(xj), fi(xj)⟩fi(x)∥ < ε

III. PHASE RETRIEVAL FOR SECTIONS

In applications such as coherent diffraction imaging, one
must use phase retrieval to recover a vector (up to a unimod-
ular scalar) from only the magnitudes of its frame coefficients
[11], [18], [19], [33]. Let (fi)i∈I be a frame for a Hilbert
space H . Note that if v ∈ H and |λ| = 1 then (|⟨v, fi⟩|)i∈I =
(|⟨λv, fi⟩|)i∈I . Thus, we consider the equivalence relation ∼
on H given by v ∼ λv for all |λ| = 1. We say that a frame
(fi)i∈I does phase retrieval for a Hilbert space H if whenever
v, u ∈ H are such that (|⟨v, fi⟩|)i∈I = (|⟨u, fi⟩|)i∈I we
have that v ∼ u. This definition naturally extends to moving
Parseval frames on vector bundles. Let (fi)ki=1 be a moving
Parseval frame for a vector bundle π : E → M . We say
that (fi)ki=1 does phase retrieval for π if for all x ∈ M we
have that (fi(x))ki=1 does phase retrieval for the fiber π−1(x).
Given sections f and g of π : E → M we let f ∼M g if for
all x ∈ M , f(x) ∼ g(x). Implementing phase retrieval for a
section f is then recovering the equivalence class [f ]∼M

from
the phaseless measurements (|⟨f(x), fi(x)⟩|)x∈M ;1≤i≤k.

A frame theoretic approach to phase retrieval was originally
developed in [5], and has grown into rich area of study [1],
[2], [8], [12], [16], [27], [33], [36]. In this section we will first
show how some of the fundamental results on phase retrieval
for Hilbert spaces can be naturally extended to the vector
bundle setting. We will then show how other results on phase
retrieval do not immediately generalize and instead become
interesting topological questions.

As any application involves error, it is essential that phase
retrieval not only be possible but that it be stable as well.
Given a Hilbert space H , we consider the quotient metric d∼
on H/∼ by d∼([v]∼, [u]∼) = min|λ|=1 ∥v − λu∥. A frame

(fi)i∈I for a Hilbert space H is said to do C-stable phase
retrieval if the map (|⟨v, fi⟩|)i∈I 7→ [x]∼ is C-Lipschitz. That
is, for all v, u ∈ H we have that min|λ|=1 ∥v − λu∥ ≤
C(

∑
i∈I ||⟨v, fi⟩|−|⟨u, fi⟩||2)1/2. A frame for a finite dimen-

sional Hilbert space does phase retrieval if and only if it does
C-stable phase retrieval for some C > 0 [6], [8]. Furthermore,
if (fi)i∈I is a frame for a finite dimensional Hilbert space
which does phase retrieval then there exists ε > 0 and C > 0
so that every ε-perturbation of (fi)i∈I does C-stable phase
retrieval [3], [4]. The following extension to the vector bundle
setting follows by compactness.

Proposition 1. Let (fi)ki=1 be a moving Parseval frame for a
vector bundle π : E → M over a compact manifold M . Then
(fi)

k
i=1 does phase retrieval for the vector bundle if and only

if there exists C > 0 so that for all x ∈ M , (fi(x))ki=1 does
C-stable phase retrieval for the fiber π−1(x).

We now consider the problem of recovering a section
of a vector bundle from finitely many samples. Let π :
E → M be a vector bundle with a moving Parse-
val frame (fi)

k
i=1. Previously, we considered how to re-

cover a section f : M → E from the sampled values
(⟨f(xj), fi(xj)⟩)1≤i≤k;1≤j≤N . Our goal now is to recover
[f ]∼M

from (|⟨f(xj), fi(xj)⟩|)1≤i≤k;1≤j≤N .
The first obstacle is that for each x ∈ M , the equivalence

class [f(x)]∼ is not a vector and hence we cannot use a
partition of unity to add local reconstructions together. This
is overcome by identifying an equivalence class [v]∼ with the
rank 1 operator vv∗. Recall that a frame (fi)i∈I for a Hilbert
space H does phase retrieval if whenever |⟨v, fi⟩| = |⟨u, fi⟩|
for all i ∈ I we have that v = λu for some |λ| = 1.
Note that the Hilbert-Schmidt inner product on the space
of bounded operators gives that ⟨vv∗, fif∗

i ⟩HS = |⟨v, fi⟩|2.
Further, ⟨vv∗, fif∗

i ⟩HS = ⟨uu∗, fif
∗
i ⟩HS if and only if

⟨vv∗ − uu∗, fif
∗
i ⟩HS = 0. It follows that (fi)i∈I does phase

retrieval for H if and only if whenever F : H → H is
a self-adjoint operator with 1 ≤ rank(F ) ≤ 2 we have
that ⟨F, fif∗

i ⟩HS ̸= 0 for some i ∈ I . Thus, recovering
[f ]∼M

is equivalent to recovering F where for all x ∈ M ,
F (x) = f(x)f(x)∗ is a positive rank one operator on π−1(x).

There are multiple algorithms for performing phase retrieval
for a fixed Hilbert space, such as phase lift [13] or Griffin-
Lim [34]. When doing phase retrieval for a vector bundle from
samples, we assume that one is able to do phase retrieval
for each of the sampled fibers. Our goal is to show how
these samples can be combined to approximately do phase
retrieval over the vector bundle. That is, given a moving
Parseval frame (fi)

k
i=1 for a vector bundle π : E → M and

finitely many sampling points (xj)
N
j=1 ⊆ M our goal is to

approximate a continuously moving rank 1 positive operator
F from the values (⟨F (xj), fi(xj)f

∗
i (xj)⟩HS)1≤i≤k;1≤j≤N .

Note that using a partition of unity to sum a collection of rank
1 positive operators will likely result in a positive operator
which has rank greater than 1. However, if a collection of
positive rank one operators are all sufficiently close together,
then any convex combination can be closely approximated



by a positive rank 1 operator. Given a positive finite rank
operator G whose largest eigenvalue is λ1, we denote R1(G)
to be a positive rank 1 operator such that λ1 is the largest
eigenvalue of R1(G) and the corresponding eigenspace for
R1(G) is contained in the corresponding eigenspace for G.
Note that R1(G) is not uniquely defined when the eigenspace
corresponding to λ1 has dimension greater than 1. However, if
G continuously varies over a domain X where the eigenspace
corresponding to the largest eigenvalue of G(x) always has
dimension 1, then R1(G) continuously varies over X as well.
Because of this, we will threshold our approximation to always
guarantee that we only consider the case where the eigenspace
corresponding to the largest eigenvalue of G(x) always has
dimension 1. Given any γ > 0, we let τγ : [0,∞) → [0,∞)
be an increasing smooth function such that τγ(t) = 0 for all
t ∈ [0, γ] and τγ(t) = t for all t ∈ [2γ,∞).

Note that if F is a rank one operator on a Hilbert space
H then F = vv∗ for some v ∈ H . Further, if (fi)

k
i=1

is a Parseval frame of H then v =
∑

⟨v, fi⟩fi and hence
F =

∑
1≤i,i′≤k⟨v, fi⟩⟨fi′ , v⟩fif∗

i′ . As the map v 7→ vv∗ is
continuous, we may apply a similar proof to Theorem 2 to
obtain the following.

Theorem 3. Let (fi)
k
i=1 be a moving Parseval frame for a

vector bundle π : E → M over a compact manifold M
such that for all x ∈ M , (fi(x))

k
i=1 does phase retrieval

for the fiber π−1(x). Then for every ε > 0 there exists
ε′ > 0 so that for all δ′ > 0 there exists a collection
of sampling points (xj)

N
j=1 ⊆ M , and a partition of unity

(Ψj)
N
j=1 so that the following hold. Let F be a continuously

moving rank 1 positive operator satisfying ωF (δ
′) < ε′ and

supy∈M ∥f(y)∥HS ≤ 1. For each 1 ≤ j ≤ N , the frame
(fi)

k
i=1 does phase retrieval for π−1(xj), and thus we may

obtain a vector vj ∈ π−1(xj) such that F (xj) = vjv
∗
j . Let Fj

be the continuously moving rank 1 positive operator given by
Fj(x) =

∑
1≤i,i′≤k⟨vj , fi(xj)⟩⟨fi′(xj), vj⟩fi(x)f∗

i′(x). Then
for all x ∈ M we have that if ∥

∑N
j=1 Ψj(x)Fj(x)∥ ≥ ε/2

then R1

∑N
j=1 Ψj(x)Fj(x) is uniquely defined and

∥∥∥F (x)− τε/2

(∥∥∥ N∑
j=1

Ψj(x)Fj(x)
∥∥∥)R1

N∑
j=1

Ψj(x)Fj(x)
∥∥∥ < ε.

Our previous results have considered cases when the ex-
isting theory of phase retrieval for a single Hilbert space
can be naturally extended to do phase retrieval for a section
of a vector bundle. We now introduce some topics where
the existing theory runs into some interesting topological
obstructions when one generalizes to the vector bundle setting.

The foundational paper [5] characterizes the frames which
do phase retrieval for Rn as those satisfying the complement
property. That is, a frame (fi)

m
i=1 does phase retrieval for Rn if

and only if for every I ⊆ {1, ...,m} either (fi)i∈I or (fi)i∈Ic

is a frame for Rn. It follows immediately that there exists a
frame of m vectors for Rn which does phase retrieval if and
only m ≥ 2n− 1.

Note that if (fi)2n−1
i=1 is a moving Parseval frame for a rank n

vector bundle π : E → M then (fi)
2n−1
i=1 does phase retrieval

if and only if every n-element subset (fji)
n
i=1 is a moving

basis of π. This gives the following proposition.

Proposition 2. A real rank n vector bundle has a moving
Parseval frame of 2n − 1 vectors which does phase retrieval
if and only if the vector bundle has a moving basis.

This naturally leads to the following questions. Given a rank
n vector bundle π : E → M , for what m ≥ 2n − 1 does
there exist a moving Parseval frame of m sections which does
phase retrieval? For what m ≥ 2n − 1 does there exist a
moving equi-norm Parseval frame of m sections which does
phase retrieval? To motivate these as interesting topological
problems, we present solutions for the case of the tangent
space for the Möbius strip or Klein bottle.

We consider the Möbius strip M to be the square [0, 1] ×
[0, 1] where each bottom point (x, 0) is identified with the
top point (1 − x, 1). As the manifold is non-orientable, the
tangent space TM does not have a moving basis or a moving
equi-norm Parseval frame of 3 vectors. However, TM has a
moving Parseval frame of 3 vectors as one can immerse M in
R3 and then project an ortho-normal for R3 onto TM . Equi-
norm Parseval frames are particularly desirable in applications
as they minimize mean squared error due to noise [26], and it
is shown in [23] that TM has a moving equi-norm Parseval
frame of m vectors for all m ≥ 4.

As M is non-orientable, TM does not have a moving
Parseval frame of 3 vectors which does phase retrieval by
Proposition 2. However, we can build a Parseval frame (fi)

4
i=1

which does phase retrieval in the following way. We first
define the frame at the bottom of the square. Let f1((x, 0)) =
(0,

√
2
3 ), f2((x, 0)) = ( 1√

2
, −1√

6
), f3((x, 0)) = (−1√

2
, −1√

6
),

f4((x, 0)) = (0, 0). In order for (fi)
4
i=1 to be continuous,

this choice requires that f1((x, 1) = f1((x, 0)), f2((x, 1)) =
f3((x, 0)), f3((x, 1)) = f2((x, 0)), f4((x, 0)) = (0, 0). To do
this, we can divide [0, 1]× [0, 1] into 3 strips [0, 1]× [0, 1/3),
[0, 1] × [1/3, 2/3), and [0, 1] × [2/3, 1]. Over the first strip,
we switch the places of f2 and f4 while keeping the other
vectors fixed. In the second strip we switch f2 and f3, and in
the third we switch f3 and f4. This results in (fi)

4
i=1 being

continuously defined over the entire manifold.
Note that the above example is not an equi-norm frame.

We now claim that if (fi)4i=1 is a moving equi-norm Parseval
frame of four vectors for TM , then (fi)

4
i=1 cannot do phase re-

trieval. Indeed, as M is non-orientable we may assume without
loss of generality that there exists t ∈ M so that span(f1(t)) =
span(f2(t)). Every equi-norm Parseval frame of four vectors
for R2 is a union of 2 scaled ortho-normal bases. Thus, we
must also have that span(f3(t)) = span(f4(t)). We have that
(fi(t))

4
i=1 fails the complement property and hence does not

do phase retrieval.
On the other hand, TM has a moving equi-norm Parseval

frame of five vectors and every equi-norm Parseval frame of
five vectors for R2 necessarily does phase retrieval.
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