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Abstract

Reinforcement learning (RL) agents typically
learn tabula rasa, without prior knowledge of the
world. However, if initialized with knowledge of
high-level subgoals and transitions between sub-
goals, RL agents could utilize this Abstract World
Model (AWM) for planning and exploration. We
propose using few-shot large language models
(LLMs) to hypothesize an AWM, that will be veri-
fied through world experience, to improve sample
efficiency of RL agents. Our DECKARD agent
applies LLM-guided exploration to item craft-
ing in Minecraft in two phases: (1) the Dream
phase where the agent uses an LLM to decom-
pose a task into a sequence of subgoals, the hy-
pothesized AWM; and (2) the Wake phase where
the agent learns a modular policy for each sub-
goal and verifies or corrects the hypothesized
AWM. Our method of hypothesizing an AWM
with LLMs and then verifying the AWM based
on agent experience not only increases sample
efficiency over contemporary methods by an or-
der of magnitude but is also robust to and cor-
rects errors in the LLM—successfully blending
noisy internet-scale information from LLMs with
knowledge grounded in environment dynamics.

1. Introduction
Despite evidence that practical sequential decision making
systems require efficient exploitation of prior knowledge
regarding a task, the current prevailing paradigm in rein-
forcement learning (RL) is to train tabula rasa, without any

1Department of Computer Science, University of California
Irvine, Irvine, CA, United States 2Allen Institute for Artificial
Intelligence, Seattle, WA, United States 3Paul G. Allen School of
Computer Science, Seattle, WA, United States. Correspondence
to: Kolby Nottingham <knotting@uci.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

pretraining or external knowledge (Agarwal et al., 2022).
In an effort to shift away from this paradigm, we focus on
the task of creating embodied RL agents that can effectively
exploit large-scale external knowledge sources presented in
the form of pretrained large language models (LLMs).

LLMs contain potentially useful knowledge for complet-
ing tasks and compiling knowledge sources (Petroni et al.,
2019). Previous work has attempted to apply knowledge
from LLMs to decision-making by generating action plans
for executing in an embodied environment (Ichter et al.,
2022; Huang et al., 2022b; Song et al., 2022b; Singh et al.,
2022; Liang et al., 2022b; Huang et al., 2022a). However,
LLMs still often fail when generating plans due to a lack
of grounding (Valmeekam et al., 2022). Additionally, many
of these agents that rely on LLM knowledge at execution
time are limited in performance by the accuracy of LLM
output. We hypothesize that if LLMs are instead applied
to improving exploration during training, resulting policies
will not be constrained by the accuracy of an LLM.

Exploration in environments with sparse rewards becomes
increasingly difficult as the size of the explorable state space
increases. For example, the popular 3D embodied environ-
ment Minecraft has a large technology tree of craftable items
with complex dependencies and a high branching factor. Be-
fore crafting a stone pickaxe in Minecraft an agent must:
collect logs, craft logs into planks and then sticks, craft a
crafting table from planks, use the crafting table to craft a
wooden pickaxe from sticks and planks, use the wooden
pickaxe to collect cobblestone, and finally use the crafting
table to craft a stone pickaxe from sticks and cobblestone.
Reaching a goal item is difficult without expert knowledge
of Minecraft via dense rewards (Baker et al., 2022; Hafner
et al., 2023) or expert demonstrations (Skrynnik et al., 2021;
Patil et al., 2020), making item crafting in Minecraft a long-
standing AI challenge (Guss et al., 2019; Fan et al., 2022).

We propose DECKARD* (DECision-making for
Knowledgable Autonomous Reinforcement-learning
Dreamers), an agent that hypothesizes an Abstract World
Model (AWM) over subgoals by few-shot prompting an

*https://deckardagent.github.io/
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Figure 1. During the Dream phase, DECKARD uses the LLM-predicted DAG of subgoals, the hypothesized Abstract World Model
(AWM), to sample a node on the path to the current task. Then, during the Wake phase, the agent executes subgoals and explores until
reaching the sampled node. The AWM is corrected and discovered nodes marked as verified.

LLM, then exploits the AWM for exploration and verifies
the AWM with grounded experience. As seen in Figure
1, DECKARD operates in two phases: (1) the Dream
phase where it uses the hypothesized AWM to suggest
the next node to explore from the directed acyclic graph
(DAG) of subgoals; and (2) the Wake phase where it
learns a modular policy of subgoals, each trained on
RL objectives, and verifies the hypothesized AWM with
grounded environment dynamics. Figure 1 shows two
iterations of the DECKARD agent learning the “craft a
stone pickaxe” task in Minecraft. During the first Dream
phase, the agent has already verified the nodes log and
plank, and DECKARD suggests exploring towards the
stick subgoal, ignoring nodes such as door that are not
predicted to complete the task. Then, during the following
Wake phase, DECKARD executes each subgoal in the
branch ending in the stick node and then explores until it
successfully crafts a stick. If successful, the agent marks
the newly discovered node as verified in its AWM before
proceeding to the next iteration.

We evaluate DECKARD on learning to craft items in the
Minecraft technology tree. We show that LLM-guidance is
essential to exploration in DECKARD, with a version of
our agent without LLM-guidance taking over twice as long
to craft most items during open-ended exploration. Whereas,
when exploring towards a specific task, DECKARD im-
proves sample-efficiency by an order of magnitude versus
comparable agents, (12x the ablated DECKARD without
LLM-guidance). Our method is also robust to task decom-
position errors in the LLM, consistently outperforming base-
lines as we introduce errors in the LLM output. DECKARD

demonstrates the potential for robustly applying LLMs to
RL, thus enabling RL agents to effectively use large-scale,
noisy prior knowledge sources for exploration.

2. Related Work
2.1. Language-Assisted Decision Making

Textual knowledge can be used to improve generalization
in reinforcement learning through environment descriptions
(Branavan et al., 2011; Zhong et al., 2020; Hanjie et al.,
2021) or language instructions (Chevalier-Boisvert et al.,
2019; Anderson et al., 2018; Ku et al., 2020; Shridhar et al.,
2020). However, task specific textual knowledge is expen-
sive to obtain, prompting the use of web queries (Notting-
ham et al., 2022) or models pretrained on general world
knowledge (Dambekodi et al., 2020; Suglia et al., 2021;
Ichter et al., 2022; Huang et al., 2022b; Song et al., 2022b).

LLMs can also be used as an external knowledge source
by prompting or finetuning them to generate action plans.
However, by default, the generated plans are not grounded
in environment dynamics and constraining output can harm
model performance, both of which lead to subpar perfor-
mance of out-of-the-box LLMs on decision-making tasks
(Valmeekam et al., 2022). Existing work that uses LLMs for
generating action plans focuses on methods for grounding
language in environment states (Ichter et al., 2022; Huang
et al., 2022b; Song et al., 2022b), or improving LLM plans
through more structured output (Singh et al., 2022; Liang
et al., 2022b). In this work, we focus on using LLMs for
exploration rather than directly generating action plans.
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Tam et al. (2022) and Mu et al. (2022) recently demon-
strated that language is a meaningful state abstraction when
used for exploration. Additionally, Tam et al. (2022) ex-
periment with using LLM latent representations of state
descriptions for novelty exploration, relying on pretrained
LLM encodings to detect novel textual states. To the best of
our knowledge, we are the first to apply language-assisted
decision-making to exploration by using LLMs to predict
and verify environment dynamics through experience.

2.2. Language Grounded in Interaction

Without grounding, LLMs often fail to reason about real
world dynamics (Bisk et al., 2020). Instruction following
tasks have been a popular testbed for language grounding
(Chevalier-Boisvert et al., 2019; Anderson et al., 2018; Ku
et al., 2020; Shridhar et al., 2020) prompting many im-
provements to decision making conditioned on language
instructions (Yu et al., 2018; Lynch & Sermanet, 2020; Not-
tingham et al., 2021; Suglia et al., 2021; Kuo et al., 2021;
Zellers et al., 2021; Song et al., 2022a; Blukis et al., 2022).
Other prior work used environment interactions to ground
responses from question answering models in environment
state (Gordon et al., 2018; Das et al., 2018) or physics (Liu
et al., 2022). Finally, Ammanabrolu & Riedl (2021) learn
a grounded textual world model from environment interac-
tions to assist an RL agent in planning and action selection.
In this work, our DECKARD agent also uses a type of tex-
tual world model but it is obtained few-shot from an LLM
and then grounded in environment dynamics by verifying
hypotheses through interaction.

2.3. Modularity in RL

Modular RL proposes to learn several independent policies
in a composable way to facilitate training and generaliza-
tion (Simpkins & Isbell, 2019). Ammanabrolu et al. (2020)
and Patil et al. (2020) demonstrate how modular policies
can improve exploration by reducing policy horizons, the
former using the text-based game Zork and the latter us-
ing Minecraft. We implement modularity for Minecraft by
finetuning a pretrained transformer policy with adapters,
a technique recently implemented for RL by Liang et al.
(2022a) for multi-task robotic policies.

2.4. Minecraft

Minecraft is a vast open-ended world with complex dynam-
ics and sparse rewards. Crafting items in the Minecraft
technology tree has long been considered a challenging task
for reinforcement learning, requiring agents to overcome ex-
tremely delayed rewards and difficult exploration (Skrynnik
et al., 2021; Patil et al., 2020; Hafner et al., 2023). This is
partially due to the scarcity of items in the environment, but
also due to the depth of some items in the game’s technol-

ogy tree. The purpose of our work is to overcome the latter
of these two difficulties by better learning and navigating
Minecraft’s technology tree.

Several existing agents overcome the problem of item
scarcity in Minecraft by simplifying environment param-
eters such as action duration (Patil et al., 2020) or block
break time (Hafner et al., 2023), making comparison be-
tween methods difficult. For this reason we compare mini-
mally to other Minecraft agents (see Table 2), focusing our
evaluation on the benefits of LLM-guided exploration with
DECKARD. We use the video pretrained (VPT) Minecraft
agent (Baker et al., 2022) as a starting point for exploration
and finetuning, and we use the Minedojo implementation of
the Minecraft Environment (Fan et al., 2022).

3. Background
3.1. Modular Reinforcement Learning

Rather than train a single policy with sparse rewards, mod-
ular RL advocates learning compositional policy modules
(Simpkins & Isbell, 2019). DECKARD automatically dis-
covers subgoals in Minecraft—each of which maps to an
independently trained policy module—and learns a DAG
of dependencies (the AWM) to transition between subgoals.
Policy modules are trained in an environment modeled by
a POMDP with states s ∈ S, obseravtions o ∈ O, ac-
tions a ∈ A, and environment dynamics T : S,A → S ′.
These elements are common between modules, but each
subgoal defines different initial states S0 and observations
O0, terminal states St, and reward functionsR : S,A → R,
according to the particular subgoal. S0 and O0 are defined
by the current subgoal’s parents in the DAG, and St and
R are defined by the current subgoal. For example, the
craft wooden pickaxe subgoal has parents craft planks and
craft stick, so S0 includes these items in the agent’s starting
inventory. This subgoal recieves a reward and terminates
when a wooden pickaxe is added to the agent’s inventory.
Section 5 and Appendix B provide more details.

Due to the compositionality of modular RL, individual mod-
ules can be chained together to achieve complex tasks. In
our case, given a goal state sg, we use the subgoal DAG
to create a path from our current state to sg, [s0, s1, ..., sg],
where each s represents the terminal state for a subgoal. By
chaining together sequences of subgoal modules, we can
successfully navigate to connected portions of the currently
discovered DAG and reach arbitrary goal states.

3.2. Large Language Models

Large language models (LLM) are trained with a language
modeling objective to maximize the likelihood of training
data from large text corpora. As LLMs have grown in size
and representational power, they have seen success on var-
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Algorithm 1 DECKARD
G← LLM() // hypothesize AWM with LLM
C ← X : 0 // dict of visit counts
V ← ∅ // set of verified nodes
while training do

// Dream Phase
F ← Frontier(G,V )
if any(C(F ) ≤ c0) then
x̄← SampleBranch(F | C(F ) ≤ c0)

else
x̄← SampleBranch(F ∪ V )

end if
// Wake Phase
x← x0

for t = 1...|x̄| do
x′ ← ExecuteSubgoal(x̄t)
C(x′)← C(x′) + 1
if x′ /∈ V then
G← AddEdge(G, x, x′)
V ← V ∪ {x′}

end if
x← x′

end for
end while

ious downstream tasks by simply modifying their input,
referred to as prompt engineering (Brown et al., 2020). Re-
cent applications of LLMs to decision-making have relied
partially or entirely on prompt engineering for their action
planning (Ichter et al., 2022; Song et al., 2022b; Huang
et al., 2022b; Singh et al., 2022; Liang et al., 2022b). We
follow this pattern to extract knowledge from LLMs and
construct our AWM. We prompt OpenAI’s Codex model
(OpenAI, 2022) to generate DECKARD’s hypothesized
AWM. Codex is trained to generate code samples from nat-
ural language. As with previous work (Singh et al., 2022;
Liang et al., 2022b), we find that structured code output
works well for extracting knowledge from LLMs. We struc-
ture LLM output by prompting Codex to generate a python
dictionary of Minecraft item dependencies, which we then
map to a graph of items and their dependencies (see Section
5.1 and Appendix A).

4. DECKARD

4.1. Abstract World Model

Our method, DECision-making for Knowledgable
Autonomous Reinforcement-learning Dreamers
(DECKARD), builds an Abstract World Model (AWM)
of subgoal dependencies from state abstractions. We
begin by assuming a textual state representation function
ϕ : O → X . Textual state representations x ∈ X make up

the nodes for our AWM G : X,E with directed edges E
defining the dependencies between X . We further constrain
G to a directed acyclic graph (DAG) so that the nodes of
the DAG represent subgoals useful in navigating towards a
target goal. In our experiments, we use the agent’s current
inventory as X , a common component of the Minecraft
observation space (Fan et al., 2022; Hafner et al., 2023).

We update G from agent experience through environment
exploration. When the agent experiences node xt for the first
time, G is updated by adding edges between the previous
node xt−1 and the new node xt. When trying to reach a
previously experienced node, DECKARD recovers the path
from current node x0 to the target node xt from the AWM.
DECKARD then executes policies for each recovered node
until it reaches the target goal.

4.2. LLM Guidance

The setup so far (referred to in our experiments as
“DECKARD (No LLM)”) allows the construction of a mod-
ular RL policy for navigating subgoals. However, the agent
is still learning the AWM tabula-rasa. The key insight of
DECKARD is that we can hypothesize the AWM with
knowledge from an LLM. We use in-context learning, as
described in Section 5.1, to predict G from an LLM with
predicted edges, Ê. While acting in the environment, we
verify or correct edges of G and track the set of nodes that
have been verified V thus grounding the AWM hypothesized
by the LLM in environment dynamics.

4.2.1. DREAM PHASE

Equipped with a hypothesized AWM, we iterate between
Dream and Wake phases for guided exploration toward a
goal (see Algorithm 1). During the Dream phase, we com-
pute the verified frontier F of G, composed of verified nodes
V , with predicted edges to unverified nodes G− V . In addi-
tion, if a path between V and the current task’s goal exists,
F is pruned to only include nodes along the predicted path
to the goal. For example, after learning to craft planks, sub-
goals door and stick are potential frontier nodes. However,
if the target item is wooden pickaxe, DECKARD will elim-
inate door as a candidate node for exploration since stick
is part of the LLM-predicted recipe for the target item and
door is not. Finally, we sample a branch x̄ terminating with
an element from F to explore during the Wake phase. If all
nodes in F have been sampled at least c0 times (where c0
is an exploration hyperparameter) without success, we the
sample from all V rather than F only.

4.2.2. WAKE PHASE

Next, during the Wake phase, the agent executes the se-
quence of subgoals x̄ updating G with learned experience
and adding verified nodes to V . If sampled from F , the final
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node in x̄ will be unlearned, allowing the agent to explore
in an attempt to reach the unverified node. If successful,
the AWM is updated and the new node is also added to V .
When adding a newly verified node x we begin finetuning a
new subgoal policy for x (see Section 5). Beyond reducing
the number of iterations it takes to construct G, one benefit
of initializing G with an LLM is that we do not finetune
subgoals for nodes outside of the predicted path to our target
goal. If the predicted recipes fail, then DECKARD begins
training additional subgoal policies to assist in exploration.
This drastically reduces the number of environment steps
required to train DECKARD.

5. Experiment Setup
We apply DECKARD to crafting items in Minecraft, an
embodied learning environment that requires agents to per-
form sequences of subgoals with sparse rewards. Our agent
maps inventory items to AWM subgoals and learns a modu-
lar policy that can be composed to achieve complex tasks.
By learning modular policies, our agent is able to collect
and craft arbitrary items in the Minecraft technology tree.

5.1. Predicting the Abstract World Model

In our experiments, we predict the AWM using OpenAI’s
Codex model (OpenAI, 2022) by prompting the LLM to
generate recipes for Minecraft items. We prompt Codex
to “Create a nested python dictionary containing crafting
recipes and requirements for minecraft items” along with
additional instructions about the dictionary contents and two
examples: diamond pickaxe and diamond (see Appendix A).
We iterate over 391 Minecraft items, generating recipes as
well as tool requirements (mining stone requires a pickaxe)
and workbench requirements (crafting a pickaxe requires
a crafting table). The hypothesized AWM is generated at
the start of training, so no forward passes of the LLM are
necessary during training or inference. Table 1 shows the
accuracy of the hypothesized un-grounded AWM.

Metric All Items Tools Only

Collectable vs. Craftable 57 100
Crafting Table / Furnace 84 96
Recipe Correct Items 66 81
Recipe Exact Match 55 69

Table 1. LLM accuracy when predicting various node features:
whether an item is collectable (no parents) or craftable (has a
recipe), whether it requires a crafting table or furnace to craft,
whether recipe ingredients are correct, and whether the recipe is
an exact match (including ingredient quantities). The first results
column includes all 391 Minecraft items, whereas the second
column only includes the 37 items in the tool technology tree.

5.2. Subgoal Finetuning

Rather than train each module from scratch, we finetune
transformer adapters for each module with an RL objec-
tive following the adapter architecture from Houlsby et al.
(2019). We use the Video-Pretrained (VPT) Minecraft
model as our starting policy (Baker et al., 2022). We chose
to finetune VPT as it proved to be more sample efficient and
more stable than training policies from scratch. Moreover,
since VPT is pretrained on a variety of Minecraft skills, the
non-finetuned VPT model explores the environment more
thoroughly than a random agent. Our implementation of
VPT finetuned with adapters is referred to as VPT-a.

Adapters are especially well suited for modular finetuning
due to their lightweight architecture (Liang et al., 2022a).
In our agent, each subgoal module corresponds to one set
of adapters and only contains 9.5 million trainable param-
eters, approximately 2% of the 0.5 billion parameter VPT
model. This allows us to train a separate set of adapters for
each subgoal and still keep all parameters in memory con-
currently, a practical benefit of using adapters for modular,
compositional RL policies.

5.3. Environment Details

We use Minedojo’s Minecraft implementation for our exper-
iments (Fan et al., 2022). As with VPT (Baker et al., 2022),
our subgoal policies use a pixel only observation space and
a large multi-discrete action space, while our overall policy
transitions between subgoals based on the agent’s current
inventory. Unlike VPT, we use standard high-level craft-
ing actions that instantly crafts target items from inventory
items. At the time of this writing, Minedojo does not sup-
port the VPT style of human-like crafting in a GUI, so we
instead remove the VPT action for opening the crafting GUI
and replace it with 254 crafting actions (one for each item).
This brings our multi-discrete action space to 121 camera
actions and 8714 keyboard/crafting actions, and our obser-
vation space to 128x128x3 pixels plus 391 inventory item
quantities (only used to transition between subgoals).

Because our subgoals map to individual items, there is an
intrinsic separation between items that are collected from
the environment versus those that require crafting. While
we must finetune a set of adapters for subgoals that require
navigating or collecting items from the environment, craft-
ing subgoal policies map to a single craft action—making
them much more space and sample efficient compared to
collectable item subgoals.

5.4. Experiments

We evaluate DECKARD on both crafting tasks—in which
the agent learns to collect ingredients and craft a target item—
and open-ended exploration. In open-ended exploration,
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Figure 2. Rate of exploration for during open-ended exploration,
measured by the size of the verified AWM per iteration. Each
iteration includes one Dream and one Wake phase. VPT measures
the number of items discovered by a non-finetuned VPT policy
and No LLM ablates LLM guidance. LLM guidance more than
halves the time it takes to discover difficult items such as stone
tools and glass.

although there is no extrinsic learning signal, DECKARD
is intrinsically motivated to explore new AWM nodes. We
compare the growth of the agent’s verified AWM during
open-ended exploration for DECKARD with and with-
out LLM guidance along with a VPT baseline. Next, we
compare LLM-guided DECKARD to RL baselines and
DECKARD without LLM guidance on goal-driven tasks
for collecting/crafting: logs, wooden pickaxes, cobblestone,
stone pickaxes, furnaces, sand, and glass. We also compare
to several popular Mincraft agents on the “craft a stone pick-
axe task” (see Table 2). Finally, we evaluate the effect of
artificial errors in the hypothesized AWM to simulate errors
in LLM output and demonstrate DECKARD’s robustness
to LLM accuracy.

6. Experiment Results
6.1. Open-Ended Exploration

DECKARDis intrinsically motivated to explore new nodes,
always sampling and attempting to craft new items, and
thus does not require a target task to improve explo-
ration. We can measure the effect of DECKARD on explo-
ration by tracking the growth of the agent’s verified AWM
nodes. Figure 2 shows the speed of exploration when using
DECKARD with and without LLM guidance. We also
compare DECKARD to a VPT baseline that explores the
environment without an AWM with a non-finetuned VPT
policy. Although VPT does not construct an AWM, it gath-
ers Minecraft items and randomly attempts to craft new
items from the gathered ingredients. We track how many
items it has discovered and plot that quantity in Figure 2.
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Figure 3. DECKARD prunes the AWM by only sampling from
the frontier of verified and hypothesized AWM nodes. Without
LLM guidance, our agent would sample from the entire AWM
during exploration. However, the AWM grows in size throughout
training and many nodes become dead ends, slowing exploration.

DECKARD without LLM guidance constructs an AWM
from scratch, but only the LLM-guided DECKARD agent
uses LLM guidance to decide which items to collect and
which recipes to attempt next. Note that DECKARD sub-
goal policies are initialized with VPT, so VPT starts out
exploring at a similar rate to DECKARD.

The DECKARD and VPT agents quickly learn to mine
logs and craft wooden items. However, one exploration
hurdle is discovering that wooden pickaxes are a prerequi-
site for mining cobblestone. As seen in Figure 2, it takes
DECKARD without LLM guidance and the VPT baseline
2x and 3x longer respectively to learn to use a wooden pick-
axe to mine cobblestone. Once the agents learn how to
mine cobblestone, they can begin adding stone items to their
AWM. However, only DECKARD avoids oversampling
dead ends in the crafting tree allowing it to quickly explore
new states. Also, the LLM incorrectly predicts that glass
can be collected without crafting or tools of any kind, but
DECKARD overcomes and corrects this error, successfully
crafting glass and adding the correct recipe to the AWM.

In general, the frontier F of the verified AWM nodes is
much smaller than G. This difference increases as the agent
continues to explore and add verified nodes to G. Figure
3 shows the sizes of G and F throughout open-ended ex-
ploration for DECKARD. The smaller size of F means
that each iteration DECKARD is more likely to sample
items that are useful for crafting something new. Eventually,
difficult to reach or erroneous nodes in F could limit explo-
ration, so we stop prioritizing sampling from the frontier
after c0 failed attempts to reach nodes from F .
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Figure 5. LLM guidance improves environment timestep effi-
ciency by an order of magnitude by only learning policies for
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6.2. Crafting Tasks

We also evaluate DECKARD on tasks that challenge the
agent to collect or crafting a specific item. The training
procedure for items tasks is the same, but rather than sample
from the entire frontier F as with open-ended exploration,
we only sample nodes from F predicted to lead to the target
item. We conclude training when the target item is obtained.

Figure 4 compares DECKARD success rates to baselines
across item tasks: logs, wooden and stone pickaxes, cob-
blestone, furnace, sand, and glass. The VPT baseline is the
non-finetuned VPT policy acting in the environment, and
VPT-a follows the same training setup as our subgoal poli-
cies (see Section 5.2). Agents are allowed a maximum of
1,000 environment steps to obtain collectable items (log and
sand), and 5,000 steps for all other craftable items. Train-
ing for each agent is limited to 6 million steps, although
DECKARD only takes that many for the “craft glass” task.
DECKARD outperforms directly training on item tasks
with a traditional reinforcement learning signal and learns
to craft items further up the technology tree where the base-
line completely fails.

Note that we use random world seeds for all evaluation
making scarce items more difficult to reliably collect. For
example, the fact that sand is more rare than logs is reflected
in their respective success rates in Figure 4. Also, items
that depend on logs (pickaxes, cobblestone, furnace) and
sand (glass) will have success rates bounded by that of their
parent nodes in the AWM.

The sample efficiency of DECKARD with LLM guidance
is especially notable when applied to item crafting and col-
lecting tasks. With LLM guidance, DECKARD can avoid
learning subgoal policies for items it predicts are unnec-
essary for the current goal (see Section 4.2.2). Figure 5
demonstrates the large difference in sample efficiency when
only training policies for predicted subgoals. Without LLM
guidance, DECKARD finetunes subgoal policies for an
average of fifteen different collectable items when learn-
ing to craft a stone pickaxe. With guidance, DECKARD
only finetunes subgoal policies for collecting needed items
(such as logs and cobblestone)—resulting in an order of
magnitude improvement in sample efficiency.

Although not the primary goal of this work, we compare
DECKARD to several agents from previous work trained
to craft items along the Minecraft technology tree. Table 2
includes a high level overview of these agents and shows the
number of environment samples for each to learn the “craft
stone pickaxe” task. Note that each of these agents uses
different action and observation spaces as well as pretraining
data. For example, DECKARD does not require any reward
shaping from domain expertise, expert demonstrations, or
simplifications of the observation and action spaces. As
mentioned in Section 5.3, we do follow previous work and
use discrete actions for item crafting. At the time of writing,
VPT is the only agent that learns low-level item crafting
using the graphical crafting interface. Table 2 shows that
DECKARD’s sample efficiency is equal to or better than
that of previous work.
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Method Demos Dense Rewards Auto-crafting Observations Actions Params Steps

Align-RUDDER (Patil et al., 2020) Expert ✗ ✓ Pixels & Meta 61 2.5M/subgoal 2M
VPT+RL (Baker et al., 2022) Videos ✓ ✗ Pixels Only 121, 8461 248M 2.4B
DreamerV3 (Hafner et al., 2023) None ✓ ✓ Pixels & Meta 25 200M 6M
DECKARD (No LLM) Videos ✗ ✓ Pixels & Inventory 121, 8714 9.5M/subgoal 32M
DECKARD Videos ✗ ✓ Pixels & Inventory 121, 8714 9.5M/subgoal 2.6M

Table 2. We limit comparison between minecraft agents because of the various shortcuts used to solve the difficult exploration task.
Align-RUDDER, relies on expert demonstrations. DreamerV3 and Align-RUDDER, simplify the action space. VPT+RL and DreamerV3
provide intermediate crafting rewards. The final column above compares how long each method takes to learn the “craft stone pickaxe”
task. Despite its challenging learning setup, DECKARD achieves sample efficiency equal to or better than existing agents.
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Figure 6. Effect of errors in the initial AWM, measured by time
to craft a stone pickaxe. Starting from a ground truth AWM, the
error rate indicates the percentage of artificially inserted/deleted
edges to simulate errors in LLM output.

6.3. Robustness

Finally, we evaluate our claim that DECKARD is robust
to errors in LLM output. While LLMs are becoming sur-
prisingly knowledgeable, they are not grounded in envi-
ronment knowledge and sometimes output erroneous facts
(Valmeekam et al., 2022). Figure 6 shows training time for
DECKARD on the target task “craft stone pickaxe” for
various error types and rates in the hypothesized AWM. For
each run, we start with a ground truth AWM and artificially
introduce errors over at least three different random seeds
for each error type and rate.

The most common error in our LLM-hypothesized AWM
was ingredient quantity (see Table 1), but we found that
DECKARD was robust to this error and often ended up
with a surplus of ingredients. Figure 6 shows the effect of
inserting and deleting edges from the ground truth AWM.
Inserted edges always add sand as an ingredient for the cur-
rent item, and deleted edges may remove recipe ingredients
or a required tool/crafting table. DECKARD with LLM
guidance successfully outperforms DECKARD without
LLM guidance even when faced with large errors in LLM
output, demonstrating DECKARD’s robustness to LLM
output as an exploration method.

7. Discussion & Conclusion
In line with proposals to utilize pretrained models in
RL (Agarwal et al., 2022), we extract knowledge from
LLMs in the form of an Abstract World Model (AWM)
that defines transitions between subgoals in a directed
acyclic graph. Our agent, DECKARD (DECision-making
for Knowledgable Autonomous Reinforcement-learning
Dreamers), successfully uses the AWM to intelligently
explore Minecraft item crafting, learning to craft arbi-
trary items through a modular RL policy. Initializing
DECKARD with an LLM-predicted AWM improves sam-
ple efficiency by an order of magnitude. Additionally,
we use environment dynamics to ground the hypothesized
AWM by verifying and correcting it with agent experience,
robustly applying large-scale, noisy knowledge sources to
aid in sequential decision-making.

We, along with many others, hope to utilize the potential of
LLMs for unlocking internet-scale knowledge for decision-
making. Throughout this effort, we encourage the pursuit of
robust and generalizable methods, like DECKARD. One
drawback of DECKARD, along with many other LLM-
assisted RL methods, is that it requires an environment al-
ready be grounded in language. Some preliminary methods
for generating state descriptions from images are used by
Tam et al. (2022), but this remains an open area of research.
Additionally, we assume an abstraction over environment
states to make predicting dependencies scalable. We leave
the problem of of automatically identifying state abstrac-
tions to future work. Finally, DECKARD considers only
deterministic transitions in the AWM. While a similar ap-
proach to ours could be applied to stochastic AWMs, that is
out of the scope of this work.

DECKARD introduces a general approach for utilizing
pretrained LLMs for guiding agent exploration. By alter-
nating between sampling predicted next subgoals on the
frontier of agent experience (The Dream phase) and exe-
cuting subgoal policies to expand the frontier (The Wake
phase), we successfully ground noisy LLM world knowl-
edge with environment dynamics and learn a modular policy
over compositional subgoals.
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A. Codex In-Context Learning
A.1. Prompting Details

We use OpenAI’s Codex model (code-davinci-002) (OpenAI, 2022) to predict an Abstract World Model (AWM) for
DECKARD. We prompt the model with instructions in code comments that instruct the model to generate a python
dictionary with information for Minecraft item requirements. We also provide example entries for “diamond pickaxe” and
“diamond”. We then iterate over all 391 Minecraft items to generate the next entry in the python dictionary. We organize the
data in the dictionary entries into the following item attributes:

• requires crafting table: whether an item requires the agent to have a crafting table prior to crafting

• requires furnace: whether the item is smelted with a furnace

• required tool: what tool is required to collect the item from the environment

• recipe: list of ingredients and ingredient quantities to craft the item

The full prompt we use can be found below:

# Create a nested python dictionary containing crafting recipes and requirements
for minecraft items.
# Each crafting item should have a recipe and booleans indicating whether a
furnace or crafting table is required.
# Non craftable blocks should have their recipe set to an empty list and
indicate which tool is required to mine.

minecraft_info = {
"diamond_pickaxe": {

"requires_crafting_table": True,
"requires_furnace": False,
"required_tool": None,
"recipe": [

{
"item": "stick",
"quantity": "2"

},
{

"item": "diamond",
"quantity": "3"

}
]

},
"diamond": {

"requires_crafting_table": False,
"requires_furnace": False,
"required_tool": "iron_pickaxe",
"recipe": []

},
"[insert item name]": {

A.2. Parsing Details

When parsing output, we consider any item with a recipe of length zero to be a collectable item (it will have no parents in
the AWM). In our experiments, Codex generated parsable entries for all but one Minecraft item (brown mushroom block).
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In general, Codex predicts the same item identifier that Minedojo (Fan et al., 2022) uses. One major exception is that of
planks, a common item essential for many recipes. We parse plank and wood as well as any variant of these two (oak plank)
as planks. We also parse cane as reeds. Note that in all these cases the predicted names are also common identifiers for these
items in minecraft, but they do not match the Minedojo identifiers.

Finally, we remove circular dependencies from the predicted AWM. First we remove edges from crafting table, furnace, and
tool nodes to items that are found in the recipes for those nodes. Then we remove edges both to and from items found in
eachother’s recipes. There were four cases of circular dependencies in our hypothesized AWM, between planks and crafting
table, log and wooden axe, fermented spider eye and spider eye, and purpur block and purpur pillar.

A.3. Additional Results

“Tool Only” Items
coal furnace crafting table log

planks stick cobblestone iron ore
iron ingot gold ore gold ingot diamond

wooden hoe wooden sword wooden axe wooden pickaxe
wooden shovel stone hoe stone sword stone axe
stone pickaxe stone shovel iron hoe iron sword

iron axe iron pickaxe iron shovel golden hoe
golden sword golden axe golden pickaxe golden shovel
diamond hoe diamond sword diamond axe diamond pickaxe

diamond shovel

Table 3. The 37 Minecraft items from the tool technology tree.

Metric All Items Tools Only

Accuracy: Collectable vs. Craftable Label 57 100
Accuracy: Workbench (Crafting Table/Furnace) 84 96
Accuracy: Recipe Ingredients 66 81
Accuracy: Recipe Ingredients & Quantities 55 69
% Items w/ Incorrectly Inserted Dependencies 42 8
% Items w/ Missing Dependencies 35 26
Standard Deviation In Predicted Ingredient Quantity 0.98 0.34
Absolute Error In Predicted Ingredient Quantity 2.77 1.50
Average Error In Predicted Ingredient Quantity -1.07 0.50

Table 4. Additional Codex metrics for predicting the Minecraft AWM.

Our experiments with few-shot prompting Codex to generate the AWM for Minecraft show that LLMs can generate
structured knowledge for decision making. However, predictions are not perfect, so we treat them as hypotheses that are
verified by environment interactions. Codex does perform better on the tool technology tree, items that are both more
common and more relevant for crafting agents. A large percentage of errors also appears to be from incorrectly predicted
ingredient quantities.

13



Embodied Decision Making using Language Guided World Modelling

B. Subgoal Finetuning
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Figure 7. Results for finetuning subgoal policies. DECKARD’s VPT-based subgoal policies are trained on seeds where the target item is
nearby and evaluated on random world seeds. Of these results, cobblestone is the most ubiquitous and sand the least, as indicated by how
well the policy generalizes to random Minecraft world seeds.

Hyperparameter Value

VPT Checkpoint bc-house-3x
Environment Steps per Actor per Iteration 500
Number of Actors 4
Batch Size 40
Iteration Epochs 5
Learning Rate 0.0001
γ 0.999
Value Loss Coefficient 1
Initial KL Loss Coefficient .1
KL Coefficient Decay per Iteration .999
Adapter Downsize Factor 16

Table 5. DECKARD subgoal finetuning hyperparameters.

B.1. VPT Finetuning

We finetune VPT (3x w/ behavior cloning on house contractor data) (Baker et al., 2022) with reinforcement learning (RL)
using transformer adapters as described by Houlsby et al. (2019). That is, we insert two adapter modules with residual
connections in each transformer layer, with a 16x reduction in hidden state size. We updated the adapters and agent value
head using proximal policy optimization (PPO) (Schulman et al., 2017), but we leave the rest of the agent unchanged
(including the policy head).

Following Baker et al. (2022), we replace the traditional entropy loss in the PPO algorithm with a KL loss between the
current policy and the non-finetuned VPT policy. The purpose of this loss is to prevent catastrophic forgetting early in
training. Our experiments reaffirmed the importance of this term, even when leaving the majority of the VPT weights
unchanged. The KL loss coefficient decays throughout training to allow the agent to reach an optimal policy.

B.2. MineClip Reward

Along with their Minedojo Minecraft implementation, Fan et al. (2022) introduced a text and video alignment model for
Minecraft called MineClip and showed how the model could be used for automatic reward shaping given a text goal. We
use MineClip to provide reward shaping for finetuning DECKARD subgoal and VPT-a policies. Unlike Fan et al. (2022),
we implement MineClip reward shaping by subtracting cliplow = 21 from the MineClip alignment score and scaling by
clipα = 0.005, smoothed over smooth = 50 steps:

rewardclip = clipα ×max(0,mean(score buffer−smooth:)− cliplow)

Additionally, we only provide the agent with non-zero reward when the MineClip alignment score reaches a new maximum
for the episode. Finally we provide a reward of +1 when the agent successfully adds the target item to its inventory.
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B.3. Minecraft Settings

Use use the Minedojo simulator (Fan et al., 2022) with the “creative” metatask for our experiments. We found Minedojo
preferable to MineRL (Guss et al., 2019), due to a reduced tendency to crash when running many parallel environment
instances. We followed the VPT (Baker et al., 2022) observation and action spaces—128x128x3 pixel observation space and
121x8461 multi-discrete action space—with the modification of replacing the “open inventory” action with 254 discrete
crafting actions.

When training subgoal policies, we initialize the agent with items from the current node’s parents. For example, when
training the collect cobblestone subgoal, we initialize the agent with a wooden pickaxe, the required tool for cobblestone in
the AWM. We terminate each episode after 1,000 environment steps, generating a new world.

We also found that finetuning was sensitive to world seed when training. For example, many world seeds spawned the agent
far from target items, stranded on islands, or underwater. To mitigate the effect of poor world initialization on training, we
use a single world seed for training each subgoal policy and then evaluate on random world seeds. We find that VPT is able
to generalize to random seeds after training on a training seed.

C. Abstract World Model
C.1. Disambiguating the World Model

In many environments, multiple possible transitions between subgoals may exist. For example, in Minecraft, an agent can
obtain coal through mining or by burning wood in a furnace. Ideally, edges of the AWM would provide paths with high
success rate to each node. In our implementation we keep the first experienced edge between nodes, assuming it to be the
simplest path.

C.2. Additional Results
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Figure 8. AWM growth over the course of open-ended exploration. The first three quadrants are identical to Figure 2. The last quadrant
adds results for a ground truth AWM. The agent learns to craft glass much sooner and also learns to craft glass bottles, and item none of
the other methods reached.
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