
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELECTIVE INDUCTION HEADS: HOW TRANSFORM-
ERS SELECT CAUSAL STRUCTURES IN CONTEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have exhibited exceptional capabilities in sequence modelling tasks,
leveraging self-attention and in-context learning. Critical to this success are induc-
tion heads, attention circuits that enable copying tokens based on their previous oc-
currences. In this work, we introduce a novel synthetic framework designed to en-
able the theoretical analysis of transformers’ ability to dynamically handle causal
structures. Existing works rely on Markov Chains to study the formation of in-
duction heads, revealing how transformers capture causal dependencies and learn
transition probabilities in-context. However, they rely on a fixed causal structure
that fails to capture the complexity of natural languages, where the relationship
between tokens dynamically changes with context. To this end, our framework
varies the causal structure through interleaved Markov chains with different lags
while keeping the transition probabilities fixed. This setting unveils the formation
of Selective Induction Heads, a new circuit that endows transformers with the abil-
ity to select the correct causal structure in-context. We empirically demonstrate
that attention-only transformers learn this mechanism to predict the next token by
identifying the correct lag and copying the corresponding token from the past. We
provide a detailed construction of a 3-layer transformer to implement the selective
induction head, and a theoretical analysis proving that this mechanism asymptot-
ically converges to the maximum likelihood solution. Our findings advance the
theoretical understanding of how transformers select causal structures, providing
new insights into their functioning and interpretability.

1 INTRODUCTION

As autoregressive generative models continue to scale and are increasingly deployed in real-world
applications, the question of how Transformer models (Vaswani et al., 2017) function internally
becomes pressing. However, the inherent complexity of natural language hinders the ability to
fully comprehend how these models make decisions and work internally. In response, many recent
works have attempted to formulate synthetic frameworks that simplify these challenges and enable
theoretical analysis, while still capturing the remarkable properties and phenomena observed in
large language models, such as in-context learning (Brown, 2020; Garg et al., 2022; Bai et al.,
2024; Von Oswald et al., 2023a; Sander et al., 2024). Mechanistic interpretability (Olsson et al.,
2022; Saphra & Wiegreffe, 2024) emerges as a line of research focused on reverse-engineering the
complex computations performed inside a transformer, in order to understand how a certain output
is produced for a given input. This research has uncovered the formation of induction heads (Olsson
et al., 2022; Bietti et al., 2024; Edelman et al., 2024), i.e., specific interpretable circuits embedded
within the transformer’s weights, capable of simple operations such as copying or comparing tokens.
By examining such circuits, one can better understand the algorithms transformers implement.

In-context causal structure selection. Recently, Markov chains have been employed to formu-
late interesting sequence-to-sequence tasks that can be solved by transformers with interpretable
solutions (Ildiz et al., 2024; Nichani et al., 2024; Makkuva et al., 2024; Edelman et al., 2024). In
particular, Nichani et al. (2024) show that transformers trained on Markov Chain sequences learn
circuits that capture causal structure and estimate transition probabilities in-context. However, ex-
isting works relying on Markov chains often fail to capture the complex dynamics typical of natural
language. For instance, the causal relationship between the same two words can change with con-
text. Ideally, a trained model should identify the correct causality in context, but prior works elude
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Data: interleaved 
Markov Chains of 
orders 1 and 2

Data: interleaved
Markov Chains
with lag 1 and 2

Task: given an 
input sequence, 
select the correct 
order and predict 
the next token

Task: predict the
next token by
selecting in-context
the correct causal
structure

How do 3-layer 
attention-only
transformers 
solve this task?

L1: single transition 
order probabilities

L2: aggregate 
probabilities over xi

L3: the selective induction head 
selects the most-likely lag

Figure 1: Summary of our framework. We define a new task based on Interleaved Markov Chains
(top row) of different lags (k = 1 and k = 2 in the example). Middle: at inference time, given a
sequence generated from a chain of unknown lag, the model has to identify the true lag, and use it
to predict the distribution of the next token. Bottom: we show how an attention-only transformer
can solve this task with 3 layers. The first computes the transition probabilities for each lag seen
during training, the second aggregates these probabilities over the entire past, and finally the third
layer implements the selective induction head, which selects the correct lag.

this consideration when using fixed causal structures in the chains. To address this limitation, we
propose a new synthetic task designed to mimic different causal interactions (Sec. 3). In particular,
we consider Interleaved Markov Chains, with fixed transition probabilities between states but differ-
ent underlying causal structures (see the top row of Fig. 1 for an example), and theoretically study
how 3-layers attention-only transformers learn to correctly predict the next token in a sequence.

Selective induction heads. To solve the task at hand—correctly predicting the next token in-context
in a sequence generated within this setup (middle of Fig. 1)—transformers need to learn a circuit that
adapts to the given context to select the correct causal structure among those seen during training.
We call this circuit a selective induction head, as it differs fundamentally from the induction heads
introduced so far in the literature, where the circuit learns either to copy a token from a certain
position fixed by the unique structure of the data or by comparing its semantics. In our task, the
transformer (with attention maps depicted in Fig. 1) needs to learn to aggregate all past information
to determine from which past position the corresponding token should be copied in order to predict
the next token in the sequence.

A transformer construction for in-context selection. To understand and formalize the selective
heads, we provide an interpretable construction of the self-attention layer weights in a 3-layer
attention-only disentangled transformer (Friedman et al., 2023) that implements this mechanism
(Sec. 4). We empirically demonstrate that the constructed transformer matches the performance of
both disentangled and standard transformed trained from scratch (Sec. 5) and that 2-layer attention-
only transformers cannot solve the task. Moreover, we observe that the attention maps of the trained
and constructed transformers present the same patterns, further supporting the validity of our algo-
rithm. Finally, we theoretically analyze the predictor implemented by this construction (Sec. 4.3)
showing that, in certain cases, it asymptotically converges to the maximum likelihood solution.

We defer to the appendix an extended discussion of related work (App. A), additional theoretical
analyses and omitted proofs (App. B), additional experiments (App. D, E, C) as well as generaliza-
tions and special cases of the construction of the transformers presented in the main part (App. G,
H, I and J).
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2 (DISENTANGLED) TRANSFORMER MODELS

In the following we introduce the necessary background and notation about the models we use later.

Transformers. The architecture of decoder-only transformers is built on two fundamental com-
ponents, the attention mechanism and the multi-layer perceptron (MLP). Given a finite alphabet
S, transformers map an input sequence s = s1:T = (s1, . . . , sT ) ∈ ST to a sequence of vectors
z = (z1, . . . , zT ) where zi ∈ Rd. Each element of the input sequence si is first encoded using
its corresponding one-hot vector, esi ∈ 0, 1|S|. These one-hot representations are then mapped to
d-dimensional vectors via an embedding matrix E ∈ Rd×|S|. To incorporate positional information,
a positional embedding matrix F ∈ Rd×T is added. With a slight abuse of notation, let ei denote
the i-th element of the canonical basis of RT such that each input element si is mapped to a vector
xi ∈ R via xi = Eesi + Fei. The information of the different tokens is then mixed by the causal
self-attention heads: denoting the key, query and value matrices K,Q ∈ Rd×dQK , V ∈ Rd×d, and
given an input h ∈ Rd×T , one gets

Attn(h;Q,K) := A(h;Q,K)h⊤, with A(h;Q,K) := Softmax
(
M(h⊤QK⊤h);α

)
,

where Softmax(v;α)i :=
exp (vi/α)∑
j exp (vj/α)

is applied row-wise and α > 0 is a temperature parameter.

In the following, we call A = QK⊤ ∈ Rd×d the attention matrix, A ∈ RT×T the attention,
and Attn : Rd×T → Rd×T the attention layer. The causality of the self-attention is enforced by
a mask M, to prevent the model from attending to future tokens, i.e. M(A)ij = Aij if i ≥ j,
−∞ otherwise. For a model with L layers and {Hl}l∈[L] attentions heads per layer, we denote by
Q(l,h),K(l,h), V (l,h) the attention parameters for the i-th head in the l-th layer, W (l)

1 ,W
(l)
2 ∈ Rd×dFF

the parameters of the MLP at layer l, and WO ∈ R|S|×d the parameters of the output linear layer.
Then, with h(0) = (x1, . . . , xT ) ∈ Rd×T as computed above, the decoder transformer T (s1:T ) can
be written for l = 1, . . . , L, as

ĥ(l) = h(l−1) +

Hl∑

h=1

Attn(h(l−1);Q(l,h),K(l,h))V (l,h), h(l) = ĥ(l) +W
(l)
2 σ

(
W

(ℓ)⊤
1 ĥ(l)

)

where the output is given by WOh
(L) ∈ R|S|×T .

Disentangled Transformers. To improve the interpretability of the operations implemented by the
models, Friedman et al. (2023) propose a transformer architecture in which each layer’s output is
concatenated, rather than added, to its input. This construction makes the residual stream explic-
itly disentangled, but increases the embedding dimension (constant for standard transformers) with
depth. Additionally, in such disentangled transformers the MLP layers are removed, the attention
heads are parameterized by a single matrix Ã := QK⊤ ∈ Rdℓ×dℓ , and the value matrices are ab-
sorbed into the output layer W̃O. Both the token and positional embedding are one-hot encoding,
i.e. E and F are identity matrices, and we encode the input si as [esi , ei] via concatenation rather
than addition. Altogether, the disentangled transformer T̃ (s1:T ) is formalized for l = 1, . . . , L as

ĥ(l,h) = Attn(h(l−1); Ã(l,h)) for h = 1, . . . ,Hl, and h(l) = [h(l−1), ĥ(l,1), . . . , ĥ(l,Hl)],

where the outputs is W̃Oh
(L). Due to the concatenation, the embedding dimensions grows over

layers as dl = (1 +Hl) · dl−1 with d0 = |S| + T . Importantly, Nichani et al. (2024) demonstrate
that disentangled transformers are equivalent to standard transformers using only attention layers.

3 MARKOV CHAINS AND CAUSAL STRUCTURE SELECTION

To address the limitations of existing synthetic settings based on Markov chains and better capture
the complexity of natural language, we propose a novel framework. In this framework, the model
must learn to select the correct causal structure in-context in order to solve the task and generate the
input sequence. In the following, we describe this task in detail and outline its solution.

Interleaved Markov Chains. The framework consists of sequences of length T on a finite alphabet
of tokens S, generated by K distinct sources. Let U = {U1, . . . , UK} be the set of sources and
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K = {k1, . . . , kK} a set of positive integers; each source Uj consists of kj interleaved and identical
irreducible aperiodic Markov chains (Batu et al., 2004; Minot & Lu, 2014). All the sources are
defined by the same transition matrix P ⋆ ∈ P |S|×|S|, where P is the set of row-stochastic matri-
ces. This model is equivalent to a time-homogeneous Markov chain (X

(j)
t )t≥0 of order kj , whose

transition probabilities depend only on a single state kj steps back:

P(Xt = st | Xt−1 = st−1, . . . , X1 = s1) = P(Xt = st | Xt−kj = st−kj ) = s⊤t−kj
P ⋆st .

Here, we call kj ∈ K the lag parameter, as defined by Berchtold & Raftery (2002), whereK ⊆ J1, tK
is the set of possible lags. The lag, represented by the edges in Fig. 1, encodes the causal structure
by explicitly representing the causal relationship between the variables in the Markov chain.

Data. Given P ⋆ and K, a lag is uniformly sampled from K for each sequence. Denoting the
maximum lag by k̂ = max(K), the first k̂ elements of each sequence are sampled from the stationary
distribution π of P ⋆, ensuring a constant number of independent variables for all sources. The
likelihood of a sequence of lag k is P(X1, . . . , XT | k) =

∏k̂
i=1 π(Xi)

∏T
j=k̂+1 P(Xj | Xj−k+1).

Task. In this setting, the task is to predict the next state sT+1 given an input sequence s1:T generated
from one of the sources, sampled at random. However, the identity of the source, and therefore the
lag, is unknown. This task amounts to solving the following minimization problem:

f⋆ = inf
f

E k∼Unif[1,...,k̂]
(X1:T )∼P(X1,...,XT |k)

DKL (P(Xt+1 | Xt−k+1) ∥ f(X1, . . . , XT )) , (1)

where DKL is the Kullback–Leibler divergence. Eq. (1) admits a closed form solution which is the
Bayesian model average (BMA), defined as the average of the transition probabilities for each lag,
weighted by their posterior probabilities:

P(Xt+1 | X1:T ) =
∑

k∈K

wk(X1:T )P(Xt+1 | Xt−k+1) with wk(X1:T ) =
P(X1:T | k)P(k)∑

k∈K P(X1:T | k)P(k)
.

Asymptotically, the posterior distribution concentrates around the maximum likelihood (ML) esti-
mate (Rousseau & Mengersen, 2011). Let k∗ be the lag that maximizes the likelihood for a sequence
(s1, . . . , sT ), i.e., k∗ = argmaxk∈K P(X1 = s1, . . . , XT = sT | k). As T → ∞, the posterior
probability wk converges to 1 for k∗ and to 0 for the other lags, i.e., wk → 1[k = k∗] where 1 is the
indicator function. Then, BMA reduces to selecting the lag with the highest likelihood:

Q(Xt+1 | X1, . . . , XT ) =
∑

k∈K

1[k = k∗]P(Xt+1 | Xt−k+1) . (2)

4 HOW CAN TRANSFORMER DO IN-CONTEXT SELECTION?

We now want to understand which algorithm transformers learn during training. We focus on disen-
tangled transformers as defined in Sec. 2, which allow for a more interpretable analysis of the model
internal computations. The following proposition, which is the main result of the paper, shows how
a disentangled transformer can implement a predictor to solve the in-context selection task.

Proposition 1. Let K be a contiguous subset of integers, i.e., K = Jk̂−K +1, k̂K for K = |K| and
k̂ = max(K). For any T ≥ k̂ there exists a three-layer disentangled transformer T̃ with K heads

in the second layer such that, defining γk(X1:T ) =
β

(T−k̂)

∑T
i=k̂+1

X⊤
i−kP

⋆Xi∑
l∈K X⊤

i−lP
⋆Xi

,

T̃ (X1:T ) =
∑

k∈K

w̃k(X1:T )P(Xt+1 | Xt−k+1) with w̃k(X1:T ) =
exp (γk(X1:T ))∑
j∈K exp (γj(X1:T ))

. (3)

The predictor implemented by the transformer in Eq. (3) resembles BMA but differs in how it ag-
gregates past information. Instead of using the posterior of each model as in BMA, our method
employs weights proportional to the exponential of the average of normalized transition probabili-
ties. We further analyze this predictor in Sec. 4.3, and discuss its convergence to ML. This construc-
tion illustrates how transformers can implement selective induction heads, a mechanism that adapts
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to the input sequence by copying the token associated with the argmax of the average normalized
transition probabilities across different lags.

The proof of Proposition 1, in Sec. 4.1 below, involves an explicit construction for the weights
of the disentangled transformer implementing the solution in Eq. (3) (an alternative construction
for the third layer is in App. H). Notably, this construction yields attention maps that resemble
those observed in practice in standard (single-head non-disentagled) transformers (see Fig. 1): then
the proposed algorithm closely aligns with what trained transformers implement. Moreover, we
discuss in Sec. 4.4 different generalizations, including the construction for non-contiguous lags.
The same construction using a single head implements the same algorithm but results in worse
sample complexity. However, in the specific case where |K| = 2, we provide a different single-head
construction that recovers the sample complexity of the multi-head version.

4.1 PROOF OF PROPOSITION 1: CONSTRUCTION FOR CONTIGUOUS LAGS

To aid intuition, we use a running example with visual illustrations for T = 10, K = {1, 2, 3}. We
recall that each input element si is encoded as h(0)

i = [esi , ei] ∈ {0, 1}|S|+T .

First layer: extraction of transition probabilities. The first attention matrix, Ã(1), consists of two
blocks: the first block operates on the semantic component of the input tokens, learning the transpose
of the logarithm of the transition matrix. The second block A(1) learns the causal relationships
induced by each possible lag si−k → si for k ∈ K:

Ã(1) =

(
logP⊤ 0

0 A(1)

)

A
(1)
ij =

{
+λ if i− j ∈ K
−λ if i− j ̸∈ K .

A(1) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ +λ -λ -λ -λ -λ -λ -λ -λ
-λ +λ +λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ +λ +λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ +λ +λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ +λ +λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ +λ +λ -λ -λ
-λ -λ -λ -λ -λ -λ +λ +λ +λ -λ




We can compute the first layer’s attention as: [esi , ei]
⊤Ã(1)[esj , ej ] = (logP )sj ,si + λsign(A(1)

ij ),

and applying the softmax (α = 1): A(1)(h
(0)
1:T ; Ã

(1))ij = e
(log P )sj,si

+λsign(A(1)
ij

)∑
r∈K e(log P )sr,si

+λ+
∑

r ̸∈K e(log P )sr,si
−λ .

For λ→∞ (in practice, for λ large enough) and denoting p̃i,k :=
Psi−k,si∑

r∈K,r<i Psi−r,si
for i > 1,

lim
λ→∞

A(1)(h
(0)
1:T ; Ã

(1))ij =

{
p̃i,i−j if i− j ∈ K
1 if i = j = 1
0 elsewhere .

Therefore, the output at index i after the first layer corresponds to a weighted average of the past
tokens h

(0)
i−k for k ∈ K where the weights are given by the normalized probabilities p̃i,k: ĥ

(1)
i =

Attn(h(0)
1:T ; Ã

(1))i =
∑

k∈K,k<i p̃i,kh
(0)
i−k for i > 1 and h

(0)
1 for i = 1. With the input vectors h(0)

i

being the concatenation of the one-hot encoding of the state and position [esi , ei], the first |S| entries
of ĥ(1)

i correspond to s̃i =
∑

k∈K,k<i p̃i,kesi−k
for i > 1 and s̃1 = es1 . The remaining entries, due

to the non-overlapping positional encodings, directly copy the normalized transition probabilities
for the transition si−k → si into the |S|+ (i− k)-th element of ĥ(1)

i . To build intuition, we refer to
the example in Eq. (4) where the colors highlight transition probabilities of the same lag:

A(1) =




1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

p̃3,2 p̃2,1 0 0 0 0 0 0 0 0
p̃4,3 p̃4,2 p̃4,1 0 0 0 0 0 0 0
0 p̃5,3 p̃5,2 p̃5,1 0 0 0 0 0 0
0 0 p̃6,3 p̃6,2 p̃6,1 0 0 0 0 0
0 0 0 p̃7,3 p̃7,2 p̃7,1 0 0 0 0
0 0 0 0 p̃8,3 p̃8,2 p̃8,1 0 0 0
0 0 0 0 0 p̃9,3 p̃9,2 p̃9,1 0 0
0 0 0 0 0 0 p̃10,3 p̃10,2 p̃10,1 0




ĥ(1) =




s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃8 s̃9 s̃10
1 1 p̃3,2 p̃4,3 0 0 0 0 0 0
0 0 p̃3,1 p̃4,2 p̃5,3 0 0 0 0 0
0 0 0 p̃4,1 p̃5,2 p̃6,3 0 0 0 0
0 0 0 0 p̃5,1 p̃6,2 p̃7,3 0 0 0
0 0 0 0 0 p̃6,1 p̃7,2 p̃8,3 0 0
0 0 0 0 0 0 p̃7,1 p̃8,2 p̃9,3 0
0 0 0 0 0 0 0 p̃8,1 p̃9,2 p̃10,3
0 0 0 0 0 0 0 0 p̃9,1 p̃10,2
0 0 0 0 0 0 0 0 0 p̃10,1
0 0 0 0 0 0 0 0 0 0




(4)

The operation of the first layer is now explicit: for each token h
(0)
i , it extracts the normalized transi-

tion probabilities p̃i,k for each possible lag and stores them in the element ĥ(1)
i,S+T−k. The resulting

vector is subsequently concatenated to the residual stream to be fed to the second layer.
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Second layer: aggregation of transition probabilities. To predict the next token, the model needs
to determine which lag generated the sequence based on the past transitions. This selection requires
aggregating the normalized transition probabilities from the past, and storing them in the embedding
of the current token. However, since consecutive tokens store transition probabilities in overlapping
positions, the attention needs to learn a convex combination of tokens that avoid mixing information
from different transitions while maximizing the number of p̃ stored (to not discard useful informa-
tion). For instance, when aggregating the past for the token at i = 10 in Eq. (4), summing ĥ

(1)
9 and

ĥ
(1)
10 would mix p̃10,2 and p̃9,1 together. This mixing can be avoided, for example, by only select-

ing tokens every 3 steps (ĥ(1)
4 , ĥ

(1)
7 , ĥ

(1)
10 ) copying transitions without blending information. More

generally, the attention A(2,1) should attend to every K-th token from the current one, which is
equivalent to having non-zero entries along the diagonals at positions nK for n ∈ N and nK < T .
This structure can be enforced by constructing the attention matrix Ã(2,1) with a single non-zero
block operating on the tokens’ positional encoding, as follows:

Ã(2,1) =




0 0
0 A(2,1) 0

0 0


A(2,1) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ +λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ +λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ +λ




A(2,1) =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1/2 0 0 1/2 0 0 0
0 0 0 0 1/2 0 0 1/2 0 0
0 0 0 0 0 1/2 0 0 1/2 0
0 0 0 1/3 0 0 1/3 0 0 1/3




where the first k̂ rows and columns are empty because the first k̂ elements of the sequence are sam-
pled independently from the stationary distribution and therefore not informative. This construction
resolves the issue of overlapping transitions, but copying only a subset of tokens implies losing in-
formation from the excluded ĥi. Introducing additional attention heads Ã(2,2), . . . , Ã(2,H2) with the
same form as Ã(2,1) above overcomes this limitation. The resulting attentions A(2,2), . . .A(2,H2)

still follow a diagonal structure as A(2,1) to avoid overlapping transitions, but they are shifted to
copy different tokens. For the given example, we can design A(2,2) as in Eq. (5) to attend to ĥ

(1)
9

and ĥ
(1)
6 , and similarly, construct A(2,3) for ĥ(1)

8 and ĥ
(1)
5 .

A(2,2) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ +λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ +λ -λ




A(2,3) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ +λ -λ -λ




(5)

Each head has a diagonal structure with non-zero entries along the diagonals at position nK+h−1
for n ≥ 0 and h ∈ {1, . . . ,H2}, the attention matrices can be formalized as:

A
(2,h)
ij = λ

{
+1, if i ≥ j ≥ k̂ and (i− j) mod K = h− 1

−1, otherwise,

where the condition i ≥ j ≥ k̂ ensures that all entries in the first k̂ rows and columns are set
to −λ and imposes a lower triangular structure due to causal masking. The modulo operation
instead assigns each diagonal multiple of K to +λ (allowing attention) and the remaining diag-
onals to −λ (masking attention), while h determines the shift of the the first positive diagonal
to ensure the heads do not overlap. The output of each head in the second layer is given by
[[esi , ei], ĥ

(1)
i ]⊤Ã(2,h)[[esj , ej ], ĥ

(1)
j ] = A

(2,h)
i,j = λsign(A(2,h)

i,j ). Applying softmax and in the
limit as λ→∞, the rows of the attention become uniform for positive entries and zero otherwise:

A(2,h)
ij = Softmax(A(2,h); 1)ij = 1

[
A

(2,h)
ij = λ

]
(
∑i

m=1
1
[
A

(2,h)
im = λ

]
)−1 .

The output ĥ(2,h)
i of each head is then concatenated into the residual stream. Fig. 2 shows the

output for the 10th token for each attention head ĥ
(2,1)
10 , ĥ

(2,2)
10 and ĥ

(2,3)
10 to visualize the mechanism

of the second layer. The arrows of different colors represent how each head aggregates transition
probabilities by attending to non-overlapping past tokens and averaging them with uniform weights.
When concatenating the output of the different heads h(2)

i = [h
(0)
i , ĥ

(1)
i , ĥ

(2,1)
i , . . . , ĥ

(2,H2)
i ], we can

see how the 10th token stores the transition probabilities of its entire past for each lag.

6
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


es6+es9
0
0
0
0
0
1
0
0
1
0

s̃6+s̃9
0
0

p̃6,3
p̃6,2
p̃6,1
p̃9,3
p̃9,2
p̃9,1
0
0




1

2




es5+es8
0
0
0
0
1
0
0
1
0
0

s̃5+s̃8
0

p̃5,3
p̃5,2
p̃5,1
p̃8,3
p̃8,2
p̃8,1
0
0
0




1

2




es1 es2 es3 es4 es5 es6 es7 es8 es9 es10
1

1
1

1
1

1
1

1
1

1
s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃8 s̃9 s̃10
1 1 p̃3,2 p̃4,3

p̃3,1 p̃4,2 p̃5,3
p̃4,1 p̃5,2 p̃6,3

p̃5,1 p̃6,2 p̃7,3
p̃6,1 p̃7,2 p̃8,3

p̃7,1 p̃8,2 p̃9,3
p̃8,1 p̃9,2 p̃10,3

p̃9,1 p̃10,2
p̃10,1




1

3




∑
i=4,7,10

esi

0
0
0
1
0
0
1
0
0
1∑

i=4,7,10

s̃i

p̃4,3
p̃4,2
p̃4,1
p̃7,3
p̃7,2
p̃7,1
p̃10,3
p̃10,2
p̃10,1
0




A(2,1)

A(2,1)

A(2,1)

A(2,2)

A(2,2)

A(2,2)

A(2,2)

Figure 2: Visualization of the mechanism of the second attention layer in our construction. The ma-
trix represents the input of the second layer h(1) whereas the single vectors the output for the 10th token
ĥ
(2,1)
10 , ĥ

(2,2)
10 , ĥ

(2,3)
10 . Each of the three attention heads (arrows of different colors) copies non-overlapping

transition probabilities at distance 3 from each other from the past. By doing this, the output of the second layer
for the current token (10) contains all p̃ for each lag without loss of information.

Third layer: average of transition probabilities and lag selection. The third layer sums the
normalized transition probabilities from the second layer embeddings and uses the result to infer the
correct lag. This mechanism is implemented through the combination of multiple blocks within the
third attention matrix, Ã(3), which is structured as follows:

Ã(3) =




0 0
0 A(3)

0 0
0 B(3)

0 0
0 B(3)

0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0




A(3) =




+λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ +λ -λ -λ -λ -λ -λ -λ -λ
-λ +λ +λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ +λ +λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ +λ +λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ +λ +λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ +λ +λ -λ -λ
-λ -λ -λ -λ -λ -λ +λ +λ +λ -λ
-λ -λ -λ -λ -λ -λ -λ +λ +λ +λ




B(3) = β




0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0




A
(3)
ij = λ

{
+1 if i− j + 1 ∈ K
−1 if i− j + 1 ̸∈ K , B

(3)
ij = β

{
+1, if (i− j) mod K = K − 1

0, otherwise
.

The matrix A(3) acts on the positional embedding of the input, similarly to the matrix A(1) in the
first layer. The difference is that the position of the diagonals is now shifted by one. This shift
ensures that the only non-zero entries after softmax are the ones on the diagonals corresponding to
k − 1 for k ∈ K. The matrix B(3) is instead responsible for the sum of the normalized transitions.
Each block operates on the output of a corresponding head in the second layer. To understand how,
consider the following tokens in output of the first head in the second layer,

ĥ
(2,1)
10 = 1/3 ·

( ∑
i=4,7,10

esi 0 0 0 1 0 0 1 0 0 1
∑

i=4,7,10

s̃i p̃4,3 p̃4,2 p̃4,1 p̃7,3 p̃7,2 p̃7,1 p̃10,3 p̃10,2 p̃10,1 0
)

ĥ
(2,1)
9 = 1/2 ·

(
es6 + es9 0 0 0 0 0 1 0 0 1 0 s̃6 + s̃9 0 0 p̃6,3 p̃6,2 p̃6,1 p̃9,3 p̃9,2 p̃9,1 0 0

)

ĥ
(2,1)
8 = 1/2 ·

(
es5 + es8 0 0 0 0 1 0 0 1 0 0 s̃5 + s̃8 0 p̃5,3 p̃5,2 p̃5,1 p̃8,3 p̃8,2 p̃8,1 0 0 0

)

︸ ︷︷ ︸
m̂

(2,1)
8

︸ ︷︷ ︸
p̂
(2,1)
8

where we define p̂
(2,h)
i ∈ RT as the block of ĥ(2,h)

i which contains the normalized transition prob-
abilities and m̂

(2,h)
i ∈ RT contains a copy of the second attention. With the structure of Ã(3), we

can see how B(3) acts on these two blocks: h(2)⊤
i Ã(3)h

(2)
j =

∑K
h=1 p

(2,h)⊤
i B(3)m

(2,h)
j + eiA

(3)ej .
This operation sums the transition probabilities such that the entry corresponding to the lag-k tran-
sition for the next token contains the sum of the transitions with the same lag: h(2)⊤

i Ã(3)h
(2)
i−k+1 ∝∑

j≤i p̃j,k. To illustrate this process, consider the following:

p̂
(2,1)⊤
10 B(3,1)m̂

(2,1)
8 =

β

3




p̃4,3
p̃4,2
p̃4,1
p̃7,3
p̃7,2
p̃7,1
p̃10,3
p̃10,2
p̃10,1
0




⊤


0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0







0
0
0
0
1/2
0
0
1/2
0
0




=
β

3




p̃4,3
p̃4,2
p̃4,1
p̃7,3
p̃7,2
p̃7,1
p̃10,3
p̃10,2
p̃10,1
0




⊤


1
0
0
1
0
0
1
0
0
0




=
β

3
(p̃4,3 + p̃7,3 + p̃10,3).
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The additional blocks containing B(3) act on the outputs of the other heads, performing the same
operation by summing the transitions of the same lag stored in the respective outputs. Considering
all heads and only the non-zero entries after softmax, occurring at j = i− k+1 due to A(3), we get

h
(2)⊤
i Ã(3)h

(2)
i−k+1 =

K∑

h=1

p
(2,h)⊤
i B(3)m

(2,h)
i−k+1 + λ =

K∑

h=1

β

Th + 1

Th∑

n=0

p̃k̂+h+nK,k + λ,

where Th = ⌊T−k̂−h
K ⌋. Applying the softmax (α = 1), taking the limit λ → ∞ for large T for

which Th + 1 ≈ T−k̂
K and absorbing K inside the temperature β, we recover the weights in Eq. (3):

A(3)(h
(2)
1:T ; Ã

(3))i(i−k+1) = exp

(
β

(T−k̂)

T∑
i=k̂+1

p̃i,k

)
/
∑

r∈K
exp

(
β

(T−k̂)

T∑
i=k̂+1

p̃i,r

)
, for k ∈ K. (6)

4.2 SELECTIVE INDUCTION HEAD AND NEXT TOKEN PREDICTION

Selective induction head. Eq. (6) shows how the last attention layer computes a weighted average
of the tokens at a distance k from the next one, with weights proportional to the average of the
normalized transition probabilities of lag k. In practice, trained models often learn large values of
β. Thus, we consider the limit β →∞, where the softmax converges to the hardmax:

A(3)
i,j = 1 [i− j + 1 = k⋆] with k⋆ = argmaxk

∑

j<i

p̃j,k.

Here, the transformer selects the causal structure (i.e., the lag) corresponding to the largest∑
j<i p̃j,k. Given the current token i, the third layer then copies the token from the position i−k⋆+1,

i.e., ĥ(3)
i =

∑i
j=k̂ 1 [i− j + 1 = k⋆]h

(2)
j = h

(2)
i−k⋆+1. After concatenation to the residual stream,

the tokens are of the following form:

h
(3)
i =

[
esi , ei, ĥ

(1)
i , ĥ

(2,1)
i , . . . , ĥ

(2,H2)
i , esi−k⋆+1

, ei−k⋆+1, ĥ
(1)
i−k⋆+1, ĥ

(2,1)
i−k⋆+1, . . . , ĥ

(2,H2)
i−k⋆+1

]
.

Output layer: next token prediction. Finally, the output layer W̃O ∈ RS×
∑

l dl contains all zero
blocks, except for the one acting on the semantics of the token copied by the third attention. This
block learns the transition matrix P ⋆ to predict the transition probabilities to the next token via

W̃O =
(
0S×S 0S×T 0S×d0

0S×2d0
. . . 0S×2d0

P ⋆⊤ 0S×T 0S×d0
0S×2d0

. . . 0S×2d0

)
,

i.e. W̃Oh
(3) = P ⋆⊤esi−k⋆+1

= P ⋆
si−k⋆+1

. This layer shows how transformers can learn a selective
induction head; a mechanism that adapts to the input sequence by copying the token corresponding
to the argmax of some quantity extracted by the previous layers and stored in the embeddings.

4.3 EQUIVALENCE WITH MAXIMUM LIKELIHOOD

The disentangled transformer we propose does not rely on likelihood. Due to the normalization
applied by the softmax function, the model computes the sum of normalized probabilities p̃. For the
inference to be accurate, the cumulative sum corresponding to the correct lag must exceed those of
any other lag. This fact is formalized in terms of expected values in the following claim:
Claim 1. Let K be a subset of integers and Xt an interleaved Markov chain of lag k ∈ K, then, for
r ∈ K and i ≥ k̂,

E
[ X⊤

i−rP
⋆Xi∑

l∈K X⊤
i−lP

⋆Xi

]
≤ E

[ X⊤
i−kP

⋆Xi∑
l∈K X⊤

i−lP
⋆Xi

]
.

While specific cases (e.g., two lags, no normalization, or independent lags) are proven in App. B, we
leave the complete proof of Claim 1 for future work. However, we provide empirical validation of
this claim in App. E. Due to ergodicity, the average 1

T

∑T
i=1 p̃i,r converges to its expected value, and

for large enough T it is higher for the correct lag. Therefore applying the exponential and scaling
the temperature β leads to the same result as MLE in the asymptotic limit, as shown in Fig. 4c

8
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Figure 3: Performance of our constructed transformers, trained transformers, and theoretical estimator
(BMA, ML). First plot: lags 1,2,3. Second: the model solve the task with non-contiguous lags. Third: the
model is effective with additional lags. Fourth: one head is enough for two lags.

4.4 GENERALIZATIONS AND SPECIAL CASES

Single-head transformers. The construction above allows the model to store all the past transition
probabilities in the embedding of the current token by scaling the number of heads with the total
number of lags K. Since all heads perform the same operation, reducing the number of heads
implements an equivalent algorithm but with worse sample complexity, as some past transitions
are discarded. Thus, a 3-layer single-head transformer still solves the task by implementing the
algorithm in Proposition 1, but it only uses T−k̂−1

K + 1 samples to estimate the correct lag.

Non-contiguous lags. In App. I, we provide examples of constructions to handle non-contiguous
lags, where the core approach remains similar to that in Sec. 4.1. Depending on the specific case,
the number of heads needed ranges between the number of lags and k̂ −min(K) + 1.

Two lags. By the construction in Sec. 4.1, handling two contiguous lags requires two attention heads
in the second layer for optimal sample complexity. However, we provide in App. J an alternative
construction for the third layer which enables a single-head model to match the performance of the
two-head model for any two lags, whether contiguous or not (see empirical results below).

5 EXPERIMENTS AND DISCUSSION

We conduct a series of experiments to empirically validate our construction and determine whether
transformers trained via gradient descent learns it. Setup. We train 3-layer disentangled transform-
ers (T̃ ) and 3-layer standard transformers (T ) with learned positional and semantic embedding both
with α =

√
dQK using cross-entropy loss. At each step, we generate a fresh batch (size 256) of

sequences (length 128) via Alg. 1, and train using Adam optimizer with fixed learning rate 0.001
and no weight decay. For the standard transformer embedding size we tested 128, 64 and dQK = 32.
For the constructions, we fix β = 100 and λ = 500. We report DKL between the true and predicted
next-token distribution along the sequence. We generate different tasks with alphabet size |S| = 5
(no differences are observed for other sizes) varying the number and values of lags: K = {1, 2, 3}
(our example) and K = {1, 2, 3, 4, 5} for the case of contiguous lags (optimal number of heads 3
and 5 according to Proposition 1), K = {1, 3, 4} to show non-contiguous lags (4 heads needed, see
App. I), and K = {1, 3} for the special case of two lags.

Main results. We observe in Fig. 3 how the construction with optimal number of heads, indicated
as T̃ constr. in the plots, matches the performance of the maximum likelihood. Moreover, both
the disentangled transformers trained from scratch (T̃ train) and the standard one (T train) match
the performance of the theoretical construction. Interestingly, we instead observe that when the
number of heads is fixed to 1 the trained transformers can find solutions which perform better than
the construction: this indicates the existence of more efficient, yet elusive and non-interpretable,
ways of aggregating the transition probabilities, and that gradient descent can find them. Finally, we
illustrate how for the simple case of two lags (last plot in Fig. 3) our construction with single head
(detailed in App J) attains the optimal sample complexity, while the construction in App. I would
assume using more heads. Moreover, in this case, it appears that the trained transformers can obtain
performances closer to the BMA rather than the ML for small sequence lengths.
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Trained vs constructed attention maps. In Fig. 4a we report the attention maps for the three layers
for the case K = {3, 5, 7} for the trained standard transformer (top row), the trained disentangled
transformer (middle row) and our construction (see construction in App. I) (bottom row).We ob-
serve that the attention maps of the first and third layers are nearly identical between the trained
and theoretical models, with these layer functioning precisely as expected from the theoretical con-
struction. Notably, the attention entries of the first layer are proportional to logP ⋆, even when the
model is trained from scratch and for both the disentangled and standard cases. For the second layer
(aggregation), the trained transformers converge to a slightly different structure, likely because ag-
gregation is a combinatorial problem with multiple valid implementations. Despite this variability, a
clear diagonal pattern emerges, closely resembling that in our theoretical construction. Furthermore,
as demonstrated in Fig. 4b, all models achieve comparable performance on the task. These findings
strongly suggest that the trained transformer find a solution that aligns closely with our construction.
Remarkably, we also show that standard transformers trained with learned positional and semantic
embeddings and attention parameterized by Q,K, V produce attention maps in agreement with our
construction. This provides compelling evidence that our construction is not merely a byproduct of
the disentangled transformer’s architecture but can also be implemented by standard transformers.
Moreover, we observe that even when the embedding dimension (64) is smaller than the sequence
length (128), standard transformers are still capable of matching the optimal performances therefore
finding more efficient ways to store and use all the transitions in the past.
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Figure 4: Attention maps trained vs constructed transformer. Fig. 4a reports the heatmaps of the attention
maps of the trained standard and disentangled transformer and our construction for lags 3,5,7 and Fig. 4b. The
first and second layers display a remarkable similarity and the second layers show a similar diagonal structure.
Fig. 4c shows how the estimator in Eq. (3) matches ML for large β.

6 CONCLUSIONS

We introduced a novel synthetic task based on interleaved Markov chains to study how attention-
only transformers perform in-context causal structure selection. Our findings demonstrated that a
3-layer transformer can solve this task with near-optimal sample complexity, effectively showcasing
the emergence of selective induction heads, attention circuits that aggregate past information and
select the correct causal structure. Moreover, we provided a fully interpretable construction of a
disentangled transformer implementing these circuits to solve the task, and empirically verified that
both disentangled and standard transformers trained with Adam closely align with this construction.
Finally, we theoretically analyze the algorithm implemented by this construction showing that, in
certain cases, it asymptotically converges to ML.
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Organization of the Appendix. The Appendix is organized as follows. In App. A, we present a
detailed review of related work on in-context learning and mechanistic interpretability. App. B ex-
tends the statistical analysis of the estimator implemented by the transformer in Prop.1 and includes
omitted proofs. App. C reports additional experiments and discussions about using more than 3
layers and varying the number of heads in the second layer. Additional attention maps for differ-
ent tasks and both disentangled and trained transformers as well as the construction are provided in
App. D. App. E includes several experiments to validate Claim 1. App. F details the algorithm used
to generate the interleaved Markov chains. A complete construction for the contiguous case, along
with detailed intuitions, is given in App. G. App. H discusses an alternative third layer construc-
tion using positional embedding. The construction for non-contiguous lags is presented in App. I.
Finally, App. J explains the single-head construction for the case of two lags.

A RELATED WORK

Following the initial empirical observations of the emergent in-context learning capabilities of trans-
formers (Brown, 2020), several works have attempted to understand this phenomenon. Xie et al.
(2021) sought to formulate in-context learning as Bayesian inference, while Garg et al. (2022) stud-
ied the ability of transformers to learn simple functions, such as linear models or multilayer percep-
trons, in context. A subsequent line of work (Akyürek et al., 2022; Bai et al., 2024; Von Oswald et al.,
2023a;b; Raventós et al., 2024) shows that transformer layers might implement gradient descent to
solve in-context linear regression. Ahn et al. (2023) extend this idea to higher-order algorithms. Im-
portantly, Olsson et al. (2022) postulate that in-context learning is tied to the emergence of induction
heads. Bietti et al. (2024), subsequently extended this idea, showing the development of induction
heads to learn bigrams in-context and showcasing a connection with associative memories. Our
work is inspired by foundational efforts in causal interpretability and mechanistic understanding of
neural networks, particularly transformers (Olsson et al., 2022). These include studies on causal
mediation analysis (Mueller et al., 2024), causal abstraction as a theoretical framework (Geiger
et al., 2023), and the broader scope of mechanistic interpretability in language models (Saphra &
Wiegreffe, 2024). More closely related to our work is the literature analyzing transformers through
the lens of Markov chains. In particular, Nichani et al. (2024) shows how transformers trained on
sequences generated by Markov chains on a graph learn simple circuits to capture the underlying
causal structure and implement the Bayes-optimal solution by estimating transition probabilities in
context. Similarly, Edelman et al. (2024) illustrate the formation of statistical induction heads that
accurately compute posterior probabilities based on bigram statistics. Makkuva et al. (2024) used
Markov chains to study the loss landscape of transformers, while Rajaraman et al. (2024) shows
that a constant depth is sufficient to learn k-th order Markov chains. Along this line, Svete & Cot-
terell (2024) demonstrates that transformers with hard or sparse attention can exactly represent any
n-gram model. Extending this framework to Hidden Markov Models, Hu et al. (2024) highlights the
limitations of transformers in learning such models compared to RNNs.

B STATISTICAL ANALYSIS OF OUR PREDICTOR

For our estimator to select the correct lag, the following inequalities must hold for a lag k and a
sequence of length T generated accordingly:

T∑

i=1

p̃i,k >

T∑

j=1

p̃j,r ∀, r ̸= k; and; r ∈ K.

These results enable us to recover the MLE estimator in the high-temperature limit and approximate
the BMA at finite temperatures. Assuming the process is ergodic, and by taking the limit of the
inequality above, we require the following condition:

E
[ X⊤

i−rP
⋆Xi∑

l∈K X⊤
i−lP

⋆Xi

]
≤ E

[ X⊤
i−kP

⋆Xi∑
l∈K X⊤

i−lP
⋆Xi

]
for r ∈ K and i ≥ max(K),

as formalized in Claim 1.

We leave the complete proof of this result as future work, but we have fully validated it empirically
in Section E. We provide here the proofs of Claim 1 for three specific cases.
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Two-lag case. In the case of two lags, we can show the following general result for any two
distributions, P and Q, over 1, . . . , k for k ≥ 0.
Lemma 1.

k∑

i=1

P (i)Q(i)

P (i) +Q(i)
≤

k∑

i=1

P (i)2

P (i) +Q(i)
. (7)

Proof. We first show that
k∑

i=1

P (i)2 −Q(i)2

P (i) +Q(i)
=

k∑

i=1

(P (i)−Q(i))(P (i) +Q(i))

P (i) +Q(i)
=

k∑

i=1

(P (i)−Q(i)) = 0.

Then, by using Cauchy-Schwarz inequality, we obtain:

k∑

i=1

P (i)Q(i)

P (i) +Q(i)
≤

√√√√
k∑

i=1

P (i)2

P (i) +Q(i)

√√√√
k∑

i=1

Q(i)2

P (i) +Q(i)
=

k∑

i=1

P (i)2

P (i) +Q(i)
.

The result in the two-lag case follows directly. Let µ denote the distribution of the lag-k interleaved
process Xt, (i.e, µ(si, sj , sk) = P(Xi = si, Xj = sj , Xk = sk)) . For any lag {r} we have

E
[ X⊤

i−rP
⋆Xi

X⊤
i−rP

⋆Xi +X⊤
i−kP

⋆Xi

]
=

∑

si−k,si−r,si

µ(si−k, si−r, si)
Psi−k,siPsi−r,si

Psi−k,si + Psi−r,si

=
∑

si−k,si−r

µ(si−k, si−r)
∑

si

Psi−k,siPsi−r,si

Psi−k,si + Psi−r,si

By applying Lemma 1, we directly obtain

E
[ X⊤

i−rP
⋆Xi

X⊤
i−rP

⋆Xi +X⊤
i−kP

⋆Xi

]
≤ E

[ X⊤
i−kP

⋆Xi

X⊤
i−rP

⋆Xi +X⊤
i−kP

⋆Xi

]

which proves Claim 1 in the case of two lags.

Independent lags. In the case where all lags in K are such that (Xi−l)l∈K are independent, we
can prove Claim 1. Indeed, in this case, the distribution of the observed lags can be factorized as
µ((si−l)l∈K) =

∏
l∈K µ(si−l). Thus we have

E
[X⊤

i−rP
⋆Xi −X⊤

i−kP
⋆Xi∑

l∈K X⊤
i−lP

⋆Xi

]
=

∑

si,(si−l)l∈K

µ((si−l)l∈K)
Psi−k,si(Psi−r,si − Psi−k,si)∑

l∈K Psi−l,si

=
∑

si,(si−l)l∈K

µ((si−l)l∈K,l ̸=k,r)µ(si−k)µ(si−r)
Psi−k,si(Psi−r,si − Psi−k,si)∑

l∈K Psi−l,si

Then, by observing that a(a− b) + b(b− a) = (a− b)2 ≥ 0, the result follows from:

2
∑

si−r,si−l

µ(si−k)µ(si−r)
Psi−k,si(Psi−r,si − Psi−k,si)∑

l∈K Psi−l,si

=
∑

si−r,si−l

µ(si−k)µ(si−r)
Psi−k,si(Psi−r,si − Psi−k,si) + Psi−r,si(Psi−k,si − Psi−r,si)∑

l∈K Psi−l,si

=
∑

si−r,si−l

µ(si−k)µ(si−r)
(Psi−r,si − Psi−k,si)

2

∑
l∈K Psi−l,si

≥ 0

We observe that similar techniques can be applied to prove Claim 1 in the case of a symmetric
Markov kernel P ⋆.
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No normalization case. Due to various reasons, including the normalization of the softmax in the
attention layer, our estimator relies on a score computed by aggregating the normalized probabilities
p̃i,k. If we were to use the unnormalized probabilities, we could rely on the following result, which
simplifies Claim 1 by excluding the normalization step.
Lemma 2. LetK be a subset of integers and Xt a stationary interleaved Markov chain of lag k ∈ K,
then

E[X⊤
i−rP

⋆Xi] ≤ E[X⊤
i−kP

⋆Xi] for r ∈ K and i ≥ max(K). (8)

Proof.

E[X⊤
i−rP

⋆Xi] =
∑

si−r,si−k,si

µ(si−r, si−k, si)Psi−r,si

=
∑

si−r,si−k,si

µ(si−r, si−k)Psi−k,siPsi−r,si

≤
∑

si

√ ∑

si−r,si−k

µ(si−r, si−k)P 2
si−k,si

√ ∑

si−r,si−k

µ(si−r, si−k)P 2
si−r,si

≤
∑

si

√∑

si−k

(
∑

si−r

µ(si−r, si−k))P 2
si−k,si

√∑

si−r

(
∑

si−k

µ(si−r, si−k))P 2
si−r,si ,

where the inequality follows from the Cauchy-Schwarz inequality.

Assuming that µ(si−r, si−k) is a coupling of the stationary measure π, we then have:

E[X⊤
i−rP

⋆Xi] ≤
∑

si

√∑

si−k

π(si−k)P 2
si−k,si

√∑

si−r

π(si−r)P 2
si−r,si

=
∑

si,si−k

π(si−k)P
2
si−k,si

= E[X⊤
i−kP

⋆Xi].

It remains to prove that µ(si−r, si−k) is a coupling of the stationary measure π.

First, let’s assume that r and k are such that Xi−r and Xi−k are independent. In this case
µ(si−r, si−k) = µ(si−r)µ(si−k) and we have both that

∑
si−r

µ(si−r, si−k)) = µ(si−k) and∑
si−k

µ(si−r, si−k) = µ(si−r).

Alternatively, if r and k are such that Xr and Xk come from the same Markov Chain with
r > k. We have thus that Xi−r ∼ µ and Xi−k|Xi−r ∼ s⊤i−rP

l for some l ≥ 0 and
µ(si−r, si−k) = π(si−r)s

⊤
i−rP

lsi−k. Since P is a stochastic matrix, summing over si−k gives∑
si−k

µ(si−r, si−k) = µ(si−r) = π(si−r). Finally, by definition of the stationary distribution π,
summing over si−r gives

∑
si−r

µ(si−r, si−k) = π(si−k).
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C SCALING HEADS AND LAYERS

In this section, we investigate how varying the number of heads in the second layer and the number
of layers affects the model’s performance. We train standard transformers with learned positional
and semantic embeddings in the same setup as reported in Section 5. In Figure 5 (left) we consider
the task given by K = {1, 2, 3} and first show the behavior of the model with 2 layers and different
combinations of heads [1, 1], [3, 1], [1, 3], [3, 3]1, the results show that transformers with 2 layers
can’t solve the task. Second, we show that increasing the number of layers beyond 3 does not change
the performance. In Figure 5 (right) instead we consider the task defined by K = {1, 2, 3, 4, 5} and
train transformers with fewer, equal to, or more than K heads. As predicted by our construction
increasing the number of heads leads to performances that get closer to the maximum likelihood
up to having the number of heads equal to the number of lags in the set K. Beyond this point
adding more heads does not improve performance, this is expected as ML is optimal. Figures 6,7,8
illustrates the attention maps for a 3-layer transformer with only 1, 2, 3 heads respectively in the
second layer, despite the task having 5 lags. Remarkably, even with fewer than K heads, the layers
remain consistent with our theoretical construction, displaying analogous patterns: the first layer
extracts transition probabilities, the second aggregates them, and the third implements the selective
head. However, in the case of fewer heads, the second layer appears to find an efficient way to
superpose information—a mechanism we could not yet interpret. Understanding this behaviour in
the second layer remains an open question for future work.
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Figure 5: (left) Scaling number of layers: we train standard transformers with learned position and semantic
embeddings. Transformers with 2 layers can’t solve the task for any combination of heads. Transformers with
more than 3 layers achieve the same performance as for 3 layers. (right) Scaling number of heads in the
second layer: we train standard transformers with learned position and semantic embeddings increasing the
number of heads in the second layer. As predicted by the construction increasing the number of layers leads to
performance closer to the Maximum Likelihood.

1With this notation we intend the following [#heads layer 1, . . . , #heads layer L]
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Figure 6: Attention maps for T 3L [1, 1, 1] and K = {1, 2, 3, 4, 5}: we observe how even with fewer heads
the transformer learns layers which are consistent with the operations in our construction. In particular the first
layer is still extracting the transition probabilities, the second is aggregating them and the third one implements
the selective head.
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Figure 7: Attention maps for T 3L [1, 2, 1] and K = {1, 2, 3, 4, 5}: we observe how even with fewer heads
the transformer learns layers which are consistent with the operations in our construction. In particular the first
layer is still extracting the transition probabilities, the second is aggregating them and the third one implements
the selective head.
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Figure 8: Attention maps for T 3L [1, 3, 1] and K = {1, 2, 3, 4, 5}: we observe how even with fewer heads
the transformer learns layers which are consistent with the operations in our construction. In particular the first
layer is still extracting the transition probabilities, the second is aggregating them and the third one implements
the selective head.
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D ADDITIONAL ATTENTION MAPS PLOTS

As an additional confirmation for our construction we report here a comparison of the attention
matrices for the task introduced in Figure 1. We compare a standard 3-layer attention only trans-
former with learned positional encoding and one attention head per layer with our construction. The
standard transformer was trained in the same setup already introduced in Section 5. We observe a
remarkable similarity between the attention maps of our construction and the trained transformer.
This further confirms that the disentangled transformer is a good proxy to study the residual stream
and the flow of information inside the transformer in a more interpretable way. Moreover it con-
firms that our construction is realistic and aligns with what transformers learn in practice by gradient
descent.
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Figure 9: K = {1, 2} Attention maps trained standard and disentangled transformer vs construction.
We visualize the heatmaps of the attention maps of the trained standard transformer with learned positional
encoding (top row) and our construction (bottom row) for lags 1,2. All layers show a remarkable similarity. .
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Figure 10: K = {1, 2, 3} Attention maps trained standard and disentangled transformer vs construction.
We visualize the heatmaps of the attention maps of the trained standard transformer with learned positional
encoding (top row) and our construction (bottom row) for lags 1,2. All layers show a remarkable similarity. .
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Figure 11: K = {1, 2, 3} Attention maps trained standard and disentangled transformer vs construction.
We visualize the heatmaps of the attention maps of the trained standard transformer with learned positional
encoding (top row) and our construction (bottom row) for lags 1,2. All layers show a remarkable similarity. .
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Figure 12: K = {1, 2, 3} Attention maps trained standard and disentangled transformer vs construction.
We visualize the heatmaps of the attention maps of the trained standard transformer with learned positional
encoding (top row) and our construction (bottom row) for lags 1,2. All layers show a remarkable similarity. .

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0

5

10

15

20

25

30

35

40

45

Se
qu

en
ce

 In
de

x

Trained standard transformer

0

5

10

15

20

25

30

35

40

45

Se
qu

en
ce

 In
de

x

Trained disentangled transformer

0 5 10 15 20 25 30 35 40 45

Attention Layer 1

0

5

10

15

20

25

30

35

40

45

Se
qu

en
ce

 In
de

x

0 5 10 15 20 25 30 35 40 45

Attention Layer 2

Construction disentangled transformer

0 5 10 15 20 25 30 35 40 45

Attention Layer 3 order 1

Figure 13: K = {1, 2, 3} Attention maps trained standard and disentangled transformer vs construction.
We visualize the heatmaps of the attention maps of the trained standard transformer with learned positional
encoding (top row) and our construction (bottom row) for lags 1,3,4. All layers show a remarkable similarity. .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0

5

10

15

20

25

30

35

40

45

Se
qu

en
ce

 In
de

x

Trained standard transformer

0

5

10

15

20

25

30

35

40

45

Se
qu

en
ce

 In
de

x

Trained disentangled transformer

0 5 10 15 20 25 30 35 40 45

Attention Layer 1

0

5

10

15

20

25

30

35

40

45

Se
qu

en
ce

 In
de

x

0 5 10 15 20 25 30 35 40 45

Attention Layer 2

Construction disentangled transformer

0 5 10 15 20 25 30 35 40 45

Attention Layer 3 order 3

Figure 14: K = {1, 3, 4} Attention maps trained standard and disentangled transformer vs construction.
We visualize the heatmaps of the attention maps of the trained standard transformer with learned positional
encoding (top row) and our construction (bottom row) for lags 1,3,4. All layers show a remarkable similarity. .
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Figure 15: K = {1, 3, 4} Attention maps trained standard and disentangled transformer vs construction.
We visualize the heatmaps of the attention maps of the trained standard transformer with learned positional
encoding (top row) and our construction (bottom row) for lags 1,3,4. All layers show a remarkable similarity.
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E EMPIRICAL VALIDATION OF CLAIM 1

To empirically validate Claim 1 we first sample a set of 12 lags uniformly between 1 and 30; we
then sample 1000 different transition matrices and for each matrix and each lag 1000 sequences
of length 1000 according to the respective Interleaved Markov chain. For each lag and each set
of sequences we then compute the expectation in Claim 1 by averaging the last transition in each
sampled sequences. We then compute the following quantity:

E[
X⊤

i−kP
⋆Xi∑

l∈K X⊤
i−lP

⋆Xi
]−max

r ̸=k
r∈K

E[
X⊤

i−rP
⋆Xi∑

l∈K X⊤
i−lP

⋆Xi
] (9)

and report it in the histogram in Fig.16. We can see that all values in the histogram are positive
therefore confirming our claim. Similarly, the results in Fig.17 report the quanity in the claim for
each single lag. As per our claim, the expected normalized transition probabilities of the true lag is
always larger than the same quantity for any other lag. As a further confirmation of the claim, in
Fig.19 and Fig.20 we report the cumulative average of the normalized transition probabilities along
the sequence for a single sequence. We observe that even with few samples (small t) the cumulative
average for the true order is always larger than the same quantity for the other lags.
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Figure 16: Difference of the expected Normalized Transition Probabilities for the true lag and the max-
imum over all other lags for |S| = 10. The histogram shows how the quantity in Eq. 9 is always positive.
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Figure 17: Expected Normalized Transition Probabilities for |S| = 10: The sampled set of lags is K =
{1, 2, 7, 9, 10, 11, 13, 15, 16, 22, 26, 28}, we sampled 10 different transition matrices and for each lag and each
matrix sampled 1000 sequences of length 1000. The expected normalized transition probability is always larger
for the true lag.
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Figure 18: Expected Normalized Transition Probabilities for |S| = 25: The sampled set of lags is K =
{1, 2, 7, 9, 10, 11, 13, 15, 16, 22, 26, 28}, we sampled 10 different transition matrices and for each lag and each
matrix sampled 1000 sequences of length 1000. The expected normalized transition probability is always larger
for the true lag.
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Figure 19: Cumulative average of Normalized Transition Probabilities for |S| = 10: The sampled set of
lags is K = {1, 2, 7, 9, 10, 11, 13, 15, 16, 22, 26, 28}, we report one sequence sampled according to one the
transition matrix. The cumulative average of normalized transition probability quickly becomes larger for the
true lag.
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Figure 20: Cumulative average of Normalized Transition Probabilities for |S| = 25: The sampled set of
lags is K = {1, 2, 7, 9, 10, 11, 13, 15, 16, 22, 26, 28}, we report one sequence sampled according to one the
transition matrix. The cumulative average of normalized transition probability quickly becomes larger for the
true lag.
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F TASK DETAILS

Algorithm 1 Generate Dataset of N Sequences from Interleaved Markov Chains

Require: N (sequences), T (length), S (state space), K (set of lag values), P ∗ (transition matrix)
Ensure: Dataset D of N sequences

1: D ← ∅
2: π ← stationary distribution of P ∗

3: for i = 1 to N do
4: k ← Uniform(K) ▷ Randomly select lag for this sequence
5: X0 ← Sample from π ▷ Initialize first state
6: S ← [X0] ▷ Initialize sequence
7: for t = 1 to T − 1 do
8: if t < k̂ then
9: Xt ← Sample from π ▷ Sample from stationary distribution

10: else
11: Xt ← Sample from P ∗[Xt−k, :] ▷ Transition based on lag k

12: Append Xt to S

13: Add S to D
return D

G COMPLETE CONSTRUCTION FOR CONTIGUOUS LAGS.

First layer, extraction of transition probabilities. The first attention matrix, Ã(1), consists of
two blocks: the first block operates on the semantic component of the input tokens, learning the
transpose of the logarithm of the transition matrix, while the second block learns the sum of the
adjacency matrices of the sources involved in the task, scaled by a factor λ:

Ã(1) =

(
logP⊤ 0

0 A(1)

)

A
(1)
ij =

{
+λ1 if j − i ∈ K
−λ1 if j − i ̸∈ K .

A(1) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ +λ -λ -λ -λ -λ -λ -λ -λ
-λ +λ +λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ +λ +λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ +λ +λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ +λ +λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ +λ +λ -λ -λ
-λ -λ -λ -λ -λ -λ +λ +λ +λ -λ




(10)

In Eq. (10) the matrix A(1) is represented for the illustrative example. To better understand the
operations resulting from this structure, we can explicitly compute the output of the first layer as
follows:

[esi , ei]
⊤Ã(1)[esj , ej ] = e⊤si logP

⊤esj +A
(1)
i,j = (logP )sj ,si + λsign(A(1)

i,j )

applying the softmax:

A(1)(h
(0)
1:T ; Ã

(1))ij =
e(logP )sj,si+λsign(A(1)

i,j )

∑i
r=1 e

(logP )sr,si
+λsign(A(1)

i,j )
=

e(logP )sj,si+λsign(A(1)
ij )

∑
r∈K e(logP )sr,si

+λ +
∑

r ̸∈K e(logP )sr,si
−λ

and considering the limit λ→∞:

lim
λ→∞

A(1)(h
(0)
1:T ; Ã

(1))ij =

{
Psj,si∑

r∈K Psr,si
if i− j ∈ K

0 elsewhere
In words, the non-zero entries of the attention matrix, after applying the softmax, correspond to the
sum of the adjacency matrices but where the value of each entry is the probability associated with
the respective transition divided by the probability of all the possible transitions, which we denote as
p̃i,k :=

Psi−k,si∑
r∈K Psr,si

. Therefore, the output at index i after the first layer corresponds to a weighted

average of the past tokens h(0)
i−k for k ∈ K where the weights are given by p̃i,k:

Attn(h(0)
1:T ; Ã

(1))i =

i∑

j=1

1 [i− j ∈ K] Psj ,si∑
r∈K Psr,si

h
(0)
j =

∑

k∈K

p̃i,kh
(0)
i−k .
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Given that the input vectors h
(0)
i are the concatenation of the one-hot encoding of the state and

position [esi , ei], the first |S| entries will correspond to s̃i =
∑

k∈K p̃i,kesi−k
whereas the remaining

entries, given that no overlap is possible between the encoding of the positions, will simply copy the
normalized transition probabilities correspondent to the transition si−k → si for k ∈ K ∈ R|S| and
store it at the (i−k)-th element of ĥ(1)

i = Attn(h(0)
1:T ; Ã

(1))i. To gain a better intuition regarding this
operations, is is useful to consider the example given in Eq. (11) where the different colors highlight
transition probabilities of the same lag:

A(1) =




1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

p̃3,2 p̃2,1 0 0 0 0 0 0 0 0
p̃4,3 p̃4,2 p̃4,1 0 0 0 0 0 0 0
0 p̃5,3 p̃5,2 p̃5,1 0 0 0 0 0 0
0 0 p̃6,3 p̃6,2 p̃6,1 0 0 0 0 0
0 0 0 p̃7,3 p̃7,2 p̃7,1 0 0 0 0
0 0 0 0 p̃8,3 p̃8,2 p̃8,1 0 0 0
0 0 0 0 0 p̃9,3 p̃9,2 p̃9,1 0 0
0 0 0 0 0 0 p̃10,3 p̃10,2 p̃10,1 0




ĥ(1) =




s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃8 s̃9 s̃10
1 1 p̃3,2 p̃4,3 0 0 0 0 0 0
0 0 p̃3,1 p̃4,2 p̃5,3 0 0 0 0 0
0 0 0 p̃4,1 p̃5,2 p̃6,3 0 0 0 0
0 0 0 0 p̃5,1 p̃6,2 p̃7,3 0 0 0
0 0 0 0 0 p̃6,1 p̃7,2 p̃8,3 0 0
0 0 0 0 0 0 p̃7,1 p̃8,2 p̃9,3 0
0 0 0 0 0 0 0 p̃8,1 p̃9,2 p̃10,3
0 0 0 0 0 0 0 0 p̃9,1 p̃10,2
0 0 0 0 0 0 0 0 0 p̃10,1
0 0 0 0 0 0 0 0 0 0




(11)
The operation of the first layer is now clear: for each token h

(0)
i , it extracts the transition probabilities

p̃i,k for each possible lag and stores them in the element Attn(h(0)
1:T ; Ã

(1))i,S+T−k. The resulting
vector is then concatenated to the residual stream to be fed to the second layer.

Second layer, aggregation of transition probabilities: To predict the next token, the model needs
to determine which lag is more likely to have generated the sequence based on the observed tran-
sitions up to the current token. In order to do so, we need to aggregate the normalized transition
probabilities of the entire past and copy them into the embedding of the current token. However,
since consecutive tokens store transition probabilities in overlapping positions, simply averaging a
token’s history via a uniform attention would cause information from different transitions to mix.
For example, when aggregating the past for the token at i = 10 in Eq. (11), summing ĥ

(1)
9 and

ĥ
(2)
10 would mix p̃10,2 and p̃9,1 together. To avoid this, the second attention needs to use the po-

sitional encoding to learn a convex combination of the past tokens, which minimizes the overlap
and maximizes the number of transitions stored. For example, by selecting one token every 3 steps
ĥ
(1)
4 , ĥ

(1)
7 , ĥ

(1)
10 we can copy all the transitions without mixing information. More generally, the

attention A(2) should attend to every K-th token starting from the current one. This corresponds
to a diagonal structure, with non-zero entries along the diagonals at positions nK for n ∈ N and
nK < T . This structure can be enforced by constructing the attention matrix Ã(2,h) with a single
non-zero block that operates on the positional embeddings and takes the following form:

Ã(2,h) =




0 0
0 A(2,1) 0

0 0


A(2,1) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ +λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ +λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ +λ




A(2,1) =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1/2 0 0 1/2 0 0 0
0 0 0 0 1/2 0 0 1/2 0 0
0 0 0 0 0 1/2 0 0 1/2 0
0 0 0 1/3 0 0 1/3 0 0 1/3




where the first k̂ rows and columns are empty because the first k̂ elements of the sequence are
sampled independently from the stationary distribution and therefore no transitions are present.

The current construction allows us to overcome the issue caused by overlapping transitions; however,
only copying a subset of tokens implies losing the information contained in the remaining ĥi which
were excluded by the attention. To overcome this limitation, we can introduce additional attention
heads, for a total of K. Each one of them still presents a diagonal structure in order not to sum
overlapping transitions but now shifted such that each head copies different tokens. For the given
example, we can construct A(2,2) as in Eq. (12) to attend ĥ

(1)
9 and ĥ

(1)
6 which were discarded before,

and similarly, the third head can be constructed with A(2,3) to sum ĥ
(1)
8 and ĥ

(1)
5 . This mechanism

corresponds to having each additional head with a diagonal structure and non-zero entries along the
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diagonals at position nK + h− 1 for n ∈ N and h ∈ {1, . . . ,H2} being the index of the head.

A(2,2) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ +λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ +λ -λ




A(2,3) =




-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ -λ -λ -λ -λ
-λ -λ -λ +λ -λ -λ +λ -λ -λ -λ
-λ -λ -λ -λ +λ -λ -λ +λ -λ -λ




(12)
The attention matrices {A(2,1), . . . , A(2,H2)} can be formalized as:

A
(2,h)
ij = λ

{
+1, if i, j ≥ k̂, i ≥ j, ((i− j − h+ 1) mod K = 0)

−1, otherwise

where the condition i, j ≥ k̂ ensures that all entries in the first k̂ rows and columns are set to
−λ and i ≥ j imposes a lower triangular structure due to causal masking. The modulo operation
instead assigns each diagonal multiple of K to +λ (allowed attention) and the remaining diagonals
to −λ(masking the attention) while h determines the shift of the the first positive diagonal such
that the heads do not overlap. To develop a better intuition for these structured matrices and their
function, we can explicitly write the equation for the output of each head in the second layer:

[[esi , ei], ĥ
(1)
i ]⊤Ã(2,h)[[esj , ej ], ĥ

(1)
j ] = A

(2,h)
i,j = λsign(A(2,h)

i,j )

applying softmax and considering the limit as λ→∞, the rows of the attention become uniform in
correspondence to positive entries and zero otherwise:

A(2,h)
ij =

(
Softmax(A(2,h))

)
ij
=

1 [(i− j − h+ 1) mod K = 0]
∑i

m=1 1 [(m− j − h+ 1) mod K = 0]

which in turns implies that the attention computes ĥ(2)
i = Attn(h(1)

1:T ; Ã
(2,h))i =

∑i
j=k̂A

(2,h)
ij h

(1)
j .

The output of each head is then concatenated into the residual stream. The visualization in Fig. 21
is helpful in fully understanding the mechanism implemented in the second layer. Due to space
constraints, we only show the output for the 10th token for each attention head ĥ

(2,1)
10 , ĥ

(2,2)
10 and

ĥ
(2,3)
10 . We can see how each attention head, represented by the arrows of different colors, aggregates

the transition probabilities by attending to the tokens in the past that do not overlap and averaging
them with uniform weights. It is important to remember that the input of the second attention layer is
given by the concatenation of the input and output of the first layer, h(1) = [esi , ei, ĥ

(1)
i ]; thus when

the tokens are averaged by the attention, the output will also contains an average of the position ei
and semantics esi of the attended tokens which are represented by the first half of the vectors ĥ(2,h)

10 .
Interestingly the block summing the positional encoding is basically storing a copy of the attention
row A(2)

i in the token i. Finally, when concatenating the output of the difference heads, we can see
how the 10th-token will store the transition probabilities for each lag and of its entire past.

Third layer, average of transition probabilities and lag selection. Once the heads in the second
layer aggregate the normalized transition probabilities from previous steps and store them within
each token’s embedding, the third layer sums these probabilities and uses the result to determine the
correct lag that generated the sequence.

To build some intuition, let’s revisit our running example. Suppose the current token is at position
i = 10, and we are predicting the 11th token in the sequence. Given a set of possible lags {1, 2, 3},
the third attention mechanism must focus on one of the tokens at positions 8, 9, or 10. This ensures
that transitions for all possible lags are considered: If the sequence was generated from the source
of lag 1, the token at position 10 needs to be copied to predict the transition probabilities for the
11th token. For lag 2, the token at position 9 is copied, and so on. To determine the correct lag
based on the sequence’s history, our construction relies on the sum of past transitions up to the
current token,

∑
j<i p̃j,k. Therefore, to select the correct lag, the third attention is constructed so

that the entries corresponding to the transitions of possible lags are proportional to the respective
cumulative sums. For example, to select which token among the ones in position 8, 9, 10 should be
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


es6+es9
0
0
0
0
0
1
0
0
1
0

s̃6+s̃9
0
0

p̃6,3
p̃6,2
p̃6,1
p̃9,3
p̃9,2
p̃9,1
0
0







es5+es8
0
0
0
0
1
0
0
1
0
0

s̃5+s̃8
0

p̃5,3
p̃5,2
p̃5,1
p̃8,3
p̃8,2
p̃8,1
0
0
0







es1 es2 es3 es4 es5 es6 es7 es8 es9 es10
1

1
1

1
1

1
1

1
1

1
s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃8 s̃9 s̃10
1 1 p̃3,2 p̃4,3

p̃3,1 p̃4,2 p̃5,3
p̃4,1 p̃5,2 p̃6,3

p̃5,1 p̃6,2 p̃7,3
p̃6,1 p̃7,2 p̃8,3

p̃7,1 p̃8,2 p̃9,3
p̃8,1 p̃9,2 p̃10,3

p̃9,1 p̃10,2
p̃10,1







∑
i=4,7,10

esi

0
0
0
1
0
0
1
0
0
1∑

i=4,7,10

s̃i

p̃4,3
p̃4,2
p̃4,1
p̃7,3
p̃7,2
p̃7,1
p̃10,3
p̃10,2
p̃10,1
0




A(2,1)

A(2,1)

A(2,1)

A(2,2)

A(2,2)

A(2,2)

A(2,2)

Figure 21: Visualization of the mechanism of the second attention layer in our construction. The ma-
trix represents the input of the second layer h(1) whereas the single vectors the output for the 10th token
ĥ
(2,1)
10 , ĥ

(2,2)
10 , ĥ

(2,3)
10 . Each of the three attention heads (arrows of different colors) copies non-overlapping

transition probabilities at distance 3 from each other from the past. By doing this, the output of the second layer
for the current token (10) contains all p̃ for each lag without loss of information.

copied to predict 11, the third attention must be such that A(3)
10,10 is proportional exclusively to the

sum of transitions of lag 1, i.e.,
∑

j≤10 p̃j,1 while A(3)
10,9 is exclusively proportional to

∑
j≤10 p̃j,2

and A(3)
10,8 ∝

∑
j≤10 p̃j,3. Then, in the limit of the softmax converging to the hardmax, the attention

collapses to the entry corresponding to the larger sum and select the correspondent lag by copying
the associated token. More generally, for this to apply to all rows, the third attention matrix must be
constructed such that A(3)

i,i ∝
∑

j≤i p̃j,1, while A(3)
i,i−1 ∝

∑
j≤i p̃j,2, and A(3)

i,i−2 to
∑

j≤i p̃j,3, with
all remaining entries set to zero.

In practice, this selection mechanism is implemented through the combination of multiple blocks
within the third attention matrix, Ã(3), which is structured as follows:

Ã(3) =




0 0
0 A(3)

0 0
0 B(3)

0 0
0 B(3)

0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0




A
(3)
ij = λ

{
+1 if j − i+ 1 ∈ K
−1 if j − i+ 1 ̸∈ K

A(3) =




+λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ +λ -λ -λ -λ -λ -λ -λ -λ
-λ +λ +λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ +λ +λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ +λ +λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ +λ +λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ +λ +λ -λ -λ
-λ -λ -λ -λ -λ -λ +λ +λ +λ -λ
-λ -λ -λ -λ -λ -λ -λ +λ +λ +λ




(13)

First of all, the matrix A(3) acts on the positional embedding of the input similarly to the matrix
A(1) in the first layer. The difference is that the position of the diagonals is now shifted by one: This
ensures that the only non-zero entries after softmax will be the ones on the diagonals corresponding
to the lags in K. The matrx B(3) is instead responsible for the sum of the normalized transitions;
each block operates on the output of a corresponding head in the second layer. To understand how,
consider the following tokens in output of the first head in the second layer:

ĥ
(2,1)
10 = 1/3 ·

(
s 0 0 0 1 0 0 1 0 0 1 s p̃4,3 p̃4,2 p̃4,1 p̃7,3 p̃7,2 p̃7,1 p̃10,3 p̃10,2 p̃10,1 0

)

ĥ
(2,1)
9 = 1/2 ·

(
s 0 0 0 0 0 1 0 0 1 0 s 0 0 p̃6,3 p̃6,2 p̃6,1 p̃9,3 p̃9,2 p̃9,1 0 0

)

ĥ
(2,1)
8 = 1/2 ·

(
s 0 0 0 0 1 0 0 1 0 0 s 0 p̃5,3 p̃5,2 p̃5,1 p̃8,3 p̃8,2 p̃8,1 0 0 0

)

︸ ︷︷ ︸
m̂

(2,1)
10

︸ ︷︷ ︸
p̂
(2,1)
10

(14)

where we define p̂
(2,h)
i ∈ RT as the block of ĥ(2,h)

i which contains the normalized transition prob-
abilities and m̂

(2,h)
i ∈ RT the block that contains the copy of the second attention. By the structure
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in Eq. (13) and the concatenation of the outputs h(2) = [h(0), ĥ
(1)
i , ĥ

(2,1)
i , . . . , ĥ

(2,H2)
i ] we can see

how B(3) act on these two blocks:

h(2)⊤Ã(3)h(2) =

K∑

h=1

p
(2,h)⊤
i B(3)m

(2,h)
j + eiA

(3)ej

where each operation involving B(3) is selectively summing the transition probabilities from the
correspondent head. As previously mentioned, for the sum to be selective, it must hold that
h
(2)⊤
i Ã(3)h

(2)
i−k+1 ∝

∑
j≤i p̃j,k, where we replace j with i − k + 1 because, after applying soft-

max, these will be the only non-zero entries due to A(3). The key idea behind this operation is that
B(3,h)m

(2,h)
i−k+1 is a boolean vector, such that when multiplied by p̂

(2,h)
i , it sums only the entries that

correspond to transitions of lag k. For instance, consider the product p̂(2,1)10 B(3,h)m̂
(2,1)
8 in Eq. (15),

it should sum the transitions of lag 3 stored in ĥ(2,1) to give A10,8 such that the 8th token can be
copied to predict the 11th if the lag of the sequence is 3. However, we can notice how simply taking

the inner product p̂(2,1)10

⊤
m̂

(2,h)
8 would lead to the wrong computations summing over the transitions

of lag 2 instead of 3 and excluding the transition correspondent to p̃4,2. This happens because all
the transitions are stored starting from the element i − 1 of p̂(2,1)i and not i. To account for this,
the matrix B(3,1) performs a permutation such that the mask is shifted by one position. Along with
permuting the mask, the matrix B(3,1) also removes the normalization factor (1/2) and includes the
missing transitions in the mask. To achieve this, each column of B(3,h) follows a pattern in which
the entries are spaced at intervals of K, and the pattern shifts by one position between successive
columns such that all possible sequences are present allowing to sum over all possible lags. This
shift creates a cyclic arrangement where the columns repeat every K as the transitions within the
vector p̂(2,h)i .

p̂
(2,1)⊤
10 B(3,1)m̂

(2,1)
8 =

β

3




p̃4,3
p̃4,2
p̃4,1
p̃7,3
p̃7,2
p̃7,1
p̃10,3
p̃10,2
p̃10,1
0




⊤


0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0







0
0
0
0
1/2
0
0
1/2
0
0




=
β

3




p̃4,3
p̃4,2
p̃4,1
p̃7,3
p̃7,2
p̃7,1
p̃10,3
p̃10,2
p̃10,1
0




⊤


1
0
0
1
0
0
1
0
0
0




=
β

3
( p̃10,3 + p̃7,3 + p̃4,3 )

(15)

More in general, the matrix B(3) takes the following form:

B
(3)
ij = β

{
+1, if ((i− j −K + 1) mod K = 0)

−1, otherwise
(16)

The additional blocks containing B(3) act on the outputs of the other heads, and perform the same
operation by summing the transitions of the same lag stored in the respective outputs. By considering
all the attention heads and considering only the non-zero entries after softmax, which occur when
j = i− k + 1 due to A(3):

h
(2)⊤
i Ã(3)h

(2)
i−k+1 =

K∑

h=1

p
(2,h)⊤
i B(3)m

(2,h)
i−k+1 =

K∑

h=1

β

Th + 1

Th∑

n=0

p̃k̂+k+nK,i−k+1, (17)

where Th = ⌊T−k̂−h
K ⌋. Applying the softmax, taking the limit λ → ∞ for large T for which

Th + 1 ≈ T−k̂
K and absorbing K inside the temperature β, we recover the weights in Eq. (3):

A(3)(h
(2)
1:T ; Ã

(3)) =





exp

(
β

(T−k̂)

T∑
i=k̂+1

p̃i,k

)
∑

r∈K
exp

(
β

(T−k̂)

T∑
i=k̂+1

p̃i,r

) if i− j + 1 = k for k ∈ K

0 elsewhere

‘ (18)

where we absorbed K inside β and which recovers the weights in Eq. (1).
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G.1 SELECTIVE INDUCTION HEAD AND NEXT TOKEN PREDICTION

Selective induction head. Eq. (6) shows how the last attention layer computes a weighted average
of the tokens at distance k from the next one, where the weights are proportional to the sum of the
transitions of lag k. In practice, we observe trained models to learn large values of β; therefore we
consider the limit β →∞, where the softmax converges to hardmax.

A(3)
i,j = 1 [i− j + 1 = k⋆] with k⋆ = argmaxk

∑

j<i

p̃j,k. (19)

Thus, the transformer selects the causal structure (i.e. the lag) correspondent to the largest
∑

j<i p̃j,k
and, given the current token i, the third layer copies the token in the past correspondent to i−k⋆+1,
i.e. ĥ

(3)
i =

∑i
j=k̂ 1 [i− j + 1 = k⋆]h

(2)
j = h

(2)
i−k⋆+1. After concatenation to the residual stream,

the tokens are of the following form:

h
(3)
i =

[
esi , ei, ĥ

(1)
i , ĥ

(2,1)
i , . . . , ĥ

(2,H2)
i , esk⋆ , ek⋆ , ĥ

(1)
k⋆ , ĥ

(2,1)
k⋆ , . . . , ĥ

(2,H2)
k⋆

]
. (20)

Output layer: next token prediction. Finally, the output layer W̃O ∈ RS×
∑

l dl contains all zero
blocks besides the one acting on the semantic of the token copied by the third attention. This block
learns the transition matrix P ⋆ to predict the transition probabilities to the next token via

W̃O =
(
0S×d0

0S×d0
0S×2d0

. . . 0S×2d0
P ⋆⊤ 0S×T 0S×2d0

. . . 0S×2d0

)
, (21)

i.e. W̃Oh
(3) = P ⋆⊤esk⋆ = P ⋆

sk⋆ . This final layer shows how transformers can learn a selective in-
duction head. A mechanism which adapts to the input sequence by copying the token correspondent
to the argmax of some quantity extracted by the previous layers and stored in the embeddings.

H ALTERNATIVE THIRD LAYER CONSTRUCTION USING POSITIONAL
EMBEDDING

In this section we illustrate an alternative but equivalent construction that implements the same
predictor as in Proposition 1. The first and second layers remain identical, the only difference is in
the third layer which implements the selective sum of the normalized transition probabilities. This
selection mechanism is implemented through the combination of multiple blocks within the third
attention matrix, Ã(3), which, in this alternative construction is structured as follows:

Ã(3) =




0 0
0 A(3)

0 0
0 B(3,1)

0 0
0 B(3,H2)

0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

0 0 0 . . . 0 0




(22)

We can notice how, compared to the construction in Section 4, the blocks B(3,1), . . . , B(3,H2) are
now positioned all in the first column. Moreover, they are not parameterized by the same matrix
contrary to the other construction. The matrix A(3) acts on the positional embedding of the input
similarly to the matrix A(1) in the first layer as in the previous construction:

A
(3)
ij = λ1

{
+1 if j − i+ 1 ∈ K
−1 if j − i+ 1 ̸∈ K A(3) =




+λ -λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ -λ -λ -λ -λ -λ -λ -λ -λ
+λ +λ +λ -λ -λ -λ -λ -λ -λ -λ
-λ +λ +λ +λ -λ -λ -λ -λ -λ -λ
-λ -λ +λ +λ +λ -λ -λ -λ -λ -λ
-λ -λ -λ +λ +λ +λ -λ -λ -λ -λ
-λ -λ -λ -λ +λ +λ +λ -λ -λ -λ
-λ -λ -λ -λ -λ +λ +λ +λ -λ -λ
-λ -λ -λ -λ -λ -λ +λ +λ +λ -λ
-λ -λ -λ -λ -λ -λ -λ +λ +λ +λ



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This ensures that the only non-zero entries after softmax will be the ones on the diagonals corre-
sponding to the lags seen during training. The matrices B(3,1), . . . , B(3,H2) are again responsible
for the summation; each matrix operates on the output of a corresponding head in the second layer.
To understand how this selective sum is implemented, let us consider the output of the first head in
the second layer h(2) = [[esi , ei], ĥ

(1)
i , ĥ

(2,1)
i , . . . , ĥ

(2,H2)
i ] in our example for the tokens 8,9 and 10:

ĥ
(2,1)
1 = 1/3 ·

(
s 0 0 0 1 0 0 1 0 0 1 s p̃4,3 p̃4,2 p̃4,1 p̃7,3 p̃7,2 p̃7,1 p̃10,3 p̃10,2 p̃10,1 0

)

ĥ
(2,1)
2 = 1/2 ·

(
s 0 0 0 0 0 1 0 0 1 0 s 0 0 p̃6,3 p̃6,2 p̃6,1 p̃9,3 p̃9,2 p̃9,1 0 0

)

ĥ
(2,1)
2 = 1/2 ·

(
s 0 0 0 0 1 0 0 1 0 0 s 0 p̃5,3 p̃5,2 p̃5,1 p̃8,3 p̃8,2 p̃8,1 0 0 0

)

︸ ︷︷ ︸
m̂

(2,1)
10

︸ ︷︷ ︸
p̂
(2,1)
10

and define p̂(2,h)i ∈ RT as the block of ĥ(2,h)
i which contains the normalized transition probabilities.

By the structure in Eq. (22) we can see how, when computing the attention, the matrices B(3,h) act
on these two blocks:

h
(2)
i

⊤Ã(3)h
(2)
j =

K∑

h=1

p
(2,h)⊤
i B(3,h)ej + eiA

(3)ej

here we notice how the difference compared to the construction in Section 4 lies in the fact that, due
to the position we are not using the copy of the attention to construct the boolean vector but directly
the one hot encoding of the position. Each operation involving B(3,h) is still selectively summing the
transition probabilities from the correspondent head but with a slightly different mechanism. Let us
consider the product h(2)⊤

i Ã(3)h
(2)
i−k which will be the only non zero entries after softmax, and show

how it only sums the transitions of lag k. The main idea is that B(3,h) are boolean matrices such that
each column sums only the entries containing the transitions for one of the lags. To achieve this,
each column in the matrix follows a pattern in which the entries are spaced at intervals of K, and the
pattern shifts by one position between successive columns. This shift creates a cyclic arrangement
across the columns which repeat with frequency K. For each head h, the matrix B(3,h) is structured
such that the product p̂(2,h)i B(3,h) results in a vector where each element is the sum of the transitions
for a given k.In particular, the first element of the vector corresponds to the sum of kmin, the K-th
element corresponds to the sum of kmax, and this pattern repeats cyclically for subsequent elements.
To give an example, consider the product p̂(2,1)10 B(3,1)e8 in Eq. (I.2), which sums the transitions
stored in ĥ(2,1). Notice the structure of B(3,1); the first column aligns with the transitions of lag 1 in
p̂
(2,1)
10 . Given that the index of p̂(2,1)i is 10 and the index of ej is 8, the sum constructsA(3)

(10,8), which

is used to copy the 8th token to predict the 11th if the lag of the sequence is 3. Hence, p̂(2,1)10 B(3,1)e8
has to sum the transitions of lag 3:

p̂
(2,1)⊤
10 B(3,1)e8 =

β

3




p̃4,3
p̃4,2
p̃4,1
p̃7,3
p̃7,2
p̃7,1
p̃10,3
p̃10,2
p̃10,1
0




⊤


0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0







0
0
0
0
0
0
0
1
0
0




=
β

3




p̃4,1 + p̃7,1 + p̃10,1
p̃4,3 + p̃7,3 + p̃10,3
p̃4,2 + p̃7,2 + p̃10,2
p̃4,1 + p̃7,1 + p̃10,1
p̃4,3 + p̃7,3 + p̃10,3
p̃4,2 + p̃7,2 + p̃10,2
p̃4,1 + p̃7,1 + p̃10,1
p̃4,3 + p̃7,3 + p̃10,3
p̃4,2 + p̃7,2 + p̃10,2
p̃4,1 + p̃7,1 + p̃10,1




⊤


0
0
0
0
0
0
0
1
0
0




=
β

3
( p̃10,3 + p̃7,3 + p̃4,3 )

We can see how the operation implemented by this different parameterization is the same then in
the other construction. Therefore the overall predictor remains unchanged. The additional matrices
B(3,h), which act on the outputs of the other heads ĥ(2,h), perform the same operation by summing
the transitions stored in the outputs of the respective heads. The difference in the construction of the
matrix B(3,h) for h ̸= 1 is that the columns are shifted by h positions relative to h = 1. Specifically,
for each h, the columns are shifted by h positions compared to the matrix B(3,1). In more generality,
the matrix B(3,h) is constructed as follows:

B
(3,h)
ij = β

{
+1, if ((i− j − h+ 1) mod K = 0)

0, otherwise
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where h takes into account for the shift.

I CONSTRUCTION FOR ANY SET OF LAGS

The construction illustrated in Section 4 considers only contiguous lags, i.e. set of lags that are
intervals of the positive integers. However, both our interleaved Markov chain framework and the
Transformer construction can be extended to any set of lags. The implemented algorithm is the
same, but the structure of the weights in the different layers becomes more complex because the
mechanism with which the transition probabilities are aggregated depends on the relative distance
between the lags in the set. Due to the difficulties in finding a general formulation of the matrices
involved for any set of lags as well as the optimal number of heads which depends now not only on
the number of lags but on the relative distance between them, we limit this section into illustrate two
example with T = 10 and K = {1, 3} and T = 12 K = {1, 3, 4} for which we will visualize the
matrices and operations involved.

I.1 EXAMPLE FOR K = {1, 3}

First layer: The structure of the first layer remains unchanged from Section 4. The important
difference is that now the diagonals in the matrix A(1) with positive entries are only 2nd and 3rd:

Ã(1) =

(
logP⊤ 0

0 A(1)

)

A
(1)
ij =

{
+λ if j − i ∈ K
−λ if j − i ̸∈ K .

A(1) =




λ λ
λ λ

λ λ
λ λ

λ λ
λ λ

λ λ
λ λ




The output token at index i after the first layer still corresponds to a weighted average of the past
tokens h(0)

i−k for k ∈ K where the weights are given by the normalized probabilities p̃i,k:

ĥ
(1)
i = Attn(h(0)

1:T ; Ã
(1))i =

∑

k∈K

p̃i,kh
(0)
i−k .

Due to the lack of the entries on the 2nd diagonal, both the attention and the output token will change
accordingly:

A(1) =




1 0 0 0 0 0 0 0 0
01/2 1/2 0 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0 0
p̃4,3 0 p̃4,1 0 0 0 0 0 0 0
0 p̃5,3 0 p̃5,1 0 0 0 0 0 0
0 0 p̃6,3 0 p̃6,1 0 0 0 0 0
0 0 0 p̃7,3 0 p̃7,1 0 0 0 0
0 0 0 0 p̃8,3 0 p̃8,1 0 0 0
0 0 0 0 0 p̃9,3 0 p̃9,1 0 0
0 0 0 0 0 0 p̃10,3 0 p̃10,1 0




ĥ(1) =




s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃8 s̃9 s̃10
1 1/2 1/3 p̃4,3 0 0 0 0 0 0
0 1/2 1/3 0 p̃5,3 0 0 0 0 0
0 0 1/3 p̃4,1 0 p̃6,3 0 0 0 0
0 0 0 0 p̃5,1 0 p̃7,3 0 0 0
0 0 0 0 0 p̃6,1 0 p̃8,3 0 0
0 0 0 0 0 0 p̃7,1 0 p̃9,3 0
0 0 0 0 0 0 0 p̃8,1 0 p̃10,3
0 0 0 0 0 0 0 0 p̃9,1 0
0 0 0 0 0 0 0 0 0 p̃10,1
0 0 0 0 0 0 0 0 0 0




(23)

Second layer. Similarly to the construction for contiguous lags, the second layer is responsible for
aggregating the normalized transition probabilities such that they are stored in the embedding of the
current vector for its entire history. The second attention needs to learn an effective way of doing
a convex combination of the input tokens such that the overlap is minimized and all the transitions
are stored without mixing them. Consider the token at i = 10 in Eq. (23), summing two consecutive
tokens such as ĥ(1)

9 and ĥ
(2)
10 ,contrary to the contiguous case in Eq. (4), does not lead to any mixing

due to the absence of transitions of lag 2. Therefore, 2 attention heads are still sufficient to copy all
the transitions in the past as long as they learn to attend two consecutive tokens each.

Therefore, the optimal way to combine past tokens strictly depends on the number of tokens and
the relative distance between them. Hence, finding a general formula for the positions at which the
second attention A(2) should be attended to minimize overlap, is challenging and beyond the scope
of this work. Similar considerations apply to the optimal number of heads required, which depends
on the solution of the previous problem. However, the task for arbitrary sets of lags, can always be
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solved by consider the correspondent contiguous problem with hatk−min(K+1) heads. However
there are cases in which we can leverage the structure given by the distance between the lags to use
fewer heads. One example is the one considered in this section with K = {1, 3} we only need two
heads to achieve optimal sample complexity. The form of the matrix Ã(2,h) remains unchanged:

Ã(2,h) =




0 0
0 A(2,1) 0

0 0




Considering the case illustrated in Eq. (23), in order for the two heads to copy all the tokens without
overlap, it is sufficient to sum two consecutive tokens and skip two. Therefore, the first attention has
the pattern : (0, 0, 1, 1) while the second one (1, 1, 0, 0) as illustrated in the following:

A(2,1) =




λ
λ λ

λ λ
λ λ

λ λ λ
λ λ λ λ

λ λ λ λ




A(2,2) =




λ
λ λ

λ λ
λ λ

λ λ λ




(24)

where the first k̂ rows and columns are empty because the first k̂ elements of the sequence are
sampled independently from the stationary distribution and therefore no transitions are present.

The attention computes the same operation as before:

ĥ
(2)
i = Attn(h(1)

1:T ; Ã
(2,h))i =

i∑

j=k̂

1
[
A

(2,h)
ij = +λ

]

∑i
m=1 1

[
A

(2,h)
im = +λ

]h(1)
j .

The output of each head is then concatenated into the residual stream. The structure of the third
layer for the general case of any set of lags, also needs some modifications to take into account the
particular structure that was enforced in the second layer. We extend the construction introduced
in Section H using the positional embeddings. First of all, the matrix A(3) remains unchanged
compared to the previous constructions, it has positive values along the diagonals correspondent to
the lags shifted by one position to take into account the fact that we are predicting the next token in
the sequence:

A
(3)
ij = λ1

{
+1 if j − i+ 1 ∈ K
−1 if j − i+ 1 ̸∈ K A(3) =




λ λ
λ λ

λ λ
λ λ

λ λ
λ λ

λ λ
λ λ




(25)

The matrix B(3) is responsible for the sum of the normalized transitions; each block operates on
the output of a corresponding head in the second layer. To understand how, consider the following
tokens in output of the first head in the second layer:

ĥ
(2)
10 = 1/4 ·

(
s 0 0 0 0 1 1 0 0 1 1 s 0 p̃5,3 p̃6,3 p̃5,1 p̃6,1 p̃9,3 p̃10,3 p̃9,1 p̃10,1 0

)

ĥ
(2)
9 = 1/4 ·

(
s 0 0 0 1 1 0 0 1 1 0 s p̃4,3 p̃5,3 p̃4,1 p̃5,1 p̃8,3 p̃9,3 p̃8,1 p̃9,1 0 0

)

ĥ
(2)
8 = 1/3 ·

(
s 0 0 0 1 0 0 1 1 0 0 s p̃4,3 0 p̃4,1 p̃7,3 p̃8,3 p̃7,1 p̃8,1 0 0 0

)

︸ ︷︷ ︸
p̂
(2)
8

(26)

By the structure of Ã(3) we can see how, when computing the attention, the matrices B(3,h) are
applied on the positional encoding ej and the result is multiplied by p̂

(2,h)
i :

h(2)⊤
i Ã

(3)h
(2)⊤
j =

K∑

h=1

p
(2,h)⊤
i B(3,h)ej + eiA

(3)ej (27)

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

where B(3,h) is selectively summing the transition probabilities from the correspondent head. As for
the simpler case of contiguous lags, for the sum to be selective it must hold that h(2)⊤

i Ã(3)h
(2)
i−k+1 ∝∑

j≤i p̃j,k, where i − k + 1 are the only non-zero entries due to A(3) after applying softmax. As
before, B(3,h) are boolean matrices such that each column sums only the entries containing the
transitions for one of the lags. To achieve this, the matrix need to learn the same patter as in the
attention of the second layer A(2) which was used to sum the vectors and create the current inputs.
Each column is shifted by one position and they cyclically repeat with frequency K. In the following
example, we consider p̂(2,1)10 B(3,1)e8 in Eq. (28), which sums the transitions stored in ĥ(2,1) in the
entry A(3)

10,8:

p̂
(2,1)⊤
10 B(3,1)e8 =

β

4




0
p̃5,3
p̃6,3
p̃5,1
p̃6,1
p̃9,3
p̃10,3
p̃9,1
p̃10,1
0




⊤


0 1 1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0







0
0
0
0
0
0
0
1
0
0




=
β

4




0
p̃5,3
p̃6,3
p̃5,1
p̃6,1
p̃9,3
p̃10,3
p̃9,1
p̃10,1
0




⊤


0
1
1
0
0
1
1
0
0
0




=
β

4
( p̃10,3 + p̃9,3 + p̃6,3 + p̃5,3 )

(28)

Notice how the matrix B(3,1) has the same pattern as A(2,1) in Eq. (24) but along the columns instead
of the rows. Intuitively it makes sense since we need to sum the same entries resulting from the sum
in the previous attention. The matrix B(3,2) acting on second head will have the same pattern but
shifted by two positions in order to have the same pattern as A(2,2).

I.2 EXAMPLE WITH K = {1, 3, 4}

The case of two lags K = {1, 3} despite not being contiguous does not adequately represent the
general case. Indeed due to the structure, we could always sum two consecutive tokens and therefore
recover optimal performance using 2 heads. It is helpful to also consider a case where the lags do
not form a structure that allows for fewer heads in the construction. For example the case of three
lags K = {1, 3, 4} and T = 12:

First layer: The main structure of the first layer remains unchanged, the diagonals in the matrix
A(1) with positive entries are 2nd, 3rd and 4th:

Ã(1) =

(
logP⊤ 0

0 A(1)

)

A
(1)
ij =

{
+λ if j − i ∈ K
−λ if j − i ̸∈ K .

A(1) =




λ λ
λ λ λ

λ λ λ
λ λ λ

λ λ λ
λ λ λ

λ λ λ
λ λ λ




(29)

The output token at index i after the first layer still corresponds to a weighted average of the past
tokens h(0)

i−k for k ∈ K where the weights are given by the normalized probabilities p̃i,k:

A(1) =




1 0 0 0 0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0 0 0 0
1/4 1/4 1/4 1/4 0 0 0 0 0 0 0 0
p̃5,4 p̃5,3 0 p̃5,1 0 0 0 0 0 0 0 0
0 p̃6,4 p̃6,3 0 p̃6,1 0 0 0 0 0 0 0
0 0 p̃7,4 p̃7,3 0 p̃7,1 0 0 0 0 0 0
0 0 0 p̃8,4 p̃8,3 0 p̃8,1 0 0 0 0 0
0 0 0 0 p̃9,4 p̃9,3 0 p̃9,1 0 0 0 0
0 0 0 0 0 p̃10,4 p̃10,3 0 p̃10,1 0 0 0
0 0 0 0 0 0 p̃11,4 p̃11,3 0 p̃11,1 0 0
0 0 0 0 0 0 0 p̃12,4 p̃11,3 0 p̃11,1 0




ĥ(1) =




s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃8 s̃9 s̃10 s̃11 s̃12
1 1/2 1/3 1/4 p̃5,4 0 0 0 0 0
0 1/2 1/3 1/4 p̃5,3 p̃6,4 0 0 0 0 0 0
0 0 1/3 1/4 0 p̃6,3 p̃7,4 0 0 0 0 0
0 0 0 1/4 p̃5,1 0 p̃7,3 p̃8,4 0 0 0 0
0 0 0 0 0 p̃6,1 0 p̃8,3 p̃9,4 0 0 0
0 0 0 0 0 0 p̃7,1 0 p̃9,3 p̃10,4 0 0
0 0 0 0 0 0 0 p̃8,1 0 p̃10,3 p̃11,4 0
0 0 0 0 0 0 0 0 p̃9,1 0 p̃11,3 p̃12,4
0 0 0 0 0 0 0 0 0 p̃10,1 0 p̃12,3
0 0 0 0 0 0 0 0 0 0 p̃11,1 0
0 0 0 0 0 0 0 0 0 0 0 p̃12,1
0 0 0 0 0 0 0 0 0 0 0 0




(30)
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Second layer, aggregation of transition probabilities: In this case we can’t use anymore the fact
that 2 consecutive tokens can be summed without mixing the information. In fact, summing the
last tow tokens ĥ

(1)
11 and ĥ

(2)
12 would now result in the mixing of p̃11,3 and p̃12,4. In order to avoid

this, the only possibility is to sum one token every 4 similar to the case where we would have 4
contiguous lags. This solution is less efficient because summing each 4 tokens while having the
missing transition corresponding to lag 2 leaves an empty element in the embedding of the token
and adds an additional head, increasing both the dimension and the number of parameters. This
means that even if we only have 3 lags, in order to not have any overlap we still need 4 attention
heads for our construction to not mix the information. Each head has the pattern (0, 0, 0, 1) shifted
by one position as if the lags would be 1,2,3,4:

A(2,1) =




λ
λ

λ
λ

λ λ
λ λ

λ λ
λ λ




A(2,2) =




λ
λ

λ
λ

λ λ
λ λ

λ λ




A(2,3) =




λ
λ

λ
λ

λ λ
λ λ




A(2,4) =




λ
λ

λ
λ

λ




Third layer For the third layer we use again the construction with the positional encoding that
was introduced in App H:

A
(3)
ij = λ1

{
+1 if j − i+ 1 ∈ K
−1 if j − i+ 1 ̸∈ K A(3) =




λ λ λ
λ λ λ

λ λ λ
λ λ λ

λ λ λ
λ λ λ

λ λ λ
λ λ λ

λ λ λ




For the selective sum, the matrices B(3,1), . . . , B(3,4) have the same form as before but considering
now the fact that even if we only have 3 lags in the set, we still need 4 heads:

B
(3,h)
ij = β

{
+1, if

(
(i− j − h+ 1) mod k̂ −min(K) + 1 = 0

)

0, otherwise

The computation related to the matrix B(3,1) in the attention are reported in the following:

p̂
(2,1)⊤
12 B(3,1)e10 =

β

2




0
0
0

p̃8,4
p̃8,3
0

p̃8,1
p̃12,4
p̃12,3
0

p̃12,1
0




⊤


0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0







0
0
0
0
0
0
0
0
0
1
0
0




=
β

2




0
0
0

p̃8,4
p̃8,3
0

p̃8,1
p̃12,4
p̃12,3
0

p̃12,1
0




⊤


0
0
0
0
1
0
0
0
1
0
0
0




=
β

2
( p̃12,3 + p̃8,3 )
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J CONSTRUCTION FOR TWO LAGS AND SINGLE HEAD

In the constructions illustrated so far, in order to store all the transitions in the history of the current
token and not lose any information, we had to scale the number of heads at least as the number of lags
in the task K. This allows to achieve optimal sample complexity. However, driven by experimental
evidence, we observed that scaling the number of heads as the number of lags is not necessary in the
special case of |K| = 2. In this case indeed, there exists a solution, which transformers can learn,
that achieves optimal sample complexity using only one head in the second layer. In the following
we will report the construction that proves the previous statement while illustrating it for the case of
K = {1, 3} analogous to Section I.

First and second Layer: the first two layers remain unchanged compared to the construction
already illustrated in Section I. The only difference is that the second layer uses only the first head
Ã(2) = Ã(2,1) with the matrix A(2) = A(2,1) remaining identical.

Ã(2) =




0 0
0 A(2) 0

0 0


 A(2) =




λ
λ λ

λ λ
λ λ

λ λ λ
λ λ λ λ

λ λ λ λ




Third layer: the third layer instead has a different structure. As before, there are only two non-
zero blocks A(3) and B(3) but the latter appears in the transpose position compared to the previous
constructions:

Ã(3) =




0 0 0 0
0 A(3) 0 B(3)0 0

0 0 0 0

0 0 0 0

0 0 0 0




B(3) = β




0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
−1 1 1 0 0 0 0 0 0 0
−1 −1 1 1 0 0 0 0 0 0
1 −1 −1 1 1 0 0 0 0 0
1 1 −1 −1 1 1 0 0 0 0
−1 1 1 −1 −1 1 1 0 0 0
−1 −1 1 1 −1 −1 1 1 0 0
1 −1 −1 1 1 −1 −1 1 1 0




(31)

The matrix A(3) remains unchanged and has positive entries along the diagonals, correspondent to
the lags shifted by one position. The main difference lies in the matrix B(3), which now includes
negative entries in positions that previously contained zeros. So far the matrix B(3) has been struc-
tured such that it would compute the selective sum of the normalized transition of the lag of the
corresponding entry in the attention: Ã(3)

ij ∝ h
(2)⊤
i Ã(3)h

(2)
i−k+1 ∝

∑
j≤i p̃j,k, where i − k + 1 are

the only non-zero entries due to A(3) after applying softmax. To understand the impact of having
negative entries, let us consider the previous example for the case of K = {1, 3} and the output of
the second attention for the 8th,9th and 10th token:

ĥ
(2)
10 = 1/4 ·

(
s 0 0 0 0 1 1 0 0 1 1 s 0 p̃5,3 p̃6,3 p̃5,1 p̃6,1 p̃9,3 p̃10,3 p̃9,1 p̃10,1 0

)

ĥ
(2)
9 = 1/4 ·

(
s 0 0 0 1 1 0 0 1 1 0 s p̃4,3 p̃5,3 p̃4,1 p̃5,1 p̃8,3 p̃9,3 p̃8,1 p̃9,1 0 0

)

ĥ
(2)
8 = 1/3 ·

(
s 0 0 0 1 0 0 1 1 0 0 s p̃4,3 0 p̃4,1 p̃7,3 p̃8,3 p̃7,1 p̃8,1 0 0 0

)

︸ ︷︷ ︸
p̂
(2)
8

and define p̂(2)i ∈ RT as the block of ĥ(2)
i which contains the normalized transition probabilities. By

the different structure in Eq. (31) we can see how, when computing the attention for the concatenated
tokens h(2) = [[esi , ei], ĥ

(1)
i , ĥ

(2)
i ], the lag of the multiplication has been reversed and the matrix

B(3) is applied to p̂
(2)
j :

h(2)
⊤
Ã(3)h(2) = e⊤i B

(3)p
(2)
j + eiA

(3)ej . (32)
To better understand the implications of the reverse lag in the multiplication and the presence of
negative entries, consider the product e⊤10B

(3,1)p̂
(2)
8 in Eq. (34), which sums the transitions stored in
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ĥ(2,1) which, after softmax, will correspond to A(3)
10,8:

e⊤10B
(3)p̂

(2)⊤
8 =

β

3




0
0
0
0
0
0
0
0
0
1




⊤


0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
−1 1 1 0 0 0 0 0 0 0
−1 −1 1 1 0 0 0 0 0 0
1 −1 −1 1 1 0 0 0 0 0
1 1 −1 −1 1 1 0 0 0 0
−1 1 1 −1 −1 1 1 0 0 0
−1 −1 1 1 −1 −1 1 1 0 0
1 −1 −1 1 1 −1 −1 1 1 0







p̃4,3
0

p̃4,1
p̃7,3
p̃8,3
p̃7,1
p̃8,1
0
0
0




=
β

3




1
−1
−1
1
1
−1
−1
1
1
0




⊤


p̃4,3
0

p̃4,1
p̃7,3
p̃8,3
p̃7,1
p̃8,1
0
0
0




=
β

3
( p̃8,3 + p̃7,3 + p̃4,3 − p̃8,1 − p̃7,1 − p̃4,1 )

(33)

where we observe how, the product involving B(3), is now not only computing the sum of transitions
for the lag 3 as for the previous constructions to copy the 8th to predict the 11th, it is also subtracting
all the transitions of lag 3. To fully understand the implications, we also consider the entry of the
attention correspondent to the other lag in the set, 1 and the relative product e⊤10B

(3,1)p̂
(2)
10 :

e⊤10B
(4)p̂

(2)⊤
10 =

β

3




0
0
0
0
0
0
0
0
0
1




⊤


0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
−1 1 1 0 0 0 0 0 0 0
−1 −1 1 1 0 0 0 0 0 0
1 −1 −1 1 1 0 0 0 0 0
1 1 −1 −1 1 1 0 0 0 0
−1 1 1 −1 −1 1 1 0 0 0
−1 −1 1 1 −1 −1 1 1 0 0
1 −1 −1 1 1 −1 −1 1 1 0







0
p̃5,3
p̃6,3
p̃5,1
p̃6,1
p̃9,3
p̃10,3
p̃9,1
p̃10,1
0




=
β

4




1
−1
−1
1
1
−1
−1
1
1
0




⊤


0
p̃5,3
p̃6,3
p̃5,1
p̃6,1
p̃9,3
p̃10,3
p̃9,1
p̃10,1
0




=
β

4
( p̃10,1 + p̃9,1 + p̃6,1 + p̃5,1 − p̃10,3 − p̃9,3 − p̃6,3 − p̃5,3 )

(34)

therefore both products contains the sum of the transitions for the respective lags and the negative
sum of the other lag and notice how they are all computed on different elements of the past. The
first one contains the transitions for the tokens 8,7,4 whereas the second one contains the remaining
ones 10,9,6,5. If we now compute the softmax:

A10,10 =

exp

(
e⊤10B

(3)p̂
(2)
10 + λ

)

∑9
i=1
i ̸=8

exp

(
e⊤10B

(3)p̂
(2)
j − λ

)
+ exp

(
e⊤10B

(3)p̂
(2)
8 + λ

)
+ exp

(
e⊤10B

(3)p̂
(2)
10 + λ

)

=

exp

(
e⊤10B

(3)p̂
(2)
10

)

∑9
i=1
i ̸=8

exp

(
e⊤10B

(3)p̂
(2)
j − 2λ

)
+ exp

(
e⊤10B

(3)p̂
(2)
8

)
+ exp

(
e⊤10B

(3)p̂
(2)
10

)

Considering the limit of λ→∞:

lim
λ→∞

A10,10 =

exp

(
e⊤10B

(3)p̂
(2)
10

)

exp

(
e⊤10B

(3)p̂
(2)
8

)
+ exp

(
e⊤10B

(3)p̂
(2)
10

)

=
1

exp

(
e⊤10B

(3)p̂
(2)
8 − e⊤10B

(3)p̂
(2)
10

)
+ 1

=
1

exp

(
+ β

3

∑
i∈{8,7,4} p̃i,3 − β

3

∑
i∈{8,7,4} p̃i,1 − β

4

∑
i∈{10,9,6,5} p̃i,1 +

∑
i∈{10,9,6,5} p̃i,3

)
+ 1

which is considering all the possible transitions as for the case of two heads therefore achieving
optimal sample complexity.
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