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Abstract001

Sampling-based decoding strategies have been002
widely adopted for Large Language Models003
(LLMs) in numerous applications, targeting a004
balance between diversity and quality via tem-005
perature tuning and tail truncation. Consider-006
ing the strong dependency of the candidate next007
tokens on different prefixes, recent studies pro-008
pose to adaptively truncate the tail of LLMs’009
predicted distribution. Although improved re-010
sults have been reported with these methods on011
open-ended text generation tasks, the results012
are highly dependent on the curated parameters013
and the limited exemplar text. In this paper,014
we propose a systematic way to estimate the015
capacity of a truncation sampling method by016
considering the trade-off between diversity and017
risk at each decoding step, based on our col-018
lected prefix tree which preserves the context019
of a full sentence. Our work offers a compre-020
hensive comparison of existing truncation sam-021
pling methods and serves as a practical user022
guideline for their parameter selection. Our023
code is available at anonymized repository.024

1 Introduction025

Large Language Models (LLMs) (Achiam et al.,026

2023; Touvron et al., 2023; Jiang et al., 2023; Team027

et al., 2023) have demonstrated exceptional perfor-028

mance across a variety of applications, and the029

reliability of decoding strategies has become a crit-030

ical concern. Previous works have revealed that031

likelihood-maximization such as beam search (Fan032

et al., 2018; Holtzman et al., 2020; Welleck et al.,033

2020; Meister et al., 2022) produces degenerate text034

which contains repetitive loops and incoherent con-035

text, particularly in open-ended tasks. Therefore,036

sampling-based decoding strategies, e.g., Top-p037

(Holtzman et al., 2020) and Top-k sampling (Rad-038

ford et al., 2018; Fan et al., 2018), have been widely039

adopted. The balance between diversity and quality040

of the generated text could be adjusted by tuning041

the temperature and truncation position to some 042

extend, but requires non-trivial trial and error. 043

Recent studies (Basu et al., 2021; Zhu et al., 044

2024; Hewitt et al., 2022; Meister et al., 2023) pro- 045

posed adaptive tail truncation mechanisms based on 046

different criteria or assumptions, which maintain an 047

allowed set of tokens with a flexible size according 048

to the given prefix. To validate the effectiveness 049

of a sampling method, they are often compared 050

through extrinsic evaluation based on open-ended 051

text generation applications. For example, story 052

generation (Fan et al., 2018) and document con- 053

tinuation (Merity et al., 2017). Various metrics 054

(Welleck et al., 2020; Meister et al., 2023; Pillutla 055

et al., 2021; Gao et al., 2021) have been adopted to 056

consider different aspects of the generated text. 057

We reveal two underlying issues in the cur- 058

rent evaluation, which hinder the assessment of 059

a method’s significance in real-world applications: 060

• The improvement of one method over an- 061

other might be simply due to a better tuned 062

parameter for the targeted task: the per- 063

formance of sampling methods is sensitive to 064

their parameters, and parameter sweep is of- 065

ten operated on a extremely sparse grid due to 066

the high computation cost. This is especially 067

problematic considering the non-linear depen- 068

dency between performance and parameters. 069

• Users are agnostic to the optimal parame- 070

ters in real-world applications: Practically 071

speaking, users often pick parameters based 072

on their own need for the compromise be- 073

tween diversity and quality, after a few tryouts. 074

There exists no universal optimal paramters 075

in different scenarios and users are agnostic 076

to the optimal parameters for their own tasks. 077

The above issues exactly indicate the need for an 078

evaluation that allows for estimating the theoretical 079

capacity of a truncation sampling method (how 080

1

https://anonymous.4open.science/r/Truncation-Sampling-Evaluation-251F


Figure 1: N-gram models tend to overestimate the data
support size given a prefix (marked by a red line) due to
limited window size (marked with a blue window).

well it adapts to the variation in data supports given081

different prefixes), independent of hyperparamter082

tuning. Moreover, the second issue additionally083

highlights the need to identify the sweet spots of084

existing sampling methods, which could serve as a085

user guideline for practitioners.086

In light of the above analysis, we propose a sys-087

tematic way to assess the inherent adaptability of a088

sampling method. First, we rearrange Wikipedia-089

English 1 data into a word-level prefix tree, known090

as a Trie (Fredkin, 1960; Ghasemi et al., 2019). It091

is noteworthy that a n-gram Trie (Jurafsky, 2000)092

tends to overestimate the data support size given a093

prefix (Bengio et al., 2000), as shown in Figure 1.094

In a similar spirit to (Ding et al., 2024), we con-095

struct the prefix tree with only sentence-starting096

n-grams to preserve full sentence context, called097

Context-Preserving Trie (CP-Trie).098

Given the CP-Trie, we are able to estimate the099

theoretical capacity of a sampling method, by ex-100

amining the amount of tokens within and out of the101

data support with varying truncation parameter val-102

ues. As shown in Figure 2, the truncation positions,103

which exactly cover the full data supports, vary104

drastically given different prefixes and Top-k sam-105

pling could be regarded as a baseline method with106

zero adaptability. Therefore, an adaptive truncation107

method is supposed to better follow such a vari-108

ation, so that improved diversity can be achieved109

without harming the quality.110

In summary, our contributions are as follows:111

• We establish an intrinsic evaluation bench-112

mark based on the collected CP-Trie, which113

allows for estimating the theoretical capacity114

of different sampling methods via thoroughly115

designed diversity and stability metrics.116

• We conduct a comprehensive comparison of117

existing sampling approaches, which serves118

as a guideline for choosing a method and its119

parameter in real-world applications.120

1https://dumps.wikimedia.org/

Figure 2: Histogram of the estimated optimal truncation
values for gpt2-xl, which achieve exactly full recall of
data support given different prefixes.

• We reveal that sampling-based decoding meth- 121

ods are underestimated in the existing study 122

(Shi et al., 2024a) due to the difficulty in pa- 123

rameter selection, highlighting the merit of 124

our evaluation protocol. 125

2 Related Work 126

In this section, we summarize recent sampling de- 127

coding strategies, along with common benchmarks 128

and metrics for open-ended text generation. 129

2.1 Sampling-based Decoding Methods 130

Vanilla sampling suffers from the risk of obtaining 131

incoherent tokens; thus, truncation of the tail dis- 132

tribution has been heavily discussed, e.g., Top-k 133

(Radford et al., 2018; Fan et al., 2018) and Top- 134

p sampling (Holtzman et al., 2020). However, a 135

fixed k or p is problematic when considering the 136

high dynamic range of next reasonable tokens, as 137

pointed out in more recent studies on adaptive 138

sampling methods: Mirostat (Basu et al., 2021) 139

is proposed based on Zipf statistics and the as- 140

sumption of a steady perplexity during generation. 141

Hewitt et al. (2022) introduce η-sampling which 142

dismisses the tokens with low probabilities in the 143

tail of the predicted distribution based on absolute 144

and relative thresholds. Locally Typical Sampling 145

(Meister et al., 2023) assumes that the generated 146

text should retain a similar entropy rate to that of 147

human-generated text. Adaptive Decoding (Zhu 148

et al., 2024) proposes to keep the entropy of the 149

truncated distribution close to the original entropy. 150

Although these approaches have been demonstrated 151

to be effective, their performance is highly depen- 152

dent on the curated truncation parameters and the 153

limited exemplar text. 154
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2.2 Evaluation of Sampling-based Decoding155

Common benchmarks include story generation156

with WritingPrompts dataset (Fan et al., 2018),157

document continuation with WikiText-103 dataset158

(Merity et al., 2017) and abstractive summarization159

on the CNN/DAILYMAIL dataset (Nallapati et al.,160

2016). These benchmarks suffer from the problem161

of limited exemplar text, which fails to capture the162

diverse nature of human language.163

Statistical metrics are mostly based on n-gram164

statistics and focus on a single aspect, such as Rep-165

etition (Welleck et al., 2020), Diversity (Meister166

et al., 2023), Semantic coherence (Gao et al., 2021),167

Zipf’s coefficient (Holtzman et al., 2020) (Unigram168

rank-frequency) and Self-BLEU (Zhu et al., 2018).169

Exemplar-based metrics dominate the evaluation170

of sampling-based decoding methods. As observed171

by Fan et al. (2018); Holtzman et al. (2020), lower172

perplexity of the generated text does not necessarily173

indicate better quality. And Holtzman et al. (2020)174

suggested that the perplexity of the generated text175

should be close to that of the human text. MAUVE176

(Pillutla et al., 2021) takes the trade-off between177

precision and recall into account, by comparing178

the learnt distribution from a text generation model179

to the distribution of human-written text using di-180

vergence frontiers. Shi et al. (2024a) provides a181

comprehensive evaluation on a large collection of182

tasks, mostly relying on exemplar-based metrics.183

However, we reveal that such evaluation is affected184

by the biases in the curated parameters and limited185

exemplar text, and our evaluation method is shown186

to alleviate such an issue.187

3 Revisiting Truncation Sampling188

We begin by revisiting the formulation of truncation189

sampling, followed by identifying the unresolved190

challenges in evaluating truncation sampling meth-191

ods.192

3.1 Problem Formulation193

Definition 3.1.

Ptrunc(xt|x<t) =

{
Pθ(xt|x<t)/Zx<t x ∈ Ax<t

0 o.w.,
(1)194

where Ax<t ∈ V denotes the allowed set of can-195

didate next tokens at the tth position, given a se-196

quence of tokens x<t = {x0, ..., xt−1} as prefix.197

Zx<t =
∑

x∈Ax<t
Pθ(xt|x<t) is the renormaliza-198

tion term.199

Given the Context-Preserving Trie of a reference 200

dataset, we can compute the estimate of the optimal 201

allowed set as follows : 202

Definition 3.2. Let Ax<t,θ
be the allowed set af- 203

ter truncation given the prefix x<t. The approxi- 204

mated optimal allowed set A∗
x<t

corresponds to 205

the allowed set with the minimum size, while cov- 206

ering the full data support for the tth token Dx<t 207

based on the Trie. It is the solution to the following 208

objective function: 209

A∗
x<t

= min
θ
|Ax<t,θ

|

s.t. Dx<t ⊆ Ax<t,θ
.

(2) 210

Note that the above definition is designed to ex- 211

clude the risk of obtaining OOD tokens before the 212

cutoff (Finlayson et al., 2024), because such type of 213

risk is unsolvable by truncation and is rather deter- 214

mined by the capacity of the trained LLMs. How- 215

ever, such risk is less severe compared to that in- 216

troduced by inappropriate truncation, since LLMs 217

exhibit a significant capability in predicting the 218

next token (Touvron et al., 2023; Achiam et al., 219

2023; Jiang et al., 2023; Team et al., 2023) and 220

most OOD samples reside in the tail distribution. 221

3.2 Remaining Issues 222

We reveal three major issues in the evaluation of 223

truncation sampling. We first summarize the prob- 224

lem of directly using probability as quality metric, 225

then show that the choice of truncation parameter 226

has a significant impact on the evaluation. 227

Unreliable Probability The probabilities of both 228

the predicted and empirical distribution are not re- 229

liable for reflecting the quality of a text. 230

• Higher likelihood does not necessarily imply 231

higher quality of the generated text (Fan et al., 232

2018; Holtzman et al., 2020; Nandwani et al., 233

2023; Wang and Zhou, 2024). 234

• Word frequencies are average statistics across 235

various topics, and the optimal probabilities 236

or ranking of each next token is ill-posed. 237

• Empirical distribution suffers from the spar- 238

sity issue (Shareghi et al., 2019; Li et al., 2016; 239

Jurafsky, 2000) of the N-gram models. 240

Parameter Sensitivity We highlight the complex- 241

ity and biases in parameter selection: Top-k and 242

Top-p have constant upper bounds, i.e., the vocab- 243

ulary size |V| and 1, respectively. In contrast, the 244
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upper bounds of η-sampling and adaptive sampling245

are dependent on LLM’s predicted distribution, be-246

cause they truncate the tail distribution based on247

the likelihood of tokens and the slope of Min-Max248

scaled entropy, respectively. The importance of249

identifying the effective ranges of such parameters250

is also reflected in the authors’ choice of numeral251

digit for their parameters. For example, ∆Conf is252

set to 0.0005 in Zhu et al. (2024) and ϵ is chosen253

from 0.0001, 0.0009 and etc in Hewitt et al. (2022).254

In comparison, the adopted p values for Top-p sam-255

pling are merely two digits after zero, such as 0.95.256

This shows the significance of identifying the sweet257

spots of different sampling methods.258

4 Method259

In this section, we derive our metrics for evaluating260

different sampling-based decoding strategies. The261

metrics are carefully designed to address the issues262

discussed in Section 3.2.263

4.1 Probability-Independent Metrics264

To circumvent the unreliable probability issue,265

we merely check whether the predicted next token266

is in or out of the data support. Specifically, we267

define Recall and Risk to quantify diversity and268

quality of a sampling method on a single node of269

CP-Trie:270

Definition 4.1.

Recallθ,t = Minimum
( |Ax<t,θ

|
|A∗

x<t
|
, 1

)
(3)271

Riskθ,t = Maximum
( |Ax<t,θ

|
|A∗

x<t
|
− 1, 0

)
(4)272

Ax<t,θ is dependent on the parameter selection273

for truncation, e.g., k value in Top-k sampling.274

When the allowed set is smaller than the approx-275

imated optimal allowed set after truncation, Re-276

call is smaller than one and Risk is regarded as277

zero. With further increased size of the allowed278

set, Recall reaches one but Risk emerges. Since279

the sizes of reasonable sets vary drastically for dif-280

ferent prefixes, it is not possible to always retain281

the approximated optimal allowed set with a pre-282

defined parameter. In this case, we reveal that the283

adaptability w.r.t. the varying size of data support284

of a sampling method indeed determines its effec-285

tiveness in real-world application.286

More importantly, our evaluation does not rely287

on the empirical probability, which is biased and in-288

accurate due to limited dataset size or context win-289

dow size. However, the tokens which appear in the 290

dataset could be confidently regarded as reasonable, 291

regardless of their actual probabilities. In addition, 292

considering that temperature could change the flat- 293

ness of distribution arbitrarily, we adopt ratio of 294

token counts instead of probability mass to make 295

the evaluation independent of temperature tuning 296

and exemplar text. For a detailed discussion with 297

supporting examples, please refer to Appendix A.2. 298

4.2 Tuning-Independent Evaluation 299

To eliminate the huge impact of Parameter Sensi- 300

tivity issue on fair evaluation, we adopt Average 301

Recall (AR) at an average Risk and Risk Standard 302

Error (RSE) at an average Risk to quantify diver- 303

sity and stability of a sampling method across N 304

nodes of CP-Trie, respectively: 305

Definition 4.2.

ARRisk−0.1 =
1

N

N∑
i=1

Recall(i)θ,t

RSERisk−0.1 =
1
N

√∑N
i=1(Risk(i)θ,t −

1
N

∑N
i=1 Risk(i)θ,t)

2

s.t.
1

N

N∑
i=1

Risk(i)θ,t = 0.1,

(5)

306

where the superscript (i) denotes the ith node 307

in the evaluation set of nodes on the prefix tree. 308

Analogously, a family of critical values such as 309

ARRisk−0.5 can be easily defined. 310

Since θ is now determined by the given aver- 311

age Risk, the diversity metric reflects the genuine 312

capacity of a sampling method regardless of pa- 313

rameter tuning. This allows for a fair comparison 314

of different sampling methods, especially consid- 315

ering their drastically different effective ranges, as 316

mentioned in Section 1 and Section 3.2. 317

5 Experiment 318

In this section, we conduct evaluation of existing 319

sampling-based decoding approaches on our col- 320

lected EnWiki CP-Trie dataset. We aim to estimate 321

the inherent adaptability of sampling-based meth- 322

ods and the results could be used as references for 323

the application of LLMs in open-ended tasks. 324

5.1 Data Collection 325

We construct our Trie data based on the English 326

subset of Wikipedia dataset, named EnWiki CP- 327

Trie. As shown in Figure 3, all possible words 328
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The: 
119714/5866531

The first: 
8463/67903

The film: 
1666/53919

The first two: 
888/2796

The first is: 
529/2165

The film was: 
834/13924

The film is: 
532/6042

The first two are: 
106/132
The first two are: 
92/131

The first is the: 
413/478
The first is a: 
260/306

The film was shot: 
62/1524

The film was a: 
206/1220

The film is about: 
123/731
The first is a: 
287/722

Figure 3: Illustration of the EnWiki CP-Trie. For brevity,
only two child nodes are shown at each depth. The
number at the left side of the slash symbol refers to the
branching factor at the current node, and the number at
the right side refers to the total number of leaves of the
sub-tree with the current node as the root node.

that appear after a given prefix in the dataset are329

treated as child nodes, with their preceding word330

regarded as the parent node. Starting from "Begin331

of Sequence" and collecting the child nodes recur-332

sively, we are able to transform the full dataset into333

a single prefix tree. We elaborate the main design334

choices in the following:335

Basic Unit. It is possible to split the datasets into336

articles, paragraphs, sentences or n-grams. Con-337

structing a tree based on articles or paragraphs may338

require more data than the training data of LLMs339

to guarantee an adequate number of branches (be-340

cause LLMs lean to interpolate), whereas the con-341

struction based on n-grams suffers from poor con-342

textual information and is heavily biased towards343

common tuplets of n tokens regardless of the con-344

text. Therefore, we adopt sentence as the basic unit,345

which guarantees a coherent context at sentence-346

level and requires much fewer data than training. It347

is noteworthy that a n-gram Trie (Jurafsky, 2000)348

tends to overestimate the data support size given a349

prefix (Bengio et al., 2000), due to the loss of infor-350

mation outside the contextual window, as shown in351

Figure 1.352

Filtering. To avoid invalid words or rare proper353

names which are unreasonable for the model to354

predict, we exclude the sentences containing such355

words by checking their presence in the WORD356

LIST dataset, which is available on the website 2.357

It contains 354986 words in total and explicitly ex-358

cludes proper names and compound words. Section359

titles are also excluded, which are often incomplete360

sentences with poor contextual information.361

Statistics. Wikipedia-English dataset contains362

2word-list dataset homepage

Figure 4: The total number of leaves on the CP-Trie
against the total number of processed articles.

6, 458, 670 articles, which result in EnWiki CP- 363

Trie with 31, 557, 359 leaves, see Figure 4. 364

Storage. The prefix tree is implemented as a nested 365

dictionary and saved in JSON format. Since each 366

lookup at any depth has constant complexity, the re- 367

trieval is highly efficient. Moreover, the dictionary 368

is easily extendable if extra data are needed for a 369

more accurate estimation of the full data support. 370

5.2 Evaluation Setup 371

Baselines. Our evaluation includes Top-k sampling 372

(Radford et al., 2018; Fan et al., 2018), Top-p sam- 373

pling (Holtzman et al., 2020), η-sampling (Hewitt 374

et al., 2022), Adaptive sampling (Zhu et al., 2024) 375

and Mirostat (Basu et al., 2021) into comparison. 376

Evaluation Data. To guarantee a tight lower bound 377

of the ideal data support given different prefixes, 378

we first sort the sub-nodes according to their total 379

number of leaves at each depth, then we select the 380

top 10 sub-trees with different sentence starting 381

tokens for evaluation. Moreover, we keep the top 382

2 child nodes at each depth till depth 6, since the 383

empirical data support becomes less adequate at 384

large depth. This results in an evaluation set of 593 385

prefixes with varying lengths in total. 386

Evaluation Metrics. We measure the improve- 387

ment in diversity via the increase of Average Re- 388

call(AR) at an average Risk, and the improvement 389

of the stability at each decoding step in the auto- 390

regressive process via the decrease of Risk Stan- 391

dard Error (RSE) at an average Risk. We adopt 392

AR and RSE at average Risks of 1, 5 and 15 for 393

comparison, representing low, medium, and high- 394

risk regions, respectively. 395

LLMs. To ensure that the conclusion generalizes to 396

different models, we adopt Llama (Touvron et al., 397

2023; Dubey et al., 2024) family, Mistral (Jiang 398
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et al., 2023, 2024) family and GPT-2-XL (Radford399

et al., 2019) for comparison.400

Tokenization. Since different LLMs are trained401

with different encoding methods, the evaluation has402

to be independent of the encoding methods. We403

solve this issue by constructing the CP-Trie with404

either a word or punctuation. For example, if the405

predicted next token corresponds to “sec", which406

is a part of the in-distribution word "section", then407

we regard this as a correct prediction. The second408

part “tion" is regarded as a hidden child node and409

is skipped in the evaluation.410

Parameter Search. We apply grid search to de-411

termine the corresponding parameters of different412

sampling methods for each average Risk. To ad-413

dress the highly non-linear dependency between414

the sampling methods and their truncation param-415

eters, we employ an efficient coarse-to-fine grid416

search strategy: the number of grids is initially417

set to 2000. If a parameter results in an average418

Risk within ±0.1 of the target value, it is consid-419

ered a feasible solution. Otherwise, an additional420

grid search is performed within a smaller interval421

until a feasible solution is found, based on the ini-422

tial search results. The grids are determined using423

Llama3-70B and are applied consistently across all424

models. As shown in Table 7, almost all the devi-425

ations in the average Risks are much smaller than426

0.1, demonstrating the robustness of our strategy.427

Implementation. Our implementation mainly re-428

lies on Pytorch (Paszke et al., 2017), HuggingFace429

(Wolf et al., 2020) and OpenAI API 3 library. We430

implement a truncation sampling method ourselves431

if the official implementation is unavailable. For432

all methods, the minimum size of the allowed set is433

set to 1 to prevent breaking the sampling process.434

5.3 Comparison at Different Average Risks435

In this section, we conduct a comprehensive study436

of different truncation sampling methods at differ-437

ent average Risks. As discussed in Section 4.2,438

this allows for a fair comparison which is indepen-439

dent of parameter tuning. Moreover, we provide440

the corresponding parameters for each truncation441

sampling method at different average Risks, which442

could serve as a user reference for these methods.443

As can be seen in Table 1, different truncation444

sampling methods are compared at the average Risk445

of 1, 5, and 15 respectively. As discussed in Sec-446

tion 4.1, our defined risk and recall metrics explic-447

3https://pypi.org/project/openai/

itly exclude the source of risk induced by a LLM’s 448

capacity by design, thus similar parameter values 449

correspond to the same risk level for most sampling 450

methods across various model types and sizes. This 451

exactly showcases the advantage of our evaluation 452

being tuning-independent and sustainable to the 453

rapid update of LLMs. Among the evaluated meth- 454

ods, Eta-sampling (Hewitt et al., 2022) is sensitive 455

to the changes of model type and size, which might 456

hinder its practical significance especially at a low 457

risk level. 458

Regarding diversity, i.e., the average recall at the 459

same average Risk, Adaptive sampling (Zhu et al., 460

2024) and Mirostat (Basu et al., 2021) are the best 461

and second performers, which consistently outper- 462

form the Top-k baseline by a considerable margin. 463

Top-p mostly exhibits inferior recall comparing to 464

the Top-k baseline, so does Eta-sampling at the av- 465

erage Risk of 1. As for the stability represented by 466

standard error of Risks, Top-k sampling reaches the 467

best scores in most cases. In comparison, Adaptive 468

sampling and Mirostat deliver comparable standard 469

error of risks to Top-k sampling, whereas Top-p 470

sampling and Eta-sampling are again inferior. Con- 471

sidering both diversity and stability, Adaptive sam- 472

pling and Mirostat are the top 2 adaptive methods 473

to be recommended, whereas Top-p sampling shall 474

be the last two methods to be considered. 475

(a) Llama-2 family. (b) Llama-3 family. (c) Mistral family

Figure 5: Comparing the average Recalls at given aver-
age Risks using different model sizes.

We also show in Figure 5 that larger models 476

of the same family have higher average recall at 477

the same risk level comparing to the smaller ones. 478

This conforms to the fact that larger models better 479

captures the human text distribution. Please note 480

that our metrics does not allow a direct compari- 481

son between different model families, mainly due 482

to their different vocabulary sizes and tokenizers, 483

e.g., Llama-3 has a 128,256 vocabulary size, while 484

Llama-2 has only 32, 000 vocabulary size. More- 485

over, our metrics also explicitly exclude the source 486

of risk within the optimal allowed set, which is 487

heavily dependent on a LLM’s capacity. 488
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Model Method Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Parameter RSE ↓ AR ↑ Parameter RSE ↓ AR ↑ Parameter RSE ↓ AR ↑

G
PT

2-
X

L Adaptive 9.5e-4 0.006 0.252 1.1e-4 0.679 0.339 2.5e-05 2.241 0.413
Mirostat 4.425 0.005 0.236 5.9475 0.717 0.326 6.76 2.501 0.401

Top-k 15 0.006 0.220 64 0.613 0.290 184 1.781 0.340
Eta 0.318 0.013 0.198 0.011 1.484 0.301 0.001 4.261 0.404

Top-p 0.5705 0.015 0.170 0.746 2.129 0.240 0.8555 6.210 0.338
L

la
m

a-
2-

7b Adaptive 1.1e-3 0.154 0.257 1.4e-4 0.856 0.364 3.1e-5 2.966 0.470
Mirostat 4.253 0.133 0.236 5.82 0.650 0.349 6.628 2.286 0.474

Top-k 14 0.126 0.226 61 0.587 0.296 177 1.722 0.369
Eta 0.512 0.563 0.192 0.023 2.599 0.297 0.002 6.531 0.407

Top-p 0.54 0.529 0.156 0.7665 2.331 0.254 0.9 6.208 0.400

L
la

m
a-

2-
70

b Adaptive 0.0011 0.142 0.269 1.2e-4 0.796 0.374 2.3e-5 2.697 0.485
Mirostat 4.16 0.135 0.238 5.7875 0.684 0.353 6.67 2.125 0.478

Top-k 14 0.128 0.232 60 0.583 0.307 174 1.712 0.375
Eta 0.092 0.304 0.236 0.003 1.590 0.378 2.1e-4 4.243 0.510

Top-p 0.6535 0.475 0.189 0.8465 2.136 0.316 0.9395 5.522 0.468

L
la

m
a-

3-
8B

Adaptive 1.1e-3 0.167 0.260 1.7e-4 0.787 0.343 3.7e-5 2.685 0.418
Mirostat 4.24 0.139 0.230 5.8175 0.804 0.318 6.693 2.630 0.393

Top-k 14 0.128 0.228 59 0.576 0.290 172 1.701 0.346
Eta 0.673 0.445 0.181 0.029 2.112 0.271 0.002 6.009 0.373

Top-p 0.5395 0.451 0.154 0.736 2.061 0.224 0.855 5.770 0.326

L
la

m
a-

3-
70

B Adaptive 1.1e-3 0.137 0.263 1.4e-4 0.787 0.353 3.16e-5 2.778 0.424
Mirostat 4.21 0.138 0.230 5.91 0.708 0.332 6.84 2.193 0.417

Top-k 14 0.127 0.230 60 0.581 0.295 173 1.695 0.352
Eta 0.37 0.137 0.263 0.014 2.231 0.295 0.001 6.265 0.398

Top-p 0.5695 0.502 0.158 0.758 2.386 0.237 0.8705 6.685 0.332

M
ix

tr
al

-7
B Adaptive 0.00105 0.152 0.260 1.2e-4 0.809 0.364 2.2e-5 2.757 0.466

Mirostat 4.1825 0.141 0.236 5.8125 0.721 0.345 6.71 2.213 0.468
Top-k 14 0.126 0.224 62 0.596 0.297 181 1.759 0.364

Eta 0.075 0.307 0.243 0.003 1.542 0.368 1.96e-4 4.712 0.505
Top-p 0.6565 0.539 0.194 0.8375 2.476 0.303 0.9315 6.315 0.447

M
ix

tr
al

-8
x7

B Adaptive 0.00105 0.148 0.265 1.1e-4 0.798 0.372 2.1e-5 2.802 0.476
Mirostat 4.2775 0.143 0.238 5.845 0.710 0.346 6.6875 2.213 0.461

Top-k 15 0.134 0.229 63 0.598 0.301 183 1.757 0.366
Eta 0.087 0.335 0.241 0.003 1.822 0.375 2.15e-4 4.922 0.506

Top-p 0.6505 0.535 0.192 0.8375 2.423 0.303 0.9325 6.139 0.456

Table 1: Risk Standard Error (RSE, indicating stability) and Average Recall (AR, indicating diversity) of different
truncation sampling methods at different average Risks using different models. The corresponding parameter of
each method at an average risk level is also provided. The best and worst scores are marked in bold and underlined,
respectively. For more detailed results, please refer to Appendix A.1.

Methods Mean(std) Accuracy ↑

Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Greedy 0.338

Naïve 0.421(0.004)

Top-k 0.401(0.010) 0.436(0.008) 0.421(0.010)
Top-p 0.355(0.013) 0.378(0.011) 0.389(0.012)
Adaptive 0.395(0.012) 0.424(0.011) 0.421(0.009)
Eta 0.388(0.005) 0.401(0.013) 0.413(0.026)
Mirostat 0.413(0.010) 0.425(0.013) 0.425(0.009)

Table 2: Evaluation on the TruthfulQA benchmark un-
der the open-ended generation setup. Naive sampling
refers to sampling without truncation. The best and
worst scores are marked in bold and underlined, respec-
tively. For more details, please refer to Appendix A.1.

5.4 Validation on TruthfulQA Benchmark489

Although our evaluation protocol is grounded by490

the thorough design process with reasonable simpli-491

fications, we would like to verify its effectiveness492

in the real-world scenario using the TruthfulQA493

Benchmark (Lin et al., 2021). The evaluation re-494

sults using gpt2-xl are shown in Section 5.3. For 495

all the methods other than greedy decoding, we run 496

3 times at each average risk level and report the 497

mean and standard deviation (parenthetical value). 498

It can be observed that greedy decoding falls far 499

behind sampling-based decoding strategies, which 500

conforms to the issue of likelihood-oriented decod- 501

ing discussed in Section 1, as well as the findings 502

in recent studies (Cobbe et al., 2021; Wang et al., 503

2023; Wang and Zhou, 2024; Shi et al., 2024a). 504

All the truncation sampling methods at the low 505

risk level achieves lower accuracy comparing to 506

Naive sampling, due to the over-truncation of the 507

decoding paths. At the average risk level of 5, 508

all the truncation sampling methods slightly im- 509

prove their own accuracy. Top-k sampling, Adap- 510

tive sampling and Mirostat also reach compara- 511

ble or slightly higher accuracy in comparison to 512

Naive sampling. However, further increased aver- 513

age risk level (means improved average recall and 514
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(a) Correlation at Avg.
Risk 1: −0.87

(b) Correlation at Avg.
Risk 5: −0.92

(c) Correlation at Avg.
Risk 15: −0.94

(d) Correlation at Avg.
Risk 1: 0.83

(e) Correlation at Avg.
Risk 5: 0.83

(f) Correlation at Avg.
Risk 15: 0.50

Figure 6: The scatter plots of TruthfulQA accuracy against
risk standard error (first row) and recall mean (second row) at
different average Risks.

thus diversity) does not benefit the performance on515

TruthfulQA, which is plausible. Moreover, there516

exists a even stronger correlation between Risk SE517

(Standard Error of Risks) and TruthfulQA accuracy,518

validating the importance of stability when evalu-519

ating an adaptive decoding method. The strong520

correlation between TruthfulQA accuracy and our521

proposed average recall as well as standard error of522

risks at different average Risks validate the sound-523

ness and effectiveness of our evaluation method.524

6 Revisiting Existing Evaluation525

In this section, we revisit the recent study (Shi526

et al., 2024a) by comparing sampling-based decod-527

ing methods at the same average Risks. We adopt528

the official implementation of Shi et al. (2024a).529

Following their setups, we adopt Llama-2-7B on530

MBPP (Austin et al., 2021), HumanEval (Austin531

et al., 2021) and GSM8K (Cobbe et al., 2021) to532

evaluate coding and math problem solving perfor-533

mance. Mean and standard deviation for three runs534

are reported in Table 3, Table 4 and Table 5, respec-535

tively.536

For all the three tasks, Mirostat does not perform537

well in general, probably because it is based on the538

Zipf-law of natural language and thus not suitable539

for code and math tasks. Notably, our greedy de-540

coding baseline achieves significantly lower result541

than reported by Shi et al. (2024a) on HumanEval.542

Our results should be plausible, because the instruc-543

tion tuned Llama-2-7B only achieves 7.9 according544

to Meta-Llama Github4 .545

4
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

While their study concludes that deterministic 546

methods outperform sampling methods across most 547

tasks, our evaluation reveals that sampling meth- 548

ods are indeed underestimated. in contrast to the 549

conclusion in Shi et al. (2024a), all the sampling- 550

based decoding methods could achieve better per- 551

formance than greedy decoding on HumanEval in 552

Table 4. In addition, Top-p and eta sampling also 553

beat greedy decoding at a low average Risk on 554

GSM8K in Table 5. This observation underscores 555

the challenges in parameter selection for sampling- 556

based decoding, which is effectively addressed by 557

our method. 558

Methods Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Top-k 19.70 (0.50) 21.00 (2.30) 20.50 (0.30)
Top-p 21.50 (1.30) 21.10 (0.40) 21.70 (0.70)

Mirostat 9.50 (0.30) 8.80 (2.00) 8.80 (0.40)
Eta 22.10 (0.70) 19.10 (0.40) 19.70 (0.40)

Greedy 24.00

Table 3: Pass@1 accuracy on MBPP. It is consistent
to the observation by Shi et al. (2024a) that sampling
methods are inferior to greedy decoding.

Methods Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Top-k 5.68 (2.00) 5.08 (1.52) 6.50 (0.76)
Top-p 3.46 (1.05) 5.89 (0.76) 6.52 (2.43)

Mirostat 3.25 (0.76) 4.27 (1.00) 4.68 (0.58)
Eta 2.64 (2.01) 6.91 (1.04) 6.10 (1.32)

Greedy 2.44

Table 4: Pass@1 accuracy on HumanEval. Sampling
methods perform better with higher average Recalls and
Risks.

Methods Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Top-k 7.56 (5.39) 11.90 (0.80) 11.73 (0.57)
Top-p 14.13 (0.47) 8.72 (6.18) 11.67 (0.11)

Mirostat 5.46 (0.47) 5.74 (0.64) 3.46 (2.10)
Eta 13.72 (0.46) 8.42 (5.54) 11.22 (0.75)

Greedy 13.19

Table 5: Accuracy on GSM8K. Top-p and eta sampling
outperforms greedy decoding at an average Risk of 1.

7 Conclusion 559

In this work, we propose an evaluation protocol to 560

assess the trade-off between diversity and quality 561

of truncation sampling methods for open-ended 562

text generation. Our evaluation enjoys the merit 563

of being independent of parameter tuning for the 564

curated tasks. The evaluation results also serve as 565

a user reference for different downstream tasks. 566
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8 Limitations567

In this work, we focus on the truncation sampling568

methods specially designed for the open-ended text569

generation scenario. There exist many related de-570

coding strategies, which aim at improving different571

aspects of LLMs. For example, a line of decoding572

strategies is proposed to alleviate hallucination or573

improve the reasoning ability, e.g., Dola (Chuang574

et al., 2023), Context-aware decoding (Shi et al.,575

2024b), Contrastive decoding (O’Brien and Lewis,576

2023) and etc. However, these methods are beyond577

the scope of sampling-based decoding in this study578

and thus not included in the discussion. Although579

our study is only based on text data in English580

for clarity, the dataset can be extended to include581

other languages in the future. Due to time and re-582

source constraints, we did not include all existing583

sampling-based decoding methods, such as Locally584

Typical Sampling (Meister et al., 2023) and Min-P585

Sampling (Nguyen et al., 2024), in our comparison.586

However, our benchmark is publicly available, and587

we plan to continuously update it with evaluations588

of additional methods in the future.589

9 Broader Impact590

Our study on the capacity of sampling methods and591

their appropriate parameters for open-ended text592

generation may further promote the application of593

LLMs in creative industries. There exists a poten-594

tial risk that our provided findings might be abused595

for generating harmful or fake information. How-596

ever, our study itself is neutral and the mentioned597

risk is a general issue that LLMs face. We call for598

the attention on AI-Safety in the community.599
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A Appendix800

A.1 Complete Record of the Experiment Runs801

Methods
Evaluation Runs Mean/Std

Run 1 at average Risks Run 2 at average Risks Run 3 at average Risks average Risks
1 5 15 1 5 15 1 5 15 1 5 15

Greedy Decoding 0.338
Naive Sampling 0.420 0.426 0.416 0.421(0.004)
Top-k Sampling 0.412 0.447 0.410 0.389 0.432 0.435 0.402 0.428 0.419 0.401(0.010) 0.436(0.008) 0.421(0.010)
Top-p Sampling 0.337 0.370 0.382 0.367 0.393 0.379 0.362 0.370 0.405 0.355(0.013) 0.378(0.011) 0.389(0.012)
Adaptive Sampling 0.403 0.416 0.433 0.403 0.416 0.419 0.378 0.440 0.411 0.395(0.012) 0.424(0.011) 0.421(0.009)
Eta Sampling 0.395 0.419 0.442 0.387 0.394 0.419 0.382 0.389 0.379 0.388(0.005) 0.401(0.013) 0.413(0.026)
Mirostat 0.424 0.417 0.430 0.399 0.443 0.433 0.415 0.414 0.412 0.413(0.010) 0.425(0.013) 0.425(0.009)

Table 6: Evaluation on the TruthfulQA benchmark. Since the GPT-3 API is no longer available, we use the by the
authors recommended BLEURT accuracy for comparison under the open-ended generation setup.

The scores of the individual runs on TruthfulQA benchmark are recorded in Table 6, and the means802

and standard errors of recalls and risks at all average Risks are listed in Table 7. Note that due to a fixed803

amount of computation budget, we search the corresponding parameter value for each truncation sampling804

method till the average risk is close enough to the predefined value, thus resulting in the variations of the805

average risks. However, such variations are negligible given the minor differences.806

Although Top-p sampling is indeed also adaptive regarding the truncation position, we show that Top-p807

sampling have a inherent limitation. When a larger portion of the probability mass is concentrated in the808

first few tokens (this often indicates smaller entropy), a fixed cumulative probability threshold will cut a809

longer tail off, and vice versa. However, there’s merely a weak correlation between the entropy of the810

LLM’s prediction and optimal truncation values, see Figure 7.811

(a) The Pearson’s correlation is 0.24777 for GPT2-XL. (b) The Pearson’s correlation is 0.24784 for Llama-2-
7B.

Figure 7: Scatter plots between the entropy values and optimal truncation values.

A.2 The Advantage of Probability-Independent Metrics812

In this section, we explain the practical advantages of our proposed probability-independent recall and813

risk metrics. As can be seen in Figure 8, the empirical distribution aligns with the by gpt2-xl predicted814

distribution given the same prefix in general: most of the tokens which posses high likelihood in the815

prediction also has a high probability based on the word frequencies of our collected CP-Trie data.816

However, there exists two differences:817

• Some tokens with high likelihood according to gpt2-xl have much lower probability according818

to the empirical distribution. The ranking of each tokens w.r.t. probability also differ in the two819

distributions.820

• A few tokens which should be reasonable candidates (by manual check) have 0 probability according821

to the empirical distribution.822
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For the first issue, as discussed in Section 3.2, there exists no ideal probabilities for each token, and 823

the discrepancy is not solvable by simply increasing the size of the data. For example, the "perfect" 824

probabilities of the candidate tokens "with" and "at" are undefined and could even be regarded as 825

equivalently important for open-ended text generation. 826

The second difference highlights the reliability of LLMs, i.e., the tokens which are assigned high 827

likelihoods are in most cases reasonable. Note that we ignore the risk within the estimated optimal allowed 828

set by design: All the tokens are counted as reasonable till the last token which has non-zero empirical 829

probability, when they are arranged in a descending order according to the predicted probabilities. Thus 830

these tokens with zero probabilities in the empirical distribution will not affect our evaluation of risk, 831

making our method robust to noises and insufficient data support. 832

Method GPT2-XL
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 15 1.029 (0.006) 0.220(0.0006) 64 5.040 (0.613) 0.290 (0.017) 184 14.983(1.781) 0.340 (0.018)
Top-p 0.5705 0.999 (0.015) 0.170 (0.0005) 0.746 5.011(2.129) 0.240 (0.015) 0.8555 15.022 (6.210) 0.338 (0.016)

Adaptive 9.5e-4 1.000 (0.006) 0.252 (0.0007) 0.00011 4.997 (0.679) 0.339(0.018) 2.5e-05 14.995 (2.241) 0.413 (0.018)
Eta 0.318 1.000 (0.013) 0.198 (0.0005) 0.011 4.945 (1.484) 0.301 (0.016) 0.001 14.998 (4.261) 0.404 (0.017)

Mirostat 4.425 0.999 (0.005) 0.236 (0.0007) 5.9475 5.001 (0.717) 0.326 (0.018) 6.76 14.982 (2.501) 0.401 (0.018)

Method Llama-2-7b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 0.986 (0.126) 0.226 (0.016) 61 4.987 (0.587) 0.296 (0.017) 177 14.961 (1.722) 0.369 (0.018)
Top-p 0.54 0.999 (0.529) 0.156 (0.012) 0.7665 4.990 (2.331) 0.254 (0.015) 0.9 14.989 (6.208) 0.400 (0.016)

Adaptive 0.0011 1.051 (0.154) 0.257 (0.016) 0.00014 4.991 (0.856) 0.364 (0.017) 3.1e-5 14.995 (2.966) 0.470 (0.017)
Eta 0.512 1.000 (0.563) 0.192 (0.014) 0.023 5.007 (2.599) 0.297 (0.016) 0.002 13.487 (6.531) 0.407 (0.017)

Mirostat 4.253 1.000 (0.133) 0.236 (0.016) 5.82 4.993 (0.650) 0.349 (0.018) 6.628 15.022 (2.286) 0.474 (0.017)

Method Llama-3-8B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.023 (0.128) 0.228 (0.016) 59 4.982 (0.576) 0.290 (0.017) 172 15.025 ( 1.701) 0.346 ( 0.018)
Top-p 0.5395 1.000 (0.451) 0.154 (0.013) 0.736 4.998 (2.061) 0.224 (0.014) 0.855 14.993 ( 5.770) 0.326 ( 0.016)

Adaptive 0.0011 1.133 (0.167) 0.260 (0.017) 0.00017 5.006 (0.787) 0.343 (0.018) 3.7e-5 15.007 ( 2.685) 0.418 ( 0.018)
Eta 0.673 1.000 (0.445) 0.181 (0.014) 0.029 5.009 (2.112) 0.271 (0.016) 0.002 15.012 ( 6.009) 0.373 ( 0.017)

Mirostat 4.24 1.001 (0.139) 0.230 (0.016) 5.8175 5.001 (0.804) 0.318 (0.018) 6.6925 14.996 ( 2.630) 0.393 ( 0.018)

Method Llama-3-70B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.014 ( 0.127) 0.230 ( 0.016) 60 5.038 ( 0.581) 0.295 ( 0.017) 173 15.024 ( 1.695) 0.352 ( 0.018)
Top-p 0.5695 1.001 ( 0.502) 0.158 ( 0.013) 0.758 4.999 ( 2.386) 0.237 ( 0.015) 0.8705 14.960 ( 6.685) 0.332 ( 0.016)

Adaptive 0.0011 1.004 ( 0.137) 0.263 ( 0.017) 0.00014 5.013 ( 0.787) 0.353 ( 0.018) 3.16e-5 14.986 ( 2.778) 0.424 ( 0.018)
Eta 0.37 1.004 ( 0.137) 0.263 ( 0.017 ) 0.014 5.032 ( 2.231) 0.295 ( 0.016) 0.001 15.076 ( 6.265) 0.398 ( 0.018)

Mirostat 4.21 1.001 ( 0.138) 0.230 ( 0.016 ) 5.91 5.001 ( 0.708) 0.332 ( 0.018 6.84 15.021 ( 2.193) 0.417 ( 0.018)

Method Llama-2-70b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.002 ( 0.128) 0.232 ( 0.016 ) 60 4.982 ( 0.583) 0.307 ( 0.017) 174 14.964 ( 1.712) 0.375 ( 0.018)
Top-p 0.6535 0.999 ( 0.475) 0.189 ( 0.013 ) 0.8465 4.988 ( 2.136) 0.316 ( 0.016) 0.9395 15.019 ( 5.522) 0.468 ( 0.016)

Adaptive 0.0011 1.000 ( 0.142) 0.269 ( 0.017 ) 1.2e-4 4.995 ( 0.796) 0.374 ( 0.017) 2.3e-5 15.007 ( 2.697) 0.485 ( 0.017)
Eta 0.092 1.002 ( 0.304) 0.236 ( 0.015 ) 0.003 5.057 ( 1.590) 0.378 ( 0.017) 0.00021 15.001 ( 4.243) 0.510 ( 0.017)

Mirostat 4.16 1.001 ( 0.135) 0.238 ( 0.016 5.7875 5.004 ( 0.684) 0.353 ( 0.018) 6.67 14.991 ( 2.125) 0.478 ( 0.017)

Method Mixtral-8x7B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 15 1.028 ( 0.134) 0.229 ( 0.016) 63 4.978 ( 0.598) 0.301 ( 0.017) 183 14.967 ( 1.757) 0.366 ( 0.018)
Top-p 0.6505 1.000 ( 0.535) 0.192 ( 0.014 ) 0.8375 5.007 ( 2.423) 0.303 ( 0.015) 0.9325 14.966 ( 6.139) 0.456 ( 0.016)

Adaptive 0.00105 1.000 ( 0.148) 0.265 ( 0.017 ) 0.00011 4.994 ( 0.798) 0.372 ( 0.018) 2.1e-5 15.014 ( 2.802) 0.476 ( 0.017)
Eta 0.087 1.001 ( 0.335) 0.241 ( 0.015 ) 0.003 5.061 ( 1.822) 0.375 ( 0.017) 0.000215 14.991 ( 4.922) 0.506 ( 0.017)

Mirostat 4.2775 1.000 ( 0.143) 0.238 ( 0.016) 5.845 4.995 ( 0.710) 0.346 ( 0.018) 6.6875 14.998 ( 2.213) 0.461 ( 0.018)

Method Mistral-7B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 0.965 ( 0.126) 0.224 ( 0.016) 62 4.968 ( 0.596) 0.297 ( 0.017) 181 15.006 ( 1.759) 0.364 ( 0.018)
Top-p 0.6565 1.001 ( 0.539) 0.194 ( 0.014) 0.8375 4.996 ( 2.476) 0.303 ( 0.016 ) 0.9315 15.038 ( 6.315) 0.447 ( 0.016)

Adaptive 0.00105 1.001 ( 0.152) 0.260 ( 0.016) 0.000115 4.993 ( 0.809) 0.364 ( 0.018) 2.2e-5 14.999 ( 2.757) 0.466 ( 0.017)
Eta 0.075 0.997 ( 0.307) 0.243 ( 0.015) 0.003 4.640 ( 1.542) 0.368 ( 0.017) 0.000196 15.009 ( 4.712) 0.505 ( 0.017)

Mirostat 4.1825 1.000 ( 0.141) 0.236 ( 0.016) 5.8125 4.999 ( 0.721) 0.345 ( 0.018) 6.71 14.978 ( 2.213) 0.468 ( 0.018)

Table 7: Critical Parameters of different truncation sampling methods at different average Risks using different
models.
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(a) Top 30 by gpt2-xl predicted next candidate tokens and
their corresponding likelihood given the prefix "The film was"

(b) Top 30 by gpt2-xl predicted next candidate tokens and their
corresponding empirical probability given the prefix "The film
was".

(c) Top 30 by gpt2-xl predicted next candidate tokens and
their corresponding likelihood given the prefix "The film was
shot".

(d) Top 30 by gpt2-xl predicted next candidate tokens and their
corresponding empirical probability given the prefix "The film
was shot".

Figure 8: Comparing the probabilities predicted by gpt2-xl and calculated using the word frequencies based on our
collected CP-Trie data.
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