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Abstract
Recent studies raised that reading comprehen-001
sion (RC) models learn to exploit biases and002
annotation artifacts in current Machine Read-003
ing Comprehension (MRC) datasets to achieve004
impressive performance. This hinders the com-005
munity from measuring sophisticated under-006
standing of RC systems. MRC questions whose007
answers can be rightly predicted without under-008
standing their contexts are defined as biased009
ones. Previous researches aimed to split un-010
intended biases and determine their influence011
have some limitations. Some methods using012
partial test data to extract biases lack holistic013
consideration with question-context-option tu-014
ple. Others relied on artificial statistical fea-015
tures are limited by question types.016
In this paper, we employ two simple heuristics017
to identify biased questions in current MRC018
datasets through human-annotated keywords.019
We implement three neural networks on the020
biased data and find that they have outstand-021
ing abilities to capture the biases, and further022
study the superficial features of the biased data023
exploited by models as shortcuts in views of024
lexical choice and paragraphs. Experiments025
show that (i) models can answer some ques-026
tions merely using several keywords which are027
unanswerable or difficulty for human. (ii) lex-028
ical choice preference in options creates bi-029
ases utilized by models. (iii) fewer paragraphs030
are more likely to introduce biases in MRC031
datasets.032

1 Introduction033

Machine Reading Comprehension (MRC) as a crit-034

ical task in many real-world applications requires035

machines to answer a question by understanding036

the given context (Hirschman et al., 1999). Nu-037

merous MRC datasets have been published and038

facilitated the progress of MRC models. Although039

recent state-of-the-art models have reached impres-040

sive performance, it does not indicate they have041

possessed human-like reading comprehension capa-042

bilities (Jia and Liang, 2017). Data collection is the043

most under-scrutinized step of the machine learn- 044

ing pipeline (Paritosh, 2020). Moreover, human- 045

annotated datasets usually contain biases exploited 046

by neural networks as shortcut solutions to achieve 047

high accuracy (Schwartz et al., 2017). 048

Previous study (Yu et al., 2020) fed models with 049

only option data and treated the correctly predicted 050

ones as biased while lacking attention to the con- 051

texts. Sugawara et al. (2018) extracted biased data 052

through artificial features restricted by question ex- 053

pressions. We conjecture that biases exist in not 054

only options but questions and articles and con- 055

cern that what features resulting in such biases 056

and acting as shortcuts for models. To this end, 057

this article aims to investigate biases exist in cur- 058

rent MRC datasets and summarize suggestions for 059

future MRC dataset. We define MRC questions 060

whose answers can be rightly predicted without 061

understanding their contexts as biased ones. 062

The contributions of this paper are as follows. 063

Firstly, we introduce a Human-Inspired Chinese 064

Reading Comprehension (HICMRC) dataset with 065

high-quality complex reasoning multi-choice ques- 066

tions from Chinese standard examinations, and col- 067

lect human results and manually labelled token- 068

level supporting facts related to questions in pas- 069

sage for explainable evaluation. Secondly, we 070

evaluate three baseline models and extract bi- 071

ased datasets through two filtering heuristics. Fi- 072

nally, we analyze superficial features in the biased 073

datasets by comparison with non-biased ones and 074

summarize recommendations for future MRC data 075

construction. 076

2 Related Work 077

Levesque (2014) proposed that we should avoid 078

building problems that can be solved by matching 079

patterns, using unintended biases, and choice con- 080

straints when testing AI. Min et al. (2018) observed 081

that 92% of answerable questions in SQuAD can 082

be predicted merely using a single context sentence. 083
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C3M test set Our test set
Human
Answerable set

Human
Unanswerable set

Avg./Max. document length (in char) 180.2/1274 457/878 - -
Avg./Max. question length (in char) 13.5/57 12.8/25 - -
Avg./Max. option length (in char) 6.5/45 7.3/32 - -
Single sent/Multiple sent/Independent 50.7/47.0/2.3 33.4/66.6/0 - -
fastText 0.445 0.395 | 0.36 0.353 0.42
Co-matching 0.480 0.40 | 0.37 0.26 0.54
BERT 0.646 0.493 | 0.532 0.433 0.66
Human 0.933 0.78 | 0.72 0.88 0.445

Table 1: Statistics and reading comprehension accuracy of models and human on four datasets.

Agrawal et al. (2016) studied the behavior of mod-084

els by variable length of the first question tokens085

in the field of visual QA. ? stated that current task-086

oriented approaches in MRC typically develop a087

system and evaluate it on some specific datasets,088

resulting in lacks of generality but achieving ex-089

traordinary performance for that particular dataset.090

One of goals in this study motivated by these re-091

sults was to identify biases exist in the current MRC092

datasets in more comprehensive manner.093

Wiegreffe and Marasovic (2021) concluded three094

types of explanations including highlights, free-text095

and structured explanations. Inoue et al. (2020)096

divided explanations into two categories as justifi-097

cation and introspective. For MRC tasks, MultiRC098

(Khashabi et al., 2018) and HotpotQA (Yang et al.,099

2018) provided sentence-level SFs regarded as justi-100

fication explanations. R4C (Inoue et al., 2020) and101

2WikiMultiHopQA (Ho et al., 2020) offered both102

justification and introspective explanations. There103

exist fewer Chinese datasets with explanation in-104

formation and most of them were collected from105

standard Chinese exams. C3 (Sun et al., 2020) ques-106

tions were provided with types of essential prior107

knowledge. GCRC (Tan et al., 2021) labelled three108

kinds of information including supporting facts, er-109

ror reasons and types of reasoning skills. Inspired110

by these datasets, we spent tremendous effort to111

design a credible annotation method and collected112

token-level supporting facts relevant to questions113

in context for explainable model evaluation and114

biased data analysis.115

3 Data Collection and Baselines116

3.1 Data from Examined Datasets117

HICMRC’s data format is similar to other multiple-118

choice RC datasets like Sun et al. (2020), where119

each instance consists of a context, a question,120

three distracters and a right option. We have spent121

tremendous effort to construct challenging high-122

quality questions for testing advanced passage-123

level MRC abilities. Firstly, we filtered samples 124

from C3M test set by a series of rules (see details 125

in Appendix A). Secondly, C3 has shorter docu- 126

ment and easier questions since it is collected from 127

Chinese-as-a-second-language exams, we replen- 128

ished samples from Chinese Junior Middle School 129

Modern Reading Exams following the preceding 130

rules. Then we invited experts to proofread pas- 131

sages, rectify mistakes like typos, and examine the 132

questions cannot be easily guessed by comparisons 133

among options or without understanding context. 134

Finally, we adjusted answers’ labels so that they are 135

evenly distributed in A/B/C/D and summarized the 136

statistics of HICMRC test dataset (200 documents 137

and 200 questions in total) in Table 1. 138

3.2 Human Results and Annotations 139

We obtained human performance by inviting 48 un- 140

dergraduates to complete 60 questions in HICMRC, 141

where they were asked to read a question first, then 142

its corresponding passage and answer it among the 143

shown options. For more comprehensive analy- 144

sis on biased data and explainable evaluation of 145

models, we also hired 66 undergraduates to anno- 146

tate token-level supporting facts in passages which 147

are crucial for answering their corresponding ques- 148

tions. We would emphasize that the annotation task 149

is extremely challenging since annotations are eval- 150

uated by plausibility (how well annotations support 151

prediction) and faithfulness (how accurately anno- 152

tations represent the decision process) (Yang et al., 153

2019). Consequently, we took enormous effort to 154

design the annotation procedure and attach them in 155

Appendix B. 156

3.3 Baseline Systems 157

We implemented three prevalent neural networks 158

to get models’ performance including fastText, 159

Co-matching and Chinese Bert-Base, which have 160

reached promising results on MRC task according 161

to previous researches (Joulin et al., 2017; Wang 162

et al., 2018; Li et al., 2018; Devlin et al., 2018). 163
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We first train three models using C3M training data164

with consistent parameters as in C3. For evalua-165

tion, we run every experiment five times and report166

models with the best development set performance.167

Details of the baselines and implementation are in168

the Appendix C.169

Table 1 shows comparison results. We observe170

that both human and models underperform on171

HICMRC test data than C3M test which suggests172

that HICRMC is more challenging.Additionally,173

human performs worse when using keywords rather174

than complete passage as inputs (0.78 to 0.72 in ac-175

curacy) while Bert’s accuracy increases from 0.493176

to 0.532. Co-matching and fastText were slightly177

affected with drops of 0.03 and 0.035. The incon-178

sistent trends between human and models indicat-179

ing that there may exist biases learned by models.180

Meanwhile, we split answerable and unanswerable181

subsets by human accuracy and it is interesting182

that the performance gap of models between two183

subsets disagrees with that of human.184

4 Experiments185

4.1 Filtering Heuristics to find biased data186

Recent studies have exposed that datasets created187

by experts may introduce biases and models can188

utilize the biases to achieve high accuracy without189

truly understanding the context (Yu et al., 2020).190

One goal of this paper is to identify the biases in HI-191

CRMC for more comprehensive model evaluation.192

We filtered out biased data based on the influence193

of two filter heuristics: (i) Human-performance-194

based. (ii) Context-aware, and then investigated195

baseline models’ performance on biased and non-196

biased subsets. Several biased examples are given197

in Appendix D.198

Human-performance-based Heuristic. As shown199

above, models perform relatively inconsistent or200

even reverse on human answerable and unanswer-201

able subsets compared with human. Some previous202

work identified questions that can be rightly pre-203

dicted when removing the context and question in204

the inputs (Yu et al., 2020), which neglected biases205

in passages and questions. To this end, we feed206

masked passage, its corresponding question and207

options into three baseline models for each data208

point. In this way, we identify questions that are209

Unanswerable for Human (UH) while can be cor-210

rectly Answered by Models merely using annotated211

Keywords (AMK) and other consistent inputs. We212

believe that such data exists unintended biases or213

Dbiased Dnon−biased

善| 0.54 | 24 和| 0.39 | 28
命| 0.5 | 24 这| 0.37 | 42
和| 0.49 | 33 而| 0.37 | 35
好| 0.45 | 31 ，| 0.31 | 26
、| 0.44 | 107 理| 0.3 | 23
活| 0.44 | 64 类| 0.3 | 43
念| 0.44 | 23 学| 0.3 | 37
生| 0.43 | 141 事| 0.27 | 22
正| 0.44 | 52 文| 0.27 | 44
与| 0.44 | 59 者| 0.26 | 54

Table 2: Top 10 tokens that contribute to right options
with more than 20 occurrences(token | p value | fre-
quency).

# of paragraphs
containing
keywords

# of sentences
containing
keywords

Biased 3.4 / 6 2.1 / 9
Non-biased 3.1 / 7 2.7 / 6
F 0.678 9.383
P-value 0.411 0.002
F crit 3.888 3.888

Table 3: Number (Avg./Max.) of sentences/paragraphs
containing annotated keywords and significance test.

shortcuts exploited by models but neglecting by 214

human, and donate them as D1
biased =UH∩AMK. 215

Context-aware Heuristic. This heuristic is to de- 216

tect questions that are Unanswerable for Models af- 217

ter reading complete Context(UMC) but Answered 218

by merely reading annotated Keywords(AMK). In 219

other words, questions that are answerable by hints 220

from human annotations cannot examine model 221

abilities of understanding of the context and locat- 222

ing relevant information for answering questions, 223

which donated as D2
biased =UMC∩AMK. 224

To investigate what makes MRC questions fail to 225

test models’ sophisticated MRC abilities to an- 226

swer beyond using superficial cues, we examine 227

the following statistical characteristics on biased 228

and non-biased data. Biased data is formulated as 229

Dbiased =D1
biased∪D2

biased. For more precise com- 230

parative analysis, we remove questions that can 231

be correctly answered both by human and models 232

either using keywords or full context. Namely, non- 233

biased data contains Unanswerable questions for 234

Models neither with complete Context (UMC) nor 235

annotated Keywords (UMK), which is expressed 236

as Dnon−biased =UMC∩UMK. 237
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4.2 Experiments between biased and unbiased238

data239

4.2.1 Lexical Choice in Options240

Following method in an English counterpart241

Dataset RECLOR (Yu et al., 2020), we in-242

vestigate the biases of lexical choice in op-243

tions. For the character-level tokens in options,244

we compute their conditional probability of la-245

bel l ∈ {right, wrong} given token t, where246

p(l/t)=count(t,l)/count(t). The larger p value for247

a token, the greater its contribution to the predic-248

tion of corresponding options (Poliak et al., 2018).249

Table 2 presents character-level tokens with the250

largest p scores which occur at least twenty times251

(considering many tokens with largest p values252

are of low frequency) in biased and unbiased data253

based on the performance of human and baseline254

model Bert. We notice that lexical choice of right255

options in biased data obviously differs from the of256

data and is more concentrated to some particular257

tokens with higher p scores.258

4.2.2 Token-level Supporting Facts259

Distribution260

To explore biases resulting in Dbiased2 , where261

questions are unanswerable with original passage-262

question-option tuple but can be correctly predicted263

using annotated keywords, we focus on the analysis264

of annotated keywords distribution in passages. We265

separately count the number of different sentences266

and paragraphs in which keywords are distributed267

for each passage and perform a significance test268

to determine whether sentences/paragraphs posi-269

tion distribution of keywords contributes to per-270

formance gap of models. Table 3 represents the271

average/maximal number of sentences and para-272

graphs containing keywords separately in biased273

and non-biased data according to Bert with their F274

scores. It reveals that keywords are distributed in275

more concentrated paragraphs in biased data than276

that of in non-biased while sentence distribution277

of keywords may have little effect on the model278

performance.279

5 Results and Analysis280

Table 2 reveals a significantly different lexical281

choice in options between biased and unbiased282

data points for Bert. Right option tokens in bi-283

ased dataset tend to be more prejudiced with higher284

p scores and frequency variation, compared to non-285

biased data with more diverse vocabulary. Conse-286

quently, model may utilize such statistical cues for 287

answering beyond understanding the passage. For 288

example, “、” ( a comma signal in Chinese charac- 289

ters usually used to express a parallel relationship) 290

may be learned by model as a clue for right options. 291

We infer that unbiased data should avoid repetitive 292

and unvaried lexical choices in right option and 293

reduce vocabulary differences with distracters. 294

Table 3 illustrates that for Bert, sentence position 295

distribution of annotated keywords has no obvious 296

difference between two subsets (P=0.441 > 0.05), 297

while keywords’ paragraph distribution differs in 298

the performance gap (P=0.002 < 0.005). In other 299

words, token-level supporting facts labeled by hu- 300

man are located in more concentrated paragraphs 301

in biased samples with smaller average number of 302

paragraphs containing keywords. This may due to 303

the lack of considering about paragraph-level fea- 304

tures in pre-train task designs. A more challenging 305

MRC dataset can detect model reading comprehen- 306

sion level in terms of whole passage with complex 307

text structure or more paragraphs. 308

6 Conclusion 309

In this paper, we construct a reading comprehen- 310

sion dataset HICMR with high-quality complex 311

reasoning multi-choice questions and manually la- 312

belled supporting relevant facts in context, based on 313

which we propose to identify biased samples with 314

comprehensive consideration of human and model 315

results. Our experiments reveal that baseline mod- 316

els behave differently from human when replacing 317

full contexts with annotated keywords in the inputs, 318

and Bert has an outstanding capability to capture 319

the biases. We further explore the differences be- 320

tween biased and unbiased data in terms of lexical 321

choice in options and evidence span distribution in 322

passages. These results show that baseline models’ 323

MRC capabilities may be overestimated due to bi- 324

ases or shortcuts in the datasets and there is still 325

a long way to equip neural networks with higher 326

quality and more challenging unbiased questions. 327

One possible idea is to avoid high-frequency words 328

or lexical choice preference in options, and em- 329

ploy consistent vocabulary among distracters and 330

answer option. More complex paragraph structure 331

would also be another suggestion to detect mod- 332

els’ reading comprehension abilities. We hope this 333

work can inspire more researches in the future to 334

adopt similar split method and evaluation scheme 335

for MRC model evaluation. 336
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Appendices442

A Data Selection Criteria443

• keep passages with longer length and multiple444

paragraphs.445

• keep questions with four options and only one446

of them is right.447

• remove options with apparent length bias, i.e.448

three short distracters and one longest answer449

option or vice versa.450

B Annotation Procedure and Subjects451

Selection452

B.1 Annotation Procedure453

Step 1: Annotation preparation. Participants were454

trained on five exercise instances similar to exper-455

iment data, through which they become familiar456

with the task flow, annotation guideline and reading457

materials.458

Step 2: Collaborative annotation. In view of plausi-459

bility, we split the task into two phases by one week.460

In phase one, each annotator is asked to finish 100461

instances by reading a question and its correspond-462

ing passage (without options) and labeling up to 15463

tokens that were relevant to answering the question.464

The number of labeled tokens is decided through465

pilot trial by authors considering average passage466

length. In phase two, annotators need to answer467

200 questions, 100 of which were randomly mixed468

by the others’ annotation. They were presented469

with questions, options and masked passage where470

token not being marked was replaced with “_” and471

encouraged to select the right option by salary.472

Step 3: Reliability monitoring. To ensure faithful-473

ness, four unanswerable questions were mixed into474

experiment data to monitor cheating if participants475

acquired high accuracy including such data.476

B.2 Subjects Selection477

Participants should meet the following require-478

ments:479

• Chinese native speaker undergraduates.480

• College Entrance Examination Chinese481

scores.482

• No visual impairment.483

• To avoid noise from age and gender, we set484

roughly equal number of male and female and485

the age from 18 to 30.486

C Baseline Models 487

FastText It predicts probability of each option be- 488

ing right independently by encoding sentences as 489

a bag of n-grams (Joulin et al., 2017). The option 490

with the highest score is treated as the prediction 491

for multiple-choice tasks. We employ the model in 492

python library 1 and keep the default hyperparame- 493

ters settings. 494

Co-Matching It is a Bi-LSTM-based model and 495

has reached promising results on RACE (Wang 496

et al., 2018). It takes a question and its answer 497

option as input sequences and learns to predict 498

whether or not they match a given context. To keep 499

it comparable, we use HanLP for Chinese word seg- 500

mentation and the 300-dimensional Chinese word 501

embeddings from (Li et al., 2018) as in C3. 502

Chinese Bert-Base We also apply the fine-tuning 503

framework with a pre-trained language model Chi- 504

nese Bert-Base from website, which has achieved 505

impressive performance on MRC tasks (Devlin 506

et al., 2018). For fine-tuning, we set batch size, 507

learning rate, and maximal sequence length to 24, 508

2×10−5 and 512 respectively as they are in C3, and 509

use default values for the other hyperparameters as 510

in (Devlin et al., 2018). 511

D Biased Examples 512

1https://github.com/facebookresearch/
fastText
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Figure 1: Right answer:A, model predict using context:D, model predict using keywords:A

Figure 2: Right answer:D, model predict using context:C, model predict using keywords:D
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