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Abstract

We consider the problem of domain generalization, namely, how to learn representations
given data from a set of domains that generalize to data from a previously unseen domain.
We propose the Domain Invariant Variational Autoencoder (DIVA), a generative model that
tackles this problem by learning three independent latent subspaces, one for the domain, one
for the class, and one for any residual variations. We highlight that due to the generative
nature of our model we can also incorporate unlabeled data from known or previously
unseen domains. To the best of our knowledge this has not been done before in a domain
generalization setting. This property is highly desirable in fields like medical imaging
where labeled data is scarce. We experimentally evaluate our model on the rotated MNIST
benchmark and a malaria cell images dataset where we show that (i) the learned subspaces
are indeed complementary to each other, (ii) we improve upon recent works on this task
and (iii) incorporating unlabelled data can boost the performance even further.

Keywords: generative model, representation learning, invariance, domain generalization

1. Introduction

Deep neural networks (DNNs) led to major breakthroughs in a variety of areas like computer
vision and natural language processing. Despite their big success, recent research shows that
DNNs learn the bias present in the training data. As a result they are not invariant to cues
that are irrelevant to the actual task (Azulay and Weiss, 2018). This leads to a dramatic
performance decrease when tested on data from a different distribution with a different bias.

In domain generalization the goal is to learn representations from a set of similar
distributions, here called domains, that can be transferred to a previously unseen domain
during test time. A common motivating application, where domain generalization is crucial,
is medical imaging (Blanchard et al., 2011; Muandet et al., 2013). For instance, in digital
histopathology a typical task is the classification of benign and malignant tissue. However,
the preparation of a histopathology image includes the staining and scanning of tissue
which can greatly vary between hospitals. Moreover, a sample from a patient could be
preserved in different conditions (Ciompi et al., 2017). As a result, each patient’s data
could be treated as a separate domain (Lafarge et al., 2017). Another problem commonly
encountered in medical imaging is class label scarcity. Annotating medical images is an
extremely time consuming task that requires expert knowledge. However, obtaining domain
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labels is surprisingly cheap, since hospitals generally store information about the patient
(e.g., age and sex) and the medical equipment (e.g., manufacturer and settings). Therefore,
we are interested in extending the domain generalization framework to be able to deal with
additional unlabeled data, as we hypothesize that it can help to improve performance.

In this paper, we propose to tackle domain generalization via a new deep generative
model that we refer to as the Domain Invariant Variational Autoencoder (DIVA). We extend
the variational autoencoder (VAE) framework (Kingma and Welling, 2013; Rezende et al.,
2014) by introducing independent latent representations for a domain label d, a class label
y and any residual variations in the input x. Such partitioning of the latent space will
encourage and guide the model to disentangle these sources of variation. Finally, by virtue of
having a generative model we can naturally handle the semi-supervised scenario, similarly to
Kingma et al. (2014). We evaluate our model on a version of the MNIST dataset where each
domain corresponds to a specific rotation angle of the digits, as well as on a Malaria Cell
Images dataset where each domain corresponds to a different patient. An implementation of
DIVA can be found under https://github.com/AMLab-Amsterdam/DIVA.

2. DIVA: Domain Invariant VAE

Assuming a perfectly disentangled latent space (Higgins et al., 2018), we hypothesize that
there exists a latent subspace that is invariant to changes in d, i.e., it is domain invariant. We
propose a generative model with three independent sources of variation; zd, which is domain
specific, zy, which is class specific and finally zx, which captures any residual variations
left in x. While zx keeps an independent Gaussian prior p(zx), zd and zy have conditional
priors pθd(zd|d), pθy(zy|y) with learnable parameters θd, θy. This will encourage information
about the domain d and label y to be encoded into zd and zy, respectively. Furthermore, as
zd and zy are marginally independent by construction, we argue that the model will learn
representations zy that are invariant with respect to the domain d. All three of these latent
variables are then used by a single decoder pθ(x|zd, zx, zy) for the reconstruction of x.

Since we are interested in using neural networks to parameterize pθ(x|zd, zx, zy), exact
inference will be intractable. For this reason, we perform amortized variational inference
with an inference network (Kingma and Welling, 2013; Rezende et al., 2014), i.e., we employ
a VAE-type framework. We introduce three separate encoders qφd(zd|x), qφx(zx|x) and
qφy(zy|x) that serve as variational posteriors over the latent variables. Notice that we do not
share their parameters as we empirically found that sharing parameters leads to a decreased
generalization performance. For the prior and variational posterior distributions over the
latent variables zx, zd, zy we assume fully factorized Gaussians with parameters given as a
function of their input. We coin the term Domain Invariant VAE (DIVA) for our overall
model, which is depicted in Figure 2 in the Appendix.

Given a specific dataset, all of the aforementioned parameters can be optimized by
maximizing the following variational lower bound per input x:

Ls(d,x, y) = Eqφd (zd|x)qφx (zx|x),qφy (zy |x) [log pθ(x|zd, zx, zy)]− βKL (qφd(zd|x)||pθd(zd|d))

− βKL (qφx(zx|x)||p(zx))− βKL
(
qφy(zy|x)||pθy(zy|y)

)
. (1)

Notice that we have introduced a weigting term, β. This is motivated by the β-VAE (Higgins
et al., 2017) and serves as a constraint that controls the capacity of the latent spaces of
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DIVA. Larger values of β limit the capacity of each z and in the ideal case each dimension
of z captures one of the conditionally independent factors in x.

To further encourage separation of zd and zy into domain and class specific information
respectively, we add two auxiliary objectives. During training zd is used to predict the
domain d and zy is used to predict the class y for a given input x:

FDIVA(d,x, y) := Ls(d,x, y) + αdEqφd (zd|x) [log qωd(d|zd)] + αyEqφy (zy |x)
[
log qωy(y|zy)

]
,

(2)

where αd, αy are weighting terms for each of these auxiliary objectives. Since our main goal
is a domain invariant classifier, during inference we only use the encoder qφy(zy|x) and the
auxiliary classifier qωy(y|zy). For the prediction of the class y for a new input x we use the
mean of zy. Consequently, we regard the variational lower bound Ls(d,x, y) as a regularizer.
Therefore, evaluating the marginal likelihood p(x) of DIVA is outside the scope of this paper.

Locatello et al. (2018) and Dai and Wipf (2019) claim that learning a disentangled
representation, i.e., qφ(z) =

∏
i qφ(zi), in an unsupervised fashion is impossible for arbitrary

generative models. Inductive biases, e.g., some form of supervision or constraints on the
latent space, are necessary to find a specific set of solutions that matches the true generative
model. Consequently, DIVA is using domain labels d and class labels y in addition to input
data x during training. Recent work by Khemakhem et al. (2019) shows that conditional
priors, like pθd(zd|d) and pθy(zy|y) in DIVA, lead to identifiability guarantees in VAEs.
Furthermore, we enforce the factorization of the marginal distribution of z in the following
form: qφ(z) = qφd(zd)qφx(zx)qφy(zy), which prevents the impossibility described in Locatello
et al. (2018). We argue that the strong inductive biases in DIVA make it possible to learn
disentangled representations that match the ground truth factors of interest, namely, the
domain factors zd and class factors zy. To highlight the importance of a partitioned latent
space we compare DIVA to a VAE with a single latent space, the results of this comparison
can be found in the Appendix.

2.1. Semi-supervised DIVA

In Kingma et al. (2014) an extension to the VAE framework was introduced that allows to
use labeled as well as unlabeled data during training. While Kingma et al. (2014) introduced
a two step procedure, Louizos et al. (2015) presented a way of optimizing the decoder of the
VAE and the auxiliary classifier jointly. We use the latter approach to learn from supervised
data {(dn,xn, yn)} as well as from unsupervised data {(dm,xm)}. Analogically to (Louizos
et al., 2015), we use qωy(y|zy) to impute y:

Lu(d,x) = Eqφd (zd|x)qφx (zx|x)qφy (zy |x)[log pθ(x|zd, zx, zy)]− βKL(qφd(zd|x)||pθd(zd|d))

− βKL(qφx(zx|x)||p(zx)) + βEqφy (zy |x)qωy (y|zy)[log pθy(zy|y)− log qφy(zy|x)]

+ Eqφy (zy |x)qωy (y|zy)[log p(y)− log qωy(y|zy)], (3)

where we use Monte Carlo sampling with the reparametrization trick (Kingma and Welling,
2013) for the continuous latents zd, zx, zy and explicitly marginalize over the discrete variable
y. The final objective combines the supervised and unsupervised variational lower bound as
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well as the two auxiliary losses. Assuming N labeled and M unlabeled examples, we obtain
the following objective:

FSS-DIVA =

N∑
n=1

FDIVA(dn,xn, yn) +

M∑
m=1

Lu(dm,xm) + αdEqφd (zd|xm)[log qωd(dm|zd)]. (4)

3. Related Work

The majority of proposed deep learning methods for domain generalization fall into one of
two categories: 1) Learning a single domain invariant representation, e.g., using adversarial
methods (Carlucci et al., 2018; Ghifary et al., 2015; Li et al., 2018, 2017; Motiian et al.,
2017; Shankar et al., 2018; Wang et al., 2019). While DIVA falls under this category there is
a key difference: we do not explicitly regularize zy using d. Instead we learn complementary
representations zd, zx and zy utilizing a generative architecture. 2) Ensembling models,
each trained on an individual domain from the training set (Ding and Fu, 2018; Mancini
et al., 2018). The size of models in this category scales linearly with the amount of training
domains. This leads to slow inference if the number of training domains is large. However,
the size of DIVA is independent of the number of training domains. In addition, during
inference time we only use the mean of the encoder qφy(zy|x) and the auxiliary classifier
qωy(y|zy).

Concurrently to DIVA, Cai et al. (2019) developed a framework to learn latent disentan-
gled semantic representations (DSR) for domain adaptation. DSR assumes that the data
generation process is exclusively controlled by the domain d and class y. As a result, DSR is
lacking a third latent space zx. We designed DIVA assuming that not all variations in x
can be explained by the domain d and the class y. Therefore we introduce zx in order to
capture these residual variations. Furthermore, while DSR uses gradient reversal layers, we
directly parameterize the ground truth generative model. As a result, the priors in DIVA are
conditional which is necessary for guaranteed disentanglement as recent research has shown
(Khemakhem et al., 2019). More related work is published under the name of multiple source
domain adaptation (Zhao et al., 2018).

An area that is closely related to domain generalization is that of the statistical parity
in fairness. The goal of fair classification is to learn a meaningful representation that at the
same time cannot be used to associate a data sample to a certain group (Zemel et al., 2013).
The major difference to domain generalization is the intention behind that goal, e.g., to
protect groups of individuals versus being robust to variations in the input. Consequently,
DIVA is closely related to the fair VAE (Louizos et al., 2015). In contrast to the fair VAE,
which is using a hierarchical latent space, DIVA is using a partitioned latent space. Moreover,
the fair VAE requires the domain label during inference while DIVA alleviates this issue
by learning the classifier without d. Similar to DIVA, there is an increasing number of
methods showing the benefits of using latent subspaces in generative models (Siddharth
et al., 2017; Klys et al., 2018; Jacobsen et al., 2018; Bouchacourt et al., 2018; Atanov et al.,
2019; Antoran and Miguel, 2019).

We derived DIVA by following the VAE framework, where the generative process is
the starting point. A conditional version of the variational information bottleneck (CVIB)
was proposed by Moyer et al. (2018) that likewise leads to an objective consisting of a
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reconstruction loss. However, CVIB suffers from the same limitation as the fair VAE: that
the domain must be known during inference, hence, we excluded it from our experiments.

4. Experiments

4.1. Rotated MNIST

The construction of the Rotated MNIST dataset follows Ghifary et al. (2015). We sample
100 images from each of the 10 classes from the original MNIST training dataset. This
set of images is denoted M0◦ . To create five additional domains the images in M0◦ are
rotated by 15, 30, 45, 60 and 75 degrees. In order to evaluate their domain generalization
abilities, models are trained on five domains and tested on the remaining 6th domain, e.g.,
train on M0◦ , M15◦ , M30◦ , M45◦ and M60◦ , test on M75◦ . The evaluation metric is the
classification accuracy on the test domain. All experiments are repeated 10 times. Detailed
information about hyperparameters, architecture and training schedule can be found in the
Appendix.

First of all, we visualize the three latent spaces zd, zx and zy, to see if DIVA is able to
successfully disentangle them. In addition, we want to verify whether DIVA utilizes zx in a
meaningful way, since it is not directly connected to any downstream task. We restrict the
size of each latent space zd, zx and zy to 2 dimensions. Therefore, we can plot the latent
subspaces directly without applying dimensionality reduction, see Figure 3 in the Appendix.
Here, we trained DIVA on 5000 images from five domains: M0◦ , M15◦ , M30◦ , M45◦ and
M60◦ . From these initial qualitative results we conclude that DIVA is disentangling the
information contained in x as intended, as zd is only containing information about d and
zy only information about y. In the case of the Rotated MNIST dataset zx captures any
residual variation that is not explained by the domain d or the class y. In addition, we are
able to generate conditional reconstructions as well as entirely new samples with DIVA. We
provide these in the Appendix.

We compare DIVA against the well known domain adversarial neural networks (DA)
(Ganin et al., 2015) as well as three recently proposed methods: LG (Shankar et al., 2018),
HEX (Wang et al., 2019) and ADV (Wang et al., 2019). For the first half of Table 1 (until
the vertical line) we only use labeled data. The first column indicates the rotation angle of
the test domain. We report test accuracy on y for all methods. For DIVA we report the
mean and standard error for 10 repetitions. DIVA achieves the highest accuracy across all
test domains and the highest average test accuracy among all proposed methods.

The second half of Table 1 showcases the ability of DIVA to use unlabeled data. For this
experiment we add: The same amount (+1) of unlabeled data as well as three (+3), five
(+5) and nine (+9) times the amount of unlabeled data to our training set. We first add the
unlabeled data to M0◦ and create the data for the other domains. In Table 1 we can clearly
see a performance increase when unlabeled data is added to the training set. When the
amount of unlabeled data is much larger than the amount of labeled data the balancing of
loss terms become increasingly more challenging which can lead to a declining performance
of DIVA, as seen in the last two columns of Table 1.

In the experiment described above each training domain consists of labeled and unlabeled
examples. Now we investigate a more challenging scenario: We add an additional domain to
our training set that consists of only unlabeled examples. Coming back to our introductory
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Table 1: Comparison with other state-of-the-art domain generalization methods. Methods
in the first half of the table (until the vertical line) use only labeled data. The
second half of the table shows results of DIVA when trained semi-supervised (+ X
times the amount of unlabeled data). We report the average and standard error of
the classification accuracy.

Test DA LG HEX ADV DIVA DIVA(+1) DIVA(+3) DIVA(+5) DIVA(+9)
M0◦ 86.7 89.7 90.1 89.9 93.5 ± 0.3 93.8 ± 0.4 93.9 ± 0.5 93.2 ± 0.5 93.0 ± 0.4
M15◦ 98.0 97.8 98.9 98.6 99.3 ± 0.1 99.4 ± 0.1 99.5 ± 0.1 99.5 ± 0.1 99.6 ± 0.1
M30◦ 97.8 98.0 98.9 98.8 99.1 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1
M45◦ 97.4 97.1 98.8 98.7 99.2 ± 0.1 99.0 ± 0.2 99.2 ± 0.1 99.3 ± 0.1 99.3 ± 0.1
M60◦ 96.9 96.6 98.3 98.6 99.3 ± 0.1 99.4 ± 0.1 99.4 ± 0.1 99.4 ± 0.1 99.2 ± 0.2
M75◦ 89.1 92.1 90.0 90.4 93.0 ± 0.4 93.8 ± 0.4 93.8 ± 0.2 93.5 ± 0.4 93.2 ± 0.3
Avg 94.3 95.3 95.8 95.2 97.2 ± 1.3 97.5 ± 1.1 97.5 ± 1.2 97.4 ± 1.3 97.3 ± 1.3

example of medical imaging, here we would add unlabeled data from a new patient or new
hospital to the training set.

In the following, we are looking at two different experimental setups, in both casesM75◦

is the test domain: For the first experiment we choose the domains M0◦ , M15◦ , M45◦ and
M60◦ to be part of the labeled training set. In addition, unlabeled data from M30◦ is used.
We find that even in the case where the additional domain is dissimilar to the test domain
DIVA is able to slightly improve, see Table 2. For the second experiment we choose the
domains M0◦ , M15◦ , M30◦ and M45◦ to be part of the labeled training set. In addition,
unlabeled data from M60◦ is used. When comparing with the results in Table 1 we notice a
drop in accuracy of about 20% for DIVA trained with only labeled data. However, when
trained with unlabeled data from M60◦ we see an improvement of about 7%, see Table 2.
The comparison shows that DIVA can successfully learn from samples of a domain without
any labels.

Table 2: Comparison of DIVA trained supervised to DIVA trained semi-supervised with
additional unlabeled data from M30◦ and M60◦ . We report the average and
standard error of the classification accuracy on M75◦ .

Unsupervised domain DIVA supervised DIVA semi-supervised
M30◦ 93.1 ± 0.5 93.3 ± 0.4
M60◦ 73.8 ± 0.8 80.6 ± 1.1

4.2. Malaria Cell Images

The majority of medical imaging datasets consist of images from a multitude of patients.
In a domain generalization setting each patient is viewed as an individual domain. While
we focus on patients as domains in this paper, this type of reasoning can be extended to,
e.g., hospitals as domains. We, among others (Rajaraman et al., 2018; Lafarge et al., 2017),
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argue that machine learning algorithms trained with medical imaging datasets should be
evaluated on a subset of hold-out patients. This presents a more realistic scenario since
the algorithm is tested on images from a previously unseen domain. In the following, we
use a Malaria Cell Images dataset (Rajaraman et al., 2018) as an example of a dataset
consisting of samples from multiple patients. The images in this dataset were collected and
photographed at Chittagong Medical College Hospital, Bangladesh. It consists of 27558
single red blood cell images taken from 150 infected and 50 healthy patients. The images
were manually annotated by a human expert. A cell has the label y = 1 if it shows the
parasite and the label y = 0 if not. To facilitate the counting of parasitized and uninfected
cells, the cells were stained using Giemsa stain which turns the parasites inside the cell pink.
In addition, the staining process leads to a variety of colors of the cell itself. While the color
of the cell is relatively constant for a single patient, it can vary greatly between patients, see
the first row in Figure 1. This variability in appearance of the cells can be easily ignored by
a human observer, however, machine learning models can fail to generalize across patients.
In our experiments we will use the patient ID as the domain label d. We argue that for this
specific dataset the patient ID is a good proxy of appearance variability. In addition, there
is no extra cost for obtaining the patient ID for each cell.

Subsequently, we use a subset of the Malaria Cell Images dataset that consists of the 10
patients with the highest number of cells. The amount of cells per patient varies between
400 and 700 and there are 5922 cell images in total. The choice of this subset is motivated
by the similiar amount of cells as well as the similar marginal label distributions per patient,
the latter being a necessary condition for successful domain generalization (Zhao et al.,
2019). Furthermore we rescale all images to 64 × 64 pixels. To artificially expand the size
of the training dataset we use data augmentation in the form of vertical flips, horizontal
flips and random rotations.

We investigate the three latent subspaces zd, zx and zy to see if DIVA is able to successfully
disentangle them. In addition, we want to see if DIVA utilizes zx in a meaningful way, since
it is not directly connected to any downstream task. Figure 1 shows the reconstructions of
x using all three latent subspaces as well as reconstructions of x using only a single latent
subspace at a time. First, we find that DIVA is able to reconstruct the original cell images
using all three subspaces (Figure 1, second row). Second, we find that the three latent
subspaces are indeed disentangled: zd is containing the color of the cell (Figure 1, third
row), zx the shape of the cell (Figure 1, fourth row) and zy the location of the parasite
(Figure 1, fifth row). The holes in the reconstructions using only zx indicate that there is no
probability mass in zd and zy at 0, similar to Figure 3. From the reconstructions in Figure 1
we conclude that DIVA is able to learn disentangled representations that match the ground
truth factors of interest, here, the appearance of the cell and the presence of the parasite.
In addition to these qualitative results, we show that a classifier for y trained on zd or zx
performs worse than a classifier that would always predict the majority class, the results
can be found in the Appendix.

To further evaluate domain generalization abilities, models are trained on nine do-
mains(patient IDs) and tested on the remaining 10th domain. We choose ROC AUC on the
holdout test domain as the evaluation metric, since the two classes are highly imbalanced.
All experiments are repeated five times. We compare DIVA with a ResNet-like (He et al.,
2015) baseline and DA. During inference all three models have the same architecture, seven
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x

x ∼ pθ(x|zd, zx, zy)

x ∼ pθ(x|zd, 0, 0)

x ∼ pθ(x|0, zx, 0)

x ∼ pθ(x|0, 0, zy)

Figure 1: Reconstructions of x using all three latent subspaces as well as reconstructions of
x using only a single latent subspace at a time.

ResNet blocks followed by two linear layers. Detailed information about hyperparameters,
architecture and training schedule can be found in the Appendix. We find that the results
are not equally distributed across all test domains. In five cases DIVA is able to significantly
improve upon the baseline model and DA. However, averaged over all domains none of the
three methods performs significantly better than the others, see Table 14 and 15 in the
Appendix.

As described in Section 2.1 we are interested in learning from domains with no class
labels, since such an approach can drastically lower the amount of labeled data needed to
learn a domain invariant representation, i.e., a model that generalizes well across patients.
For the semi-supervised experiments we choose domain C116P77 to be the test domain since
its cells show a unique dark pink stain. Furthermore, unlabeled data from domain C59P20
is used since it is visually the closest to domain C116P77, see Appendix. The evaluation
metric on the hold out test domain is ROC AUC again. In Table 3 we compare the baseline
model, DA and DIVA trained with labeled data from domain C59P20, unlabeled data from
domain C59P20 and no data from domain C59P20. We argue that the improvement of DIVA
over DA arises from the way the additional unlabeled data is utilized. In case of DA the
unlabeled data (d, x) is only used to train the domain classifier and the feature extractor
in an adversarial manner. In Section 2.1 we show that due to DIVA’s generative nature
qφy(zy|x), pθy(zy|y) can be updated using qωy(y|zy) to marginalize over y for an unlabeled
sample x. In addition, the unlabeled data (d, x) is used to update qφd(zd|x), pθd(zd|d),
qωd(d|zd), qφx(zx|x) and pθ(x|zd, zx, zy) in the same way as in the supervised case.

5. Conclusion

We have proposed DIVA as a generative model with three latent subspaces. We evaluated
DIVA on Rotated MNIST and a Malaria Cell Images dataset. In both cases DIVA is
able to learn disentangled representations that match the ground truth factors of interest,
represented by the class y and the domain d. By learning representations zy that are invariant
with respect to the domain d DIVA is able to improve upon other methods on both datasets.
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Table 3: Results of the semi-supervised experiments for domain C116P77. Comparison of
baseline method, DA and DIVA trained with labeled data from domain C59P20,
unlabeled data from domain C59P20 and no data from domain C59P20. We report
the average and standard error of ROC AUC.

Training data Baseline DA DIVA
Labeled data from C59P20 90.6 ± 0.7 90.6 ± 1.7 93.3 ± 0.4

Unlabeled data from C59P20 - 72.05 ± 2.2 79.4 ± 2.8
No data from C59P20 70.0 ± 2.6 69.2 ± 1.9 71.9 ± 2.7

Furthermore, we show that we can boost DIVA’s performance by incorporating unlabeled
samples, even from entirely new domains for which no labeled examples are available. This
property is highly desirable in fields like medical imaging where the labeling process is very
time consuming and costly.It appears that there is a key difference between interpolation and
extrapolation, a distinction currently not made by the domain generalization community:
If we assume that the domains lie in intervals like [0◦,15◦, 30◦] or [’red’, ’orange’, ’yellow’]
then the performance for the domains in the center of the interval, e.g., 15◦ and ’orange’,
seems to be better than for the domains on the ends of the interval. We argue that DIVA
can make use of unlabeled data from a domain that is close to the test domain to improve
its extrapolation performance.
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Appendix A.

A.1. Graphical model of DIVA

x

zxzd zy

yd x

zxzd zy

yd

Figure 2: Left: Generative model. According to the graphical model we obtain
p(d,x, y, zd, zx, zy) = pθ(x|zd, zx, zy)pθd(zd|d)p(zx)pθy(zy|y)p(d)p(y). Right:
Inference model. We propose to factorize the variational posterior as
qφd(zd|x)qφx(zx|x)qφy(zy|x). Dashed arrows represent the two auxiliary classifiers
qωd(d|zd) and qωy(y|zy).

A.2. Definition of Domain Generalization

We follow the domain generalization definitions used in Muandet et al. (2013). A domain is
defined as a joint distribution p(x, y) on X × Y, where X denotes the input space and Y
denotes the output space. Let PX×Y be the set of all domains. The training set consists
of samples S taken from N domains, S = {S(d=i)}Ni=1. Here, the ith domain p(d=i)(x, y)

is represented by ni samples, S(d=i) = {(x(d=i)
k , y

(d=i)
k )}nik=1. Each of the N distributions

p(d=1)(x, y), . . . , p(d=i)(x, y), . . . , p(d=N)(x, y) are sampled from PX×Y . We further assume
that p(d=i)(x, y) 6= p(d=j)(x, y), therefore, the samples in S are non-i.i.d. During test time we
are presented with samples S(d=N+1) from a previously unseen domain p(d=N+1)(x, y). We
are interested in learning representations that generalize from p(d=1)(x, y), . . . , p(d=N)(x, y)
to this new domain. Training data are given as tuples (d,x, y) in the case of supervised data
or as (d,x) in the case of unsupervised data.

A.3. Rotated MNIST

A.3.1. Training procedure

All DIVA models are trained for 500 epochs. The training is terminated if the training loss
for y has not improved for 100 epochs. As proposed in Burgess et al. (2018), we linearly
increase β from 0.0 to 1.0 during the first 100 epochs of training. We set αd = 2000. As seen
in Maaløe et al. (2019), we adjust αy according to the ratio of labeled (N) and unlabeled
data (M),

αy = γ
M +N

N
, (5)

where we set γ = 3500. Last, zd, zx and zy each have 64 latent dimensions. All hyperparam-
eters were determined by training DIVA on M0◦ , M15◦ , M30◦ , M45◦ and testing on M60◦ .
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We searched over the following parameters: αd, αd ∈ {1500, 2000, 2500, 3000, 3500, 4000};
dim(zd) = dim(zx) = dim(zy) and dim(zx) ∈ {16, 32, 64}; βmax ∈ {1, 5, 10}.

All models were trained using ADAM (Kingma and Ba, 2014) (with default settings), a
pixel-wise cross entropy loss and a batch size of 100.

A.3.2. Architectures

To enable a fair experiment, the encoder qφy(zy|x) and auxiliary classifier qωy(y|zy) form a
DNN with the same number of layers and weights as described in Wang et al. (2019).

Table 4: Architecture for pθ(x|zd, zx, zy). The parameter for Linear is output features.
The parameters for ConvTranspose2d are output channels and kernel size. The
parameter for Upsample is the upsampling factor. The parameters for Conv2d are
output channels and kernel size.

block details

1 Linear(1024), BatchNorm1d, ReLU
2 Upsample(2)
3 ConvTranspose2d(128, 5), BatchNorm2d, ReLU
4 Upsample(2)
5 ConvTranspose2d(256, 5), BatchNorm2d, ReLU
6 Conv2d(256, 1)

Table 5: Architecture for pθd(zd|d) and pθy(zy|y). Each network has two heads one for the
mean and one for the scale. The parameter for Linear is output features.

block details

1 Linear(64), BatchNorm1d, ReLU
2.1 Linear(64)
2.2 Linear(64), Softplus
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Table 6: Architecture for qφd(zd|x), qφx(zx|x) and qφy(zy|x). Each network has two heads
one for the mean one and for the scale. The parameters for Conv2d are output
channels and kernel size. The parameters for MaxPool2d are kernel size and stride.
The parameter for Linear is output features.

block details

1 Conv2d(32, 5), BatchNorm2d, ReLU
2 MaxPool2d(2, 2)
3 Conv2d(64, 5), BatchNorm2d, ReLU
4 MaxPool2d(2, 2)

5.1 Linear(64)
5.2 Linear(64), Softplus

Table 7: Architecture for qωd(d|zd) and qωy(y|zy). The parameter for Linear is output
features.

block details

1 ReLU, Linear(5 for qωd(d|zd)/10 for qωy(y|zy)), Softmax
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A.3.3. Qualitative Disentanglement: Training domains

Here, we trained DIVA on 5000 images from five domains: M0◦ , M15◦ , M30◦ , M45◦ and
M60◦ .

Figure 3: 2D embeddings of all three latent subspaces. In the top row embeddings are
colored according to their domain, in the bottom row they are colored according
to their class. First column: zd encoded by qφd(zd|x). The top plot shows five
distinct clusters, where each cluster corresponds to a single domain. In the bottom
plot no clustering is visible. Second column: zx encoded by qφx(zx|x). We observe
a correlation between the rotation angle of each MNIST digit and zx[0] in the
top plot. Upon visual inspection of the original inputs x, we find a correlation
between the line thickness digit and zx[0] as well as a correlation between the
digit width and zx[1] in the bottom plot. As a result, we observe a clustering of
embeddings with class ’1’ at the lower left part of the plot. Third column: zy
encoded by qφy(zy|x). In the top plot no clustering is visible. The bottom plot
shows ten distinct clusters, where each cluster corresponds to a class. A plot of
the 2D embeddings for the test domain M75◦ can be found in the Appendix.

A.3.4. Qualitative Disentanglement: Test domain

In this section, we visualize the zd and zy for data points x from the test domain M75◦

for the model trained in Section A.3.3. Figure 5 shows 1000 embeddings zy encoded by
qφy(zy|x). Figure 4 shows 1000 embeddings zd encoded by qφd(zd|x).
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Figure 4: 1000 two-dimensional embeddings zd encoded by qφd(zd|x) for x from the test
domain M75◦ . The color of each point indicates the associated domain.

Figure 5: 1000 two-dimensional embeddings zy encoded by qφy(zy|x) for x from the test
domain M75◦ . The color of each point indicates the associated class.

18



DIVA: Domain Invariant Variational Autoencoders

A.3.5. Samples

We present samples from DIVA by sampling zd, zx and zy from their priors and then
decoding them. Generated examples on the Rotated MNIST data are given in the Figure 6.
DIVA allows to generate images that are almost indistinguishable from real datapoints.

Figure 6: Samples from DIVA trained on Rotated MNIST.

A.3.6. Conditional generation

Yet another way to gain insight into the disentanglement abilities of DIVA is conditional
generation. We first train DIVA with β = 10 using M0◦ , M15◦ , M30◦ , M45◦ and M60◦ as
training domains. After training we perform two experiments. In the first one we are fixing
the class and varying the domain. In the second experiment we are fixing the domain and
varying the class.

Change of class The first row of Figure 7 (left) shows the input images x for DIVA. First,
we generate embeddings zd, zx and zy for each x using qφd(zd|x), qφx(zx|x) and qφy(zy|x).
Second, we replace zy with a sample z′y from the conditional prior pθy(zy|y). Last, we
generate new images from zd, zx and z′y using the trained encoder pθ(x|zd, zx, zy). In Figure
7 (left) rows 2 to 11 correspond to the classes ’0’ to ’9’. We observe that the rotation angle
(encoded in zd) and the line thickness (encoded in zx) are well preserved, while the class of
the image is changing as intended.

19



DIVA: Domain Invariant Variational Autoencoders

Figure 7: Reconstructions. Left: First row is input, row 2 to 11 correspond to labels ’0’ to
’9’. Right: First row is input, row 2 to 6 correspond to domains 0, 15, 30, 45, 60.

Change of domain We repeat the experiment from above but this time we keep zx and
zy fixed while changing the domain. After generating embeddings zd, zx and zy for each x
in the first row of Figure 7 (right), we replace zd with a sample z′d from the conditional prior
pθd(zd|d). Finally, we generate new images from z′d, zx and zy using the trained encoder
pθ(x|zd, zx, zy). In Figure 7 (right) rows 2 to 6 correspond to the domains M0◦ to M60◦ .
Again, DIVA shows the desired behaviour: While the rotation angle is changing the class
and style of the original image is maintained.

A.3.7. Ablation study: Partitioned latent space

We compare DIVA to a VAE with a single latent space, a standard Gaussian prior and two
auxillary tasks. The resulting graphical model is shown in Figure 8. The results in Table 8
clearly show the benefits of having a partitioned latent space z.
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x

z
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yd

Figure 8: Left: Generative model. According to the graphical model we obtain p(x, z) =
pθ(x|z)p(z). Right: Inference model. We propose qφ(z|x) as the variational
posterior. Dashed arrows represent the two auxiliary classifiers qωd(d|z) and
qωy(y|z).

The objective is given by,

FVAE(d,x, y) := Eqφ(z|x) [log pθ(x|z)]− βKL (qφ(z|x)||p(z))

+ αdEqφ(z|x) [log qωd(d|z)] + αyEqφ(z|x)
[
log qωy(y|z)

]
. (6)

Table 8: Comparison of DIVA with a VAE with a single latent space, a standard Gaussian
prior and two auxillary tasks on Rotated MNIST. We report the average and
standard error of the classification accuracy.

Test VAE DIVA

M0◦ 88.4 ± 0.5 93.5 ± 0.3
M15◦ 98.3 ± 0.1 99.3 ± 0.1
M30◦ 97.4 ± 0.2 99.1 ± 0.1
M45◦ 97.4 ± 0.4 99.2 ± 0.1
M60◦ 97.9 ± 0.2 99.3 ± 0.1
M75◦ 84.0 ± 0.3 93.0 ± 0.4

Avg 93.9 ± 0.1 97.2 ± 1.3

A.3.8. Ablation study: DIVA without zd and zx

We compare DIVA as proposed in Section 2 to two ablated versions of DIVA:

1. DIVA without zd: The domain label d is not used during training. Therefore, there
exist no latent space zd, no encoder qφd(zd|x), no prior pθd(zd|d) and no classifier
qωd(d|zd). The decoder becomes pθ(x|zx, zy).

2. DIVA without zx: There exist no latent space zx, no encoder qφx(zx|x) and no prior
p(zx). The decoder becomes pθ(x|zd, zy).

In Table 9, we compare DIVA and the two ablated versions on the Rotated MNIST
dataset. Surprisingly, for Rotated MNIST we could not find a significant difference in
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performance between DIVA and DIVA without zd, as seen in the third column. However, not
having zd drastically reduces the interpretability of our model, since without zd we cannot
find the variations in x that are explained by the domain d. E.g. in Appendix A.3.6, we
show that we can generate samples conditioned on the domain label that give us a clear
idea of the meaning of d. Furthermore, as seen in Figure 1, we see that the patient ID is
highly correlated with the color of the stain. While the cell shape in not correlated with
d or y and therefore is captured by zx. Without zd we are unable to gain such (especially
from a medical perspective) important insights. In the fourth column, we see that for M0◦

and M75◦ DIVA with zx performs significantly better than without. We argue that if zx
does not exist, zd and zy will capture the residual variations in x that are not explained by
d or y. We believe this makes it harder to predict y using zy and d using zd.

Table 9: Results of ablation study.
Test DIVA DIVA without zd DIVA without zx
M0◦ 93.5 ± 0.3 93.4 ± 0.5 92.7 ± 0.5
M15◦ 99.3 ± 0.1 99.3 ± 0.1 99.4 ± 0.1
M30◦ 99.1 ± 0.1 98.9 ± 0.1 99.2 ± 0.1
M45◦ 99.2 ± 0.1 99.1 ± 0.1 99.1 ± 0.1
M60◦ 99.3 ± 0.1 99.1 ± 0.1 99.4 ± 0.1
M75◦ 93.0 ± 0.4 92.8 ± 0.4 92.4 ± 0.4

Avg 97.2 ± 1.3 97.1 ± 1.3 97.1 ± 1.5

A.4. Malaria Cell Images

A.4.1. Example cells from each domain

(a) C116P77 (b) C132P93 (c) C137P98 (d) C180P141 (e) C182P143

(f ) C184P145 (g) C39P4 (h) C59P20 (i) C68P29 (j ) C99P60

A.4.2. Training procedure: DIVA

All DIVA models are trained for 500 epochs. The training is terminated if the validation
accuracy for y has not improved for 100 epochs. As proposed in Burgess et al. (2018), we
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linearly increase β from 0.0 to 1.0 during the first 100 epochs of training. We set αd =
100000 and αy = 75000. Last, zd, zx and zy each have 64 latent dimensions. We searched
over the following parameters: αd, αd ∈ {25000, 50000, 75000, 100000}; dim(zd) = dim(zx)
= dim(zy), dim(zx) ∈ {32, 64}; βmax ∈ {1, 5, 10}. All hyperparameters were determined
using a validation set that consists of 20 % of the training set. All models were trained using
ADAM (Kingma and Ba, 2014) (with default settings), a mixture of discretized logistics
(Salimans et al., 2017) loss and a batch size of 100. In case of the semi-supervised experiment
in Section 4.2 we adapt αd and αy according to Equation 5.

A.4.3. Training procedure: Baseline and DA

In case of the supervised experiments in Section A.4.5 all models are trained for 500 epochs.
The training is terminated if the validation accuracy for y has not improved for 100 epochs.
In case of the semi-supervised experiments in Section 2.1 the amount of epochs is adjusted
to match the number of parameter updates of DIVA. For DA we follow the same training
procedure as described in Ganin et al. (2015). In the supervised case, first, a labeled batch
randomly sampled from the training distributions is used to update the class classifier,
domain classifier and the feature extractor in an adversarial fashion. Second, a second
batch randomly sampled from the training distributions is used to update only the domain
classifier and the feature extractor in an adversarial fashion. In the semi-supervised case
samples from the unsupervised domains form the second batch together with samples from
the supervised domains. We use the same domain adaptation parameter λ schedule as
described in Ganin et al. (2015). Determined by hyperparameter search we find that DA
performs better when λ · ε is used. Here, ε = 0.001. We searched over the following values of
ε ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. In case of the semi-supervised experiment
in Section 4.2 ε = 0.01 was determined by hyperparameter search.

A.4.4. Architecture

In the following we will describe the architecture of DIVA in detail. Note that the architecture
for the baseline model is the same as qφy(zy|x) (we only use the mean of zy) followed by
qωy(y|zy) where zy has 1024 dimensions. DA is using qφy(zy|x) without the linear layer as a
feature extractor. The class classifier and the domain classifier consist of two linear layers.
The feature extractor for all models consist of seven ResNet blocks (He et al., 2015). During
training batch norm (Ioffe and Szegedy, 2015) is used for all layers.
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Table 10: Architecture for pθ(x|zd, zx, zy). The parameter for Linear is output features.
The parameters for ResidualConvTranspose2d are output channels and kernel
size. The parameters for Conv2d are output channels and kernel size.

block details

1 Linear(1024), BatchNorm1d, LeakyReLU
2 ResidualConvTranspose2d(64, 3), LeakyReLU
3 ResidualConvTranspose2d(64, 3), LeakyReLU
4 ResidualConvTranspose2d(64, 3), LeakyReLU
5 ResidualConvTranspose2d(32, 3), LeakyReLU
6 ResidualConvTranspose2d(32, 3), LeakyReLU
7 ResidualConvTranspose2d(32, 3), LeakyReLU
8 ResidualConvTranspose2d(32, 3), LeakyReLU
9 ResidualConvTranspose2d(32, 3), LeakyReLU
10 Conv2d(100, 3)
11 Conv2d(100, 1)

Table 11: Architecture for pθd(zd|d) and pθy(zy|y). Each network has two heads one for the
mean and one for the scale. The parameter for Linear is output features.

block details

1 Linear(64), BatchNorm1d, LeakyReLU
2.1 Linear(64)
2.2 Linear(64), Softplus
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Table 12: Architecture for qφd(zd|x), qφx(zx|x) and qφy(zy|x). Each network has two heads
one for the mean one and for the scale. The parameters for Conv2d are output
channels and kernel size. The parameters for ResidualConv2d are output channels
and kernel size. The parameter for Linear is output features.

block details

1 Conv2d(32, 3), BatchNorm2d, LeakyReLU
2 ResidualConv2d(32), LeakyReLU
3 ResidualConv2d(32), LeakyReLU
4 ResidualConv2d(64, 3), LeakyReLU
5 ResidualConv2d(64, 3), LeakyReLU
6 ResidualConv2d(64, 3), LeakyReLU
7 ResidualConv2d(64, 3), LeakyReLU
8 ResidualConv2d(64, 3), LeakyReLU

9.1 Linear(64)
9.2 Linear(64), Softplus

Table 13: Architecture for qωd(d|zd) and qωy(y|zy). The parameter for Linear is output
features.

block details

1 LeakyReLU, Linear(9 for qωd(d|zd)/2 for qωy(y|zy)), Softmax

A.4.5. Supervised case

To further evaluate domain generalization abilities, models are trained on nine domains
(patient IDs) and tested on the remaining 10th domain. We choose ROC AUC on the hold
out test domain as the evaluation metric, since the two classes are highly imbalanced. All
experiments are repeated five times.

Table 14: Results of the supervised experiments for the first part of domains. We report
the average and standard error of ROC AUC.

Model C116P77 C132P93 C137P98 C180P141 C182P143 C184P145
Baseline 90.6 ± 0.7 97.8 ± 0.5 98.9 ± 0.2 98.5 ± 0.2 96.7 ± 0.4 98.1 ± 0.2

DA 90.6 ± 1.7 98.3 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 96.9 ± 0.4 97.1 ± 0.8
DIVA 93.3 ± 0.4 98.4 ± 0.3 99.0 ± 0.1 99.0 ± 0.1 96.5 ± 0.3 98.5 ± 0.3
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Table 15: Results of the supervised experiments for the second part of domains. As well
as the average across all domains. We report the average and standard error of
ROC AUC.

Model C39P4 C59P20 C68P29 C99P60 Average
Baseline 97.1 ± 0.4 82.8 ± 2.8 95.3 ± 0.6 96.2 ± 0.1 95.2 ± 1.6

DA 97.4 ± 0.3 83.2 ± 3.3 96.3 ± 0.1 96.1 ± 0.3 95.4 ± 1.6
DIVA 97.8 ± 0.2 82.1 ± 3.0 96.3 ± 0.2 96.6 ± 0.3 95.8 ± 1.6

We compare DIVA with a ResNet-like (He et al., 2015) baseline and DA. During inference
all three models have the same architecture, seven ResNet blocks followed by two linear
layers. Detailed information about hyperparameters, architecture and training schedule
can be found in the Appendix. In Table 14 and 15 we find that the results are not equally
distributed across all test domains. In five cases DIVA is able to significantly improve upon
the baseline model and DA. Upon visual inspection we find that cells from domain C116P77
and domain C59P20 are stained pink, similar to the stain of the parasite, see Appendix.
In case of C116P77 DIVA achieves the highest ROC AUC of all three models. In case of
domain C59P20, all three methods have difficulties to detect the parasite which leads to the
lowest ROC AUC among all domains. We believe that the difficulties arise the poor contrast
between cell and parasite. Last, DIVA is able to improve on average when compared to the
baseline model and DA, although the improvements are within the standard error.

A.4.6. Predicting y using either zd, zx or zy

We test how predictive zd, zx and zy are for the class y on the Malaria Cell Images dataset.
First, we use the trained DIVA models from A.4.5 to create embeddings zd, zx and zy for
every x in the training domain and hold out test domain. Second, we train a 2-layer MLP
on the embeddings zd, zx and zy from the training domains. We train the MLP for 100
epochs using ADAM (Kingma and Ba, 2014). After training we test the MLP embeddings
zd, zx and zy from the test domain. In Table 16 we clearly see that zy captures all relevant
information in order to predict y, while the MLPs trained using zd and zx perform worse
than a classifier that would always pick the majority class.
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Table 16: Prediction of y using a 2 layer MLP trained using zd, zx and zy. We report
the mean and standard error of the classification accuracy on the hold out test
domain.

test domain zd zx zy majority class

0 84.6 ± 1.0 85.0 ± 0.2 87.9 ± 0.9 0.86
1 89.5 ± 0.4 88.2 ± 0.5 96.8 ± 0.1 0.9
2 68.2 ± 3.5 80.0 ± 1.6 96.9 ± 0.5 0.81
3 87.0 ± 0.3 75.2 ± 2.9 95.5 ± 0.2 0.88
4 89.1 ± 0.3 82.7 ± 2.4 92.5 ± 0.4 0.90
5 88.3 ± 0.2 87.7 ± 0.2 90.6 ± 0.5 0.88
6 82.6 ± 3.7 56.3 ± 5.1 91.1 ± 0.1 0.90
7 88.3 ± 0.1 88.3 ± 0.1 90.8 ± 0.8 0.88
8 89.5 ± 0.3 85.3 ± 1.7 93.5 ± 0.4 0.90
9 89.1 ± 0.2 86.9 ± 1.5 94.0 ± 0.3 0.89
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