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ABSTRACT

In this paper, we delve into the problem of simplicial representation learning
utilizing the 1-Wasserstein distance on a tree structure (a.k.a., Tree-Wasserstein
distance (TWD)), where TWD is defined as the L1 distance between two tree-
embedded vectors. Specifically, we consider a framework for simplicial represen-
tation estimation employing a self-supervised learning approach based on Sim-
CLR with a negative TWD as a similarity measure. In SimCLR, the cosine simi-
larity with real-vector embeddings is often utilized; however, it has not been well
studied utilizing L.1-based measures with simplicial embeddings. A key challenge
is that training the L1 distance is numerically challenging and often yields unsat-
isfactory outcomes, and there are numerous choices for probability models. Thus,
this study empirically investigates a strategy for optimizing self-supervised learn-
ing with TWD and find a stable training procedure. More specifically, we evaluate
the combination of two types of TWD (total variation and ClusterTree) and sev-
eral simplicial models including the softmax function, the ArcFace probability
model (Deng et al.,[2019)), and simplicial embedding (Lavoie et al.,2022). More-
over, we propose a simple yet effective Jeffrey divergence-based regularization
method to stabilize the optimization. Through empirical experiments on STL10,
CIFAR10, CIFAR100, and SVHN, we first found that the simple combination of
softmax function and TWD can obtain significantly lower results than the standard
SimCLR (non-simplicial model and cosine similarity). We found that the model
performance depends on the combination of TWD and the simplicial model, and
the Jeffrey divergence regularization usually helps model training. Finally, we in-
ferred that the appropriate choice of combination of TWD and simplicial models
outperformed cosine similarity based representation learning.

1 INTRODUCTION

Unsupervised learning is a widely studied topic, which includes the autoencoder (Kramer,|{1991) and
variational autoencoders (VAE) (Kingma & Welling, [2013). Self-supervised learning algorithms
including SIimCLR (Chen et al.,|2020b), Bootstrap Your Own Latent (BYOL) (Grill et al., 2020) and
MoCo (Chen et al., |2020b; He et al., 2020) can also be regarded as unsupervised learning methods.
The key idea of a self-supervised algorithm is to adopt contrastive learning, in which two data
points are systematically generated from a common data source, and lower representations are found
by maximizing the similarity of these two generated input vectors while minimizing the similarity
between a target and negative samples. For example, we generate two images by independently
applying image transformation such as rotation and cropping.

In terms of contrastive learning loss functions, the InfoNCE (Oord et al., 2018) is widely utilized.
It is a powerful pretraining method because self-supervised learning does not require label informa-
tion and can be trained with several data points. Most previous studies have focused on obtaining
real-valued vector representations. However, a few studies have learned lower representations on a
simplex (i.e., simplicial representation), including simplicial embedding (Lavoie et al.,2022).

Wasserstein distance, a widely adopted optimal transport-based distance for measuring distributional
difference, is useful in various machine learning tasks including generative adversarial networks
(Arjovsky et al.| 2017, document classification (Kusner et al.| 2015} [Sato et al., 2022)), and image
matching (Liu et al., [2020; Sarlin et al., [2020), to name a few. The Wasserstein distance is also
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known as the earth mover’s distance (EMD) in the computer vision community and the word mover’s
distance (WMD) in the natural language processing community.

In this paper, we consider the problem of learning a simplicial representation by utilizing a self-
supervised framework with 1-Wasserstein distance with tree metric (i.e., Tree-Wasserstein Distance
(TWD)). TWD includes the sliced Wasserstein distance and total variation as special cases, and it
can be represented by the L1 distance between tree-embedded vectors. Because TWD is given as
a non-differentiable function, learning simplicial representation utilizing backpropagation of TWD
is challenging. Moreover, there exist several probability representations exist, and it is difficult to
determine which one is more suitable for simplicial representation learning. Hence, we investigate
a combination of probability models and the structure of TWD. More specifically, we consider the
total variation and the ClusterTree for TWD, where we show that the total variation is equivalent to
the robust variant of TWD. Then, we propose the utilization of softmax, ArcFace based probability
model (Deng et al.|[2019), and the simplicial embedding (SEM) (Lavoie et al.,2022). Moreover, to
stabilize the training, we propose a Jeffrey divergence based regularization. Through self-supervised
learning experiments, we found that the standard softmax formulation with backpropagation yield
poor results. For total variation, the combination of the ArcFace-based model performs well. In
contrast, SEM is suitable for ClusterTree, whereas the ArcFace-based models achieve modest per-
formance. Moreover, the proposed regularization significantly outperforms when compared to its
non-regularized counterparts.

Contribution: The contributions are summarized below:

* We investigated the combination of probability models and TWD (total variation and Clus-
terTree). Then, we found that the ArcFace model with prior information is suited for total
variation, while SEM (Lavoie et al.| |2022)) is suited for ClusterTree models.

* We proposed a robust variant of TWD (RTWD) and showed that RTWD is equivalent to
total variation.

* We proposed the Jeffrey divergence regularization for TWD minimization; the regulariza-
tion significantly stabilized the training.

* We demonstrated that the combination of TWD and simplicial models can obtain better
performance in self-supervised training for CIFAR10, STL10, and SVHN compared to
the cosine similarity and real-valued representation combination, while the performance of
CIFAR100 can be improved further in future.

2 RELATED WORK
The proposed method involved unsupervised representation learning and optimal transportation.

Unsupervised Representation Learning: Representation learning is an important research topic in
machine learning and involves several methods. The autoencoder (Kramer},|1991)) and its variational
version (Kingma & Welling, |2013) are widely employed in unsupervised representation learning
methods. Current mainstream self-supervised learning (SSL) approaches are based on a cross-view
prediction framework (Becker & Hinton,|1992)), and contrastive learning has emerged as a prominent
self-supervised learning paradigm.

In SSL, a model learns by contrasting positive samples (similar instances) with negative samples
(dissimilar instances), utilizing methods such as SimCLR (Chen et al., [2020a), BYOL (Grill et al.,
2020), and MoCo (Chen et al., 2020bj He et al.,|2020). These methods employ data augmentation
and similarity metrics to encourage the model to project similar instances close together while push-
ing dissimilar ones apart. This approach has demonstrated effectiveness across various domains,
including computer vision and natural language processing, thereby enabling learning without ex-
plicit labels. SimCLR employs InfoNCE loss (Oord et al.| [2018). After SimCLR has proposed,
several alternative approaches have been proposed, such as Barlow’s twin (Zbontar et al.}[2021)) and
BYOL (Grill et al., [2020). Barlow Twins loss function attempts to maximize the correlation be-
tween positive pairs while minimizing the cross-correlation with negative samples. Barlow Twins is
closely related to the Hilbert—Shmidt independence criterion, a kernel-based independence measure
(Gretton et al., 20055 T'sa1 et al., [2021)).
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These approaches mainly focus on learning lower-dimensional representations with real-valued vec-
tor embeddings, and cosine similarity is adopted as a similarity measure in contrastive learning.
Recently, [Lavoie et al.| (2022)) proposed the simplicial embedding (SEM), which comprises multi-
ple concatenated softmax functions and learns high-dimensional sparse nonnegative representations.
This significantly improves the classification accuracy.

Divergence and optimal transport: Measuring the divergence between two probability distribu-
tions is a fundamental research problem in machine learning, and it has been utilized for various
computer vision and natural language processing applications, including document classification
(Kusner et al., 2015} Sato et al.L|2022) and image matching (Sarlin et al.||2020). One widely adopted
divergence measure is Kullback—Leibler (KL) divergence (Cover & Thomas| 2012). However, KL
divergence can diverge to infinity when the supports of the two input probability distributions do not
overlap.

The Wasserstein distance, or, as is known in the computer vision community, the EMD, can handle
the difference in supports in probability distributions. The Wasserstein distance was computed by
linear programming. Moreover, in addition to handling different supports, one of the key advantages
of Wasserstein distance over KL is that it can identify matches between data samples. For example,
Sarlin et al.[(2020) proposed SuperGlue, leveraging optimal transport for correspondence determi-
nation in local feature sets. Semantic correspondence investigated optimal transport by [Liu et al.
(2020). In NLP, [Kusner et al.| (2015) introduced the WMD, a Wasserstein distance pioneer in tex-
tual similarity tasks, widely utilized, including text generation evaluation (Zhao et al.| 2019). [Sato
et al.| (2022) further studied the property of WMD thoroughly. Another interesting approach is the
word rotator distance (WRD) (Yokoi et al., [2020), which utilizes the normalized norm of word vec-
tors as a simplicial representation and significantly improves WMD’s performance. However, these
methods incur cubic-order computational costs, rendering them unsuitable for extensive distribution
comparison tasks.

To speed up EMD and Wasserstein distance computation, |Cuturi| (2013) introduced the Sinkhorn
algorithm, solving the entropic regularized optimization problem and achieving quadratic order
Wasserstein distance computation (O(ﬁQ)), where 7 is the number of data points. Moreover, be-
cause the optimal solution of the Sinkhorn algorithm can be obtained by an iterative algorithm, it
can easily be incorporated into deep-learning applications, which makes optimal transport widely
applicable to deep-learning applications. One limitation of the Sinkhorn algorithm is that it still
requires quadratic-time computation, and the final solution depends highly on the regularization
parameter.

An alternative approach is the sliced Wasserstein distance (SWD) (Rabin et al., 2011} |[Kolouri et al.}
2016), which solves the optimal transport problem within a projected one-dimensional subspace.
Given 1D optimal transport’s sortable nature, SWD offers O (7 log 1) computations. SWD’s exten-
sions include the generalized sliced Wasserstein distance for multidimensional cases (Kolouri et al.,
2019), the max-sliced Wasserstein distance, which determines the optimal transport-enhancing 1D
subspace (Mueller & Jaakkolal 2015; Deshpande et al., 2019), and the subspace-robust Wasserstein
distance (Paty & Cuturi, [2019)).

The 1-Wasserstein distance with a tree metric (also known as the Tree-Wasserstein Distance (TWD))
is a generalization of the sliced Wasserstein distance and total variation (Indyk & Thaper, 2003;
Evans & Matsen, 20125 [Le et al., 2019). Moreover, TWD is also known as the UniFrac distance
(Lozupone & Knightl [2005)), which is assumed to have a phylogenetic tree beforehand. An impor-
tant property of TWD is that TWD has an analytical solution with the L1 distance of tree-embedded
vectors. Originally, TWD was studied in theoretical computer science, known as the QuadTree al-
gorithm (Indyk & Thaper, 2003)), and was recently extended to unbalanced TWD (Sato et al., 2020;
Le & Nguyen, 2021), supervised Wasserstein training (Takezawa et al., [2021)), and tree barycenters
(Takezawa et al.| 2022)) in the ML community. These approaches focused on approximating the
1-Wasserstein distance through tree construction, often utilizing constant-edge weights. Backurs
et al.| (2020) introduced FlowTree, amalgamating QuadTree and cost matrix methods, outperform-
ing QuadTree. They guaranteed that QuadTree and FlowTree approximated the nearest neighbors
employing the 1-Wasserstein distance. [Dey & Zhang| (2022)) proposed L1-embedding for approx-
imating 1-Wasserstein distance for persistence diagrams. |Yamada et al.| (2022)) proposed a com-
putationally efficient tree weight estimation technique for TWD and empirically demonstrated that
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TWD can have comparable performance to the Wasserstein distance while the computational speed
is several orders of magnitude faster than the original Wasserstein distance.

Most existing studies on TWD focus on tree construction (Indyk & Thaper, 2003} [Le et al., 2019
Takezawa et al.| [2021) and edge weight estimation (Yamada et al., 2022). |Takezawa et al.| (2022)
proposed a Barycenter method based on TWD where the set of simplicial representationes are
given. |[Frogner et al.| (2015)) considered utilizing the Wasserstein distance for multilabel classifi-
cation. Moreover, [Toyokuni et al.| (2021)) utilized TWD for multilabel classification. These studies
focused on supervised learning employing softmax as the probability model. Here, we investigated
the Wasserstein distance employing a self-supervised learning framework and evaluated various
probability models.

3 BACKGROUND

3.1 SELF-SUPERVISED LEARNING WITH SIMCLR

Let us denote z € R? as an input vector, and let us have n input vectors {z;}?_;. Now we define
the data transformation functions u*) = ¢ (z) € R? and u(? = ¢y(x) € R?, respectively.
The neural network model is denoted by fo(u) € R%u, where 0 is a learning parameter. Then,
SimCLR attempts to train the model by closing ©(!) and u(? to be close, where u!) and/or u(?)
are dissimilar to ', which is a negative sample.

To this end, the infoNCE (Oord et al.,[2018) is employed in the SimCLR model:
exp(sim(z;, z;)/T)
2R . )

> e Okzi exp(sim(z;, zx)/T)

where R is the batch size and sim(w, w') is a similarity function that takes a higher positive value if
w and v’ are similar, whereas it takes a smaller positive value or negative value when w and u’ are
dissimilar, 7 is the temperature parameter, and J5,; is a delta function that takes a value of 1 when
k # i and value 0 otherwise. In SimCLR, the parameter is learned by minimizing the infoNCE loss.
Hence, the first term of the infoNCE loss makes z; and z; similar. The second term is a log sum
exp function and is a softmax function. Because we attempt to minimize the maximum similarity

between the input z; and its negative samples, we can make z; and its negative samples dissimilar
utilizing the second term.

Clinfonce (24, 2j) = —log

0= argznin Z EinfoNCE(Z§1)7 z§2)).

i=1

where zz(l) = fg(uz(.l)) and z fe( ) ) respectively.

3.2 p-WASSERSTEIN DISTANCE

The p-Wasserstein distance between two discrete measures (= Z _ 100, and p' = Z =1 @ 10y,
is given by

1/p
AN .
Wy (p, ') = Her(?(lun,;y) Z Zﬁw (@i, ;)" J

=1 j5=1

where U (, 1t') denotes the set of the transport plans and U(u, p/) = {II € RT*™ : II1,; =

a,I1"1; = a'}. The Wasserstein distance is computed utilizing a linear program. However, be-
cause it includes an optimization problem, the computation of Wasserstein distance for each iteration
is computationally expensive.

One of the alternative approaches is to use the entropic regularization (Cuturi, 2013)). If we consider
the 1-Wasserstein distance, the entropic regularized variant is given as

HGI[}H;IG/)ZZTFU T, Yj —l—)\ZZW” log(m;;) — 1).

=1 j=1 i=1 j=1
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Figure 1: Left tree corresponds to the total variation if we set the weight as w; = %, Vi. Right tree is
a ClusterTree (2 class).

This optimization problem can be solved efficiently by using the Sinkhorn algorithm at a computa-
tional cost of O(7/m). More importantly, the solution of the Sinkhorn algorithm is given as a series
of matrix multiplications; the Sinkhorn algorithm is widely employed for deep learning algorithms.

3.3 1-WASSERSTEIN DISTANCE WITH TREE METRIC (TREE-WASSERSTEIN DISTANCE)

Another 1-Wasserstein distance is based on trees (Indyk & Thaper, 2003} |Le et al., [2019). The
1-Wasserstein distance with tree metric is defined as the L1 distance between the two probability
distributions p1 = 3 a;65; and p’ =3~ a6z

Wr(p, p') = ||diag(w) B(a — a) |l = ||diag(w) Ba — diag(w) Ba'|l1,

where B € {0, 1}NweXNest and wp € RY™*. Here, we consider a tree with a depth of one and a

ClusterTree, as illustrated in Figure If all the edge weights wy = we = ... = wy = % in the left
panel of Figure[l] the B matrix is given as B = I. Substituting this result into the TWD, we have

1
Wr (o) = 5lla = a'lly = fla — a'|lr.

Thus, the total variation is a special case of TWD. In this setting, the shortest path distance in the
tree corresponds to the Hamming distance. Note that Raginsky et al| (2013) also assert that the
1-Wasserstein distance with the Hamming metric d(z, y) = 4, is equivalent to the total variation
(Proposition 3.4.1).

The key advantage of the tree-based approach is that the Wasserstein distance is provided in closed
form, which is computationally very efficient. Note that a chain is included as a special case of a tree.
Thus, the widely employed sliced Wasserstein distance is included as a special case of TWD. More-
over, it has been empirically reported that TWD and Sinkhorn-based approaches perform similarly
in multi-label classification tasks (Toyokuni et al., 2021).

4 SELF-SUPERVISED LEARNING WITH 1-WASSERSTEIN DISTANCE

In this section, we first formulate self-supervised learning utilizing the TWD. We then introduce
ArcFace-based probability models and Jeffrey divergence regularization.

4.1 SIMCLR WITH TREE WASSERSTEIN DISTANCE

a and a’ are the simplicial embedding vectors of z and =’ (i.e., 1'a = 1 and 1" a’) with u =
> j ajde, and p' = 7 j a; de,, respectively. Here, e; is the virtual embedding corresponding to
aj or a;-, where e is not available in out problem setup in general. Then, we adopt the negative
Wasserstein distance between . and 1 as the similarity score for SimCLR:

sim(p, ') = =W (p, pt') = —||diag(w) Ba — diag(w)Ba'l|.

We cannot determine the tree structure or its weight; we assume that B and w are given. We
considered the total variation and ClusterTree cases (see Figure|I).
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This study attempts to estimate a simplicial representation estimation by adopting self-supervised
learning:

~

n 2N
6 = argmin ) (WT(MEU, u)r T Hlog Y drs exp(—WT(#gl),Mf))T‘l)) :
=1 k=1

where 7 > 0 is the temperature parameter for the InfoNCE loss. We can certainly utilize Barlow
Twins instead of infoNCE for simplicial representation estimation.

4.2 ROBUST VARIANT OF TREE WASSERSTEIN DISTANCE

In our setup, it is hard to estimate the tree structure B and the edge weight w, because the embedding
vectors e, €a, . . ., €4, 1s not available. To deal with the problem, we consider the robust estimation
of Wasserstein distance such as the subspace robust Wasserstein distance (SRWD) (Paty & Cuturi,
2019) for TWD. Specifically, with given B, we propose the robust TWD (RTWD) as follows:

Nieats Nieafs
1
RTWD(:“‘? M/) = 5 min max Z Z Tij dT(eia 6]‘),

IIcU(a,a’) w st BTw=1and w>0 4 -
=1 j=1

where dr(e;, e;) is the shortest path distance between e; and e;, where e; and e; are embedded on
atree 7.

Proposition 1 The robust variant of TWD (RTWD) is equivalent to total variation:
RTWD(p, 1) = |la — a'[l1v,

where ||a — a' ||ty = |l — a||y is the total variation.

Based on this proposition, the RTWD is equivalent to a total variation and it does not depend on the
tree structure B. That is, if we do not have a prior information about tree structure, using the total
variation is a reasonable choice.

4.3 PROBABILITY MODELS

Several probability models were adopted here.

Softmax: The softmax function for simplicial representation is given by

ag(x) = Softmax (£ (x)),
where fg(x;) is a neural network model.

Simplicial Embedding: [Lavoie et al.| (2022) proposed a simple yet efficient simplicial embedding
method. We assume that the output dimensionality of the output of the neural network model is dy;.
Then, SEM applies the softmax function to each V-dimsensional vector of fg(x), where we have
L = dqyy/V probability vectors. The ¢-th softmax function is defined as follows.

ag(x) = [aél)(a:)T,ag)(m)T, . .,aéL)(:c)T]T with agf) (x) = Softmax(fée) (x))/L,
where fée)(a:)) € RY is the ¢-th block of a neural network model. We normalize the softmax

function by L because ag(x) must satisfy the sum to one constraint for Wasserstein distance.

ArcFace model (AF): We proposed employing the ArcFace probability model (Deng et al., 2019).

k exp(k, x
ag(x) = Softmax(K | fo(x)/n) = ( oxp(ky S E’T(m)/ o lp( d°"'ff_( ) ) :
> ks exp(ky fo(x)/n) >y exp(ky fo(x)/n)
where K = [ky, ko, ..., kq,,] € R¥uwXdw ig a learning parameter, fg(z) is a normalized output of

amodel (fo(x)" fo(x) = 1), and 7 is a temperature parameter. Note that AF has a similar structure
of attention in transformers (Bahdanau et al.l 2014} |Vaswani et al.,[2017)). The key difference from
the original attention is normalizing the key matrix K and the query vector fg(x).
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AF with Positional Encoding: The AF can add one more linear layer and then apply the softmax
function; the performance can generally be similar to the standard softmax function. Here, we
propose replacing the key matrix with a normalized positional encoding matrix k,' k; = 1, Vi):

k;
Ikill2”

k; = k7 = sin(i/10000%/ %) k7D = cos(i/10000%/ o).

AF with Discrete Cosine Transform Matrix: Another natural approach would be to utilize an
orthogonal matrix as K. Therefore, we proposed adopting a discrete cosine transform (DCT) matrix
as K. The DCT matrix is expressed as

k(]) B 1/\/ dout (Z == 0)
i ﬁcos”(gﬂijmm (1 < i< dou)

One of the contributions of this study is that combining positional encoding and DCT matrix with
the ArcFace model significantly boosts performance, whereas the standard ArcFace model performs
similarly to the simple softmax function.

4.4 JEFFREY-DIVERGENCE REGULARIZATION

We empirically observed that optimizing the loss function above is extremely challenging. One
problem is that L1 distance is not differentiable at 0. Another issue is that the softmax function has
many degrees of freedom and cannot utilize the cost function in our framework. Figure [2]illustrates
the learning curve for the standard optimization adopting the softmax function model.

To stabilize the optimization, we proposed the Jeffrey divergence regularization, which is the upper
bound of the square of the 1-Wasserstein distance.

Proposition 2 For B"w = 1 and the probability vectors a; and a;, we have
W2 (15, 15) < ID(diag(w) Ba, |diag(w) Ba,),
where JD(diag(w)Ba;||diag(w)Ba;) is a Jeffrey divergence.
This result indicates that minimizing the symmetric KL divergence (i.e., Jeffrey divergence) can

minimize the tree-Wasserstein distance. Because the Jeffrey divergence is smooth, computation of
the gradient of the upper bound is easier.

We propose the following regularized version of InfoNCE.
2N

ZInfoNCE(agl)a 05-2)) =7 Wr(a; W, 52 )+ IOgZ(Sk;éz exp(—7 ' Wr(a; W, 52)))
k=1
+ AID(diag(w) Ba!" ||diag(w) Ba'?).
Note that|Frogner et al.|(2015)) considered a multilabel classification problem utilizing a regularized
Wasserstein loss. They proposed utilizing the Kullback—Leibler divergence-based regularization to
stabilize the training. We derive the Jeffrey divergence from the TWD, which includes a simple KL

divergence-based regularization as a special case. Moreover, we proposed employing JD regulariza-
tion for self-supervised learning frameworks, which has not been extensively studied.

5 EXPERIMENTS

This section evaluates SImCLR methods with different probability models utilizing STL10, CI-
FAR10, CIFAR100, and SVHN datasets.

5.1 SETUP

For all experiments, we employed the Resnet18 model with an output dimension of (doy = 256) and
coded all methods based on a standard SimCLR implementation[ﬂ We used the Adam optimizer and

'"https://github.com/sthalles/SimCLR
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Figure 2: The infoNCE loss and Top-1 (Train) comparisons on STL10 dataset.

set the learning rate as 0.0003, weight decay parameter as le-4, adn temperature 7 as 0.07, respec-
tively. For the proposed method, we compared two variants of TWD: total variation and ClusterTree
(See Figure . As a model, we evaluated the conventional softmax function, attention model (AF),
and simplicial embedding (SEM) (Lavoie et al.| [2022) and set the temperature parameter 7 = 0.1
for all experiments. For SEM, we set L = 16 and V' = 16.

We also evaluated JD regularization, where we set the regularization parameter A = 0.1 for all
experiments. For reference, we compared the cosine similarity as a similarity function of SimCLR.
For all approaches, we utilized the KNN classifier of the scikit-learn packageﬂ where the number
of nearest neighbor was set to K = 50 and utilized the L1 distance for Wasserstein distances and
cosine similarity for non-simplicial models. For all experiments, we utilized A6000 GPUs. We ran
all experiments three times and reported the average scores.

5.2 PERFORMANCE COMPARISON

Figure [2] illustrates the training loss and top-1 accuracy for three methods: cosine + real-valued
embedding, TV + Softmax, and TV + AF (DCT). This experiment revealed that the convergence
speed of the loss is nearly identical across all methods. Regarding the training top-1 accuracy, Co-
sine + Real-valued embedding achieves the highest accuracy, followed by the Softmax function, and
AF (DCT) lags. This behavior is expected because real-valued embeddings offer the most flexibil-
ity, Softmax comes next, and AF models have the least freedom. For all methods based on Tree
Wasserstein Distance (TWD), it is evident that JD regularization significantly aids the training pro-
cess, especially in the case of the Softmax function. However, for AF (DCT), the improvement was
relatively small. This is likely because AF (DCT) can also be considered a form of regularization.

Table [T] presents the experimental results for test classification accuracy using KNN. The first ob-
servation is that the simple implementation of the conventional Softmax function performs very
poorly (the performance is approximately 10 points lower) compared with the cosine similarity.
As expected, AF has just one more layer than the simple Softmax model, performing similarly to
Softmax. Compared with Softmax and AF, AF (PE) and AF (DCT) significantly improved the clas-
sification accuracy for the total variation and ClusterTree cases. However, for the ClusterTree case,
AF (PE) achieved a better classification performance, whereas the AF (DCT) improvement over the
softmax model was limited. In the ClusterTree case, SEM significantly improves with a combina-
tion of ClusterTree and regularization. Overall, the proposed methods performed better than cosine

2https ://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html
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Table 1: KNN classification result with Resnet18 backbone. In this experiment, we set the number
of neighbors as K = 50 and computed the averaged classification accuracy over three runs. Note
that the Wasserstein distance with (B = I; ) is equivalent to a total variation.

out

Similarity Function = simplicial Model STL10 CIFAR10 CIFARI00 SVHN

N/A 75.77 67.39 32.06 76.35
Cosine Similarity Softmax 70.12 63.20 26.88  74.46
SEM 71.33 61.13 26.08  74.28
AF (DCT) 72.95 65.92 2596  76.51
Softmax 65.54 59.72 26.07  72.67
SEM 65.35 56.56 2431  73.36
AF 65.61 60.92 26.33  75.01
AF (PE) 71.71 64.68 26.38  76.44
AF (DCT) 73.28 67.03 2585 77.62
TWD (TV) Softmax + JD 7264 67.08 2782 77.69
SEM + JD 71.79 63.60 26.14  75.64
AF +JD 72.64 67.15 2745  78.00
AF (PE) + JD 74.47 67.28 27.01  78.12
AF (DCT) + ID 76.28 68.60 26.49  79.70
Softmax 69.15 62.33 24.47 7487
SEM 72.88 63.82 22,55 7747
AF 70.40 63.28 2428 7524
AF (PE) 72.37 65.08 23.33  76.67
AF (DCT) 71.95 65.89 21.87 7792
TWD (ClusterTree) Softmax + JD 73.52 66.76 2496  77.65
SEM + JD 75.93 67.68 2296  79.19
AF +JD 73.66 66.61 24,55  77.64
AF (PE) + ID 73.92 67.00 23.83  77.87
AF (DCT) + ID 74.29 67.50 22.89  78.31

similarity without real-valued vector embedding when the number of classes was relatively small
(i.e., STL10, CIFAR10, and SVHN). In contrast, the performance of the proposed method degraded
for CIFAR100, and the results of ClusterTree are particularly poor. Because Wasserstein distance
can generally be minimized even if it cannot overfit, it is natural for the Wasserstein distance to make
mistakes when the number of classes is large.

Next, we evaluated Jeffrey divergence regularization. Surprisingly, simple regularization dramati-
cally improved the classification performance for all simplicial models. These results also support
the idea that the main problem with Wasserstein distance-based representation learning is mainly
caused by its numerical problems. Among them, the proposed AF (DCT) + JD (TV) achieves the
highest classification accuracy, comparable to the cosine similarity result, and more than ten % in
point improvements from the naive implementation with the Softmax function. Moreover, all the
simplicial model performances with the cosine similarity combination tended to result in a lower
classification error than the combination with TWD and simplicial models. From our empirical
study, we propose utilizing TWD (TV) + AF models or TWD (ClusterTree) + SEM for representa-
tion learning tasks for simplicial model-based representation learning.

6 CONCLUSION

This study investigated a simplicial representation employing self-supervised learning with TWD.
We employed softmax, simplicial embedding (Lavoie et al. 2022), and ArcFace models (Deng
et al., 2019). Moreover, to mitigate the intricacies of optimizing the L1 distance, we incorporated
an upper bound on the squared 1-Wasserstein distance as a regularization technique. We empirically
evaluated benchmark datasets and found that a simple combination of the softmax function and
TWD performed poorly. Overall, the combination of ArcFace with DCT outperformed its consine
similarity counterparts. Moreover, we found that the TWD (ClusterTree) and SEM combination
yielded favorable performance.
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A APPENDIX

A.1 PROOF OF PROPOSITION[I]

(Proof) Let B € {0, 1}V>*Neat = [by, by, ...,by,,] and b; € {0,1}". The shortest path distance
between leaves ¢ and j can be represented as (Yamada et al., 2022)

dr(ei,ej) =w' (b; +bj — 2b; 0 b;).
d7(e;, e;) is represented by a linear function with respect to w with given B and the constraint

of w and IT are convex. Thus, we have the following representation by the Minimax theorem
(v. Neumann, 1928;; [Fan, [1953)):

Nleat’s Nleafs
1
RTWD(p1, /') = = i jw ! (b +bj —2b; o b;
(Ma:u ) 2 w st Ble)li)f and w>0 HGI[I]l(lga/) Lzz; ; i W ( i + 0j i O ])
1
=5 dia B(a—a)|,
2 w st BTEBE); and w>0 H g(w) (a a )Hl
where we used TWD(u, i) = minmiey(a.a) Zz]'v:leiﬁ ;v:ll& mijdr(zi, ;) = |/diag(w)B(a —

')l

Without loss of generality, we consider wy = 0. We first re-write the norm ||diag(w)B(a — a')||;

> (w—ap)

k€[ Nieass], k€de(5)

where de(7) is the set of descendants of node j € [N] (including itself). Using the triangle inequal-
ity, we have

N
ldiag(w)B(a — a')[1 = Y w;

j=1

)

N
|diag(w)B(a—a/)[[y <> w; > |ax —ap]
j=1

k€ [Nieats] k€ de(5)
li
= E lay — ag| E Wy,
k€[ Nicass] JEIN],j€pa(k)

where pa(k) is the set of ancestors of leaf k. Re-writing the constraint BTw = 1 as
ZjE[N],jEpa(k) w; = 1 for any k € [Nicats|, we obtain that

|diag(w)B(a—a’)[h < Y lax — aj| = a—a’[|x.
k€[ Nieass]

The latter inequality holds for any weight vector w, therefore, considering the vector such that
w; = 1if j € [Nieass] and O otherwise, which satisfies the constraint BTw = 1, we obtain

Nieats

ldiag(w)B(a —a')[1 = ) lax — ai| = |la — a'||1.
k=1
This terminates the proof of this proposition.

A.2 PROOF OF PROPOSITION[Z]

(Proof) The following holds if B Tw = 1 with a probability vector @ (such thata ™1 = 1).
1" diag(w)Ba = 1.
Then, by using the Pinsker’s inequality we derive the following inequalities:

Wr (i, 1) = |[diag(w) Ba, — diag(w)Bay | < \/2KL(diag(w)Ba, |diag(w) Ba,),

and

W (ui, ) = ||diag(w) Ba; — diag(w)Bay |, < \/2KL(diag(w)Ba, | diag(w)Ba,).
Thus,
W2 (i, 1) < KL(diag(w) Ba|diag(w) Ba;) + KL(diag(w) Ba, | diag(w) Ba,)
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