
Under review as a conference paper at ICLR 2024

TEMPORAL FLEXIBILITY IN SPIKING NEURAL NET-
WORKS: A NOVEL TRAINING METHOD FOR EN-
HANCED GENERALIZATION ACROSS TIME STEPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs), models inspired by neural mechanisms in the
brain, allow for an energy-efficient implementation on neuromorphic hardware.
However, the limitation of current direct training approaches lies in their ability
to only optimize parameters for an SNN operating at a specific time step. This
leads to the necessity for fine-tuning when generalizing to additional time steps,
resulting in considerable computational inefficiency. In this study, we initially
examine the feasibility of parameter sharing across structurally identical SNNs
operating at different time steps. Subsequently, we propose an innovative training
methodology-mixed time step training (MTT) that facilitates the development of
a temporal flexible SNN (TFSNN). Throughout the training process, various time
steps are arbitrarily assigned to distinct SNN blocks, accompanied by the estab-
lishment of novel inter-block communication protocols. Following training, the
TFSNN can be simplified to an SNN operating at any chosen fixed time step, elim-
inating the need for fine-tuning. Experimental results across all primary datasets
demonstrate that the TFSNN exhibits robust generalization capabilities surpassing
existing training methodologies reliant on a fixed time step. Notably, we achieved
a 96.84% accuracy rate on the CIFAR10 dataset, an 81.98% accuracy rate on the
CIFAR100 dataset, and a 68.34% accuracy rate on the ImageNet dataset with T =
6.

1 INTRODUCTION

The field of deep learning continues to evolve and has witnessed groundbreaking advancements
such as GPT-4 (Bubeck et al., 2023) and SAM (Kirillov et al., 2023) that have made unprecedented
strides across diverse applications. However, the deployment of these large-scale neural networks
on low-power edge devices presents substantial challenges. In addition to the typical solutions
including network quantization (Rastegari et al., 2016), trimming (He et al., 2017), and distillation
(Hinton et al., 2015), the Spiking Neural Network, known as one of the 3rd generation of neural
networks, has emerged as a compelling candidate due to its unique bio-inspired characteristics (Fang
et al., 2021; Guo et al., 2022; Yao et al., 2023). SNNs mimic the behavior of biological neurons by
accumulating membrane potentials and transmitting sparse pulses, thereby circumventing the need
for computationally expensive multiplications (Roy et al., 2019). This unique property of SNNs
opens up new avenues for efficient computation on neuromorphic hardware (Davies et al., 2018;
Khan et al., 2008; Akopyan et al., 2015), presenting a promising solution for energy-efficient neural
computation.

Nevertheless, despite their advantages, training SNNs presents distinct challenges due to the binary
nature of their spiking behavior. This prevents the direct application of traditional gradient descent
methods. Current practices, such as the surrogate gradient (SG) method (Wu et al., 2018), aim
to address this issue by replacing the gradient of a non-differentiable step function with that of
an approximate function, thus enabling a back-propagation process similar to RNNs (Zheng et al.,
2021; Deng et al., 2022; Xiao et al., 2022; Chen et al., 2023; Meng et al., 2023). However, these
methods are predominantly designed to find optimal parameters for the SNN at a specific time
step, necessitating computationally expensive fine-tuning when the learned models are transferred
to those with distinct temporal latency.

1

Under review as a conference paper at ICLR 2024

Figure 1: The workflow of MTT pipeline. In each iteration, we sample s temporal configurations, each as-
signing random time steps to different stages. These configurations create s TFSNNs with distinct temporal
structures, all sharing the same weights. Next, we forward propagate the s TFSNNs and compute their respec-
tive losses. To update the shared weights, we backpropagate the sum of the s losses to obtain the gradient.
After training, the TFSNN can transform into a normal SNN and exhibit high performance at any time step.

In response to this issue, we propose a novel training method-mixed time step training (MTT) to
acquire the temporal flexible SNN (TFSNN). The workflow is shown in Fig. 1. This method secures
a set of parameters adaptive to SNNs with varying time steps under the same network structure,
thereby extending the generalization capabilities of SNNs across different time steps and circum-
venting the need for fine-tuning across different time steps. Our main contributions are as follows:

• We first demonstrate the feasibility of training an SNN that is compatible with different
time steps using a simple training method, naive mixture training (NMT).

• We analyze the mechanism by which NMT improves the performance of the model and
propose to train a TFSNN by mixed time step training (MTT) based on this mechanism to
further improve the training method. We also propose a method to estimate the accuracy of
TFSNN for any time step combination.

• We conducted thorough testing on both static and event-based datasets and on a wide range
of architectures, to confirm the effectiveness of our approach. The neural network obtained
by MTT demonstrates impressive flexibility over time, achieves performance on par with
other state-of-the-art methods, and exhibits more friendliness with asynchronous chips.

2 RELATED WORK

ANN-SNN Conversion ANN-SNN conversion uses SNN firing rates to approximate the activation
of ANN. Specifically, parameters are first directly copied from a pre-trained ANN to the target SNN
and then fine-tuned to mimic the original ANN activation. Techniques have been proposed to reduce
the minimum convertible time step, including the subtraction mechanism (Rueckauer et al., 2016;
Han et al., 2020; Han & Roy, 2020), spike-norm (Sengupta et al., 2019), threshold shift (Deng &
Gu, 2021), layer-wise calibration (Li et al., 2021a) and activation quantization (Bu et al., 2023).
Although SNNs obtained by conversion show some temporal flexibility for large time steps (e.g.,
above 100), they do not exhibit temporal flexibility under ultra-low time steps. Also, the conversion
method cannot handle DVS datasets and can only procure SNNs with IF neurons.

Direct Training The direct training approach stems from the idea that SNNs can be viewed as
variant RNNs and trained using BPTT as long as the non-differentiable activation term is replaced
with a surrogate gradient. Wu et al. (2018) first propose the STBP method and train SNNs using an
ANN framework. Zheng et al. (2021) further suggest a novel BatchNorm strategy tdBN to facilitate
large-scale SNN training. Recently, the performance of SNN on neuromorphic datasets has been
substantially enhanced with the advent of specially developed algorithms including TET (Deng et al.,
2022) and TCJA-SNN (Zhu et al., 2022). On static datasets, various methods (Li et al., 2021b; Guo
et al., 2022; Yao et al., 2022) are proposed to close the gap between SNNs and ANNs. Notably,
Guo et al. (2022) first report SNNs with accuracy exceeding the corresponding ANN counterpart,

2

Under review as a conference paper at ICLR 2024

demonstrating the strong potential of SNNs. However, weights obtained by existing direct training
methods are only applicable to a specific time step, which entails further training when the inference
time step is different.

Dynamic Inference Time Step Recent research explores inference-wise varied time steps, to reduce
average inference cost by skipping steps when the network is confident enough. Li et al. (2023b)
introduced SEENN, which determines the exit time step using confidence scores (SEENN-I) or a
policy network (SEENN-II). Li et al. (2023a) introduced another confidence-based dynamic model,
identifying the optimal confidence threshold using a Pareto Front. The excellent temporal flexibility
of TFSNN satisfies the need for such methods to reason at less than the training time step and thus
is an ideal model provider for them. We demonstrate this by experiments in section 5.2.

3 PRELIMINARIES

3.1 SPIKING NEURON MODEL

We adopt the iterative Leaky and Integrate-and-Fire(LIF) model (Wu et al., 2018; 2019). The mem-
brane potential is updated as

v(t+ 1) = τu(t) + I(t), (1)
I(t) = W · x(t), (2)

where u(t) denotes the membrane potential of the time step t, τ is a constant leaky factor, and I(t)
is the pre-synaptic inputs given by the product of synaptic weight W and spiking input x(t). After
the membrane potential exceeds a threshold Vth, the neuron fires a spike and resets u to 0. The hard
reset mechanism and firing function can be expressed as

s(t+ 1) = Θ(v(t+ 1)− Vth), (3)

u(t+ 1) = v(t+ 1) · (1− s(t+ 1)), (4)
where Θ(·) denotes the Heaviside step function, s(t+ 1) is the spike that will propagate to the next
layer. In this work, all the experiments are conducted with Vth set to 1 and τ set to 0.5.

3.2 SURROGATE GRADIENT

The direct training method computes gradients for parameters by spatiotemporal backpropagation
(Wu et al., 2018):

∂L

∂W
=

∑
t

∂L

∂s(t)

∂s(t)

∂v(t)

∂v(t)

∂I(t)

∂I(t)

∂W
. (5)

When backpropagating, all terms apart from the term ∂s(t)
∂v(t) can be easily calculated. However, the

term ∂s(t)
∂v(t) = ∂Θ(v)

∂v is the derivative of the Dirac delta function and does not exist. To solve this
problem, surrogate gradient(SG) is used to approximate the original gradient. In this work, we adopt
a triangular surrogate gradient (Rathi & Roy, 2020), which can be formulated as

∂s(t)

∂v(t)
=

1

h2
max(0, h− |Vth − v(t)|), (6)

where h is a constant controlling the sharpness. In this work, we apply h=1 to all experiments.

4 METHODOLOGY

In this section, we introduce our method Mixed Timestep Training (MTT), and its derivation process.
We first experimented with a simple method Naive Mixture Training (NMT) in Section 4.1 to verify
the possibility of bringing SNNs temporal flexibility. NMT not only succeeded in enabling SNNs to
generalize across different time steps but also consistently outperformed every single SDT-trained
model at each time step. In Section 4.2, we delve into the reasons behind NMT’s performance
improvement, examining both gradient and generalization factors. Subsequently, in Section 4.3,
we present our final method, MTT—an enhanced version of NMT that produces Temporal Flexible
SNN (TFSNN) with high adaptiveness to varied time steps.

3

Under review as a conference paper at ICLR 2024

4.1 START FROM NAIVE MIXTURE TRAINING

Our approach commences with a fundamental concept of altering the SNN’s simulation time step
during the training process. To avoid confusion, we refer to the above training strategy as ”naive
mixture training” (NMT) and the typical training strategy as ”standard direct training” (SDT). Notes
that NMT is not our final method. In the NMT technique, we randomly sample s values from the
pre-selected time set (e.g. {1, 2, 3, 4, 5, 6}) for each mini-batch. Each sampled Ti value is assigned
as the simulation time step of SNN for the current forwarding process. The network’s parameters
are updated only after all the s forwarding processes are finished. An experiment on the CIFAR100
dataset was conducted to analyze the effect of NMT. For SDT, we train the SNN for five independent
runs with different time steps, whereas for NMT, we only train the SNN once and test it under five
different time step configurations. We also assess a single T=6 SNN accuracy trained with SDT
across different T values for comparison. The results are presented in Table 1.

Our approach with the proposed simple strategy NMT shows improved performance across all time
step settings. This outcome underscores the practicality of training an SNN that is compatible with
various time steps and motivates us to delve deeper into understanding the associated mechanisms.

Table 1: Inference accuracy of naive mixture training
vs. standard direct training. SDT* denotes indepen-
dently trained SNNs with SDT

Methods T=2 T=3 T=4 T=5 T=6
SDT 70.08 72.77 74.17 75.09 75.63
SDT* 72.86 73.86 74.77 74.96 75.63
NMT 73.47 74.17 75.11 75.34 75.77

𝑣𝑡

𝑠𝑡

𝑢𝑡𝑣𝑡−1

𝑠𝑡−1

𝐼𝑡𝐼𝑡−1

𝑢𝑡−2𝑣𝑡−2

𝑠𝑡−2

𝐼𝑡−2

Figure 2: Computation graph of
LIF neuron, red arrow denotes non-
differentiable step function Θ.

4.2 ANALYSIS ON NAIVE MIXTURE TRAINING

Gradient. We believe that there exists a balance between SNN’s output precision and gradient
accuracy during the training phase with a surrogate gradient. Here, ”output precision” refers to the
information encoding capability of the spike trains. Due to the binary nature of the spike-based
inter-layer information transmission in SNNs, their information encoding capacity is not as strong
as that of ANNs. For example, a spike train composed of three spike values (each value can be 0 or
1) can only express 23 possible values. while the information encoding capacity of high-precision
numerical data is almost unlimited (232). Fortunately, spike trains (SNN layer output) have both
spatial and temporal dimensions, and expanding these dimensions can enhance the total information
encoding capacity, i.e., ”output precision”. The spatial dimension is constrained by the network
structure, while the temporal dimension is controlled by the SNN time step T. Increasing the time
step T can lead to an improvement in the information encoding capacity, thereby enhancing the
”output precision” of SNN. ”Gradient accuracy” refers to the precision of the parameter gradients
obtained by backpropagation. The reason for this notion arises from the fact that in the direct
training of SNNs, the gradients computed by the backpropagation algorithm contain noise. We first
derive the backpropagation formula Eq. 7 for further analysis. Based on equations Eq. 1-4, the
computational graph of a neuron with T time steps can be represented as shown in Fig. 2. This
representation enables us to compute the derivative of each output s to each input I (For further
elaboration, refer to appendix A.5):

∂s(t)

∂I(t− n)
=

∂s(t)

∂v(t)
· τn

t∏
i=t−n

[(1− s(i))− v(i) · ∂s(i)
∂v(i)

] (7)

where n is a non-negative integer that denotes the time span between the specified s and I . Note
that ∂s(t)/∂I(p) with p > t is constantly zero because of the invalid propagation path. The back-
propagation noises of SNN originate from the term ∂s(i)

∂v(i) in Eq. 7, where this term is calculated as
an approximated value by surrogate gradient during backpropagation because its original function is
a step function, whose derivative is ill-defined. As shown in Eq. 7, when the time steps T increases,

4

Under review as a conference paper at ICLR 2024

there are more instances of ∂s(i)
∂v(i) , leading to more gradient noise in the calculated parameter gradi-

ent, which sets an extra barrier to SNN training. To sum up, increasing the time step (T) enhances
the SNN’s output precision, but it also results in an increase in the calculated surrogate gradient
noise. This partly explains why SNN’s performance cannot be infinitely improved by increasing
time steps. Similarly, although decreasing the time step sacrifices output precision, the gradient is
more accurate.

A related work (Meng et al., 2023) suggests effectively training an SNN by removing the temporal
direction gradients. Similar to this work, we discovered that the gradients obtained under different
time steps (T) settings are remarkably similar, with over 94% cosine similarity between the gradients
acquired from scenarios with T = 3 and T = 6. NMT benefits from the accurate gradient of low T
while maintaining output precision of high T and therefore does the best of both worlds. We verify
our theory of the accurate gradient brought by low T through experiments in section 5.3.

Generalization. If SNN training falls into a local minimum point, once NMT samples a new time
step that is far away from the current one, the SNN’s output may change significantly. In this sce-
nario, the new training loss may not converge, leading SNN to jump out of the local minimum point.
And eventually, the SNN will be trained towards a flatter minimum point. Another perspective is
that since the sampling space is 6, NMT is equivalent to training 6 similar SNNs simultaneously.
This is similar to applying a new kind of dropout to the SNN, which improves the network’s gener-
alization. This is why NMT significantly improves SNN’s performance when T is small. We verify
our theory through experiments in section 5.3 and loss landscapes in appendix A.10.

4.3 TEMPORAL FLEXIBLE SPIKING NEURAL NETWORK

Inspired by NMT, we develop a novel SNN called temporal flexible Spiking Neural Network (TF-
SNN): A normal SNN is partitioned into stages as shown in Fig. 3 (e.g., a ResNet block as a stage),
and each stage can sample different simulation time steps. So, using the same time step select set,
TFSNN expands the network sample space of NMT from 6 to 68 on the ResNet-18 architecture. And
the NMT sample space is a special subset of TFSNN. Then, we design the temporal transformation
module (TTM) to modify the communication rules between pre- and post-blocks with different sim-
ulation time steps. Finally, we develop a new training pipeline, mixed time step training (MTT), to
train the TFSNN. It is worth noting that a trained TFSNN can unify the simulation time steps of
different stages and degrade into a traditional SNN.

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖

LIF

C
onv

LIF

C
onv +

T
T
M

𝑇𝑖+1

𝑠𝑡𝑎𝑔𝑒𝑖 𝑠𝑡𝑎𝑔𝑒𝑖+1

LIF

C
onv

LIF

C
onv +

LIF

C
onv

LIF

C
onv +

𝑇 = 𝑇𝑚𝑎𝑥

Figure 3: Evolve a normal SNN into a TFSNN.

In TFSNN, the setting of time steps of these stages can be denoted by a temporal configuration
vector t = (t1, . . . , tn), where ti denotes the time step of the i-th stage and n is the total number of
stages. The forwarding of a TFSNN can be denoted by STF (x, t), where x is an input and t is the
temporal configuration vector.

4.3.1 TEMPORAL TRANSFORMATION MODULE

1 32 4 5

21

+ +

3

+

𝑏1 𝑏2 𝑏3

do
w
ns
am
pl
in
g

A

1 32 4 5

21 3

𝑏1 𝑏2 𝑏3

up
sa
m
pl
in
g

B

Figure 4: (A) Downsampling TTM when tin=5 and tout=3. (B)
Upsampling TTM when tin=3 and tout=5.

We first design the basis of TFSNN,
an inter-block communication rule
between blocks with different simu-
lation time steps, based on which we
develop the temporal transformation
module (TTM). TTMs can be catego-
rized into downsampling and upsam-
pling types as illustrated in Fig. 4.
In downsampling TTMs, we borrow
from the pooling layer and divide in-

5

Under review as a conference paper at ICLR 2024

put time frames into tout groups of
adjacent frames. We then sum up the frames within each group to form tout time frames. By
contrast, the upsampling type of TTM replicates each input time frame and assigns it to all output
frames in the corresponding group, using the grouping policy same as the downsampling type of
TTM with tout frames of input and tin frames of output.

The task at hand is to identify a suitable policy to partition l frames into k groups, where l ≥ k.
A natural idea is to group them evenly. So, we use the following policy shown in Eq. 8 where bi
denotes the index of the first frame of group i. We further explain our design in appendix A.4.

bi = ⌊ (i− 1) · l
k

− ε⌉+ 1, i ∈ {1, ..., k} (8)

4.3.2 MIXED TIME-STEP TRAINING

Overall MTT Framework We further develop mixed time step training (MTT) to train a TFSNN.
Mathematically, our goal is to minimize the overall loss:

LMTT (overall) =

N∑
k

∑
t∈{Tmin,...,Tmax}l

L(STF (xk, t),yk) (9)

where L is any loss function, N is batch size, l is the number of stages, Tmin and Tmax are the
minimum and maximum time steps respectively, STF is a TFSNN, and t is any possible temporal
configuration vector. Since directly optimizing the overall loss is too expensive, we sample s vectors
t1, . . . , ts ∈ {Tmin, . . . , Tmax}l for each iteration and optimize the estimated loss function instead:

LMTT =

N∑
k

∑
t∈{t1,...,ts}

L(STF (xk, t),yk) (10)

To better illustrate our method, the training pipeline of one epoch is detailed in Algo.1. In this work,
Tmin is set to 1 for all experiments.

Algorithm 1 Mixed time step training for one epoch

Input: SNN model STF ; training dataset; training iteration I; sample number S in one iteration;
block number N ; minimum and maximum time step Tmin, Tmax

1: for all i = 1, 2, . . . , I-th iteration do
2: Get the training data xi and labels yi

3: for all s = 1, 2, . . . , S-th sample do
4: Sample a vector ts with N numbers in the range [Tmin, Tmax]
5: Calculate the loss function L(STF (xi, ts),yi)
6: Backpropagation and collect the gradient
7: end for
8: Update the model weights with collected gradients
9: end for

Batch Normalization Calibration MTT implemented with the standard BN technique suffers sig-
nificant accuracy degradation. This is because when training with mixed time steps, drastic structural
changes lead to significant variations in batch statistics. Therefore, the running mean and running
variance calculated during training would be inaccurate for a network trained with MTT. To ad-
dress this problem, we estimate BN statistics from a few training batches after other parameters are
well-trained and fixed. In our experiments in section 5.4, correcting BN statistics with as few as 10
batches proved sufficient. Therefore, we use this setting in all experiments. We also discovered that
the BN statistics of Tmax apply to other time steps. This enables us to avoid extra calibration when
switching to a different inference T . See details in appendix A.7.

4.3.3 ACCURACY ESTIMATION

Although our proposed method is initially intended to develop an SNN adaptable to all unified in-
ference time steps, obtaining the accuracy of any temporal configuration t can help us identify high-
performing, low-energy TFSNN settings and even inspires SNN structure designs. However, it is

6

Under review as a conference paper at ICLR 2024

impossible to test all possible situations directly (e.g., there are 68 cases for ResNet-18). Therefore,
we propose the following hypotheses to estimate the accuracy of each t : 1) The expressive power
of each block in TFSNN contributes differently and positively to the final network accuracy. 2) The
expressive power of each block is related to the information content of its selected time T, such as
K
√

log2 T , where the square root is due to the information content of a spike sequence with time
step T cannot exceed log2 T because the arrangement of spikes is regular, e.g., tending to be uni-
formly distributed. Then we assume that the accuracy equation of TFSNN is

∑I
i=1 Ki

√
log2 Ti+c,

where the Ki is the contribution of each block, and c is a constant. Our experiment (see section 5.3)
demonstrates that we only need to sample a very small number of ts to infer the parameters of the
equation, and then able to estimate all TFSNN accuracy with this equation.

5 EXPERIMENTS

In this section, we first compare our method with other current training methods to demonstrate the
effectiveness of our method in training temporal flexible SNNs. Then, we conduct some validation
and ablation experiments to prove that our method improves the network’s generalization and the
effectiveness of the different parts of our method. The datasets involved in this work include static
datasets like CIFAR10, CIFAR100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009),
and event-based datasets such as CIFAR10-DVS (Li et al., 2017) and N-Caltech101 (Orchard et al.,
2015). We also tested our method on sequence task and audio task (see appendix A.12). The
model structures used in this paper include ResNet-18 (He et al., 2016), ResNet-19 (Zheng et al.,
2021), ResNet-34 (He et al., 2016), VGG series (see appendix A.1 for VGG experiments), and our
handmade structures (see appendix A.6). All the experiments were conducted with RTX3090 GPUs.

Table 2: Compare with existing works on static image datasets. † denotes introducing additional floating-point
multiplications

Dataset Model Methods Architecture TimeStep Accuracy

CIFAR10

Guo et al.(Guo et al., 2022) InfLoR-SNN ResNet-19
6 96.49±0.08
4 96.27±0.07
2 94.44±0.08

Deng et al.(Deng et al., 2022) TET ResNet-19
6 94.50±0.07
4 94.44±0.08
2 94.16±0.03

Yao et al.(Yao et al., 2022) GLIF† ResNet-19
6 95.03±0.08
4 94.85±0.07
2 94.44±0.10

Our Method MTT ResNet-19
6 96.84±0.03
4 96.75±0.04
2 96.20±0.07

CIFAR100

Li et al.(Li et al., 2021b) Dspike ResNet-18 6 74.24±0.10
4 73.35±0.14

Guo et al.(Guo et al., 2022) InfLoR-SNN ResNet-19 6 79.51±0.11
4 78.42±0.09

Deng et al.(Deng et al., 2022) TET ResNet-19 6 74.72±0.28
4 74.47±0.15

Yao et al.(Yao et al., 2022) GLIF† ResNet-19 6 77.35±0.07
4 77.05±0.14

Our Method MTT ResNet-19 6 81.98±0.03
4 81.51±0.04

ImageNet

Zheng et al. (Zheng et al., 2021) STBP-tdBN ResNet-34 6 63.72
Deng et al. (Deng et al., 2022) TET ResNet-34 4 64.79
Fang et al. (Fang et al., 2021) SEW† SEW-ResNet-34 4 67.04

Chen et al. (Chen et al., 2023) MPSNN† DSNN-34 4 67.52
FSNN FSNN-34 4 66.45

Our Method MTT ResNet-34 6 68.34
4 67.54

5.1 COMPARISON TO EXISTING WORKS

Here, we compare our TFSNN trained by MTT with existing works. To demonstrate the superior
temporal flexibility of TFSNN, for one backbone and one dataset in the table, we trained only once.
For all experiments, we apply the sampling number s = 3 unless otherwise specified. The results of
static and neuromorphic datasets are provided in Table 2 and Table 3. To enable a fair comparison
with existing works, our TFSNN will degrade into a standard SNN with a unified time step after
training, so the inference process of TFSNN will be exactly the same as existing works. We repeat

7

Under review as a conference paper at ICLR 2024

Table 3: Compare with existing works on DVS datasets. †denotes introducing additional floating-point multi-
plications

Dataset Model Methods Architecture T Accuracy

CIFAR10-DVS

Yao et al. (Yao et al., 2022) GLIF† 7B-wideNet 16 78.10
Guo et al. (Guo et al., 2022) InfLoR-SNN ResNet-19 10 75.50±0.12
Zhu et al. (Zhu et al., 2022) TCJA-SNN† VGGSNN 10 80.7

Deng et al. (Deng et al., 2022) TET VGGSNN 10 83.17±0.15
Our Method MTT ResNet-18 10 82.8±0.54(83.5)

N-Caltech101

Kim et al. (Kim & Panda, 2021) SALT VGG11 20 55.0
Li et al. (Li et al., 2022) NDA VGG11 10 78.2

Zhu et al. (Zhu et al., 2022) TCJA-SNN† VGGSNN 14 78.5
Our Method MTT ResNet-18 10 81.74±0.73(82.32)

the experiment three times to report the mean and standard deviation. See appendix A.2 for training
details.

On CIFAR10, our proposed technique outperforms InfLoR-SNN by 0.35% at T=6. In addition, our
T=2 model performs similarly to their T=4 model. Our method also shows a 4.62% improvement
on the standard ResNet-34 structure at T=6 and outperforms its SEW counterpart by 0.5 at T=4. For
CIFAR10-DVS and N-Caltech101, our MTT method achieves an average accuracy of 82.8% and
81.45% and the best accuracy of 83.5% and 82.32%, respectively.

5.2 TEMPORAL FLEXIBILITY

In this section, we demonstrate the temporal flexibility of TFSNN and the advantages it brings.
Temporal Flexibility Across Settings We first test TFSNN on the dataset and network structure
mentioned in the last section (see Table 4). On static datasets, TFSNN performs fairly well at
different time steps. On DVS datasets, though achieving temporal flexibility is more challenging
due to the temporal characteristics, TFSNN can still be generalized to all time steps. We then
further compare our method with recent ANN-SNN conversion methods in Table 6. Jiang et al.
(2023) focuses on ultra-low-latency inference, and their results at T=1, and T=2 are the current
SOTA in the field of ANN-SNN Conversion. Despite the well-designed fine-tuning procedure these
SOTA conversion methods entail, MTT still outperforms them significantly at T=1 and T=2 while
remaining comparable to them for higher time steps. Note that for a fair comparison, we adopt the
same data augmentation policy as these methods.

Table 4: Accuracy of different inference time steps.

Dataset Model T=2 T=3 T=4 T=5 T=6
CIFAR100 ResNet-19 80.35 81.14 81.51 81.73 81.98
CIFAR10 ResNet-19 96.20 96.62 96.75 96.76 96.84
ImageNet ResNet-34 65.23 67.58 67.54 68.02 68.34
DVS Dataset Model T=2 T=4 T=6 T=8 T=10
CIFAR10-DVS ResNet-18 72.47 79.9 81.0 82.0 82.8
N-Caltech101 ResNet-18 69.46 75.70 78.68 80.10 81.74

Table 5: Combine MTT with SEENN.

Method T=1.20 T=1.09
SEENN-I (Li et al., 2023b) 96.38 96.07
SEENN-I + MTT 96.58 96.08

Table 6: Compare with SOTA ANN-SNN conversion methods on
CIFAR100, ResNet18. Tmax = 6 is used for MTT.

Method T=1 T=2 T=4 T=8 T=16 T=32 T=64
QCFS (Bu et al., 2023) - 70.29 75.67 78.48 79.48 79.62 79.54
SlipReLU (Jiang et al., 2023) 71.51 73.91 74.89 75.40 75.41 75.30 74.98
MTT 72.09 76.54 78.47 78.90 79.17 79.25 79.42

Table 7: NMNIST Test Accu-
racy on Asynchronous Chip

Method GPU Speck2e Devkit
SDT 98.61 96.18 (-2.43)
MTT 97.79 98.5 (+0.71)

Combine with Dynamic Inference Time Step We combine SEENN (Li et al., 2023b) with the
MTT-trained ResNet19 on CIFAR10 to show how temporal flexibility benefits the confidence-based
temporal dynamic method. We observed a performance boost under the same average inference time
when compared with their reported results trained by TET, testifying the suitability of TFSNN to
dynamic time step inference methods.

Compatibility with Asynchronous Chip Since the performance of TFSNN is largely decoupled
from the influence of the time step due to the design of MTT and the concept of timestep also doesn’t
exist on asynchronous chips, TFSNN is naturally more suitable for deployment on asynchronous
SNN chips. To demonstrate this, we deploy the MTT-trained SNN on Synsense’s Speck2e Devkit
(Richter et al., 2023) for asynchronous testing. Specifically, we train two networks on the NMNIST
dataset using SDT and MTT, respectively, and then deploy them on the Speck2e Devkit, as detailed
in Table 7.

8

Under review as a conference paper at ICLR 2024

5.3 ANALYSIS VALIDATION EXPERIMENTS

In this part, we conduct validation experiments. We first verify our theory of gradient and general-
ization in section 4.2, and then perform TFSNN accuracy estimation described in section 4.3.3.

Table 8: Training B-ResNet-50/72 on
CIFAR10 dataset.

Method B-ResNet-50 B-ResNet-72
SDT T=4 82.82 49.41
MTT T=4 88.16 53.71

Alleviate Gradient Problem According to our analysis in sec-
tion 4.2, our method mitigates the effect of gradient noise on
model training and thus can achieve better performance than
SDT on deep networks. To verify this theory, we hand-make
two deep networks, B-ResNet-50 and B-ResNet-72 (see ap-
pendix A.6 for details), and evaluate the performance of it
trained for 100 epochs by MTT and SDT on the CIFAR10
dataset. The results are shown in Table 8. Compared to SDT,
MTT achieved higher accuracy on B-ResNet-50 (+5.34%) and B-ResNet-72 (+4.3%). Both MTT
and SDT are affected by gradient noise, but MTT effectively alleviates the performance loss caused
by gradient errors.

Figure 5: Accuracy of mod-
els with weights injected with
Gaussian noise

Figure 6: Accuracy of models
with inputs injected with Gaus-
sian noise

Generalization As mentioned ear-
lier in section 4.2, our method
makes the network parameters
sound against network structure
changes like dropout and can gen-
eralize better. We further veri-
fied this through experiments with
ResNet-18 on CIFAR100. A
common method to measure the
model’s generalizability is noise in-
jection. First, we randomly in-
ject Gaussian noise N (0, σ2) to
weights, where σ2 is the variance
of the noise. For each σ2, we run
the experiment 5 times and plot the
mean, maximal, and minimal accuracy in Fig. 5. Results show that the weights trained by MTT
are more robust against noise. Then, we inject Gaussian noise into the inputs instead, and also run
the experiment 5 times each σ2, the results are shown in Fig. 6. In addition, to solidify the conclu-
sion, we also inspect the generalizability in other metrics (see appendix A.11). All the experiments
indicate that the model obtained by MTT is more generalizable, and MTT has an effect similar to
regularization.

TFSNN Accuracy Estimation Here, we validate our hypotheses in section 4.3.3. We randomly
sample 18 kinds of TFSNN (different time step combinations) and obtain their test accuracy
for solving the hypothesis equation in section 4.3.3. The weight parameters we obtained are
{0.93, 0.53, 0.59, 0.67, 1.22, 0.48, 1.36, 0.18}, and the constant value c is 67.11. This result sup-
ports our hypothesis 1), which suggests that all blocks’ time step increment positively contributes to
the accuracy of the final network. Some blocks, such as blocks 1, 5, and 7, have a greater contribu-
tion. Then, we resample 1000 TFSNN and validate their estimated accuracy and their test accuracy.
The result (Fig. 7 (A)) shows that our method can effectively predict the actual testing accuracy
of TFSNN. Finally, we use the spike frequency and accuracy estimation to build a combinatorial
optimization equation for searching the optimal TFSNN (see appendix A.3 for detail). For example,
by setting the energy cost that is lower than a default TFSNN (the time step of all blocks is 3), we
discover the optimal combination of block time steps is {3, 2, 2, 3, 5, 3, 6, 2}. The selected TFSNN
acquires an accuracy of 75.38%, which is 0.62% higher than the default.

5.4 ABLATION STUDY

Evolution from NMT to MTT Our improvement to NMT lies in dividing the network into many
stages with the same time step and constructing a TFSNN, and NMT can be seen as a special
case of the coarsest granularity of TFSNN division. In this section, we try different partitioning
granularities, namely different numbers of blocks per stage g, to further validate the effect of adding
more time structures to the optimization space. We train TFSNNs with g=1,2,4,8, and a single

9

Under review as a conference paper at ICLR 2024

A B C

69 70 71 72 73 74 75 76
Estimate Accuracy

69

70

71

72

73

74

75

76

r = 0.898
p = 0.000e+00

Te
st

 A
cc

ur
ac

y

Figure 7: (A) Correlation curve between estimate accuracy and true accuracy. (B) Accuracy of ResNet-18 with
different granularity where g=8 denotes NMT and g=1 denotes MTT. SDT denotes a single model trained at
T=6 and tested across T=2,3,4,5. (C) Training ResNet-18 on CIFAR100 and tracing the test accuracy with and
without BN calibration.

normal SNN with SDT. Then, we assess model accuracy for each with T=2,3,4,5,6. The results are
shown in Fig. 7 (B). As expected, with g continued to reduce and more temporal structures added to
the optimization space, the overall performance is generally improved.

Effectiveness of BN Calibration In this section, we studied the necessity of BN calibration. We
first trained two ResNet-18 on CIFAR100 and tracked their accuracy, one with BN calibration on
10 batches before testing and one simply using running means and variances. The results are shown
in Fig. 7 (C). Our experiment indicates that without correct BN statistics, the model suffers huge
accuracy degradation and that BN calibration effectively ameliorates the degradation.

6 CONCLUSION

In this work, we focus on training an SNN that can run at any simulation time with a set of fixed
parameters. We start with a simple method, naive mixture training, and analyze the reason why
NMT is effective. Based on this, we design the training method mixed time step training (MTT)
to train a temporal flexible SNN (TFSNN) that can degrade to a normal SNN at any time step. We
validate our theory with experiments and demonstrate the ability of TFSNN to generalize at different
inference time steps. Although we found that TFSNN has the potential to outperform SNN with the
same energy consumption when each block time step is different, we are unable to determine the
best combination of T during training and need the validation set for analysis. Even so, we believe
that this work is instructive for designing the structure of SNN.

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint
arXiv:2303.04347, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Guangyao Chen, Peixi Peng, Guoqi Li, and Yonghong Tian. Training full spike neural networks via
auxiliary accumulation pathway. arXiv preprint arXiv:2301.11929, 2023.

10

Under review as a conference paper at ICLR 2024

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 33(7):2744–2757, 2020.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin,
Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Gu-
ruguhanathan Venkataramanan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang.
Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro, 38(1):82–99,
January 2018. ISSN 1937-4143. doi: 10.1109/MM.2018.112130359.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. arXiv preprint arXiv:2103.00476, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021.

Yufei Guo, Yuanpei Chen, Liwen Zhang, YingLei Wang, Xiaode Liu, Xinyi Tong, Yuanyuan Ou,
Xuhui Huang, and Zhe Ma. Reducing information loss for spiking neural networks. In Com-
puter Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XI, pp. 36–52. Springer, 2022.

Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning delays in
spiking neural networks using dilated convolutions with learnable spacings. arXiv preprint
arXiv:2306.17670, 2023.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part X, pp. 388–404. Springer, 2020.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13558–13567, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan Xiong, and Bin Gu. A unified optimization
framework of ann-snn conversion: Towards optimal mapping from activation values to firing
rates. 2023.

11

Under review as a conference paper at ICLR 2024

Muhammad Mukaram Khan, David R Lester, Luis A Plana, A Rast, Xin Jin, Eustace Painkras, and
Stephen B Furber. Spinnaker: mapping neural networks onto a massively-parallel chip multipro-
cessor. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), pp. 2849–2856. Ieee, 2008.

Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic
vision sensing. Neural Networks, 144:686–698, 2021.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Chen Li, Edward Jones, and Steve Furber. Unleashing the potential of spiking neural networks by
dynamic confidence. arXiv preprint arXiv:2303.10276, 2023a.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, pp. 6316–6325. PMLR, 2021a.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differen-
tiable spike: Rethinking gradient-descent for training spiking neural networks. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021b. URL https://openreview.net/forum?id=H4e7mBnC9f0.

Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller, and Priyadarshini Panda. Neuromor-
phic data augmentation for training spiking neural networks. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VII, pp.
631–649. Springer, 2022.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal
spiking early-exit neural networks. arXiv preprint arXiv:2304.01230, 2023b.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory-and time-efficient backpropagation for training spiking neural networks. arXiv preprint
arXiv:2302.14311, 2023.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV,
pp. 525–542. Springer, 2016.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
tion in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

Ole Richter, Yannan Xing, Michele De Marchi, Carsten Nielsen, Merkourios Katsimpris, Roberto
Cattaneo, Yudi Ren, Qian Liu, Sadique Sheik, Tugba Demirci, et al. Speck: A smart event-based
vision sensor with a low latency 327k neuron convolutional neuronal network processing pipeline.
arXiv preprint arXiv:2304.06793, 2023.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and
tools for the conversion of analog to spiking convolutional neural networks. arXiv preprint
arXiv:1612.04052, 2016.

12

https://openreview.net/forum?id=H4e7mBnC9f0

Under review as a conference paper at ICLR 2024

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Haibo Shen, Yihao Luo, Xiang Cao, Liangqi Zhang, Juyu Xiao, and Tianjiang Wang. Training robust
spiking neural networks on neuromorphic data with spatiotemporal fragments. In ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1–5. IEEE, 2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 1311–1318, 2019.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. arXiv preprint arXiv:2210.04195, 2022.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. arXiv preprint arXiv:2210.13768, 2022.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11062–11070, 2021.

Rui-Jie Zhu, Qihang Zhao, Tianjing Zhang, Haoyu Deng, Yule Duan, Malu Zhang, and Liang-Jian
Deng. Tcja-snn: Temporal-channel joint attention for spiking neural networks. arXiv preprint
arXiv:2206.10177, 2022.

13

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXPERIMENTS ON VGG STRUCTURES

We evaluated our method on the CIFAR100 dataset using VGG architectures, besides ResNets.
We treated each layer as a stage in the VGG series. During experimentation, we observed that
VGG16 with three fully connected (fc) layers could not be trained effectively using the standard
direct training approach (its accuracy remained limited at 1%). To tackle this issue, we merged
the last three fc layers of VGG16 into one and named the resulting architecture VGG14. We set
Tmax = 5, s = 3, and computed the mean and standard deviation of three runs. We used the SGD
optimizer to train the model, with a learning rate of 0.1, a weight decay of 0.0005, and a batch size of
256. The results, presented in Table 9, indicate the effectiveness of our approach on VGG structures.

Table 9: Accuracy of VGG on CIFAR100

Methods Model T=2 T=3 T=4 T=5
MTT VGG14 73.53±0.09 74.52±0.07 75.27±0.14 75.72±0.10
InfLoR-SNN VGG16 - - - 71.56±0.10

A.2 TRAINING DETAILS

CIFAR The CIFAR10/CIFAR100 dataset comprises 50K training images and 10K test images with
a 32×32 pixel resolution. For CIFAR100, we train a ResNet-19 TFSNN using the MTT pipeline for
300 epochs with a batch size of 256 and a Tmax of 6. Following the practice in GLIF (Yao et al.,
2022), the last 2 fully connected layers of ResNet-19 are replaced with a single fully connected
layer. We employ the SGD optimizer with a weight decay of 0.0005 and a learning rate of 0.1 cosine
decayed to 0. To make a fair comparison with the state-of-the-art (SOTA) work (Li et al., 2021b;
Guo et al., 2022; Yao et al., 2022), AutoAugment (Cubuk et al., 2018) and Cutout (DeVries &
Taylor, 2017) are applied to both CIFAR10 and CIFAR100 datasets. However, these augmentation
techniques are only used for comparative experiments and temporal flexibility experiments, and not
for other experiments.

ImageNet ImageNet (Deng et al., 2009) contains more than 1280k training images and 50k test im-
ages. We use the standard data processing flow to crop each image to a size of 224×224. We deploy
the ResNet-34 structure, however, with the removal of the first max-pooling layer and changing the
stride of the first basic block from 1 to 2 (Zheng et al., 2021; Yao et al., 2022). We train the model
for 160 epochs with a batch size of 512 and a Tmax of 6. We utilize the AdamW optimizer with a
weight decay of 0.02 and a learning rate of 0.004 cosine decayed to 0.

DVS-Dataset CIFAR10-DVS and N-Caltech101 are neuromorphic datasets widely used in SNN
experimentation. We divide the dataset into a 9:1 ratio and merge all events to form ten frames,
which, similar to previous work (Li et al., 2021b; Deng et al., 2022), we resize to 48×48. For both
these datasets, we adopt a random horizontal flip and rotate the frames up to 5 pixels as augmentation
techniques. We employ the additional temporal inversion policy (Shen et al., 2023) uniquely for N-
Caltech101. For these datasets, we use a Tmax of 10, a batch size of 50, and train the TFSNN
ResNet-18 model for 300 epochs. The optimizer we choose is SGD, with a weight decay of 0.0005,
and a learning rate of 0.1, which we cosine decay to 0. While training the DVS dataset, we take only
the first t frames of the ten frames where t denotes the time step of the input stage, to feed into the
network.

A.3 DETAILS OF COMBINATORIAL OPTIMIZATION

As previously mentioned, the accuracy formula of TFSNN is given by the expression∑I
i=1 Ki

√
log2 ti + c, where Ki represents the contribution of each block, I is the number of

blocks, and c is a bias. We randomly select 18 distinct temporal configurations (t) and evaluate
their accuracies on the test set, resulting in 18 pairs of temporal configurations and their corre-
sponding accuracies. Using the least squares method, we compute the values of Ki and c from the
collected data. Next, we estimate the average firing rate (Ri) of each block in a unified SNN of
T=6. Then, the energy consumption of a specified temporal configuration t can be approximated
as

∑I
i=1 ti ·Ri. For example, the estimated energy consumption of a unified SNN with T=4 is

calculated as EC4 =
∑I

i=1 4Ri. Based on this, we can obtain a group of TFSNNs with lower

14

Under review as a conference paper at ICLR 2024

energy consumption (EC) for a given T=Tg , and we aim to identify the TFSNN with the maximum
estimated accuracy from this set. This is formulated as the following optimization problem:

maximize ACCestimated =

I∑
i=1

Ki

√
log2 ti + c

s.t.

I∑
i=1

ti ·Ri ≤ ECTg

Tmin ≤ t1, t2, . . . , tl ≤ Tmax,

where tiis the i-th component of temporal configurations t and ECTg
is the given uper bound of the

TFSNN energy.

In order to solve the above problem, we adopt the depth-first search (DFS) algorithm to search in the
solution space. To obtain a more accurate accuracy for each temporal configuration t, we perform
three times of BN calibrations and take the average of the accuracies.

A.4 DESIGN TTM GROUPING POLICY

We previously stated our policy’s objective is to partition l frames into k groups (l ≥ k) as evenly
as possible. In this section, we mathematically interpret the design. We will start by describing the
grouping process in a different manner. The l frames are viewed as l adjacent intervals of length 1
over the rational number domain with the i-th frame starting at i − 1 and ending at i. We define ci
as the boundary between group i and group i − 1. Here, i ranges from 1 to k, and c1 is 0. Ideally,
ci = (i−1) · l/k is set to group frames most evenly. Nevertheless, this strategy produces non-integer
ci, which results in atomic frames’ division when l is not a multiple of k. To solve this problem, we
retreat and set ci to the nearest integer and get

ci = ⌊ (i− 1) · l
k

− ε⌉, (11)

where ε is a small constant used to determine ci when the distances to the closest two integers are
equal. As bi must be the frame directly following the boundary ci (bi = ci + 1), we obtain Eq. 8.

A.5 DERIVATION OF THE BACKPROPAGATION FORMULA FOR LIF

In this section, we derive Eq. 7 from the forwarding formula. We derive ∂u(t)/∂v(t) from Eq. 4
first:

∂u(t)

∂v(t)
= 1− s(t)− v(t) · ∂s(t)

∂v(t)
. (12)

Then, we consider the derivation of ∂u(t)/∂v(t− 1). According to Fig. 2, ∂u(t)/∂v(t− 1) can be
calculated as follows

∂u(t)

∂v(t− 1)
=

∂u(t)

∂v(t)

∂v(t)

∂u(t− 1)

∂u(t− 1)

∂v(t− 1)
= τ

∂u(t)

∂v(t)

∂u(t− 1)

∂v(t− 1)
. (13)

By combining multiple Eq. 13, we get

∂u(t)

∂v(t− n)
= τn

t∏
i=t−n

∂u(i)

∂v(i)
. (14)

Finally, we get the complete expression for ∂s(t)/∂I(t− n) as follows

∂s(t)

∂I(t− n)
=

∂s(t)

∂v(t)

∂v(t)

∂u(t− 1)

∂u(t− 1)

∂v(t− n)

∂v(t− n)

∂I(t− n)

=
∂s(t)

∂v(t)
· τn

t−1∏
i=t−n

[(1− s(i))− v(i) · ∂s(i)
∂v(i)

]

(15)

15

Under review as a conference paper at ICLR 2024

A.6 DETAILS OF HANDMADE MODEL STRUCTURES

To demonstrate MTT’s capacity for training deep networks, we created two deep networks, B-
ResNet-50 and B-ResNet-72. We will present their specific structures in this section. Table 10
displays the architectures of these two networks. For convenience, we still use basic blocks for each
block, and simply reconfigure the number of basic blocks in each part. Since the model is large, we
use Tmax = 4.

Table 10: Structures of our handmade deep networks on CIFAR.

Stage Output Size B-ResNet-50 B-ResNet-72
conv1 32×32 3x3, 64

conv2 x 32×32
[

3x3, 64
3x3, 64

]
∗ 3

[
3x3, 64
3x3, 64

]
∗ 3

conv3 x 16×16
[

3x3, 128
3x3, 128

]
∗ 6

[
3x3, 128
3x3, 128

]
∗ 8

conv4 x 8×8
[

3x3, 256
3x3, 256

]
∗ 9

[
3x3, 256
3x3, 256

]
∗ 16

conv5 x 4×4
[

3x3, 512
3x3, 512

]
∗ 6

[
3x3, 512
3x3, 512

]
∗ 8

FC 1×1 average pool, fc, softmax

A.7 T = TMAX BN STATISTICS VS. RECALCULATED BN STATISTICS

As previously mentioned, we discovered that the BN statistics of the T=Tmax network can be applied
to other TFSNN with uniform T across blocks. In this section, we provide experimental verification
for this observation. Our experiment involves testing the accuracy of one of our trained ResNet-19
models with two distinct BN layer information approaches. The first approach utilizes the statistics
of the T=Tmax network, while the second approach recalculates the BN statistics individually for
each time step T. For the latter approach, we calibrate the BN layer three times and report the average
accuracy. Our experimental results demonstrated in Table 12 show that the mean and variance
calculated at T=Tmax is applicable directly to other T values. Therefore, we can utilize the BN
statistics of T=Tmax for other T directly, which saves the time required to calibrate the BN layers for
other T values.

Table 11: Accuracy given sampling number s and
training epochs e.

Sampling Num e× s
300 600 900 1200

s = 1 75.61 76.13 76.23 75.78
s = 2 75.53 76.37 76.31 76.36
s = 3 75.25 76.45 76.47 76.44
s = 4 74.81 75.74 76.41 76.42

Table 12: Test accuracy of a single model with two
kinds of BN statistics.

Method TimeStep
2 3 4 5

T=Tmax stat 80.21 81.06 81.51 81.82
Recalculated stat 80.21 81.23 81.44 81.85

A.8 IMPACT OF DIFFERENT SAMPLING NUMBER AND TRAINING EPOCHS

In most previous experiments, we employed sampling number s = 3. In this section, we experiment
with varying values of s, assess their effects at different epochs, and explain why we chose s = 3.
We train ResNet-18s with Tmax = 6 on CIFAR100 with varied s and list their test accuracy at T=6.
The results are displayed in Table 11. When e × s is constrained, the model requires more epochs
to converge, necessitating a lower s. However, if trained across a sufficient number of epochs,
sampling of s structurally diverse networks can smooth the optimization of network parameters and
improve performance. Specifically, we find s = 3 performs well and adopt s = 3 for most of the
experiments.

16

Under review as a conference paper at ICLR 2024

0.93 0.935 0.94 0.945 0.95
Estimate Accuracy

0.925

0.93

0.935

0.94

0.945

0.95

Te
st

 A
cc

ur
ac

y

r = 0.844
p = 1.844e-272

Figure 8: Correlation curve for estimate accu-
racy and test accuracy on CIFAR10

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
W

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

SDT 1D landscape
MTT 1D landscape

Figure 9: The 1D landscapes of ResNet18
trained by SDT and MTT on CIFAR100.

A.9 TFSNN ACCURACY ESTIMATION ON CIFAR10

In addition to CIFAR100, we also conducted experiments with ResNet-18 on CIFAR10. We ran-
domly sample 18 temporal configurations as usual and solve the equation in appendix A.3. The
weight parameters are {0.0049, 0.0028, 0.0017, 0.0037, 0.0037, 0.0004, 0.0005, 0.0017}, and the
constant value c is 92.13. Notes that block 1,4,5 have a higher contribution, and the 1,5 blocks
are also highly weighted on CIFAR100, which may imply that the weights are partly related to the
network structure. We then resample 1000 TFSNN and plot their estimate accuracy and test accu-
racy on CIFAR10 in Fig. 8. We also use the aforementioned combinatorial optimization strategy
to search the optimal TFSNN under the energy consumption of T=3 and find {4, 2, 2, 3, 5, 2, 2, 4},
which achieves an accuracy of 94.70%, 0.21% higher than its T=3 counterpart.

A.10 LOSS LANDSCAPES OF MTT AND SDT

To visually confirm the flatter minimum achieved by the model trained with MTT, we trained
ResNet18 using SDT and MTT on CIFAR100 and plotted their loss landscapes in Fig. 9. We
observed that MTT led the model to a flatter minimum which indicates improved generalizability.

A.11 VERIFYING GENERALIZABILITY THROUGH GRADIENT METRICS

Apart from noise injection, another famous metric that indicates the generalizability is the length
of the gradient on weights || ∂L

∂W || and the inputs || ∂L∂xi
||. For || ∂L

∂W ||, we evaluate the length of
the gradient of loss over the entire training set for the convolution layers. For || ∂L∂xi

||, we calculate
the mean value of the length of each input gradient. The model trained by MTT exhibits a shorter
gradient of both weights and inputs (see Table 13), which implies the model’s strong robustness and
generalizability.

Table 13: The gradient statistics of the
model trained by SDT and MTT.

Methods || ∂L
∂W || || ∂L∂xi

||
MTT 11.59 1.81
SDT 38.08 7.78

Table 14: Results on seqMNIST.

Methods Acc
Our RNN 56.22
SNN SDT 55.75
SNN MTT 64.56

Table 15: Results on Spiking Heidelberg
Digits

Methods Acc
l=3 Repro by code of 75.26Hammouamri et al. (2023)
l=3 our SDT 74.43
l=3 our MTT 79.68

Table 16: Results on Spiking Speech Commands

Methods Acc
Our SDT l=3 57.75
Our MTT l=3 60.15

17

Under review as a conference paper at ICLR 2024

A.12 EXPERIMENTS ON AUDIO AND SEQUENTIAL DATASETS

Our research reveals that TFSNN can function effectively as a time encoder when the temporal
configuration vectors used for training are monotonically non-increasing.

To illustrate this adaptability, we present the performance of TFSNN on three distinct temporal tasks:
seqMNIST, Spiking Heidelberg Digits and Spiking Speech Commands.

For the sequential task seqMNIST, we utilized a simple fc LIF SNN with 2 hidden layers of width
64 and set the time constant τ to 0.99. We also trained an RNN with 2 hidden layers of width 64 for
comparison. The results are as shown in Table 14.

For the Spiking Heidelberg Digits, we adopt the plain 3-layer feed-forward SNN architecture pro-
posed by Cramer et al. (2020), a fully connected SNN with an input width of 70 and 128 LIF neurons
in each of the 3 hidden layers. The timestep of the first layer is fixed to the input timestep, while the
timesteps of subsequent layers are restricted to monotonically non-increasing. We set τ = 0.9753,
which is equivalent to the parameter λ in the work of Cramer et al. (2020), namely 1− 1/τ in most
other articles, and train the model for 150 epochs. To ensure the validity of our results, we also re-
produce the result using the code provided by Hammouamri et al. (2023). The results are as shown
in Table 15.

Spiking Speech Commands (SSC) (Cramer et al., 2020) is a spiking dataset converted from Google
Speech Commands v0.2 and is tailored for SNN. For SSC, we continue using the same architecture
and the same parameters as we used in SHD, except that here we only train the model for 60 epochs.
The results are as shown in Table 16.

18

	Introduction
	Related Work
	Preliminaries
	Spiking Neuron Model
	Surrogate Gradient

	Methodology
	Start From Naive Mixture Training
	Analysis on Naive Mixture Training
	Temporal Flexible Spiking Neural Network
	Temporal Transformation Module
	Mixed Time-step Training
	Accuracy Estimation

	Experiments
	Comparison to Existing Works
	Temporal Flexibility
	Analysis Validation Experiments
	Ablation Study

	Conclusion
	Appendix
	Experiments on VGG Structures
	Training Details
	Details of Combinatorial Optimization
	Design TTM Grouping Policy
	Derivation of the Backpropagation Formula for LIF
	Details of Handmade Model Structures
	T=Tmax BN Statistics vs. Recalculated BN Statistics
	Impact of Different Sampling Number and Training Epochs
	TFSNN Accuracy Estimation on CIFAR10
	Loss Landscapes of MTT and SDT
	Verifying Generalizability Through Gradient Metrics
	Experiments on Audio and Sequential Datasets

