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Figure 1: We present Instruct2See, a zero-shot framework for obstruction removal that handles arbitrary obstructions. It
effectively tackles both soft (semi-transparent) and hard (opaque) obstructions, while demonstrating a robust effect in both
in-distribution (seen) and out-of-distribution (unseen) scenes. The right part shows how we represent unseen obstructions.

Abstract
Images are often obstructed by various obstacles
due to capture limitations, hindering the observa-
tion of objects of interest. Most existing meth-
ods address occlusions from specific elements
like fences or raindrops, but are constrained by
the wide range of real-world obstructions, mak-
ing comprehensive data collection impractical.
To overcome these challenges, we propose In-
struct2See, a novel zero-shot framework capable
of handling both seen and unseen obstacles. The
core idea of our approach is to unify obstruction
removal by treating it as a soft-hard mask restora-
tion problem, where any obstruction can be rep-
resented using multi-modal prompts, such as vi-
sual semantics and textual instructions, processed
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through a cross-attention unit to enhance con-
textual understanding and improve mode control.
Additionally, a tunable mask adapter allows for
dynamic soft masking, enabling real-time adjust-
ment of inaccurate masks. Extensive experiments
on both in-distribution and out-of-distribution
obstacles show that Instruct2See consistently
achieves strong performance and generalization
in obstruction removal, regardless of whether
the obstacles were present during the training
phase. Code and dataset are available at https:
//jhscut.github.io/Instruct2See.

1. Introduction
Obstruction removal is a challenging task that involves re-
covering clean scenes occluded by unwanted obstacles or
unpredictable natural phenomena. Existing methods often
focus on specific types of obstructions (Zhang et al., 2019;
Wen et al., 2019; Du et al., 2020; Chugunov et al., 2024;
Quan et al., 2023a; Huang et al., 2024b; Zhou et al., 2023;
Li et al., 2024) by relying on predefined categories and spe-
cific training datasets. However, this reliance limits their
generalization, often resulting in poor or invalid removal
of occluders outside the training distribution. Therefore, it
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is crucial to enable models to grasp the underlying physi-
cal properties of occlusion to enhance image quality under
complex and varied conditions.

While many advanced methods (Tsogkas et al., 2023;
Chugunov et al., 2024; Zhou et al., 2023; Dai et al., 2023;
Zhang et al., 2023a; Li et al., 2024; Chang et al., 2024;
Chen et al., 2023a) continue to target specific obstructions,
the diversity of real-world obstacles makes designing and
training separate models for each type inefficient and im-
practical (Guo et al., 2024). As a result, there is growing
interest in all-in-one restoration models (Li et al., 2020;
Chen et al., 2021; Han et al., 2022; Wang et al., 2023b; Vala-
narasu et al., 2022; Li et al., 2022a; Özdenizci & Legenstein,
2023), which aim to handle multiple complex scenarios with
a single model. However, despite these advancements, such
models remain constrained by their training datasets. As
shown in Fig. 1 (b), restoration methods trained on multi-
scene datasets struggle to handle unseen scenarios and lack
the flexibility to adapt based on user input. This limitation is
especially problematic in dynamic real-world applications,
such as autonomous driving and intelligent robotics.

An alternative approach to obstruction removal is image in-
painting techniques (Zeng et al., 2019; Suvorov et al., 2022),
which repair or fill in missing or occluded regions by gen-
erating plausible pixel values that blend with the original
scene. While inpainting can produce visually convincing re-
sults, these reconstructions often lack realism. For example,
as shown in Fig. 1 (c), inpainting can fill occluded areas,
but the reconstructed textures, such as the woman’s face,
often appear unnatural. Applying these inaccurate results to
downstream tasks, like object detection, depth estimation,
or video analysis, can lead to errors and negatively impact
practical applications.

In this work, we revisit the problem of obstruction re-
moval through the lens of unified masking and introduce
Instruct2See, a method that transcends traditional training-
dependent solutions by generalizing beyond specific data
distributions (Fig. 1 (d)). Our distribution-agnostic ap-
proach formulates obstruction removal as a soft-hard mask
restoration problem, where any obstruction can be repre-
sented by integrating visual semantic embeddings and text
instructions, as provided by a visual-language model (right
part of Fig. 1). By seamlessly integrating obstruction po-
sitions, visual semantics, and textual instructions, our ap-
proach redefines obstruction removal as an adaptable pro-
cess that fluidly transitions between hard and soft masking,
effectively capturing the complexity and diversity of real-
world obscured scenarios. To be specific, visual semantics
help recover missing information caused by occlusions, lead-
ing to more accurate scene reconstruction, while the text
instruction serves as a prior prompt to guide various removal
tasks. Additionally, we design a tunable mask adapter to

bridge the gap between the estimated and actual masks,
reweighting the predicted mask into a soft mask that dy-
namically adapts to the testing scene. In summary, the key
contributions of our work include:

• We introduce the first unified obstruction formulation
and a novel zero-shot paradigm capable of handling
any obstruction by integrating obstacle positions with
multi-modal prompts, including visual semantics and
text instructions.

• We develop a dynamic soft masking strategy that au-
tomatically refines inaccurate masks for occluding ob-
structions using a tunable adapter.

• Comprehensive experiments demonstrate the superior
effectiveness of our model in obstruction removal, as
well as its strong zero-shot generalization to unseen
obstructions outside the training distribution.

2. Related Work
Obstruction Removal. The task of obstruction removal
aims to clear unwanted obstructions from a scene, improving
its visibility. Many existing methods are tailored to specific
types of degradation, such as deraining (Zhang et al., 2023b;
Wang et al., 2023a), desnowing (Quan et al., 2023b; Chen
et al., 2023b), and raindrop removal (Qian et al., 2018; Li
et al., 2024). While these approaches are effective for in-
dividual obstructions, they struggle with handling multiple
degradation types simultaneously, often requiring separate
models for each. To address this limitation, all-in-one image
restoration models have been developed. For example, Liu
et al. (2021) proposed a method that separates an image into
obstruction and background layers using layered decompo-
sition, improving visibility through obstructions. Li et al.
(2022a) introduced AirNet, which incorporates an additional
encoder with contrastive learning to distinguish between var-
ious degradation types. Potlapalli et al. (2023) presented
PromptIR, a flexible plugin module that uses lightweight
prompts to handle multiple image restoration tasks. Histo-
former was introduced to employ histogram equalization
techniques within a neural framework to enhance and re-
store degraded images (Sun et al., 2024). Despite these
advancements, all-in-one models still face challenges when
dealing with degradation types beyond their training data,
limiting their effectiveness in real-world applications.

Image Inpainting. With advancements in parallel comput-
ing and deep learning, numerous image inpainting methods
have been developed to restore missing or damaged regions
in digital images with natural and coherent content. CNN-
based methods, such as PEN-Net (Zeng et al., 2019) and
LaMa (Suvorov et al., 2022), have proven efficient for gen-
erating local textures, but they often struggle to capture
global context and handle complex patterns. To address
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these limitations, transformer-based and diffusion-based
models have been proposed. Deng et al. (2021) introduced
the Contextual Transformer Network, which uses multi-
scale, multi-head attention to capture long-range dependen-
cies and global context through self-attention. Similarly,
Li et al. (2022c) developed the Mask-Aware Transformer,
which selectively aggregates non-local information using
a dynamic mask, ensuring high fidelity and diversity in re-
stored images. Diffusion-based methods like RePaint (Lug-
mayr et al., 2022) combine denoising diffusion probabilistic
models with conditional inpainting to iteratively generate
high-quality results. More recently, Grechka et al. (2024)
proposed GradPaint, a diffusion-based method that lever-
ages gradient guidance to enhance the quality and coherence
of inpainted regions, producing artifact-free restorations.

Despite these efforts, applying image inpainting methods
directly to obstruction removal is challenging due to limi-
tations in cross-domain applicability and the distinct focus
of these methods. While inpainting aims to generate visu-
ally plausible results, obstruction removal requires precise
restoration to ensure data integrity for further analysis. Un-
realistic outcomes can lead to errors in downstream tasks.
Nonetheless, rethinking obstruction removal from the per-
spective of image inpainting presents a promising avenue
for future exploration.

Vision-Language Models (VLMs). VLMs (Zhang et al.,
2024) have gained significant attention for their ability to
jointly interpret visual and textual information. Pre-trained
VLMs, such as CLIP (Radford et al., 2021), have demon-
strated improved performance across a range of downstream
tasks by integrating visual and textual representations. CLIP
employs a contrastive learning approach to align image and
text embeddings, while distancing mismatched pairs in the
embedding space. This alignment enables CLIP to perform
zero-shot learning, recognizing unseen objects and concepts
based on textual descriptions, achieving remarkable results
without task-specific fine-tuning. In this work, we integrate
the pre-trained CLIP with a prompt module to effectively
leverage contextual information about degradation types,
enhancing the performance of obstruction removal.

Zero-Shot Learning (ZSL). ZSL is an advanced machine
learning paradigm that enables models to recognize and
understand instances they have never encountered during
training. Unlike traditional supervised learning, which relies
on labeled examples for each class, ZSL leverages auxiliary
information such as semantic attributes, textual descrip-
tions, or word embeddings to generalize from seen to un-
seen classes. ZSL has shown significant potential in various
applications, including image classification (Naeem et al.,
2024), object detection (Huang et al., 2024a), and object
counting (Zhu et al., 2024), offering a solution for scenarios
with limited labeled data or dynamic class distributions. In
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Figure 2: Examples of in- and out-of-distribution obstacles.

obstruction removal, characterized by diverse and varied
obstructions, a ZSL approach is essential for handling a
wide range of unseen obstacles effectively.

3. Distribution-Agnostic Formulation
Seen Obstructions. As illustrated in Fig. 2, we focus on
three typical but distinct types of obstructions in the training
data: fences, raindrops, and flares. These obstructions were
chosen for their diversity in visual characteristics and mask
extraction difficulty. Fences represent obstructions with a
sharp distinction from the background, making it relatively
straightforward to extract the mask. Therefore, we adopt a
hard masking strategy for fences, as shown by the purple
process in Fig. 3. In contrast, raindrops pose a challenge due
to their blurred boundaries with the background and their
random distribution across the image. Similarly, flares also
exhibit soft, blurred edges, but their occurrence is more pre-
dictable, often appearing around point light sources. Given
the difficulty in extracting accurate masks for raindrops and
flares, which have indistinct boundaries, we employ a soft
masking approach, indicated by the green process in Fig. 3.

Unseen Obstructions. In addition to the seen obstructions
present in the training data, this work also targets more
complex and varied unseen obstructions, including power
cables, yarn, snow, rain streaks, scratches, and others, with
examples depicted in Fig. 2. Depending on the degree
of boundary ambiguity between the obstruction and the
background, and the difficulty in extracting an appropriate
mask, we apply soft masking for semi-transparent occlusions
like shadow and rain streaks, where the edges are blurred.
For more opaque occlusions, such as power cables, yarn,
and scratches, we employ hard masking due to the clearer
boundary between the obstruction and the background.

Unified Imaging Description. The overarching objective
of this work is to remove unwanted obstructions and restore
the occluded background. This problem can be modeled
mathematically as follows:

I(x) = B(x) ◦ (1−M(x)) +R(x) ◦M(x), (1)

where I(x) represents the input image containing obstruc-

3



Instruct2See: Learning to Remove Any Obstructions Across Distributions

Instructions

GPT 4

Text Command
Database

User

Instruct2See

Obstruction
Removal Model

Soft Masking
Switch

T
raining

Phase
Inference

Phase

Cross-Attention

Multi-modal Prompt Generation

…
… Visual Semantic 

Tokens

Text Command 
Tokens

Input Images

Mask Generation

Cutout + Concat

Text Instructions

Hard Masking 
Process

Soft Masking 
Process

Text 
Encoder

Visual 
Encoder

Mask 
Detector

Transform
er

Decoder

Transform
er

Encoder

Adapter

Tunable

Freeze

Positional Encoding

Embedding

Token

Common process Transformer Block

Outputs

Image
Feature

Multi-modal 
Prompt

Cross-Attention

Self-Attention

FFN

Layer Norm

Layer Norm

Layer Norm
Q K V

Obstruction Removal

Ground Truth

Reconstruction Loss

''... Opaque/Semi-
Transparent Obstruction...''

Input Images

Outputs

Figure 3: Flowchart of our Instruct2See. Instruct2See accepts instructions (randomly sampled from a database of instructions
generated by GPT-4 during the training phase or inputted by the user during the inference phase) to flexibly activate soft
masking and control the obstruction removal model for optimal capabilities.

tions, B(x) is the underlying background image to be recov-
ered, R(x) denotes the obstruction components, and M(x)
is a binary mask. Here, x refers to the pixel index. This for-
mulation enables the decomposition of the input image into
background and obstruction components using the mask
M(x) to separate them.

Generalization to Unseen Obstructions. As outlined in
Eq. (1), obstruction removal is inherently an ill-posed prob-
lem, as it involves estimating the background scene B(x)
from a single input image I(x) while accounting for the
obstructions R(x) represented by the mask M(x). Most
deep learning-based methods tackle this challenge by taking
I(x) as input and predicting B(x) as output, relying on a
network to learn the complex mapping from I(x)→ B(x).
However, these approaches are heavily data-dependent and
typically perform well only on obstructions within the train-
ing distribution, becoming less effective when encounter-
ing out-of-distribution obstructions. This limitation arises
primarily from the significant variation in the obstruction
component R(x) across different classes.

To address this challenge, our approach focuses on improv-
ing the model’s ability to generalize by explicitly consider-
ing the variability in the obstruction component R(x). By
designing the model to handle a wide range of obstruction
types beyond the training data, we enhance its capacity
to perform well on unseen obstructions. This enables the
model to maintain robust performance even when faced with
occlusions that deviate significantly from those encountered
during training.

4. Proposed Method
Fig. 3 outlines the flowchart of the proposed method. Unlike
existing obstruction removal approaches that directly use I

in Eq. (1) as the model input, we first aim to mitigate the
negative impact of R on model generalization. We introduce
Î as the input to the restoration network, defined as:

Î(x) = I(x)−R(x) ◦M(x). (2)

To achieve this, we utilize a trained mask detector D(·) to
estimate the mask M from I . This estimated mask is used
as the final mask for hard masking, while a tunable adapter
A(·) (see Sec. 4.1) is employed for soft masking, effectively
compensating for inaccuracies in M during the restoration
process. The process is formulated as:

M(x) ≈ M̂(x) =

{
A(D(I(x))), if soft masking,
D(I(x)), if hard masking.

(3)

Using M̂ , we remove the obstruction R(x) from the original
image I to obtain Î . With this pre-processing, the obstruc-
tion removal task is simplified to:

Î(x) = B(x) ◦ (1− M̂(x)). (4)

To reconstruct the clear background scene, we develop a
Transformer-based obstruction removal framework (detailed
in Sec. 4.3) that learns the mapping (Î , M̂ , T ) → B with
T being the text instruction. Multi-modal prompts (see Sec.
4.2) are integrated using a cross-attention unit to guide the
reconstruction process. Finally, the network parameters Θ
are optimized by minimizing the objective function E(·):

E(Θ) =
1

N

N∑
n=1

∣∣∣B − f(Î , M̂ , T ; Θ)
∣∣∣ , (5)

where N is the number of images, and f(·) represents the
restoration operation.
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4.1. Mask Generation

Hard Masking and Motivation. As shown by the purple
process in Fig. 3, for obstructions with clear boundaries,
such as fences, we apply an accurate mask to explicitly
mark the regions requiring restoration, termed hard mask-
ing. However, this approach struggles when dealing with
obstructions with ambiguous boundaries, such as raindrops,
as it lacks flexibility in handling uncertain occlusion regions.
This limitation ultimately affects restoration performance.
To overcome this, we propose a soft masking approach, il-
lustrated by the green process in Fig. 3, enabling the model
to autonomously adjust the mask based on the obstruction’s
characteristics.

Tunable Adapter for Soft Masking. The tunable adapter
is designed to improve reconstruction performance by mit-
igating the negative impact of inaccurate boundary esti-
mates. Specifically, the tunable adapter takes the initial
mask, estimated by the mask detector or manually provided,
as input and outputs an optimized mask. The input first
passes through a convolutional layer with batch normaliza-
tion and ReLU activation. Subsequently, multiple Trans-
former blocks, incorporating self-attention units and feed-
forward networks, are used to extract relevant features. A
final convolutional layer produces the output mask. The
key role of the adapter is to dynamically adjust the mask,
allowing the model to determine the extent and regions
where the mask should be applied based on the image fea-
tures and occlusion conditions. This adaptive mechanism
enhances flexibility, enabling selective restoration without
strict reliance on the initial mask regions.

4.2. Multi-modal Prompt Generation

Using only Î and M̂ as inputs presents two key challenges:
1) the model lacks understanding of the required masking
strategy for targeted restoration, and 2) it struggles to ex-
tract high-level semantic information from the incomplete
image, especially when encountering unseen obstructions,
leading to less accurate results. To address these issues, we
introduce a multi-modal prompting strategy that leverages
both text instructions and visual semantic embeddings to
guide the image restoration process. Specifically, we input
the text instruction T and the original image I into the CLIP
model’s text and visual encoders (Γt, Γv) to generate re-
spective embeddings, which are concatenated to form the
multi-modal prompt P ∈ RL, where L is the number of
tokens. This can be expressed as:

P = concat[Γt(T ),Γv(I(x))] ∈ RL. (6)

A cross-attention mechanism is then applied to integrate
these prompts with the image features, guiding the re-
construction process. By incorporating text prompts, the
model’s ability to adapt its masking strategy improves, while

visual prompts help prevent overfitting and enhance zero-
shot generalization, reducing dependence on specific train-
ing data.

Soft Masking Switch. Based on the input instructions, we
use the text embeddings Γt(T ) to activate the soft masking
mode. Specifically, let the text representations for semi-
transparent and opaque obstacles be denoted as Γt(Ts) and
Γt(To), respectively; the similarity between these represen-
tations and the Γt(T ) can be expressed as follows:

sim(T, Ti) =
Γt(T ) · Γt(Ti)

∥Γt(T )∥∥Γt(Ti)∥
, for i ∈ {o, s}. (7)

After calculating the similarity index, we apply the Softmax
function to normalize the vector such that the sum of its
probabilities equals 1. When the similarity between Γt(T )
and Γt(Ts) exceeds a threshold θ, we enable the adapter
strategy for adaptive adjustment of the mask.

4.3. Obstruction Removal

We develop a restoration network based on Restormer (Za-
mir et al., 2022), utilizing a Transformer-based encoder-
decoder architecture for image restoration tasks.

Cross-attention for Multi-modal Prompts. To efficiently
use the prompt information, we integrate cross-attention
mechanisms into each Transformer block. By concatenat-
ing the embeddings from the text and visual prompts and
feeding them into the Transformer blocks, we improve the
model’s ability to leverage multi-modal cues during the
restoration process. The cross-attention unit is defined as:

Cross-Att(Q,Kp, Vp) = Softmax

(
Q ·K⊤

p

λ

)
Vp, (8)

where λ is a temperature factor, and Kp and Vp represent
the key and value obtained from the multi-modal prompt,
while Q represents the query derived from the degraded
image feature.

5. Experiments and Analysis
5.1. Experiment Settings

Implementation Details. Our Instruct2See framework is
implemented in PyTorch 1.12.0 and trained on a system
equipped with 2 AMD EPYC 7543 32-Core CPUs and 8
NVIDIA L40 GPUs. We train the model using the AdamW
optimizer (β1 = 0.9, β2 = 0.999, weight decay of 1×10−4)
and L1 loss, over 300K iterations. The initial learning rate is
set to 3×10−4. A progressive learning strategy is employed,
starting with a patch size of 128× 128 and a batch size of
1. The patch size is progressively updated to 128 × 128,
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Table 1: PSNR, SSIM, CLIP Score (CLIPS), and LPIPS comparisons of different methods on seen obstructions. The best
and second best results are highlighted in bold and underlined.

Method Venue Fence Flare Raindrop Average

PSNR↑ SSIM↑ CLIPS↑ LPIPS↓ PSNR↑ SSIM↑ CLIPS↑ LPIPS↓ PSNR↑ SSIM↑ CLIPS↑ LPIPS↓ PSNR↑ SSIM↑ CLIPS↑ LPIPS↓

Restormer CVPR22 29.86 0.9170 0.9045 0.0986 25.41 0.9162 0.9547 0.0772 30.07 0.9542 0.9670 0.0482 28.45 0.9291 0.9421 0.0746
TransWeather CVPR22 26.93 0.8492 0.8964 0.1157 25.18 0.9040 0.9323 0.0824 30.44 0.9508 0.9468 0.0787 27.52 0.9013 0.9252 0.0922
PromptIR NeurIPS23 24.59 0.7423 0.8957 0.1521 25.43 0.9187 0.9604 0.0721 31.95 0.9668 0.9679 0.0471 27.32 0.8759 0.9413 0.0904
WGWSNet CVPR23 23.19 0.7878 0.8561 0.2884 25.87 0.9192 0.9486 0.0710 32.89 0.9671 0.9706 0.0486 27.32 0.8914 0.9251 0.1360
Histoformer ECCV24 28.05 0.9001 0.8971 0.1134 25.19 0.9195 0.9541 0.0712 31.59 0.9614 0.9584 0.0548 28.28 0.9270 0.9365 0.0798
XRestormer ECCV24 27.11 0.8972 0.9037 0.1430 24.89 0.9185 0.9487 0.0743 30.55 0.9583 0.9557 0.0482 27.52 0.9247 0.9360 0.0924

Instruct2See ICML25 30.15 0.9079 0.9093 0.0941 25.15 0.9202 0.9509 0.0694 32.64 0.9680 0.9723 0.0446 29.31 0.9320 0.9442 0.0694

(a) Inputs (b) PromptIR (c) WGWSNet (d) Histoformer (e) XRestormer (f) Instruct2See (g) Ground Truth
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Figure 4: Visual comparisons of our method with other approaches on seen obstructions.

160× 160, 192× 192, and 256× 256 at iterations 115,000,
80,000, 60,000, and 45,000, respectively. We also apply
horizontal and vertical flips for data augmentation.

Datasets. We utilize 3,984 images for model training. For
the fence obstacle, we select 897 clear images from the BSD
dataset (Martin et al., 2001) and the UCID dataset (Schaefer
& Stich, 2003), and generate paired data using the fence
synthesis method from (Du et al., 2018). Additionally, 987
clear images from the Flickr24K dataset (Zhang et al., 2018)
and 987 flare images from the Flare7K dataset (Dai et al.,
2022) are used to create flare image pairs. We also include
2,100 training image pairs from the VRDS dataset (Wu et al.,
2023). For testing, we apply the same synthesis strategy to
create a fence test dataset with 100 image pairs. Moreover,
a flare test dataset with another 100 image pairs is used.

Additionally, 500 raindrop test image pairs are included. For
unseen obstructions, we sourced 100 test images each from
the rain streak dataset (Yang et al., 2017), snowy dataset
(Liu et al., 2018), and stroke dataset (Lugmayr et al., 2022).
We also tested our method on special obstacles to verify its
zero-shot capability.

5.2. Comparisons with the State-of-the-Arts

Results on Seen Obstructions. The quantitative evalu-
ation results for seen obstructions are presented in Table
1. We compare the obstruction removal performance of
various methods by using detected masks. While our pro-
posed method is slightly outperformed by certain state-of-
the-art methods in specific tasks based on PSNR, SSIM,
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Table 2: PSNR, SSIM, CLIP Score (CLIPS), and LPIPS comparisons of different methods on unseen obstructions. The best
and second best results are highlighted in bold and underlined.

Method Venue Rain Streak Snow Stroke Average

PSNR↑ SSIM↑ CLIPS↑ LPIPS↓ PSNR↑ SSIM↑ CLIPS↑ LPIPS↓ PSNR↑ SSIM↑ CLIPS↑ LPIPS↓ PSNR↑ SSIM↑ CLIPS↑ LPIPS↓

Restormer CVPR22 26.19 0.8381 0.9133 0.2385 28.81 0.9013 0.9355 0.1508 21.14 0.8173 0.8012 0.2061 25.38 0.8522 0.8833 0.1984
TransWeather CVPR22 26.70 0.8341 0.8989 0.2450 29.53 0.8926 0.9455 0.1317 18.27 0.6752 0.8014 0.3598 24.83 0.8006 0.8819 0.2455
PromptIR NeurIPS23 24.04 0.7197 0.8869 0.2211 26.01 0.7457 0.9370 0.1185 29.39 0.9021 0.8533 0.0970 26.48 0.7892 0.8924 0.1455
WGWSNet CVPR23 29.68 0.9111 0.9422 0.1411 29.54 0.8944 0.9439 0.1273 28.25 0.8722 0.8791 0.1222 29.18 0.8927 0.9217 0.1302
Histoformer ECCV24 27.99 0.8634 0.8854 0.1870 32.40 0.9203 0.9421 0.0909 28.07 0.8761 0.8379 0.1206 29.49 0.8866 0.8885 0.1328
XResrormer ECCV24 28.05 0.8560 0.9138 0.2108 31.31 0.9170 0.9567 0.1040 19.00 0.7588 0.7754 0.2472 26.12 0.8439 0.8820 0.1873

Instruct2See ICML25 29.82 0.8907 0.9296 0.1639 34.85 0.9283 0.9618 0.0639 29.45 0.9067 0.8507 0.0936 31.37 0.9086 0.9140 0.1071

CLIPS, and LPIPS metrics, the overall results clearly high-
light the strengths and advantages of our approach. Notably,
our method achieves a PSNR that is 0.86 dB higher than
the second-best method, Restormer, demonstrating its su-
perior ability to preserve image quality. Furthermore, as
shown in Fig. 4, visual comparisons across the three ob-
struction removal tasks consistently emphasize the strengths
of our approach, particularly in reconstructing fine details
and maintaining scene coherence. For additional numeri-
cal experiments under ideal conditions (using ground truth
masks), please refer to the Appendix.

Results on Unseen Obstructions. To further evaluate the
zero-shot learning capability of our model, we conducted
experiments on images containing unseen obstructions. Ta-
ble 2 presents the PSNR, SSIM, CLIPS, and LPIPS results
for obstruction removal on three classic obstacles not in-
cluded in the training. With the exception of a slightly lower
CLIPS compared to WGWSNet, our method consistently
delivers the best results across the unseen obstruction. As
shown in Fig. 5, visual comparisons across additional ob-
structions, such as yarn, scratches, spots, and power cables,
further demonstrate the strong generalization ability of our
proposed method. While existing methods often struggle or
show limited effectiveness in addressing out-of-distribution
obstructions, our approach consistently produces more ac-
curate and realistic restorations. This confirms the perfor-
mance boost provided by our multi-modal prompt strategy
and tunable adapter, which enable effective zero-shot learn-
ing and allow our model to capture the nuances of unseen
obstructions. These results validate the robustness and flex-
ibility of our method, making it a promising solution for
real-world applications where diverse and unpredictable
obstructions are common.

In addition, the inpainting- and editing-based methods ex-
hibit strong zero-shot capabilities and perform well in var-
ious object removal or image editing tasks, making them
viable solutions for the obstruction removal task. There-
fore, for a comprehensive comparison, we evaluated our
proposed method against two inpainting methods (LaMa
(Suvorov et al., 2022) and RePaint (Lugmayr et al., 2022))
and one editing method (DiffEdit (Couairon et al., 2023))

Table 3: PSNR and SSIM comparisons of our method with
inpainting/editing-based methods on unseen obstructions.
The best results are highlighted in bold.

Method Venue Rain Streak Snow Stroke Average

PSNR↑SSIM↑PSNR↑SSIM↑PSNR↑SSIM↑PSNR↑SSIM↑

LaMa WACV22 29.07 0.8858 32.32 0.9108 28.10 0.8728 29.83 0.8898
RePaint CVPR22 28.78 0.8865 32.20 0.9064 23.78 0.8059 28.25 0.8662
DiffEdit ICLR23 23.88 0.6561 24.23 0.6732 11.65 0.6072 19.92 0.6455

Instruct2SeeICML25 29.82 0.8907 34.85 0.9283 29.45 0.9067 31.37 0.9086

in the zero-shot obstruction removal. Table 3 presents the
quantitative evaluation results for these methods and ours
across three classic obstacle removal scenarios. In particu-
lar, the editing-based method (DiffEdit) has poor numerical
performance, while inpainting-based methods fail to accu-
rately reconstruct details. These stem from their design
as image inpainting and editing tools, which strictly con-
strain changes to masked regions and lack the flexibility
to handle irregular-shaped holes. The results indicate that,
despite using obstacle masks as inputs, existing inpainting
and editing methods still struggle to effectively address this
problem. In contrast, our method, which incorporates a tun-
able mask adapter and multimodal feature representation of
obstacles, demonstrates superior performance in zero-shot
obstacle removal tasks. Fig. 6 further visualizes additional
obstacle removal results. It is evident that while LaMa and
RePaint exhibit some obstacle removal capabilities, residual
obstacles remain. Conversely, our Instruct2See effectively
handles various situations and robustly removes obstacles.

5.3. Ablation Study

Effectiveness of Network Modules. Table 4 (a) presents a
comprehensive quantitative evaluation of different module
configurations on three seen and three unseen obstructions.
The results clearly show that the baseline model alone pro-
duces poor results, as indicated by the low PSNR and SSIM
scores. Introducing a mask improves performance slightly,
but the enhancement remains limited. This is primarily be-
cause the model struggles to distinguish between different
types of obstructions and cannot effectively select the ap-
propriate masking strategy. Additionally, without a proper
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Figure 5: Visual comparisons of our method with other approaches on unseen obstructions.

understanding of scene semantics, the model generates unre-
alistic and anomalous restoration outcomes. In contrast, in-
corporating the cross-attention mechanism, which integrates
textual instructions with visual semantics, significantly im-
proves performance, leading to a PSNR increase of 1.95
and an SSIM increase of 0.0113. This mechanism enables
the model to better grasp the contextual relationship be-
tween the obstruction and the surrounding scene, producing
more coherent and realistic restoration results. Finally, the
tunable adapter can further enhance the ability to handle
obstructions with blurred boundaries, resulting in optimal
effects across all metrics. This verified that our model can
adaptively manage different obstruction scenarios, leading
to a more refined and effective restoration process.

Effectiveness of Different Prompts. Table 4 (b) compares
performance using different prompt strategies. Without
prior prompts, the model performs poorly, primarily due to
confusion over the correct masking strategy and a lack of
semantic understanding, especially for unseen obstructions.

Table 4: PSNR and SSIM comparisons of integrating dif-
ferent modules (a) and using different prompt strategies (b).
Pt and Pv represent text and visual prompts, respectively.

mask CA Adapter PSNR↑ SSIM↑

27.05 0.8920
✓ 28.05 0.9004
✓ ✓ 30.00 0.9117
✓ ✓ ✓ 30.93 0.9250

(a)

Pt Pv PSNR↑ SSIM↑

28.65 0.9063
✓ 29.73 0.9168

✓ 30.25 0.9215
✓ ✓ 30.93 0.9250

(b)

When using only the textual embedding, the model can
adopt the correct strategy to handle both sharp and blurred
mask boundaries. However, due to the absence of complete
image semantics from occluded regions, the model often
produces unrealistic or inconsistent results. Using only the
visual encoder strategy can better compensate for the se-
mantic loss caused by obstacle removal, thereby achieving
better results than introducing only the text encoder. Finally,
by integrating both visual semantics and textual instructions
through a multi-modal prompt, the model can easily handle
obstruction removal tasks for both in-distribution and out-of-
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Figure 6: Visual comparisons of our method with inpainting
methods on unseen obstructions.

(a) Input (b) w/o Prompt (c) w/o Visual Prompt (d) Full Modal (e) Ground Truth

Figure 7: Visual comparisons of using different prompt
strategies on a snow obstruction case.

distribution obstacles. The multi-modal prompt strategy not
only improves the model’s interpretability but also strength-
ens its ability to generalize to unfamiliar obstructions.

To further illustrate the impact of multi-modal prompts, we
compared different strategies in a snow obstruction case, as
shown in Fig. 7. Without any prompt, the model shows
only a slight reduction of the snow obstacles. Introduc-
ing a textual prompt (Fig. 7(c)) allows the model to focus
more on masking strategy, leading to better suppression of
the obstruction. However, using only the textual prompt
introduces unnatural artifacts in the reconstruction, as the
model lacks complete semantic information from the oc-
cluded regions. By incorporating the visual encoder from
the visual-language model, we effectively compensate for
the missing semantic details during obstruction removal.
This approach preserves the model’s robust zero-shot learn-
ing capability while enabling it to extract relevant details
and accurately represent various obstructions, even those
not encountered during training. Consequently, the multi-
modal prompt strategy delivers superior visual restoration
and enhanced obstruction suppression performance.

Effectiveness of Tunable Adapter. We designed a tunable

(a) Input (b) w/o Adapter (c) Full Model (d) Ground Truth

Original Mask Adapted Mask

Figure 8: Visual comparisons of using our tunable adapter
on a raindrop obstruction case.

adapter for soft masking to address inaccuracies in occlu-
sion regions. This adapter dynamically adjusts the mask,
enabling our model to determine the extent of mask applica-
tion based on the image features, rather than being confined
to a predefined mask area. To evaluate the function and
effectiveness of our proposed adapter, we conducted an ab-
lation study. As shown in Fig. 8, a comparison between the
adjusted and original masks demonstrates that the adapter
effectively refines the mask for uncertain obstructions, such
as raindrops. The original mask often overly covers the
restoration area, leading to a loss of detail and suboptimal
reconstruction. In contrast, the adjustments made by the
tunable adapter ensure more accurate and reliable restora-
tion by preserving crucial details in the occluded regions.
Additionally, the ablation study reveals that the tunable
adapter significantly improves the model’s adaptability to
various obstructions with ambiguous boundaries, resulting
in a PSNR increase of 0.93 and an SSIM gain of 0.0133 com-
pared to the fixed mask approach. These findings confirm
that the tunable adapter not only optimizes mask coverage
but also plays a vital role in refining the restoration process.

6. Conclusion
In this work, we proposed Instruct2See, a novel zero-shot
obstruction removal framework designed to effectively ad-
dress challenges posed by both in-distribution and out-
of-distribution obstructions. By leveraging multi-modal
prompts that integrate visual semantics and textual descrip-
tions through a cross-attention mechanism, Instruct2See
demonstrated superior performance in accurately recon-
structing occluded scenes. The inclusion of a tunable
adapter for soft masking further improved adaptability, al-
lowing the model to handle ambiguous boundaries with
greater flexibility. Extensive experiments validated the effi-
cacy and generalization capabilities of Instruct2See, high-
lighting its potential as a robust solution for real-world ob-
struction removal tasks.

Limitations. Our method targets small, numerous obstacles
(e.g., raindrops and fences) and explores optimal strategies
for removing both opaque and translucent obstacles. It is
not intended for large obstructions, as it focuses on scene
recovery through contextual cues. In such cases, inpainting
techniques may be more effective.
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Khedr, H., Rädle, R., Rolland, C., Gustafson, L., et al.
Sam 2: Segment anything in images and videos. arXiv
preprint arXiv:2408.00714, 2024.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
MICCAI, pp. 234–241, 2015.

Schaefer, G. and Stich, M. Ucid: An uncompressed color
image database. In Storage and retrieval methods and
applications for multimedia 2004, volume 5307, pp. 472–
480. SPIE, 2003.

Sun, S., Ren, W., Gao, X., Wang, R., and Cao, X. Restor-
ing images in adverse weather conditions via histogram
transformer. ECCV, 2024.

Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A.,
Ashukha, A., Silvestrov, A., Kong, N., Goka, H., Park, K.,
and Lempitsky, V. Resolution-robust large mask inpaint-
ing with fourier convolutions. In WACV, pp. 2149–2159,
2022.

Tsogkas, S., Zhang, F., Jepson, A., and Levinshtein, A.
Efficient flow-guided multi-frame de-fencing. In WACV,
pp. 1838–1847, 2023.

Valanarasu, J. M. J., Yasarla, R., and Patel, V. M. Tran-
sweather: Transformer-based restoration of images de-
graded by adverse weather conditions. In CVPR, pp.
2353–2363, 2022.

Wang, C., Zheng, Z., Quan, R., Sun, Y., and Yang, Y.
Context-aware pretraining for efficient blind image de-
composition. In CVPR, pp. 18186–18195, 2023a.

Wang, Y., Ma, C., and Liu, J. Smartassign: Learning a
smart knowledge assignment strategy for deraining and
desnowing. In CVPR, pp. 3677–3686, 2023b.

Wen, Q., Tan, Y., Qin, J., Liu, W., Han, G., and He, S. Single
image reflection removal beyond linearity. In CVPR, pp.
3771–3779, 2019.

Wu, H., Yang, Y., Chen, H., Ren, J., and Zhu, L. Mask-
guided progressive network for joint raindrop and rain
streak removal in videos. In MM, pp. 7216–7225, 2023.

Yang, W., Tan, R. T., Feng, J., Liu, J., Guo, Z., and Yan,
S. Deep joint rain detection and removal from a single
image. In CVPR, pp. 1357–1366, 2017.

Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S.,
and Yang, M.-H. Restormer: Efficient transformer for
high-resolution image restoration. In CVPR, pp. 5728–
5739, 2022.

Zeng, Y., Fu, J., Chao, H., and Guo, B. Learning pyramid-
context encoder network for high-quality image inpaint-
ing. In CVPR, pp. 1486–1494, 2019.

Zhang, D., Ouyang, J., Liu, G., Wang, X., Kong, X., and
Jin, Z. Ff-former: Swin fourier transformer for nighttime
flare removal. In CVPR, pp. 2824–2832, 2023a.

Zhang, H., Xu, X., He, H., He, S., Han, G., Qin, J., and
Wu, D. Fast user-guided single image reflection removal
via edge-aware cascaded networks. IEEE TMM, 22(8):
2012–2023, 2019.

Zhang, J., Huang, J., Jin, S., and Lu, S. Vision-language
models for vision tasks: A survey. IEEE TPAMI, 2024.

Zhang, X., Ng, R., and Chen, Q. Single image reflection
separation with perceptual losses. In CVPR, pp. 4786–
4794, 2018.

11



Instruct2See: Learning to Remove Any Obstructions Across Distributions

Zhang, Z., Wei, Y., Zhang, H., Yang, Y., Yan, S., and Wang,
M. Data-driven single image deraining: A comprehensive
review and new perspectives. PR, 143:109740, 2023b.

Zhou, Y., Liang, D., Chen, S., Huang, S.-J., Yang, S., and
Li, C. Improving lens flare removal with general-purpose
pipeline and multiple light sources recovery. In ICCV, pp.
12969–12979, 2023.

Zhu, H., Yuan, J., Yang, Z., Guo, Y., Wang, Z., Zhong,
X., and He, S. Zero-shot object counting with good
exemplars. ECCV, 2024.

12



Instruct2See: Learning to Remove Any Obstructions Across Distributions

A. Implementation Details
A.1. Model Inference

As outlined in Algorithm 1, our model operates in two modes during inference: opaque obstruction removal using hard
masking and semi-transparent obstruction removal using soft masking. The process begins with the image I , containing
the obstruction, and a text instruction T . The overall obstruction removal procedure is divided into three key steps: mask
generation, multi-modal prompt generation, and obstruction removal.

Algorithm 1 Instruct2See Model Inference

1: I: input image, B clear background, M̄ : initial mask, M̂ : adapted mask, Î: input image cutout by M̂ , T : text instruction,
Ts: “semi-transparent obstacle” text, D(·): mask detector, A(·): tunable adapter, R(·, ·, ·): Obstruction Eliminator,
Γt(·): visual language model’s text encoder, Γv(·): visual language model’s visual encoder, Pt: text prompt, Pv: visual
prompt, P : multi-modal prompt, concat: embedding splicing operation

Input: I , T
2: M̄ ← D(I) {Initial mask generation.}
3: Pt ← Γt(T )
4: Pv ← Γv(I)
5: if sim(Pt,Γt(Ts)) > θ then
6: M̂ ← A(M̄) {Soft masking.}
7: else
8: M̂ = M̄ {Hard masking.}
9: end if

10: P = concat[Pt, Pv] {Multi-modal prompt generation.}
11: get Î by cutting out the region in M̂ from I
12: B ← R(Î , M̂ , P ) {Obstruction removal.}
13: return B

Mask Generation. We first extract the initial mask M̄ from the input image I using a mask detector (as described in
line 2 of Algorithm 1). For obstructions like rain streaks and snow, which are more challenging to segment, we employ a
U-Net-based model (Ronneberger et al., 2015) to generate the initial mask. For other obstructions, we use the Segment
Anything Model 2 (SAM2) (Ravi et al., 2024). Depending on the type of obstruction, different masking strategies are
applied: for opaque obstructions with clear boundaries, we directly use M̄ as the final mask M̂ (lines 7–9), while for
semi-transparent obstructions with blurred edges, we refine M̄ using a tunable adapter to improve performance (lines 5–7).

Multi-Modal Prompt Generation. We process the inputs I and T using the text and image encoders of the Contrastive
Language-Image Pre-training (CLIP) model (Radford et al., 2021) to obtain textual and visual embeddings (Pt, Pv). These
embeddings are then concatenated to generate the multi-modal prompt P , as described in lines 3, 4, and 10 of Algorithm 1.

Obstruction Removal. With the refined mask M̂ and the multi-modal prompt P , we first use M̂ to mask out the obstructions
in I , generating Î . Then, Î and M̂ are concatenated along the channel dimension and, along with P , input into the obstruction
removal modelR(·) (lines 11–13). A cross-attention module within R(·) fuses the image features with the multi-modal
prompt. Specifically, features from the image map are extracted using convolution as the query, while the multi-modal
prompt generates key and value vectors via two independent linear layers. These vectors are fused using a multi-head
attention mechanism, guiding the network to effectively remove unknown obstructions.

A.2. CLIP Usage

In the use of CLIP1, the visual encoder is employed to extract visual features from the original image to compensate
for the loss of visual semantics caused by obstacle cutout. Since the pre-trained CLIP visual encoder already possesses
strong semantic representation capabilities, we do not perform additional fine-tuning on this module. The text embeddings,
however, provide specific removal prompts to the model. Due to the relatively few specific instructions for obstacle removal
in CLIP’s original training, the original embedding space may not be suitable for this task (i.e., the embeddings generated by
text instructions for the same goal may exhibit significant variability). Therefore, we only fine-tune CLIP’s text encoder. The

1We utilize the CLIP ViT-B/32 model.
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Figure 9: Contrastive fine-tuning of CLIP text encoder.

Table 5: PSNR and SSIM comparisons of different methods on seen obstructions. The scheme using the GT mask as input
is designed to demonstrate the obstruction removal capabilities of each model under ideal conditions.

Method Fence Flare Raindrop Average
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Restormer 29.86 0.9170 25.41 0.9162 30.07 0.9542 28.45 0.9291
w GT mask 29.62 0.9166 25.38 0.9145 32.04 0.9651 29.01 0.9321

TransWeather 26.93 0.8492 25.18 0.9040 30.44 0.9508 27.52 0.9013
w GT mask 29.12 0.8727 26.05 0.9150 30.58 0.9510 28.58 0.9129

PromptIR 24.59 0.7423 25.43 0.9187 31.95 0.9668 27.32 0.8759
w GT mask 26.41 0.7842 25.63 0.9193 32.71 0.9691 28.25 0.8909

WGWSNet 23.19 0.7878 25.87 0.9192 32.89 0.9671 27.32 0.8914
w GT mask 26.88 0.8467 25.50 0.9193 32.26 0.9648 28.21 0.9103

Histoformer 28.05 0.9001 25.19 0.9195 31.59 0.9614 28.28 0.9270
w GT mask 32.29 0.9382 25.96 0.9106 32.29 0.9636 30.18 0.9375

XRestormer 27.11 0.8972 24.89 0.9185 30.55 0.9583 27.52 0.9247
w GT mask 30.57 0.8972 25.44 0.9176 31.02 0.9599 29.01 0.9249

Instruct2See 30.15 0.9079 25.15 0.9202 32.64 0.9680 29.31 0.9320
w GT mask 32.12 0.9329 25.83 0.9203 33.52 0.9706 30.49 0.9413

fine-tuning strategy for the CLIP text encoder is shown in Fig. 9. We first collected the text instructions corresponding to
each image in our training dataset to construct a text command database. This database contains two categories: instructions
for removing opaque obstacles and instructions for removing semi-transparent obstacles. Subsequently, we fine-tuned the
model using a contrastive pre-training strategy similar to CLIP.

More specifically, in each iteration, we randomly select text instructions in the database and use the CLIP text encoder to
generate two text embeddings for opaque obstacles (T2 and T4) and two text embeddings for semi-transparent obstacles (T1

and T3). Subsequently, we calculate the cosine similarity between each pair and designate the values calculated between
the same category as positive samples, while the values calculated between different categories are designated as negative
samples. Finally, we perform contrastive training based on the clip loss (Radford et al., 2021).

Additionally, the tunable adapter is only activated for semi-transparent obstacles. To selectively enable this function based
on the input instruction, we set up two-word embeddings: “opaque” and “semi-transparent”. By calculating the cosine
similarity between the instructions embedding and these two embeddings, we can determine whether to activate the adapter
module. Therefore, this fine-tuning strategy allows our model to more accurately judge when to enable the adapter.

B. More Experimental Results
B.1. More Numerical Results

To demonstrate the upper bound of seen obstacle removal under ideal conditions, we compared the restoration performance
of various methods using both detected masks and ground-truth masks. As shown in Table 5, the results show that higher-
quality masks benefit most methods. In our task, the mask detector is plug-and-play, and future adoption of more powerful
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Figure 10: PSNR and SSIM comparisons of different methods on seen and unseen obstructions.

mask detectors could further enhance the obstruction removal capability. Additionally, we present a radar chart (Fig. 10)
comparing the PSNR and SSIM results for three types of seen obstacles and three classic unseen obstacles. The results
demonstrate that the proposed model delivers robust performance across various scenarios, validating its effectiveness and
strong generalization ability.

B.2. Zero-Shot Single Obstruction Removal

This section presents additional examples of removing various unseen obstructions. Fig. 11 compares the results of different
methods on three typical obstruction removal tasks. It is evident that TransWeather and XRestormer perform poorly in the
stroke removal task, failing to handle such cases effectively. Other methods also produce distorted facial details during
restoration. For semi-transparent obstructions, such as raindrops and snow, these methods fail to properly capture the
relationship between the obstruction and the mask, leading to ineffective or minimal removal.

In contrast, our method employs a hard-soft masking strategy, allowing smooth transitions between hard and soft masking.
This enables it to capture the complexity and diversity of real-world occlusion scenarios more effectively. Fig. 12 showcases
further experiments on uncommon obstructions, demonstrating the zero-shot generalization capability of our method. This
advantage stems from our distribution-agnostic approach, which formulates obstruction removal as a soft-hard masking
problem, representing any obstruction through the integration of visual semantic embeddings and textual instructions.

B.3. Zero-Shot Multiple Obstruction Removal

Fig. 13 displays three visualization cases on multiple obstruction removal. It is evident that our method can accurately
represent specified obstructions through multi-modal prompts and masks, and easily eliminate them using the designed
model. From the results, it appears that only when there are occlusions between multiple obstacles does the elimination of
one obstacle inevitably affect another. The order of obstruction elimination does not have a significant impact on the results.

Table 6: PSNR and SSIM comparisons of using different prompt generation strategies.

Model PSNR↑ SSIM↑
Instruct2See + CLIP 30.93 0.9250
Instruct2See + BLIP 31.01 0.9235

B.4. Metric Influence of Using Different Prompt Generation Models

In this section, we compared the effects of using CLIP’s and BLIP’s encoders to generate textual and visual embeddings on
obstacle removal results. The experimental results are shown in Table 6. Clearly, whether using CLIP (Radford et al., 2021)
or BLIP (Li et al., 2022b), our model can generate robust obstacle removal effects, proving that our model can adapt to
commonly used pretrained encoders.

C. Failure Cases using Incorrect Description
Fig. 14 illustrates two examples of using incorrect descriptions. In the stroke removal case, when an instruction of a
semi-transparent obstruction removal is used for a scene with an opaque obstruction, our model tends to treat the original
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Figure 11: Visual comparisons on three classic unseen obstructions (rain streak, snow, and stroke).

opaque obstruction as part of the real information, leading to suboptimal results. Accurately describing the obstacle as an
opaque obstacle can easily resolve this issue. Similarly, in the shadow removal case, using an opaque obstruction description
will make the masked image content completely invisible, resulting in a restoration that does not match reality, especially in
cases of large-area occlusions. However, correcting the instruction to remove the transparent obstacle can solve this problem.

D. Complexity Analysis
In this section, we present the model sizes of various methods and calculate their Floating Point Operations (FLOPs) and
runtime on 224x224 images. As shown in Table 7, although our model has the highest number of parameters due to the
introduction of a cross-attention module integrated with multi-modal prompts and an adjustable mask adapter, its FLOPs
and inference speed remain at a moderate level compared to competing methods. In the future, we will consider maintaining
the model’s strong zero-shot generalization capabilities while reducing computational costs.

Table 7: Comparisons of parameters, FLOPs, and runtime between.

Model Venue Parameters (M) FLOPs (G) Runtime (ms)

Restormer CVPR22 26.13 118.60 49.37±0.46
TransWeather CVPR22 38.06 3.57 19.64±0.05
PromptIR NeurIPS23 35.59 132.26 53.95±0.47
WGWSNet CVPR23 4.70 96.65 88.39±0.35
Histoformer ECCV24 16.62 86.79 83.13±0.82
XRestromer ECCV24 22.34 155.49 100.67±0.44

Instruct2See ICML25 56.69 146.23 84.28±0.61
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Figure 12: Visual comparisons on more uncommon obstructions.
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Figure 13: Visual results on multiple obstruction removal.
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Figure 14: Visual comparisons of using different text descriptions.
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