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ABSTRACT

A small number of high-dimensional training samples is a challenging problem for
understanding the dynamics of multivariate spatiotemporal neuroimaging. Often,
reducing these dynamics to a small number of handcrafted features helps. For ex-
ample, the matrix of Pearson’s correlation coefficients is highly predictive. Never-
theless, it is hard to perceive the dynamics and the disorder from these compressed
proxy representations. In this paper, we propose a hierarchical recurrent model
with attention that learns dynamics directly from temporal signals and captures
stable interpretations of abnormal conditions predictive of disorder under consid-
eration. We study these abnormalities in dynamics through feature importance
estimation in the resting-state functional MRI data using different interpretability
methods. We validate this feature estimation by introducing the Retain and Re-
train (RAR) process and demonstrate its utility on an Alzheimer’s disease dataset.
Furthermore, we show that the proposed model is adaptable to small sample case
by offering a self-supervised pretraining scheme of the same model. With this
scheme, we demonstrate that the model can leverage a large unrelated but publicly
available dataset to learn improved representation to maintain adequate predictive
capacity and extract useful disorder-specific information.

1 INTRODUCTION

Mental disorders are generally revealed in behavior and attributed to malfunctioning brain dynam-
ics (Goldberg & Huxley, 1992; Calhoun et al., 2014). Understanding the signal dynamics is in-
tuitively useful for understanding the disorder under consideration. Unfortunately, working with
multivariate dynamic signals is challenging due to their high dimensionality compared to the few
samples available for the study. Handcrafted summary features (Khazaee et al., 2016) may be useful
to predictive models. For example, in brain imaging datasets, people frequently use correlation
matrices of functional network connectivity (FNC) among different regions of the brain as proxy
features (Allen et al., 2014). Unfortunately, these handcrafted features—sFNC (static FNC)—are
impractical for understanding the dynamics. Yet, if traditional machine learning models directly
deal with large multivariate signals, it leads to a drastic drop in performance.

Furthermore, the discovery of disorder-specific dynamics is required to forge better treatment strate-
gies for patients. People working to explore the brain functionality related to mental disorders must
know what, when and how affects spatio-temporal signals making them different from healthy peo-
ple. Overall, the pragmatic necessity of discovering the essence of the underlying mechanism and
the apparent impossibility of empirically dealing with extreme high dimensionality put the origi-
nal learning problem in a state of quandary. Consequently, in many applications, these undesirable
conditions necessitate deep learning methods leveraging their impressive ability to learn from the
raw data. To this end, we propose a hierarchical recurrent neural network that performs acceptably
well in terms of predictive metrics and model interpretability for multivariate time-series signals
(independent component analysis (ICA) time courses (Calhoun et al., 2001).

Moreover, to enable the direct study of systems in small data studies, we propose a solution based
on a self-supervised representation learning procedure. This self-supervised pre-training is useful in
different computer vision (Bachman et al., 2019) and neuroimaging (Mahmood et al., 2020; 2019)
applications. We leverage self-supervised pretraining guided by signal dynamics on publicly avail-
able healthy control subjects from the Human Connectome Project (HCP) (Van Essen et al., 2013).

1



Under review as a conference paper at ICLR 2021

We marshal sufficient evidence to show that the proposed deep learning model helps learn directly
from dynamics and increases predictive capacity. Besides, we apply different model introspection
techniques (Hooker et al., 2019) to identify important disorder-specific biomarkers supposedly suit-
able to advance our perception of the disorders. To evaluate the identified biomarkers, we propose
a method, called RAR, suitable for ICA time courses obtained from rsfMRI data. With RAR, we
show the efficacy of the identified biomarkers both in studies with or without pretraining. We verify
our findings on the OASIS dataset designed for Alzheimer’s research.

2 METHOD

Our method consists of 4 steps: First, we pre-train the network except for the top fully connected
layer on a large unrelated and unlabeled dataset to learn a representation of the latent factors. Sub-
sequently, we use the pre-trained weights to initialize the network during the downstream task. In
the second step, we trained the downstream classification model to learn from the downstream data
dynamics. In the third step, we estimated feature importance based on the model’s predictions using
different interpretability methods. In the fourth step, we evaluated the estimated features using a
technique, called Retain and Retrain (RAR) as described in Section 3.3.

MILC

MILC, also called whole MILC, stands for ”mutual information local to context.” It is a self-
supervised pretraining technique (Mahmood et al., 2020) used to maximize the mutual information
of the latent space of a window (time slice) and the corresponding full sequence as a whole.

Let D = {(ui
t, v

j) : 1 ≤ t ≤ T, 1 ≤ i, j ≤ N} be a dataset of window-sequence embedding pairs
computed from ICA time courses, where subscript t refers to the t-th window, superscripts i, j each
refers to a sequence number. T is the number of windows in a sequence, and N is the total number
of sequences in the dataset. D can be decomposed into a set of positive pairs D+ (i = j) and a set of
negative pairs D− (i 6= j) denoting a joint and a marginal distribution respectively for the window-
sequence pairs in the latent space. With a critic function f , we use InfoNCE estimator Oord et al.
(2018) to compute a lower bound If (D+) on the mutual information defined as:

I(D+) ≥ If (D+) ,
N∑

i=1

T∑
t=1

log
exp f((ui

t, v
i))∑N

k=1 exp f((u
i
t, v

k))
, (1)

where f is a separable critic defined as f(ut,v) = φ(ui
t)
ᵀ(vj), where φ is some embedding function

learnt by network parameters. Critic learns an embedding function such that it assigns higher values
for positive pairs than for negative pairs, i.e., f(D+)� f(D−). To make it precise, ut and v in the
Equation 1 respectively refer to window embedding zt and global sequence embedding c.

3 EXPERIMENTS

3.1 DATASET

We used ICA time courses computed from HCP dataset (823 healthy subjects) and OASIS (Open
Access Series of Imaging Studies) (Rubin et al., 1998)(372 subjects) dataset for Alzheimer’s disease
respectively for the pretraining and downstream task. We received 100 ICA components using the
same procedure as described in (Fu et al., 2019). However, we used only 53 non-noise features as
determined per slice (time point) in all experiments. We divided the ICA time courses into windows
of 20 time points for all experiments with 95% overlap (window shift = 1) along the time dimension.

3.2 WHOLE MILC SETUP

The unidirectional recurrent encoder with an attention mechanism takes 53× 20 windows and rep-
resents each time point with its hidden 256-dimensional representation. We pass these hidden di-
mensional representations through an attention network, a two-layer feed-forward network with
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hidden units 64, to produce a series of weights representatives of the required degrees of attention.
The hidden representations are then weighted to produce window embedding z. We initialized the
LSTM and linear units in the network with Xavier initialization. We used Adam optimizer both for
pretraining and training.

We used 700 and 123 HCP subjects, respectively, for pretraining and its evaluation. In MILC based
pretraining, we pass encoder embeddings z to another unidirectional recurrent network with an at-
tention mechanism. The hidden dimension for this higher (according to hierarchy) recurrent network
is 200. The used attention mechanism uses 400 input neurons (because of anchoring with the final
hidden state at each time point), 128 hidden units to produce a set of weights. These weights are
used as coefficients in the linear combination of hidden representations to generate a global embed-
ding c of dimension 200. Based on c and z, we pre-train the neural network using the mechanism
as described in Section 2. Window and sequence embeddings match with 89% accuracy during
pretraining evaluation.

3.3 WHOLE MILC EVALUATION

We evaluated the effectiveness of pretraining using two downstream models—NPT and UFPT.
UFPT stands for the ”Unfrozen Pre-trained” model, for which we further train the model on top
of the pre-trained weights. NPT stands for the ”Not Pre-trained” model, for which we initialize
the model with random weights and train the model with the downstream data. We progressively
increase the downstream data to show the effects of pretraining. Furthermore, we compare their
relative performance in terms of the available biomarkers through model interpretability.

For downstream classification of subjects into patients (AZ) and controls (HC) from the OASIS
dataset, we feed the ICA time courses into the recurrent encoder and obtain z and c using the same
procedure as in pretraining. Finally, we use a feed-forward network with 200 hidden units on top
to perform binary classification. We gradually increase the number of supervised training subjects
to observe the pretraining effect on downstream data size. For each experiment, we performed ten
trials to ensure the randomization of training samples. We used 64 hold-out subjects to evaluate the
model’s predictive performance. The outperformance of UFPT over NPT is evident as shown in
Figure 1.
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Figure 1: Left: It shows the main results from the whole MILC (Model 1). The whole MILC
pretraining substantially improves the latent representations as reflected in the improved AUC, i.e.,
UFPT outperforms NPT for an equal number of subjects. However, as we hypothesized, if we
gradually increase the number of subjects during training, the difference between UFPT and NPT
diminishes. Right: RAR evaluation on SVM (Model 2) of different saliency methods for the
OASIS dataset. Feature estimates using integrated gradients and its ensembles (”smoothgrad,”
”smoothgrad-squared,” ”vargrad” ) indicate important Spatio-temporal features potentially criti-
cal to the true cause of the underlying disorders. Also, it is observable that at 5% retention of
salient features, the importance of features is substantial. However, as the percentage of retention
increases, random importance catches up with these estimated feature importance. We attribute this
phenomenon to the redundancy in the ICA time courses data. Furthermore, the results reflect that, in
the case of small data, self-supervised pretraining (UFPT) assists in estimating feature attributions
more accurately than its no-pretraining (NPT) counterpart.
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POSTHOC EXPLANATION AND RAR EVALUATION

After we train the whole MILC model and finish evaluation on the hold-out test set, we used in-
tegrated gradients (IG) (Sundararajan et al., 2017), and some ensembles—smoothgrad (SG) (Seo
et al., 2018; Smilkov et al., 2017), smoothgrad-squared (SG-SQ), vargrad (VG) (Adebayo et al.,
2018)—of integrated gradients to compute posthoc explanation (saliency maps) of every sample in
the dataset. To evaluate the posthoc explanation, we initially investigated an existing ROAR method
as used in (Hooker et al., 2019) for feature evaluation. However, this method was not suitable for
ICA time courses because removing a certain percentage of entries does not necessarily cause an
interpretable drop in the resulting accuracy. We attribute this phenomenon to the redundancy in the
ICA time courses. Hence, we ended up with the RAR method. In RAR, as opposed to ROAR,
we retain a small percentage of the features taken in descending order of importance. We compute
sFNC of these modified samples, retrain and evaluate a nonlinear SVM model (Model 2). We use
the same train-test split for the RAR evaluation as used in the whole MILC (Model 1). Finally, we
compare the performance obtained with estimated features against the random baseline.

Let us define X as the original dataset (ICA time courses of subjects) and XM | gR be the modified
dataset based on random importance estimates and XM | gi be the modified dataset by some saliency
method gi. To guarantee that obtained saliency estimates are meaningful and have more disorder-
specific information, we show that ξ(XM | gi) > ξ(XM | gR, where ξ is the performance evaluation
function, e.g. area under curve and/or accuracy.

As observed in Figure 1, the dynamics learned by the model are spatiotemporally meaningful as the
small percentage of the critical features outperforms a similar amount of randomly chosen features
when we evaluate them on Model 2 (SVM). Besides, as reflected in AUC, the biomarkers identified
with UFPT models seem empirically of superior quality than its NPT counterpart. This encouraging
result generalizes, in most cases, across the datasets, even when we use very few subjects (15) for
training.

4 CONCLUSION AND FUTURE WORK

In this work, we propose a deep learning model that leverages its ability to learn directly from signal
dynamics rather than using pre-engineered features. We empirically show that the proposed model
can perform reasonably well in predictive metrics on the OASIS dataset designed for Alzheimer’s
study. We introspect the model for the critical but undiscovered disorder-specific information in the
dynamics. To this end, we used several saliency-based interpretability methods to estimate feature
attributions according to the order of importance the model assigns to them for its predictive deci-
sions. Furthermore, we propose a posthoc explanation evaluation method called RAR, which can
effectively evaluate the estimated features’ significance. With RAR, we demonstrate that important
features as determined by the learned model outweigh randomly selected features and thus capture
significant disorder-relevant parts of the dynamics. Besides, we provide a self-supervised pretrain-
ing scheme to enable the direct investigation of system dynamics in cases where the dataset’s size
under consideration is insufficient for the study. Toward this goal, we show that leveraging self-
supervised pretraining on a publicly available unlabeled and unrelated dataset (HCP) enables small
data studies. We pragmatically show that pretraining noticeably uplifts downstream performance
and extracts robust features for its predictive decisions. In the future, we expect to go beyond the
feature evaluation and interpret the underlying disorder-specific biomarkers from those estimated
features essential to the model for its predictions.
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