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Abstract
In this paper, we consider the metric k-center
problem in the fully dynamic setting, where we
are given a metric space (V, d) evolving via a
sequence of point insertions and deletions and
our task is to maintain a subset S ⊆ V of
at most k points that minimizes the objective
maxx∈V miny∈S d(x, y). We want to design our
algorithm so that we minimize its approximation
ratio, recourse (the number of changes it makes
to the solution S) and update time (the time it
takes to handle an update). We give a simple al-
gorithm for dynamic k-center that maintains a
O(1)-approximate solution with O(1) amortized
recourse and Õ(k) amortized update time, obtain-
ing near-optimal approximation, recourse and up-
date time simultaneously. We obtain our result by
combining a variant of the dynamic k-center algo-
rithm of Bateni et al. [SODA’23] with the dynamic
sparsifier of Bhattacharya et al. [NeurIPS’23].

1. Introduction
Clustering data is a fundamental task in unsupervised learn-
ing. In this task, we need to partition the elements of a
dataset into different groups (called clusters) so that ele-
ments in the same group are similar to each other, and
elements in different groups are not.

One of the most studied formulations of clustering is metric
k-clustering, where the data is represented by points in some
underlying metric space (V, d), and we want to find a subset
S ⊆ V of at most k centers that minimizes some objective
function. Due to its simplicity and extensive real-world
applications, metric k-clustering has been studied exten-
sively for many years and across many computational mod-
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els (Charikar et al., 1999; Jain & Vazirani, 2001; Ahmadian
et al., 2019; Byrka et al., 2017; Charikar et al., 2003; Ailon
et al., 2009; Shindler et al., 2011; Borassi et al., 2020). In
this paper, we focus on the k-center problem, where the ob-
jective function is defined as cl(S, V ) := maxx∈V d(x, S),
where d(x, S) := miny∈S d(x, y). In other words, we want
to minimize the maximum distance from any point in V to
its nearest point in S.

The dynamic setting: In recent years, massive and rapidly
changing datasets have become increasingly common. If we
want to maintain a good solution to a problem defined on
such a dataset, it is often not feasible to apply standard com-
putational paradigms and recompute solutions from scratch
using static algorithms every time the dataset is updated.
As a result, to cope with real world-scenarios, significant
effort has gone into developing dynamic algorithms that are
capable of efficiently maintaining solutions as the underly-
ing dataset evolves over time (Bhattacharya et al., 2023b;
Behnezhad et al., 2019).

In the case of dynamic clustering, the most practical and
studied setting is one where the metric space (V, d) evolves
over time via a sequence of updates that consist of point
insertions and deletions. Dynamic clustering has received a
lot of attention from both the theory and machine learning
communities over the past decade (Lattanzi & Vassilvitskii,
2017; Chan et al., 2018; Cohen-Addad et al., 2019; Hen-
zinger & Kale, 2020; Bhattacharya et al., 2022; Goranci
et al., 2021; Bhattacharya et al., 2024a). This long and in-
fluential line of work ultimately aims to design dynamic
clustering algorithms with optimal guarantees, mainly fo-
cusing on the following three metrics: (I) the approximation
ratio of the solution S maintained by the algorithm, (II) the
update time of the algorithm, which is the time it takes for
the algorithm to update its solution after a point is inserted or
deleted, and (III) the recourse of the solution, which is how
many points are added or removed from S after an update
is performed.1 These three metrics—approximation ratio,
update time, and recourse—capture the essential qualities
of a good practical dynamic clustering algorithm: solution
quality, efficiency, and stability.

1In other words, if we let S and S′ denote the solution main-
tained by the algorithm before and after an update, then we define
the recourse of the update to be |S ⊕ S′|, where ⊕ denotes sym-
metric difference.
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The state-of-the-art for dynamic k-center: The classic
algorithm of (Gonzalez, 1985) returns a 2-approxmiation
to the k-center problem in O(nk) time in the static setting,
where n is the size of the metric space V . It is known to be
NP-hard to obtain a (2 − ϵ)-approximation for ϵ > 0 and
that any (non-trivial) approximation algorithm for k-center
has running time Ω(nk) (Bateni et al., 2023). Thus, the
best we can hope for in the dynamic setting is to maintain a
2-approximation in Õ(k) update time.2 Bateni et al (Bateni
et al., 2023) showed how to maintain a (2+ϵ)-approximation
to k-center in Õ(k/ϵ) update time, obtaining near-optimal
approximation and update time. However, their algorithm
does not have any non-trivial bound on the recourse (the
solution might change completely between updates, lead-
ing to a recourse of Ω(k)). In subsequent work, Lacki et
al. (Lacki et al., 2024) showed how to maintain a O(1)-
approximation with O(1) recourse, achieving a worst-case
recourse of 4. The algorithm of (Lacki et al., 2024) does
however have a large Õ(poly(n)) update time, with the
authors stating that it would be interesting to obtain an up-
date time of Õ(poly(k)). This was very recently improved
upon by (Forster & Skarlatos, 2025), who showed how to
obtain an optimal worst-case recourse of 2.3 Very recently,
Bhattacharya et al. (Bhattacharya et al., 2024a) showed how
to maintain a O(log n log k)-approximation with Õ(k) up-
date time and Õ(1) recourse, obtaining near-optimal update
time and recourse simultaneously, but with polylogarithmic
approximation ratio.

Ultimately, we want to obtain near-optimal approximation,
update time and recourse simultaneously. Each of the algo-
rithms described above falls short in one of these metrics,
having either poor approximation, update time or recourse.
This leads us to the following natural question:

Q: Can we design a dynamic k-center algorithm with
O(1)-approximation, Õ(k) update time and O(1)

recourse?

Our contribution: We give an algorithm for dynamic k-
center that answers this question in the affirmative, obtaining
the following result.

Theorem 1.1 (informal). There is an algorithm for dy-
namic k-center that maintains a 20-approximation with
O(k log5(n) log∆) update time and O(1) recourse.

We emphasise that our algorithm is significantly simpler
than the state-of-the-art dynamic k-center algorithms de-
scribed above. Our starting point is the algorithm of (Bateni

2The Õ(·) notation hides polylogarithmic factors in n and the
aspect ratio of the metric space ∆ (see Section 1.2).

3We note that (Lacki et al., 2024; Forster & Skarlatos, 2025)
define the recourse of an update as the number of centers that are
swapped assuming that the size of the solution is always k. Thus,
the bounds in their papers are smaller by a factor of 2.

et al., 2023). Even though the high-level framework used
by (Bateni et al., 2023) is quite simple, they require a signif-
icant amount of technical work to obtain good update time;
we bypass this by using the dynamic sparsifier of (Bhat-
tacharya et al., 2023a), giving a very simple variant of their
algorithm that has good recourse and can be implemented
efficiently using the dynamic MIS algorithm of (Behnezhad
et al., 2019) as a black box.4

Related work: It was first shown how to maintain a (2+ ϵ)-
approximation to k-center with Õ(k2) update time by (Chan
et al., 2018); the algorithm of (Chan et al., 2022) improved
the space efficiency of this algorithm, but at the cost of
obtaining a (4 + ϵ)-approximation. Dynamic k-clustering
has also been explored in various other settings; there are
lines of work that consider the specific settings of Euclidean
spaces (Bateni et al., 2023; Bhattacharya et al., 2024b),
other k-clustering objectives such as k-median, k-means
and facility location (Cohen-Addad et al., 2019; Henzinger
& Kale, 2020; Bhattacharya et al., 2023a; 2024a; 2022;
2025), additional constraints such as outliers (Biabani et al.,
2023) and the incremental (insertion only) setting, where
the objective is to minimize recourse while ignoring update
time (Lattanzi & Vassilvitskii, 2017; Fichtenberger et al.,
2021). A separate line of work considers metric spaces
of bounded doubling dimension, where it is known how to
maintain a (2+ϵ)-approximation to k-center in Õ(1) update
time (Goranci et al., 2021; Gan & Golin, 2024; Pellizzoni
et al., 2025). (Cruciani et al., 2024) also considered the
problem of dynamic k-center w.r.t. the shortest path metric
on a graph undergoing edge insertions and deletions.

1.1. Technical Overview

We obtain our result by combining a simple variant of the
algorithm of (Bateni et al., 2023) with the dynamic sparsi-
fication algorithm of (Bhattacharya et al., 2023a). In this
technical overview, we give an informal description of a
variant of the algorithm of (Bateni et al., 2023), and then
explain how it can be modified to obtain our result.

The algorithm of (Bateni et al., 2023): The dynamic al-
gorithm of (Bateni et al., 2023) works by leveraging the
well-known reduction from k-center to maximal indepen-
dent set (MIS) using threshold graphs (see Definition 1.6)
(Hochbaum & Shmoys, 1986).

The algorithm maintains a collection of Õ(1) many thresh-
old graphs {Gλi}i of (V, d) and MISs {Ii}i of these thresh-
old graphs for values λi that increase in powers of (1 + ϵ),

4For ease of exposition, we avoid discussing certain details of
the algorithms in the introduction, such as oblivious vs. adaptive
adversaries, amortized vs. worst-case guarantees, and so on. Ta-
ble 1 in Appendix A contains a more comprehensive summary
of the state-of-the-art algorithms for fully dynamic k-center in
general metric spaces.
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i.e. λi = (1 + ϵ) · λi−1. The MISs {Ii}i satisfy the fol-
lowing property: Let i⋆ be the smallest index such that
|Ii⋆ | ≤ k, then Ii⋆ is a (2 + O(ϵ))-approximation to the
k-center problem on (V, d). At any point in time, the output
of this algorithm is the MIS Ii⋆ .

Implementation: Using the dynamic MIS algorithm of
Behnezhad et al. (2019) as a black box, which can main-
tain an MIS under vertex insertions and deletions in Õ(n)
update time, we can implement this algorithm with Õ(n)
update time. We note that this algorithm is a simple variant
of the actual algorithm presented in (Bateni et al., 2023),
which is much more technical. Since they want an update
time of Õ(k), it is not sufficient to use the algorithm of
(Behnezhad et al., 2019) as a black box and instead need to
use the internal data structures and analysis intricately. We
later improve the update time to Õ(k) using a completely
different approach.

Obtaining good recourse: It’s known how to maintain a
stable MIS of a dynamic graph, so that vertex updates in
the graph lead to few changes in the MIS (Behnezhad et al.,
2019). However, the main challenge that we encounter
while trying to obtain good recourse is that the MISs {Ii}i
do not necessarily have any relation to each other. Thus,
whenever the index i⋆ changes, the recourse could be as bad
as Ω(k). By modifying the algorithm, we can ensure that
the MISs {Ii}i are nested, and thus switching between them
does not lead to high recourse. This leads to the following
theorem.

Theorem 1.2. There is an algorithm for dynamic k-
center against oblivious adversaries that maintains an
8-approximation with O(n log4(n) log∆) expected worst-
case update time and 4 expected worst-case recourse.

To improve the update time from Õ(n) to Õ(k), we use
the dynamic sparsifier of (Bhattacharya et al., 2023a). This
allows us to assume that the underlying metric space has
size Õ(k), thus leading to an update time of Õ(k). This
leads to the following theorem.

Theorem 1.3. There is an algorithm for dynamic k-
center against oblivious adversaries that maintains a 20-
approximation with O(k log5(n) log∆) expected amortized
update time and O(1) expected amortized recourse.5

Remark 1.4. In Appendix C, we design a different sparsifier
by building on top of the sparsifier of (Bhattacharya et al.,
2023a), allowing us to obtain a recourse of at most 8 + ϵ.

1.2. Preliminaries and Notations

We now provide definitions and notations that we use
throughout the paper.

Definition 1.5 (Metric Space). Consider a set of points

5Here, the approximation guarantee holds w.h.p.

V and a distance function d : V × V → R≥0 such that
d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) +
d(z, y) for all x, y, z ∈ V . We refer to the pair (V, d) as a
metric space.

The aspect ratio of (V, d) is defined as the ratio between
the maximum and minimum non-zero distance of any two
points in the space. For each S ⊆ V and x ∈ V , we denote
the distance from x to S by d(x, S) := miny∈S d(x, y).
The ball around x ∈ V of radius r is defined as B(x, r) :=
{y ∈ V | d(x, y) ≤ r}.

Metric k-center: In the metric k-center problem, we are
given a metric space (V, d) and the objective is to find
S ⊆ V of size at most k that minimizes cl(S, V ) :=
maxx∈V d(x, S). We denote the cost of the optimum solu-
tion to the k-center problem by

OPTk(V ) := min
S⊆V,|S|≤k

cl(S, V ).

We sometimes abbreviate cl(S, V ) by cl(S) and OPTk(V )
by OPTk when the set V is clear from the context.

Definition 1.6 (λ-Threshold Graph). Given a metric space
(V, d) and any λ ≥ 0, we define the λ-threshold graph
of (V, d) to be the graph Gλ := (V,Eλ) where Eλ :=
{(x, y) ∈

(
V
2

)
| d(x, y) ≤ λ}.

Definition 1.7 (Bicriteria Approximation). Given a ρ-metric
space (V, d), we say that a subset of points U ⊆ V is
an (α, β)-approximation to the (k, p)-clustering problem if
clp(U) ≤ α · OPTk(V ) and |U | ≤ βk.

Definition 1.8 ((α, β)-Sparsifier). Fix a ρ ≥ 1 and a clus-
tering problem. An (α, β)-sparsifier is a dynamic algorithm
that, given a ρ-metric space (V, d) undergoing point inser-
tions and deletions, maintains U ⊆ V which is an (α, β)-
approximation for the clustering problem at any point in
time. The recourse of the sparsifier is defined as the number
of insertions and deletions of the points in the maintained
solution U .

For any natural number N , we denote the set {1, 2, . . . , N}
by [N ]. Consider a sequence of updates σ1, . . . , σT . For
each point set U that is maintained explicitly by our algo-
rithm, we use U (t) (for any t ∈ [T ]) to indicate the status of
this set after handling update σt. For instance, if S is the so-
lution maintained by our algorithm, S(t) is the output after
handling update σt. We also define δt(U) := U (t−1)⊕U (t)

to indicate the symmetric difference of the maintained set
U before and after handling update σt.

2. Our Dynamic Algorithm (Theorem 1.2)
In this section, we provide our dynamic k-center algorithm
for Theorem 1.2, which we call Dynamic-k-Center.
We begin by describing a dynamic algorithm for maximal
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independent set (MIS) that our algorithm uses as a black
box.

2.1. The Algorithm DynamicMIS

(Behnezhad et al., 2019) present an algorithm, which we
refer to as DynamicMIS, that, given a dynamic graph G un-
dergoing updates via a sequence of node insertions and dele-
tions, explicitly maintains an MIS I of G. The following
lemma summarizes the key properties of DynamicMIS.

Lemma 2.1. The algorithm DynamicMIS has an expected
worst-case update time of O(n log4 n) and an expected
worst-case recourse of 1.6

2.2. Our Algorithm: Dynamic-k-Center

Let (V, d) be a dynamic metric space undergoing updates
via a sequence of point insertions and deletions, and let dmax

and dmin be upper and lower bounds on the maximum and
minimum (non-zero) distance between any two points in the
space at any time throughout the sequence of updates. Let
λi := 2i−2 ·dmin and Gi := Gλi for each 0 ≤ i ≤ τ , where
τ := log2 ∆+ 2 and ∆ is the aspect ratio (see Section 1.2)
of the underlying metric space. Note that the edge-sets of
these threshold graphs are nested, i.e., E1 ⊆ · · · ⊆ Eτ . Let
I0 denote the set V . Our algorithm Dynamic-k-Center
maintains the following for each i ∈ [τ ]:

• An MIS Ii := DynamicMIS(Gi[Ii−1]) of Gi[Ii−1],
where G[S] denotes the subgraph of G induced by the
node-set S.

• The set Ii−1 \ Ii ordered lexicographically.

Let i⋆ ∈ [τ ] be the smallest index such that |Ii⋆ | ≤ k. Then
the output S of our dynamic algorithm is the union of the
set Ii⋆ and the first k − |Ii⋆ | points in the set Ii⋆−1 \ Ii⋆ .

2.3. Analysis of Our Algorithm

We begin by bounding the approximation ratio of our algo-
rithm and then proceed to analyze the recourse and update
time.

Approximation ratio: We now show that the set Ii⋆ is an
8 approximation to the k-center problem on (V, d). Since
S ⊇ Ii⋆ , the approximation guarantee of our algorithm
follows. We begin with the following simple lemmas.

Lemma 2.2. For each i ∈ [τ ], we have that cl(Ii) ≤ 2λi.

Proof. We prove this by induction on i. We first note that,
since I0 = V , cl(I0) = 0. Now, let i ∈ [τ ] and x /∈ Ii, and
assume that the lemma holds for i − 1. Since cl(Ii−1) ≤

6The upper bound of 1 on the expected recourse follows from
Theorem 1 in (Censor-Hillel et al., 2016).

2λi−1, there is some y ∈ Ii−1 such that d(x, y) ≤ 2λi−1.
If y ∈ Ii, then d(x, Ii) ≤ 2λi−1 = λi and we are done.
Otherwise, since y ∈ Ii−1\Ii and Ii is an MIS, there exists
some z ∈ Ii such that d(y, z) ≤ λi. Thus, we have that
d(x, Ii) ≤ d(x, z) ≤ d(x, y) + d(y, z) ≤ 2λi−1 + λi =
2λi.

Lemma 2.3. For each i ∈ [τ ] such that |Ii| > k, we have
that λi ≤ 2 · OPTk.

Proof. Let S⋆ denote an optimal solution to the k-center
problem in (V, d) and let B⋆ := B(S⋆, λi/2) =
∪y⋆∈S⋆B(y⋆, λi/2) (see Section 1.2 for the definition of
the ball B(x, r)). Given any point y⋆ ∈ S⋆, and any
two distinct points y, y′ ∈ Ii, we can see that at most
one of y and y′ is contained in B(y⋆, λi/2), otherwise
d(y, y′) ≤ d(y, y⋆) + d(y⋆, y′) ≤ λi, contradicting the
fact that Ii is an MIS since (y, y′) ∈ Eλi . Combining this
with our assumption that |Ii| > k ≥ |S⋆|, it follows that
Ii \B(S⋆, λi/2) ̸= ∅, as otherwise by pigeonhole principle
at least two different elements of Ii would be contained in
the same B(y⋆, λi/2) for some y⋆ ∈ S⋆, which is in contra-
diction with the above explanation. Hence cl(S⋆) ≥ λi/2.
It follows that λi ≤ 2 · OPTk.

Applying Lemmas 2.2 and 2.3 and noting that |Ii⋆−1| > k,
we get cl(Ii⋆) ≤ 2λi⋆ = 4λi⋆−1 ≤ 8 · OPTk.

Recourse: We now proceed to bound the expected recourse
of our algorithm. Suppose that our algorithm handles a
sequence of updates σ1, . . . , σT . Consider I(t)i , δt(Ii), S(t)

δt(S) for each t ∈ [T ] (recall the notation from Section 1.2).

The following lemma shows that the expected recourse of
each Ii is small.

Lemma 2.4. For each t ∈ [T ], i ∈ [τ ], we have that
E[|δt(Ii)|] ≤ 1.

Proof. Fix any t ∈ [T ]. We prove this by induction on i. We
first note that E[|δt(I0)|] = |δt(V )| = 1. Now, let i ∈ [τ ]
and assume that the lemma holds for i− 1. Then E[|δt(Ii)|]
is the expected recourse of the solution maintained by the dy-
namic algorithm DynamicMIS(Gi[Ii−1]). By Lemma 2.1,
each node update in Gi[Ii−1] leads to an expected recourse
of at most 1 in the solution maintained by this algorithm.
Hence, we have that E[|δt(Ii)|] ≤ |δt(Ii−1)|. Taking ex-
pectation on both sides, the lemma follows.

We now use Lemma 2.4 to bound the expected recourse of
the solution S.

Lemma 2.5. For each t ∈ [T ], E[|δt(S)|] ≤ 4.

Proof. Let j denote the value of the index i⋆ immediately
after handling the update σt−1. If j = 0, we have S(t−1) =
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I(t−1)
0 which equals the whole space at this time whose

size is at most k. In this case, it is obvious that |δt(S)| =
|S(t) ⊕ S(t−1)| ≤ 1. If j > 0, the size of the whole space,
after updates t− 1 and t, is at least k.

Claim 2.6. We have

|S(t−1) ⊕ S(t)| ≤ 2|δt(Ij)|+ 2|δt(Ij−1)|.

Proof. Consider the following ordering on the points of V .

Iτ , Iτ−1 \ Iτ , Iτ−2 \ Iτ−1, · · · , I0 \ I1,

where for each i ∈ [τ ], elements of Ii−1 \ Ii are written
in the lexicographic order. The output of the algorithm is
exactly the first k points in this order. We assumed that
S(t−1) consists of I(t−1)

j and the first k−|I(t−1)
j | elements

of I(t−1)
j−1 \ I(t−1)

j . As a result, after handling update σt,
we have at most |δt(Ij)|+ |δt(Ij−1)| many changes in the
first k points in this order. Hence, there are at most these
many deletions from S(t−1) as well as these many insertions,
which concludes the claim.

According to the above claim, by taking expectations and
applying Lemma 2.4, we have that E[|δt(S)|] ≤ 4.

Update time: Fix any t ∈ [T ] and i ∈ [τ ]. If we delete x
from Ii, then we remove the corresponding node from G[Ii].
By Lemma 2.1, the expected time to update the MIS Ii+1 in
this graph after the deletion of x is Õ(n). If we insert a new
point x into Ii, we insert a node x into G[Ii]. To find the
edges between x and other nodes, we first find the distance
of x to all other points in Ii in O(|Ii|) = O(n) time and
then compare the distance with λi. Again, by Lemma 2.1,
the expected time to update the MIS Ii+1 in this graph after
inserting the node x is O(n log4 n).

Hence, we can perform both insertions into and dele-
tions from Ii in time O(n log4 n) for each i ∈ [τ ]. By
Lemma 2.4, the expected number of updates in Ii is at most
1. Thus, we can update the graph G[Ii] and Ii+1 in ex-
pected O(n log4 n) time. Finally, since τ = O(log∆), the
total time taken to update all of the graphs G[Ii] and MISs
Ii with O(n log4(n) log∆) in expectation.

In order to maintain S, for each i, we can maintain two
binary search trees T f

i and T r
i such that T f

i contains the
first k−|Ii| elements of Ii−1\Ii and T r

i contains the rest of
elements in Ii−1 \Ii. After each insertion or deletion in any
of Ii or Ii−1, we can exchange the last element of T f

i and
the first element of T r

i appropriately, in order to maintain
the property in the definition of T f

i and T r
i . For instance

after a deletion in Ii, the value of k − |Ii| increments, and
we should remove the first element of T r

i and add it to T f
i

(which would be new last element). Hence, we have the first

k−|Ii| elements of Ii−1 \ Ii stored in T f
i explicitly, at any

time. Note that

E[|δt(Ii−1 \ Ii)|] ≤ E[|δt(Ii−1)|] + E[|δt(Ii)|] ≤ 2,

where the last inequality follows from Lemma 2.4. This
means that the update time for maintaining each of these
trees is O(log n) in expectation.

In total, we can maintain all of the objects in our algorithm
in O(n log4(n) log∆) update time in expectation.

3. Improving the Update Time (Theorem 1.3)
We now show how to use sparsification to improve the up-
date time of our algorithm to Õ(k). In Section 3.1, we show
how to use a sparsifier (see Definition 1.8) as a black box in
order to speed up a dynamic algorithm. In Section 3.2, we
describe the guarantees of a sparsifier for k-center and com-
bine it with Dynamic-k-Center, proving Theorem 1.3.
The rest of the Section 3 is devoted to constructing this spar-
sifier for k-center, which follows from the previous work of
(Bhattacharya et al., 2023a). Since their algorithm is primar-
ily designed for k-median rather than k-center, we describe
the sparsifier of (Bhattacharya et al., 2023a) in Section 3.3,
along with a new analysis that gives an improved bound on
its approximation ratio for k-center and its recourse.

3.1. Dynamic Sparsification

The following theorem describes the properties of the dy-
namic algorithm obtained by composing a sparsifier and any
dynamic algorithm for k-center problem.

Theorem 3.1. Assume we have an (αS , β)-sparsifier for
metric k-center with TS update time and RS recourse, and
a dynamic αA-approximation algorithm for metric k-center
with TA(n) update time and RA(n) recourse. Then we
can obtain a dynamic algorithm for metric k-center with
(αS + 2αA)-approximation ratio, O(TS + RS · TA(βk))
update time and O(RS ·RA(βk)) recourse.7

Proof. Let (V, d) be a dynamic metric space. We run the
sparsifier on this space which at any point in time maintains
a subset U ⊆ V . This defines a dynamic metric subspace
(U, d) of size at most βk, such that each update in V leads
to at most RS updates in U and cl(U, V ) ≤ αS · OPTk(V ).

Now, we feed the new dynamic subspace (U, d) (whose
size is at most βk at any time) to the k-center algorithm,
which maintains a subset of points S ⊆ U of size k such
that cl(S,U) ≤ αA · OPTk(U). We refer to this process as
composing these dynamic algorithms.

Since each update in V leads to at most RS updates in U , it
follows that the update time and recourse of the composite

7This holds for both worst-case and amortized guarantees.
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algorithm are O(TS +RS · TA(βk)) and O(RS ·RA(βk))
respectively. To bound the approximation ratio, consider the
following claim.

Claim 3.2. Given subsets S ⊆ U ⊆ V , we have that
cl(S, V ) ≤ cl(U, V ) + cl(S,U).

Proof. Let x ∈ V , y and y′ be the closest points to x in S
and U respectively, and y⋆ be the closest point to y′ in S.
Then we have that

d(x, S) = d(x, y) ≤ d(x, y⋆) ≤ d(x, y′) + d(y′, y⋆)

= d(x, U) + d(y′, S) ≤ cl(U, V ) + cl(S,U).

It follows that cl(S, V ) ≤ cl(U, V ) + cl(S,U).

Applying Claim 3.2, we get that

cl(S, V ) ≤ cl(U, V ) + cl(S,U)

≤ αS · OPTk + αA · OPTk(U)

≤ (αS + 2αA) · OPTk(V ),

where the last inequality follows since OPTk(W ) ≤ 2 ·
OPTk(V ) for any W ⊆ V (see Lemma B.1).

3.2. Proof of Theorem 1.3

We start with the following lemma, which provides the
guarantees of a sparsifier for the k-center problem. We
prove this lemma in Section 3.3.

Lemma 3.3. There exists a (4, O(log(n/k)))-sparsifier for
the k-center problem on a metric space (V, d), whose ap-
proximation guarantee holds with high probability, and has
O(k log(n/k)) amortized update time and O(1) amortized
recourse.8

Theorem 1.3 now follows by combining our algorithm
Dynamic-k-Center from Theorem 1.2 and the spar-
sifier of Lemma 3.3 by using the composition described
in Theorem 3.1. The approximation ratio of the result-
ing algorithm is αS + 2αA = 4 + 2 · 8 = 20 w.h.p.
The expected amortized recourse is O(RS · RA(βk)) =
O(1) since both RS and RA are constant. For the up-
date time, we have TS = O(k log(n/k)), RS = 1,
β = log(n/k), and TA(βk) = O((βk) log4(βk) log∆) =
O(k log5(n) log∆). Hence, the final update time of the
algorithm is O(TS +RS · TA(βk)) = O(k log5(n) log∆).

3.3. The Algorithm Sparsifier (Proof of Lemma 3.3)

The algorithm in Lemma 3.3 (which we refer to as
Sparsifier) follows from the results of (Bhattacharya

8In Appendix C, we show how to construct a different sparsifier,
leading to a recourse of at most 8 + ϵ.

et al., 2023a). Before we provide the algorithm, we men-
tion that in (Bhattacharya et al., 2023a), the main goal is to
solve the k-median problem. In particular, there are some
technical details for k-median that we do not need for k-
center. There is no argument for recourse of the algorithm
in (Bhattacharya et al., 2023a). Here, we briefly describe
the algorithm and show that the amortized recourse of this
algorithm is actually O(1).

The algorithm Sparsifier is a dynamization of a well-
known algorithm by Mettu and Plaxton (Mettu & Plaxton,
2002).

The algorithm of Mettu-Plaxton: The main component of
this algorithm is the following key subroutine:

• AlmostCover(U): Sample a subset S ⊆ U of size
2k u.a.r., compute the subset C ⊆ U of the |U |/4
points in U that are closest to the points in S, and
return (S,U \ C).

Intuitively, this subroutine grows balls centered at sampled
points simultaneously until they cover a quarter of the space.
This gives a partitioning of a quarter of the points into O(k)
sets, which we refer to as clusters.

The algorithm begins by setting U1 := V, i = 0,
and, while |Ui| ≥ Θ(k), repeatedly sets (Si, Ui+1) ←
AlmostCover(Ui). This defines a sequence of nested
subsets V = U1 ⊇ · · · ⊇ Uℓ for ℓ = O(log(n/k)) and
subsets Si ⊆ Ui for each i ∈ [ℓ − 1]. The output of the
algorithm is the set U := S1 ∪ · · · ∪ Sℓ−1 ∪ Uℓ, which has
size at most O(kℓ) ≤ O(k · log(n/k)). Note that for each i,
each point x ∈ Si is the center of a cluster and points of Uℓ

are singleton clusters. Hence, the final clustering produced
by the algorithm assigns each point x ∈ Ui \ Ui+1 to its
nearest center in Si (breaking the ties arbitrarily).

The algorithm Sparsifier: At a high level, (Bhat-
tacharya et al., 2023a) dynamizes the static algorithm of
Mettu-Plaxton by maintaining an approximate version of
their hierarchy of nested sets, which are updated lazily and
periodically reconstructed by using AlmostCover in the
same way as the Mettu-Plaxton algorithm.9 More specifi-
cally, Sparsifier maintains the following

• Subsets V = U1 ⊇ · · · ⊇ Uℓ for ℓ = O(log(n/k)).

• Si ⊆ Ui for each i ∈ [ℓ− 1].

• U := S1 ∪ · · · ∪ Sℓ−1 ∪ Uℓ as the output.

We now describe how these items are updated as points are
inserted and deleted from V .

9Here we slightly change the algorithm as follows. We will call
AlmostCover multiple times instead of once, and then select
the best output among these independent calls in order to boost the
approximation ratio (see Lines 9 to 13 in Algorithm 1).

6



Almost Optimal Fully Dynamic k-Center Clustering with Recourse

Insertion: When a point x is inserted into V , x is added
to each set in U1, . . . , Uℓ. In this case, x would be a new
singleton cluster.

Deletion: When a point x is deleted from V , x is removed
from each set in U1, . . . , Uℓ. If x is contained in some Si,
then x is removed from Si and replaced with any other
point currently in its cluster as the new center (if its cluster
is non-empty).

We refer to the above updates as lazy updates. After per-
forming a lazy update, we have the reconstruction phase as
follows.

Reconstruction: For each i ∈ [ℓ], the algorithm periodically
reconstructs layer i and all subsequent layers (i.e. the sets
Si, . . . , Sℓ and Ui+1, . . . , Uℓ) every Ω(|Ui|) updates. To
do this, for each i ∈ [ℓ], we keep track of the number of
updates on Ui after the last time it was reconstructed. After
each insertion and deletion, we find the smallest index j
where the number of updates on Uj+1 since the last time
it was reconstructed is at least |Uj |/4 (note that |Uj | also
varies over time). See Algorithm 1 for more details. The
reconstruction is done using AlmostCover in the same
way as the static algorithm described above, essentially
running the Mettu-Plaxton algorithm starting with the input
Uj .10 We note that, after a reconstruction, the value of ℓ can
change.

Algorithm 1 Reconstruct
1: for i = 1 to ℓ do
2: COUNT[i] = COUNT[i] + 1
3: end for
4: j = smallest index s.t. COUNT[j] ≥ |Uj |/4
5: for i = j to ℓ do
6: COUNT[i] = 0
7: end for
8: repeat
9: for m = 1 to M = Θ(log n) do

10: (Am, Bm)← AlmostCover(Uj)
11: end for
12: m⋆ ← argmin1≤m≤M cl(Am, Uj \Bm)
13: (Sj , Uj+1)← (Am⋆ , Bm⋆)
14: j = j + 1
15: until |Uj | ≤ 16k
16: ℓ = j
17: U := S1 ∪ · · · ∪ Sℓ−1 ∪ Uℓ

3.3.1. APPROXIMATION RATIO ANALYSIS

We show the solution U maintained by the Sparsifier
is (4, O(log(n/k)))-approximate.
Lemma 3.4 (Lemma 3.2, (Bhattacharya et al., 2023a)). We

10For example, after reconstructing layer 1, the outputs of the
dynamic algorithm and the Mettu-Plaxon algorithm are the same.

have ℓ = O(log(n/k)) at any point in time during the
execution of Sparsifier.

This lemma implies that the size of the solution U ⊆ V

maintained by the algorithm is always
∑ℓ−1

i=0 |Si|+ |Uℓ| =
ℓ ·O(k) = O(k · log(n/k)).
Lemma 3.5. The solution U maintained by the algorithm
Sparsifier is 4-approximate w.h.p.

According to Lemma 3.4 and Lemma 3.5, we can see that the
solution U is a (4, O(log(n/k))-approximation as desired.
Now, we proceed with the proof of Lemma 3.5.

Proof of Lemma 3.5. For every C ⊆ V , define

diam(C) := max
x,y∈C, x̸=y

d(x, y).11

For each W ⊆ V and 0 < β ≤ 1, define µβ
k(W ) to be the

minimum real number µ > 0 such that there exist k disjoint
subsets C1, C2, · · · , Ck ⊆W , such that∑

i∈[k]

|Ci| ≥ β · |W | and ∀i ∈ [k], diam(Ci) ≤ µ.

We start with a series of claims.
Claim 3.6. We have µ1

k(V ) ≤ 2 · OPTk(V ).

Proof. Consider an optimal solution S⋆ ⊆ V for k-center
on V and the clusters C1, C2, . . . , Ck corresponding to the
centers s1, s2, . . . , sk in S⋆. For each i ∈ [k] and each
x, y ∈ Ci, we have d(x, y) ≤ d(x, si) + d(si, y) ≤ 2 ·
OPTk(V ). Hence, diam(Ci) ≤ 2 · OPTk(V ) for each i ∈
[k]. Since C1, . . . , Ck is a partition of V , all the conditions
in the definition of µ1

k(V ) are satisfied, which concludes
µ1
k(V ) ≤ 2 · OPTk(V ).

Claim 3.7. For every W ⊆ V , we have µ1
k(W ) ≤ µ1

k(V ).

Proof. For every collection of subsets {Ci}i∈[k] of V sat-
isfying the conditions in the definition of µ1

k(V ), the col-
lection {Ci ∩W}i∈[k] satisfy the same conditions in the
definition of µ1

k(W ). Hence, µ1
k(W ) ≤ µ1

k(V ).

Claim 3.8. For every W and W ′ satisfying |W ⊕W ′| ≤
|W |/4, we have µ

1/2
k (W ′) ≤ µ1

k(W ).

Proof. Let µ⋆ = µ1
k(W ) and assume {Ci}i∈[k] is the

optimal collection in the definition of µ1
k(W ) such that

diam(Ci) ≤ µ⋆ for all i ∈ [k]. Define C ′
i := Ci ∩ W ′

for each i ∈ [k]. We show that {C ′
i}i∈[k] satisfy the condi-

tions in the definition of µ1/2
k (W ′). Obviously, diam(C ′

i) =
diam(Ci∩W ′) ≤ diam(Ci) ≤ µ⋆. Since {Ci}i∈[k] is a par-
titioning of W , we have | ∪i∈[k]C

′
i| = |(∪i∈[k]Ci)∩W ′| =

11If |C| = 1, simply define diam(C) = 0.
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|W ∩ W ′| ≥ |W ′|/2. The last inequality follows from
|W ⊕W ′| ≤ |W |/4 and a simple counting argument.

Claim 3.9. Consider a single call to AlmostCover(W ),
where S ⊆W is sampled and the balls around S of radius
r cover C such that C = |W |/4. Then, with constant
probability, we have r ≤ µ

1/2
k (W ).

Proof. Assume µ⋆ = µ
1/2
k (W ). It is sufficient to show

that with constant probability, we have |B(S, µ⋆)| ≥ |W |/4
(or B(S, µ⋆) ⊆ C, equivalently). Let {Ci}i∈[k] be the
optimal collection in the definition of µ

1/2
k (W ), which

means diam(Ci) ≤ µ⋆ for i ∈ [k]. Let Xi be the in-
dicator random variable for S ∩ Ci ̸= ∅. According
to the uniform sampling from W , the probability that a
point is sampled from Ci equals αi := |Ci|/|W |. Hence,
Pr[Xi = 1] = 1 − (1 − αi)

|S|. If there is a point sam-
pled from Ci, (i.e. Xi = 1), then all of the points in Ci

have a distance of at most µ⋆ from the sampled point since
diam(Ci) ≤ µ⋆. Hence,

E[|B(S, µ⋆)|] ≥
k∑

i=1

|Ci| · Pr[Xi = 1]

≥ |W | ·
k∑

i=1

αi · (1− (1− αi)
|S|).

Note that 1 ≥
∑k

i=1 αi ≥ 1/2. The above function takes its
minimum when 1/k ≥ α1 = α2 = · · · = αk ≥ 1/(2k).12

Thus,

E[|B(S, µ⋆)|] ≥ |W | ·
k∑

i=1

αi · (1− (1− αi)
|S|)

≥ |W | · (1/2) · (1− (1− 1/(2k))|S|)

≥ |W | · (1− e−|S|/(2k))/2 ≥ 1− e−1

2
|W |.

Now, since we know that 0 ≤ |B(S, µ⋆)| ≤ |W |, we
can conclude that with a constant probability we have
|B(S, µ⋆)| ≥ |W |/4. More precisely, assume p =
Pr[|B(S, µ⋆)| ≥ |W |/4], then we have

1− 1/e

2
|W | ≤ E[|B(S, µ⋆)|] =

|W |∑
t=0

Pr[|B(S, µ⋆)| = t] · t

≤
|W |/4−1∑

t=0

Pr[|B(S, µ⋆)| = t] · |W |/4

+

|W |∑
t=|W |/4

Pr[|B(S, µ⋆)| = t] · |W |

12This can be simply verified by elementary calculus.

= |W | · ((1− p)/4 + p)

This concludes p ≥ (1− 2e−1)/3 = Ω(1).

Now, we are ready to complete the proof of Lemma 3.5.
Consider that V new is the current dynamic space, and let x ∈
V new be arbitrary. We show that d(x, U) ≤ 4 ·OPTk(V

new),
where U is the current output of the Sparsifier, which
completes the proof. Let i⋆ ∈ [ℓ] be the largest index such
that x ∈ Ui⋆ (Since U1 = V new, this index exists). If
i⋆ = ℓ, we obviously have x ∈ Uℓ ⊆ U and d(x, U) =
0. Now, assume i⋆ < ℓ. We use the superscripts ‘new’
and ‘old’ to indicate the status of an object at the current
time, and the last time that AlmostCover was called on
Ui⋆ , respectively. For instance, the output of the last call
AlmostCover on Ui⋆ equals (Sold

i⋆ , U old
i⋆ \ C).

According to the definition of i⋆, We have that x was not
removed from the space between times old and new, as oth-
erwise, x became part of Ui⋆+1 and was not removed from
Ui⋆+1 until the next call to AlmostCover(Ui⋆), which
is a contradiction. We also have x ∈ C, as otherwise, x
would be inside U new

i⋆+1. Hence, when we sampled points of
Sold
i⋆ , x must have been assigned to the growing ball around

some point s ∈ Sold
i⋆ , which we denote by B ⊆ C. Note

that during the updates between old and new, the center
s ∈ B might have been swapped with another point s′ ∈ B
(Since x was never removed from B, the ball B never be-
came empty and the algorithm maintains at least one point
s′ ∈ Snew

i⋆ as a representative for B). As a result, there exists
s′ ∈ Snew

i⋆ such that

d(x, s′) ≤ d(x, s) + d(s, s′) ≤ 2 · µ1/2
k (U old

i⋆ ). (1)

The last inequality follows w.h.p. according to Claim 3.9
and the fact that we made Θ(log n) independent calls to
AlmostCover(U old

i⋆ ) and select the best between all (see
Lines 9 to 13 in Algorithm 1). Finally, we conclude

d(x, U) ≤ d(x, Snew
i⋆ ) ≤ d(x, s′)

≤ 2 · µ1/2
k (U old

i⋆ ) ≤ 2 · µ1
k(U

new
i⋆ )

≤ 2 · µ1
k(V

new) ≤ 4 · OPTk(V
new).

The first inequality follows since Snew
i⋆ ⊆ U , the second one

follows since s′ ∈ Snew
i⋆ , the third one follows from Equa-

tion (1), the fourth one follow from Claim 3.8 for W = U new
i⋆

and W ′ = U old
i⋆ (note that |U old

i⋆ ⊕ U new
i⋆ | ≤ COUNT[i⋆] ≤

|U new
i⋆ |/4), the fifth one follows from Claim 3.7, and the last

one follows from Claim 3.6. As a result, w.h.p., we have
d(x, U) ≤ 4 · OPTk(V

new).

3.3.2. RECOURSE ANALYSIS

In this section, we prove the following lemma, which sum-
marizes the recourse guarantee of the Sparsifier.
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Lemma 3.10. The amortized recourse of the algorithm
Sparsifier is constant.

The recourse caused by lazily updating the set U after an
insertion or deletion is at most O(1) since only O(1) many
points are added or removed from each set. We now bound
the recourse caused by periodically reconstructing the layers
by using a charging scheme, similar to the one used by
(Bhattacharya et al., 2023a) to bound the update time of this
algorithm. Let σ1, . . . , σT denote a sequence of updates
handled by the algorithm. Each time the algorithm performs
a reconstruction starting from layer i, we charge the recourse
caused by this update to the updates that have occurred
since the last time that Ui was reconstructed. If the recourse
caused by this update is q, and p updates have occurred
since the last time that Ui was reconstructed, then each
of these updates receives a charge of q/p. We denote the
total charge assigned to the update σt by Φt. We can see
that the amortized recourse of our algorithm is at most
(1/T ) ·

∑T
t=1 Φt. We now show that, for each t ∈ [T ],

Φt ≤ O(1), implying that the amortized recourse is O(1).

Consider some update σt and let U1, . . . , Uℓ denote the
sets maintained by the algorithm during this update. The
following claim shows that the sizes of the sets Ui decay
exponentially.

Lemma 3.11 (Lemma B.1, (Bhattacharya et al., 2023a)).
There exists a constant ϵ ∈ (0, 1) such that, for all i ∈ [ℓ],
we have that |Uℓ| ≤ (1− ϵ)ℓ−i · |Ui|.
Claim 3.12. The recourse caused by the next reconstruction
of layer i is O(k log(|Ui|/k)).

Proof. We first note that the size of a set Ui changes by
at most a constant factor before it is reconstructed. Since
each Uj has size O(k), the recourse caused by reconstruct-
ing Ui after the call to AlmostCover(Ui) is at most
O(k(ℓ − i + 1)). Since the sizes of the sets decrease ex-
ponentially by Lemma 3.11, and |Uℓ| = Θ(k), it follows
that ℓ − i = O(log(|Ui|/k)). Hence, the total recourse is
O(k log(|Ui|/k)).

Since the size of a set Ui changes by at most a constant
factor, we know that the recourse from reconstructing Ui is
charged to Ω(|Ui|) many updates. Hence, by Claim 3.12,
the recourse charged to σt from this reconstruction is
O(k log(|Ui|/k)/|Ui|). Consequently, we can upper bound
the total recourse charged to σt by

Φt ≤
ℓ∑

i=1

O

(
k

|Ui|
log

(
|Ui|
k

))
.

The size of the set Uℓ is always at least 9k. This is because
AlmostCover(U) reduces the size of U by a quarter, and
combining with the condition in Line 15 in Algorithm 1, the

size of Uℓ after each reconstruction is at least 16k · (3/4) =
12k. Now, during a sequence of at most |Uℓ|/4 updates
before the next reconstruction from some layer j ≤ ℓ, the
size of Uℓ reduces to at most 12k · (3/4) = 9k (even if
all of the updates are deletions). Hence, we always have
|Uℓ| ≥ 9k. Now, by Lemma 3.11, it follows that |Ui| ≥
|Uℓ|/(1− ϵ)ℓ−i ≥ 9k/(1− ϵ)ℓ−i, so

Φt ≤ O(1) ·
ℓ∑

i=1

k

|Ui|
log

(
|Ui|
k

)

≤ O(1) ·
ℓ∑

i=1

(1− ϵ)ℓ−i

9
log

(
9

(1− ϵ)ℓ−i

)

≤ O(1) ·
ℓ∑

i=1

(1− ϵ)ℓ−i(ℓ− i+ 1)

≤ O(1) ·
∞∑
j=0

(j + 1)(1− ϵ)j ≤ O(1),

where the second inequality follows from the fact that
f(x) := log(x)/x is decreasing for all x ≥ e and the last
inequality follows from the fact that

∑∞
j=0(j + 1)(1− ϵ)j

is a convergent series.

3.3.3. UPDATE TIME ANALYSIS

Lemma 3.13. The amortized update time of the algorithm
Sparsifier is O(k log2 n).

Proof. The subroutine AlmostCover(U) can be imple-
mented in O(|S| · |U |) = O(k · |U |) time since we sam-
ple |S| = O(k) centers, and compute the distance of
any point p ∈ U to S in order to find C. Now, fix
an index i ∈ [ℓ − 1]. Each time that the algorithm re-
constructs Ui+1, Θ(log n) independent calls are made to
AlmostCover(Ui). Hence, the time consumed for recon-
struction of Ui+1 is at most O(k · |Ui| · log n). Since the
Sparsifier reconstructs Ui+1, whenever COUNT[i] ≥
|Ui|/2 and then reset COUNT[i] to zero, we conclude that the
amortized running time of all calls to AlmostCover(Ui)
throughout the entire algorithm is O(k log n). Now, since
ℓ = O(log(n/k)) (according to Lemma 3.4), the amortized
update time of the Sparsifier is at most O(ℓ·k·log n) =
O(k log2 n).

Conclusions and Future Work
We present a simple and almost optimal algorithm for dy-
namic k-center answering positively open questions in pre-
vious work. Natural future directions are improving the
approximation factor, the recourse and the running time of
our algorithm, or extending our results in the presence of
outliers.
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A. State-of-the-Art for Dynamic k-Center
Table 1 contains a more comprehensive summary of the state-of-the-art algorithms for fully dynamic k-center in general
metric spaces that we discuss in Section 1.

Table 1. State-of-the-art for fully dynamic k-center in general metrics. We distinguish between amortized and worst-case guarantees
and specify whether guarantees hold in expectation or with high probability (when they do not hold deterministically). We also specify
whether the randomized algorithms can deal with adaptive or oblivious adversaries.

Reference Approx. Ratio Update Time Recourse Adversary

(Bateni et al., 2023) 2 + ϵ Õ(k/ϵ) Ω(k) oblivious
exp. amortized

(Lacki et al., 2024) O(1) Õ(poly(n)) 4 deterministic
worst-case

(Forster & Skarlatos, 2025) O(1) Õ(poly(n)) 2 deterministic
worst-case

(Bhattacharya et al., 2024a) O(log n log k) Õ(k) Õ(1) adaptive
w.h.p. amortized amortized

B. A Useful Lemma
Lemma B.1. Given a metric space (V, d), an integer k ≥ 1 and W ⊆ V , we have that OPTk(W ) ≤ 2 · OPTk(V ).

Proof. Assume U⋆ ⊆ V is such that cl(U⋆, V ) = OPTk(V ). For each ui ∈ U⋆, assume si ∈ W is such that d(ui, si) =
d(ui,W ). Let S = {s1, s2, . . . , sk}. Note that the size of S might be less than k. S is a feasible solution for the k-center
problem on W . Fix an x ∈W , and let ui ∈ U⋆ is such that d(x, ui) = d(x, U⋆). We have

d(x, si) ≤ d(x, ui) + d(ui, si) ≤ 2 · d(x, ui) = 2 · d(x, U⋆),

where the last inequality holds by x ∈W and the definition of si. As a result, for each x ∈W , we have d(x, S) ≤ 2·d(x, U⋆).
Finally,

OPTk(W ) ≤ cl(S,W ) = max
x∈W

d(x, S) ≤ max
x∈W

2 · d(x, U⋆) ≤ max
x∈V

2 · d(x, U⋆) = 2 · OPTk(V ).

C. Improving the Recourse to 8 + ϵ

In this section, we show how to use Sparsifier to obtain a new sparsifier called BufferedSparsifier, that can be
combined with the algorithm Dynamic-k-Center to obtain a recourse of 8 + ϵ for any arbitrary 0 < ϵ ≤ 1.

C.1. The Algorithm BufferedSparsifier

Define q = 4/ϵ. We run the algorithm Sparsifier with the parameter qk, in order to maintain a space W of size Õ(qk)
which is a 4-approximation for OPTqk(V ) with Õ(qk) update time. Now, we show how to maintain the output U of the
BufferedSparsifier algorithm. First, we look at the current solution W maintained by the Sparsifier on the
current input space V , and let U = W (and save all data structures inside the Sparsifier such as the centers in the Si’s
produced by internal calls to AlmostCover together with their clusters), which is a 4-approximation for the (qk)-center
problem on V . Then, we perform (q − 1)k lazy updates as follows. If a point x is inserted into V , we also insert x into
U , and if a point x is removed from V and it is contained in U , we remove x and add some arbitrary point in the cluster
associated with x to U (if it is not empty).

After (q − 1)k updates, we reset the set U , which means that we look at the current solution W maintained by the
Sparsifier and let U new = W . Now, we will remove all of the points that were previously in U and insert all of the
points in U new. These are considered as internal updates for Dynamic-k-Center, and during these updates, we do not
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report the solution maintained by Dynamic-k-Center. We report the solution only after we have removed points of the
previous U and inserted U new. Hence, the solution maintained by Dynamic-k-Center can change completely, but incur
a recourse of at most 2k (the previous solution was a subset of size k in U and the new one is a subset of size k in U new).
Now, starting from this new set U new, we continue with lazy updates for (q − 1)k many updates as described before, and
this process continues.

The difference between BufferedSparsifier and Sparsifier is that, although the recourse of Sparsifier can
be a large constant, the amortized recourse of BufferedSparsifier is small. The reason is that we copy the solution
W maintained by Sparsifier and then perform lazy updates that each lead to low recourse, for a long period of time
((q − 1)k updates). Since the copied space W is a good approximation of OPTqk(V ), we show that it remains a good
approximation for OPTk(V ) during this longer period.

C.2. Analysis of BufferedSparsifier

In order to analyze the approximation guarantee of BufferedSparsifier, we need the following lemma, known as the
Lazy-Updates Lemma.

Lemma C.1 (Lemma 3.3 in (Bhattacharya et al., 2024a)). Assume V and V ′ are two subsets of a ground metric space V
such that |V ⊕ V ′| ≤ s for some s ≥ 0. Then, for every k ≥ 1, we have OPTk+s(V ) ≤ OPTk(V

′).

Lemma C.2. The approximation ratio of BufferedSparsifier is 4.

Proof. Consider a point in time where we set U = W (the solution maintained by the Sparsifier). Assume V 0 is the
current input space and U0 = U . It is sufficient to show that the maintained solution U is always a 4 approximation for the
k-center problem on the current space V after i updates for any arbitrary 0 ≤ i ≤ (q − 1)k. Fix i and let U ′ and V ′ be the
maintained solution and the input metric space after i updates, respectively. Let I := V ′ \ V 0 be the set of inserted points to
V . Assume D := U0 \ U ′ is the set of deleted points from V that affect U , and are replaced with arbitrary points in their
clusters. Hence, U ′ = U0 −D +R+ I , where R is the set of centers that are replaced with centers in D.

According to the procedure of the BufferedSparsifier, since every point in I is inserted into U , they do not
increase the cost of the solution U , i.e. cl(U ′, V ′) ≤ cl(U0 −D +R, V 0). According to the 4-approximation analysis for
Sparsifier in Section 3.3.1, whenever a point u ∈ D is replaced with any arbitrary point within its cluster, the solution
remains a 4-approximation (see the discussion at the end of Section 3.3.1). Hence, cl(U0 −D +R, V 0) ≤ 4 · OPTqk(V

0).
Combining the two previous inequalities with Lemma C.1, for every 0 ≤ i ≤ (q − 1)k, we have that

cl(U ′, V ′) ≤ cl(U0 −D +R, V 0) ≤ 4 · OPTqk(V
0) ≤ 4 · OPTqk−i(V

′) ≤ 4 · OPTk(V
′).

The last inequality follows since qk − i ≥ k. As a result, during the lazy updates, the bicriteria solution U is always a
4-approximation for the k-center problem on the original metric space.

Lemma C.3. The amortized recourse of the algorithm obtained by composing Dynamic-k-Center with the sparsifier
BufferedSparsifier is at most 8 + ϵ.

Proof. During the lazy updates, for every insertion in V , we have an insertion in U , and for every deletion from V , we have
at most two updates in U (deleting a center and replacing it with any arbitrary point within its cluster). Hence, the length
of the input stream (updates on U ) which is fed into Dynamic-k-Center is at most twice the length of the main input
stream. We incur a recourse of at most 4 in expectation w.r.t. the input stream fed to Dynamic-k-Center according to
the recourse analysis of the algorithm in Section 2.3, which concludes that the total amortized recourse w.r.t. the main input
stream is at most 8. After restarting U , we incur a recourse of at most 2k since we have two solutions of size k. Note that
the internal changes in the main solution during deletion of points in the previous U and adding the points in the new U
does not count as recourse for the final algorithm, since we only report the final solution after all of these updates as the
solution by the algorithm maintained.

Since the above procedure happens only every (q − 1)k updates, the total amortized recourse incurred by these updates is at
most 2/(q − 1). As a result, the final recourse of the algorithm is 8 + 2/(q − 1) ≤ 8 + ϵ.

Remark C.4. In many real-world applications of the k-center problem, the dynamic input space is always a subset of a static
ground metric space (such as Rn in the Euclidean k-center problem), and it is allowed to open any arbitrary point from the
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ground metric space as a center. It is possible to tweak BufferedSparsifier in order to provide a sparsifier which is
not necessarily a subset of the current dynamic space V , but has the following guarantees. By feeding the output of this
sparsifier into Dynamic-k-Center, we still have a 20 approximation algorithm. The amortized recourse of the final
algorithm becomes 4 + ϵ instead of 8 + ϵ. The tweak is simple and works as follows. Whenever a point x is removed from
the space and it is contained in a Si, instead of replacing x with any arbitrary point in the cluster of x, we just keep x as it is.
The only time that we remove x, is whenever the cluster of x becomes empty (all of the points in the cluster of x, including x
itself, are removed from the original space). With a similar argument, it is possible to show that any 8-approximate solution
w.r.t. U is a 20-approximation solution w.r.t. the original space. The recourse of 4 + ϵ also follows immediately with the
previous arguments. As a result, if we are allowed to open centers from outside the current dynamic space V , it is possible
to achieve a dynamic k-center algorithm with an approximation ratio of 20 and a recourse of 4 + ϵ.
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