

WEBDART: DYNAMIC DECOMPOSITION AND RE-PLANNING FOR COMPLEX WEB TASKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
WEBDART: DYNAMIC DECOMPOSITION AND
RE-PLANNING FOR COMPLEX WEB TASKS

ABSTRACT

Large-language-model (LLM) agents are becoming competent at straightforward web tasks, such as opening an item page or submitting a form, but still struggle with objectives that require long-horizon navigation, large-scale information extraction, and reasoning under constraints. We present WEBDART, a general framework that enables a single LLM to handle such complex chores. WEBDART (i) *dynamically decomposes* each objective into three focused sub-tasks—navigation, information extraction, and execution—so the model concentrates on one skill at a time, and (ii) *continuously re-plans* the decomposition as new webpages are revealed, taking advantage of newly discovered filters or shortcuts and avoiding redundant exploration. Evaluated on WebChoreArena, WEBDART lifts end-to-end success rates by up to 13.7 percentage points over previous state-of-the-art agents, while matching their performance on the easier WebArena suite and completing tasks with up to 14.7 fewer navigation steps. Code will be publicly available.

1 INTRODUCTION

LLM-powered web agents have recently shown promising abilities in web navigation tasks (Drouin et al., 2024; He et al., 2024; Wei et al., 2025; Yang et al., 2024a; Pan et al., 2024; Song et al., 2024). Benchmarks such as WebArena (Zhou et al., 2023) demonstrate that these agents achieve reasonable accuracy on simple objectives, highlighting their potential as general-purpose automation tools. However, when the objectives require more complex reasoning and multi-step exploration, the performance of these agents often collapses. As shown in Figure 1, on WebChoreArena (Miyai et al., 2025), a benchmark designed to test higher-complexity web tasks, agents powered by GPT-4o achieve only 8.0% accuracy on tasks across different web domains, far below the 46.6% accuracy on WebArena. This gap highlights a critical weakness of current workflows: while sufficient for simple goals, they are not well equipped for tasks demand multi-step reasoning, long-horizon navigation, and structured information processing.

A closer examination reveals that the difficulty arises from cognitive overload. Complex tasks require agents to simultaneously navigate across multiple web pages, extract and track large amounts of information, and reason under constraints. Consider the following task from WebChoreArena (Miyai et al., 2025): “*Tell me the top 3 products with the highest number of reviews in Home Audio of Electronics within the price range of \$1,000 to \$9,999*”. As illustrated in Figure 1, product information is distributed across multiple nested web pages. Each page may contain tens of products with attributes such as price and number of reviews. To complete this objective, current LLM agents (Yang et al., 2024a; Chezelles et al., 2024) attempt to tackle all these aspects in a single process: while browsing through pages, they must also keep track of which products meet the price requirement, remember which ones they have already seen, and simultaneously apply the logic needed to determine the top three by number of reviews. This often overwhelms the agent, leading to frequent mistakes such as missing relevant information, forgetting the user instructions, and incorrect analysis (Miyai et al., 2025).

In contrast, human experts may naturally break the task into distinct steps: ❶ first narrowing down to the pages within the desired price range, ❷ then collecting and recording the attributes of candidate products, and ❸ finally ranking the products by number of reviews. This stepwise approach reduces

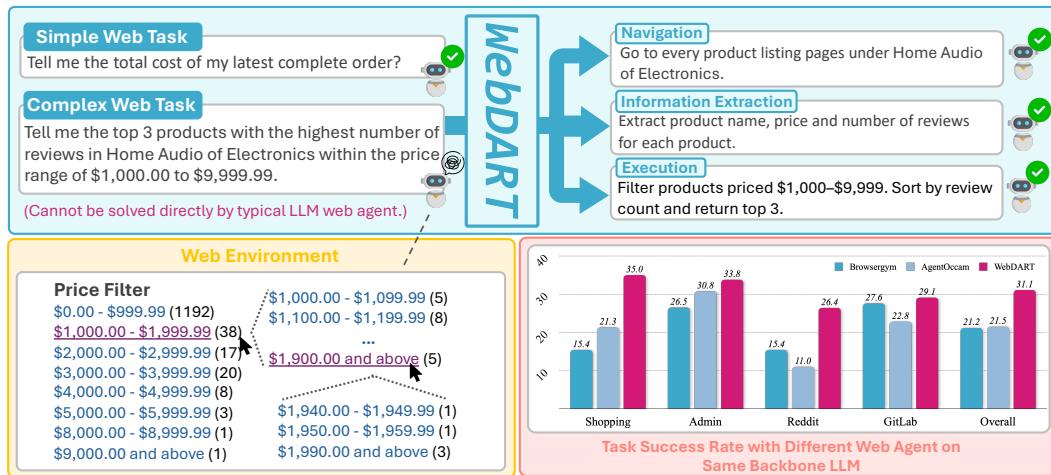


Figure 1: (Top) Existing LLM-based web agents perform well on simple tasks, but their success rates drop on complex tasks that require non-trivial reasoning, such as applying a price-range filter (bottom left). WEBDART overcomes this limitation by dynamically decomposing the objective into three subtasks: navigation, information extraction, and execution. (Bottom right) Consequently, WEBDART significantly outperforms the current state of the art on WebChoreArena across all task categories. Backbone LLM: GPT-5.

complexity of the task and makes the problem tractable, whereas forcing all operations to occur simultaneously overwhelms current agents and leads to frequent errors.

Motivated by this, we propose **WEBDART** (**D**ecomposition & **A**daptive **R**e-planning for **T**asks), a framework that adaptively decomposes complex web tasks into simpler, modular subtasks. Unlike the typical agentic flow, where navigation, information extraction, and execution are interleaved in a single process, WEBDART separates the original complex tasks into these three subtasks. We adopt these three subtasks because complex web tasks typically require distinct agent abilities: browsing through multiple pages, extracting relevant information, and performing analysis or acting on the results. One example of the decomposition is shown in Figure 1, where we leverage the LLM to generate a decomposition conditioned on both the task description and the initial web environment. The task decomposition reduces the cognitive burden on the LLM and makes complex objectives more tractable by allowing the agent to focus on one subtask at a time.

However, an initial decomposition based only on the task description may be suboptimal. There are multiple ways to decide what information should be collected during navigation versus deferred to later analysis, and these trade-offs cannot always be known in advance. Moreover, as the agent explores, new web elements such as filters or sort options may appear that were unavailable at the beginning but can drastically reduce navigation effort. For example, in Figure 1, the initial navigation subtask is specified as “*visit every product listing page under Home Audio of Electronics*”. Once the agent enters the product page, it may discover a price filter that allows it to restrict results to \$1,000 to \$9,999 and avoid traversing irrelevant pages. To exploit such opportunities, WEBDART incorporates a *dynamic replanning* mechanism during navigation that allows the agent to revise its plan after each step based on newly observed pages. This adaptive adjustment helps correct mistakes and eliminates redundant exploration. Together, task-adaptive decomposition and navigation replanning enable WEBDART to achieve higher accuracy with lower cost.

We perform extensive evaluation of our method on both WebChoreArena and WebArena across three different LLM backbones. With the proposed decomposition framework, WEBDART improves state-of-the-art agent frameworks including Browngym (Chezelles et al., 2024) and AgentOcean (Yang et al., 2024a) by up to 13.7% on the complex tasks in WebChoreArena. Our method also achieves similar performance on WebArena compared to existing state-of-the-arts, demonstrating its robustness and flexibility. Finally, by combining the dynamic re-planning module, the accuracy of our method can be further increased by 7.7% on the shopping tasks in WebChoreArena while reducing the average navigation steps by 14.7.

108
109

2 RELATED WORK

110
111 **Simulated web-agent environments.** Progress on web agents has largely mirrored progress on the
112 testbeds available to them. The first generation of benchmarks—MiniWoB and MiniWoB++ (Liu
113 et al., 2018)—offers canvas-rendered “toy” sites that evaluate low-level actions such as clicking
114 or typing within a single, synthetic page. WebShop keeps the single-domain setting but increases
115 realism by simulating a full e-commerce catalogue, requiring agents to search, filter, and purchase
116 items.117 The next wave introduces multi-domain, fully functional sites. WebArena (Zhou et al., 2023) hosts
118 independent applications for shopping, forums, software development, and content management,
119 thereby capturing a broader range of real-world behaviours. More recent suites push two frontiers.
120 (1) Multimodality: VisualWebArena (Koh et al., 2024) and WebVoyager (He et al., 2024) add image
121 inputs so that agents must reason jointly over text and vision. (2) Task complexity: WebChore-
122 Arena (Miyai et al., 2025) reuses the WebArena sites but issues longer “chores” that demand capa-
123 bilities beyond ordinary browsing—e.g., arithmetic, cross-page memory, and long-horizon planning.124 Our study targets the text-only setting and therefore evaluates on WebArena and WebChoreArena,
125 which together provide diverse domains and richly composed task intents while remaining fully
126 reproducible.127 **LLM-powered web agents.** Current web agents can be grouped into three broad lines of work.
128 (1) Leveraging execution feedback. Prompting schemes such as ReAct and its derivatives let an
129 LLM interleave reasoning and actions during a rollout (Yao et al., 2023; Mialon et al., 2023; Hong
130 et al., 2024; Yang et al., 2024b; Amayuelas et al., 2025; Yang et al., 2025). Subsequent methods
131 reuse the generated trajectories to refine future attempts: AWM distils frequently successful action
132 patterns (Wang et al., 2024); Auto Eval & Refine trains an external evaluator and invokes self-
133 reflection (Pan et al., 2024; Shinn et al., 2023); WebPilot explores alternate paths with an MCTS-
134 style search (Zhang et al., 2025b). (2) Synthesising auxiliary data. Learn-by-Interact creates syn-
135 synthetic tasks, relabels the resulting trajectories with hindsight (Su et al., 2025; Li et al., 2020), and
136 retrieves them at inference time, while AgentSymbiotic uses a large–small model pair to co-generate
137 training examples (Zhang et al., 2025a). These approaches boost accuracy when the synthetic tasks
138 closely match the evaluation set but risk data contamination and often degrade when distributions
139 diverge. (3) Optimising the interface. AgentOccam shows that simply pruning the DOM observa-
140 tion and restricting the action set already yields large gains and is now a common preprocessing
141 step (Yang et al., 2024a). (4) Finetuned web agents represent another important line of work com-
142plementary to training-free designs like ours. These approaches explicitly fine-tune an LLM policy
143 using domain-specific trajectories to encode stronger priors for multi-step decision making. Recent
144 examples include curriculum-based reinforcement learning agents that evolve their own training dis-
145 tribution over time (Qi et al., 2024), models that learn webpage-specific contextualization layers to
146 filter DOM observations before acting (Lee et al., 2025), and GUI-generalist agents, finetuned on
147 large multimodal UI demonstrations, to perform precise manipulation and element grounding (Qin
148 et al.). While fine-tuning often yields higher in-distribution accuracy, these methods typically re-
149 quire expensive data generation and can be brittle under distribution shifts. In contrast, our approach
150 instead relies on structured task decomposition and interface optimization to achieve strong gener-
alization without additional training cost.151 WEBDART departs from all of the above. (i) It is *training-free*: no extra rollouts, synthetic data,
152 or fine-tuning are required. (ii) It tackles long-horizon chores through *dynamic task decomposi-
153 tion*: during execution, the agent continually observes the current webpage and adaptively refines a three-
154 part plan—navigation, information extraction, and execution—allowing the same frozen backbone
155 LLM to focus on one capability at a time. This simple yet principled design delivers state-of-the-art
156 results on both WebArena and WebChoreArena.157
158
159

3 METHOD

160 In this paper, we focus on *text-based* web agents, although the proposed approach naturally extends
161 to multimodal environments. Each task is specified by a natural-language instruction and a ground-

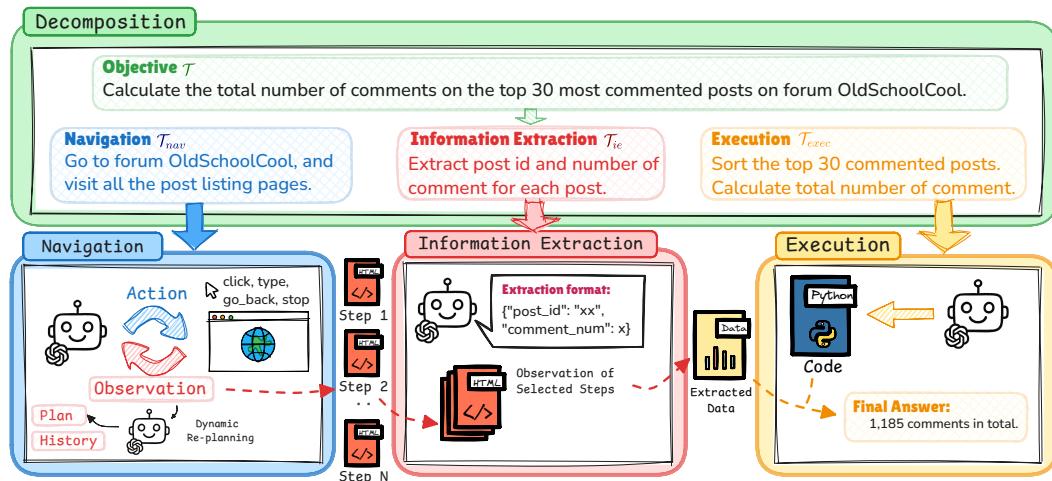


Figure 2: **Overview of the WEBDART framework.** A complex web task is dynamically decomposed into three sequential subtasks. (1) **Navigation:** the agent explores the site—issuing actions such as `click`, `type`, and `go_back`—to gather every page that could contain the required information. (2) **Information extraction:** given these pages, a dedicated module isolates task-relevant content and converts it into a standardised, structured form based on the objective. (3) **Execution:** the extracted data are analysed to meet the task constraints, e.g., by generating and running Python code on the fly to perform filtering, aggregation, or other computations.

truth target for evaluation. The agent receives the instruction and interacts with a web environment whose pages are represented as accessibility trees, aiming to fulfil the stated objective.

Figure 2 illustrates the WEBDART workflow. A complex web task is first *dynamically decomposed* into a sequence of modular subtasks that are executed in order. The central challenge is to choose a decomposition whose subtasks are both tractable and complementary.

Empirically, most web tasks require three distinct capabilities:

1. **Navigation:** browsing across multiple pages to locate candidate information;
2. **Information extraction:** converting raw page content into structured records;
3. **Execution:** analysing the collected data or acting on the results.

Guided by this observation, WEBDART decomposes every complex task into the ordered subtasks of *navigation*, *information extraction*, and *execution*, continually updating intermediate objectives as new observations arrive. In what follows, we first describe the decomposition strategy (Section 3.1), and then detail the navigation (Section 3.2), information-extraction (Section 3.3), and execution (Section 3.4) modules.

3.1 TASK DECOMPOSITION

A web task can be decomposed in several ways, and the most suitable granularity depends on the structure of the target site. Consider the task in Figure 2: “*Calculate the total number of comments on the 30 most-commented posts in the OldSchoolCool forum.*” Two natural decompositions are

- **Tightly coupled.** Embed the numeric constraint in the navigation objective: “*Browse OldSchoolCool and open the 30 most-commented posts.*”
- **Conservative.** Keep navigation agnostic to the constraint: “*Browse OldSchoolCool and visit all post-listing pages.*” Identifying the top 30 posts is then left to the analysis stage.

Both options are valid, but their efficiency hinges on site features. If the forum provides a `Sort by: most commented` control, the tight plan is ideal—it satisfies the constraint while touching

216 only a handful of pages. Conversely, when such affordances are absent (or the total number of pages
 217 is already small), the conservative plan is simpler and more reliable: the agent just collects every
 218 listing page and defers heavy reasoning to later stages.

219 Because these interface aids are unknown *a priori*, WEBDART adopts the conservative scheme
 220 by default and adapts opportunistically. Specifically, all data-centric operations—filtering, sorting,
 221 ranking—are initially assigned to execution, while navigation is limited to page discovery. To steer
 222 the LLM toward this partitioning, the prompt \mathbf{p} contains three in-context examples that consistently
 223 push constraint handling to later stages:

$$225 \quad f : (\mathcal{T}, \mathbf{p}) \longrightarrow (\mathcal{T}_{\text{nav}}, \mathcal{T}_{\text{ie}}, \mathcal{T}_{\text{exec}}),$$

226 where $f(\cdot)$ is the LLM and the outputs \mathcal{T}_{nav} , \mathcal{T}_{ie} , $\mathcal{T}_{\text{exec}}$ are the navigation, information-extraction, and
 227 execution objectives.

228 During navigation the agent may encounter helpful widgets (e.g., the aforementioned sort button)
 229 that can fulfill part of the constraint immediately. When detected, WEBDART invokes *dynamic re-*
 230 *planning*: the current navigation goal \mathcal{T}_{nav} is updated on-the-fly, allowing the agent to skip irrelevant
 231 pages and accelerate completion. Details of this mechanism are presented in Section 3.2.

232 **Fast-path routing.** Finally, the decomposition module also incorporates a lightweight router that
 233 decides whether the task can be satisfied with only a *subset* of the three modules. For instance, the
 234 instruction “Post “Hello, world!” on /OldSchoolCool” requires navigation (and possibly
 235 execution) but no information extraction; the router therefore bypasses the extraction stage and
 236 invokes the minimal workflow.

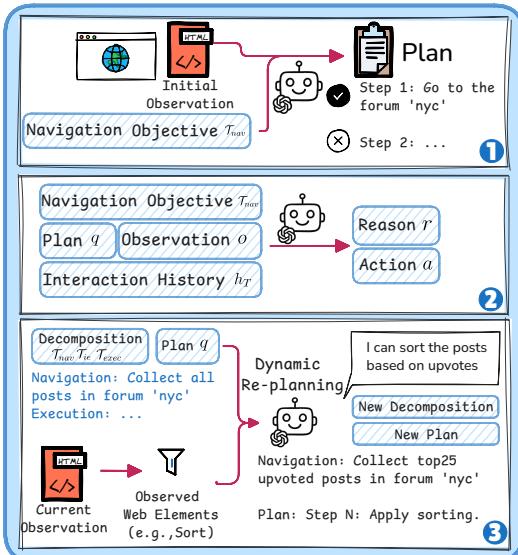
237 3.2 NAVIGATION

238 The navigation module drives the agent through
 239 the website, issuing low-level browser ac-
 240 tions until every page that might contain task-
 241 relevant information has been visited. Our in-
 242 teractive setup follows prior work (Yang et al.,
 243 2024a; Wang et al., 2024; Zhang et al., 2025a).

244 At time step t the agent outputs a pair
 245 (r_t, a_t) : a natural-language reasoning
 246 trace r_t and an action $a_t \in \mathcal{A}$, where
 247 $\mathcal{A} = \{\text{click}, \text{type}, \text{go_back}, \text{stop}\}$.
 248 The choice is conditioned on (i) the current
 249 navigation objective \mathcal{T}_{nav} , (ii) the current
 250 observation o_t (the page rendered as an ac-
 251 cessibility tree), and (iii) the interaction history
 252 $\mathbf{h}_t = (o_{1:t-1}, \mathbf{a}_{1:t-1}, \mathbf{r}_{1:t-1})$. After execution,
 253 (r_t, a_t) is appended to the history; when the
 254 agent finally emits `stop` at step T , the full
 255 interaction history $\mathbf{h}_T = (o_{[1:T]}, \mathbf{a}_{[1:T]}, \mathbf{r}_{[1:T]})$
 256 is passed to the information-extraction module.

257 Figure 3 illustrates the workflow.

258 **Plan-guided browsing.** Before the first ac-
 259 tion, the LLM is given the navigation objective
 260 \mathcal{T}_{nav} and the initial page o_0 and asked to gen-
 261 erate a high-level plan q_0 . The plan lists (i) pages
 262 to visit, (ii) information to capture, and (iii) a
 263 stopping criterion. During browsing the agent
 264 is prompted with \mathcal{T}_{nav} , the current plan q_{t-1} ,
 265 the observation o_t , and the history \mathbf{h}_t . Conditioning on q_{t-1} stabilises behaviour and substantially
 266 reduces premature termination (sample plans are shown in Appendix A.1.2).



267 Figure 3: Illustration of the WEBDART frame-
 268 work in navigation. An initial plan is generated
 269 before starting navigation. The navigation agent
 270 issues an action at each step. When new web el-
 271 ements (e.g., filters, sorting options) appear, the
 272 dynamic re-planning module updates the decom-
 273 position and plan, enabling the agent to adapt its
 274 strategy for more efficient execution.

270 **Dynamic replanning.** The conservative decomposition from Section 3.1 defers all constraint han-
 271 dling to the execution stage; this guarantees coverage but can be wasteful when helpful interface
 272 widgets (filters, sort menus, etc.) appear mid-navigation. To exploit such shortcuts, the agent per-
 273 forms *dynamic replanning*.

274 At the start of each step t the agent evaluates, based on $(o_t, \mathbf{h}_{t-1}, \mathbf{q}_{t-1}, \mathcal{T})$, whether the navigation
 275 objective or plan should be revised. If a useful widget has been discovered, it outputs an updated
 276 pair $(\mathcal{T}_{\text{nav}}^t, \mathbf{q}_t)$ that incorporates the shortcut; otherwise it keeps the previous version. The (possibly)
 277 updated objective and plan are fed back into the action-selection prompt to produce (r_t, a_t) .
 278

279 Dynamic replanning preserves the safety of a conservative start while allowing the agent to exploit
 280 opportunistic efficiencies—for example, switching from “visit every listing page” to “apply sort
 281 by: most-commented and scan only the first 30 posts.” The prompt template used for this
 282 mechanism is provided in Appendix A.1.5.

283 3.3 INFORMATION EXTRACTION

285 When navigation ends at step T , we obtain the transcript $\mathbf{h}_T = (\mathbf{o}_{1:T}, \mathbf{a}_{1:T}, \mathbf{r}_{1:T})$, where $\mathbf{o}_{1:T}$
 286 contains every page the agent observed. Blindly extracting from *all* pages would add substantial
 287 noise—for example, products in the wrong category or outside a specified price range. The extrac-
 288 tion module therefore proceeds in two stages:
 289

290 **Page selection.** An LLM is given the original task \mathcal{T} , the navigation objective \mathcal{T}_{nav} , and the full
 291 history \mathbf{h}_T . It returns an index set $\mathcal{I} \subseteq \{1, \dots, T\}$ that marks the pages most likely to contain the
 292 required information (prompt template in Appendix A.1.3).
 293

294 **Field extraction.** For each chosen page o_t ($t \in \mathcal{I}$), a second LLM call extracts the target
 295 fields—*e.g.*, post title and comment count—directly from the page’s accessibility tree, producing
 296 a uniform JSONL record. The resulting structured collection is passed to the execution module.
 297

298 We also experimented with an *LLM-generated parser* baseline, where the model generates code
 299 on the fly to traverse the accessibility tree of each o_t . In practice, this approach proved brittle:
 300 accessibility trees are deeply nested and site-specific, and minor layout changes frequently break
 301 the generated code. Prompt-based extraction avoids these issues and requires no hand-crafted logic;
 302 therefore, WEBWEAVER adopts it as the default strategy.

303 3.4 EXECUTION

306 The execution module converts the structured records produced by the information-extraction stage
 307 into the final deliverable requested by the task. Depending on $\mathcal{T}_{\text{exec}}$, this entails one of two sub-
 308 routines.

310 **Data-analysis objectives.** When the task calls for statistics, rankings, or other derived quantities,
 311 the agent generates and runs code (Python by default) over the extracted JSON file. Typical opera-
 312 tions include filtering under constraints, aggregation, and sorting. To increase robustness we adopt a
 313 *self-reflection* loop (Shinn et al., 2023): if the program throws an exception, the LLM examines the
 314 traceback, amends the code, and re-executes it until success or a timeout. Implementation details
 315 are provided in Appendix A.2.

316 **Action-oriented objectives.** Some tasks require injecting the computed result back into the en-
 317 vironment—for example, posting a summary to a forum or submitting a completed form. In these
 318 cases the module invokes a short-horizon navigation policy that is initialised with the analysis output
 319 (*e.g.*, the text to post or the value to enter). Because the destination elements are already known, this
 320 policy is far simpler and more reliable than the primary navigation module, yet it preserves the same
 321 interface and action space.

323 In both settings, once the required code or interactions have concluded, the agent returns the task’s
 324 final answer and the execution stage terminates.

324
 325 Table 1: Results on the **WebChoreArena** benchmark across different web domains (Shopping, Red-
 326 dit, Admin, GitLab). WEBDART consistently outperforms all baselines across models , achieving
 327 the highest overall success rate. Results with \dagger are reported by WebChoreArena (Miyai et al., 2025).

Model	Method	Shopping	Reddit	Admin	GitLab	Overall
GPT-5	SteP (Sodhi et al., 2023)	2.6	4.4	0.7	4.7	3.1
	BrowserGym (Chezelles et al., 2024)	15.4	<u>15.4</u>	26.5	<u>27.6</u>	21.2
	AWM (Wang et al., 2024)	18.0	14.3	30.3	26.8	<u>22.4</u>
	AgentOccam (Yang et al., 2024a)	<u>21.3</u>	11.0	<u>30.8</u>	22.8	<u>21.5</u>
	WEBDART	35.0 _{↑13.7}	26.4 _{↑10.0}	33.8 _{↑3.0}	29.1 _{↑1.5}	31.1 _{↑8.7}
GPT-4o	SteP (Sodhi et al., 2023)	2.6	0.0	0.0	4.7	1.8
	BrowserGym \dagger (Chezelles et al., 2024)	0.9	5.5	2.3	3.9	3.2
	AWM (Wang et al., 2024)	3.4	8.8	<u>4.5</u>	4.7	5.4
	AgentOccam \dagger (Yang et al., 2024a)	<u>10.3</u>	<u>9.9</u>	<u>4.5</u>	<u>7.1</u>	8.0
	WEBDART	18.8 _{↑8.5}	19.8 _{↑9.9}	12.9 _{↑8.4}	9.4 _{↑2.3}	15.2 _{↑7.2}
GLM-4.5-air-fp8	SteP (Sodhi et al., 2023)	0.0	2.2	1.5	2.4	1.5
	BrowserGym (Chezelles et al., 2024)	6.0	4.8	6.1	<u>9.4</u>	6.6
	AWM (Wang et al., 2024)	0.9	<u>5.6</u>	4.3	8.7	4.9
	AgentOccam (Yang et al., 2024a)	<u>18.8</u>	4.4	<u>11.4</u>	8.7	<u>10.8</u>
	WEBDART	26.5 _{↑7.7}	16.5 _{↑10.9}	18.9 _{↑7.5}	15.4 _{↑6.0}	19.3 _{↑8.5}

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 EXPERIMENT SETUP

348 **Environment.** We conduct experiments on two benchmarks: **WebChoreArena** and **WebArena**.
 349 WebChoreArena (Miyai et al., 2025) is our primary evaluation benchmark, as it extends the We-
 350 bArena (Zhou et al., 2023) environment with more realistic and challenging chores that require
 351 handling constraints, information extraction, and data analysis in addition to navigation. These
 352 tasks better reflect the complexity of real-world web usage and thus serve as the main testbed for
 353 demonstrating the effectiveness of our method. In parallel, we also evaluate on WebArena tasks to
 354 ensure that our approach does not reduce performance on simpler navigation-oriented objectives.
 355 Both benchmarks share the same set of interactive web environments (e.g., shopping, administra-
 356 tion, forums, and code management), which allows us to make a direct comparison between simple
 357 and complex tasks under consistent conditions.

358 **Baselines.** We compare WEBDART against four baselines: **SteP** (Sodhi et al., 2023), **Browser-
 359 Gym** (Chezelles et al., 2024), **AWM** (Wang et al., 2024) and **AgentOccam**. SteP (Sodhi et al., 2023)
 360 (Stacked LLM Policies) is a method that decomposes the web-agent policy space into multiple sub-
 361 policies, dynamically composing them to adapt to task complexity. BrowserGym (Chezelles et al.,
 362 2024) provides a unified evaluation framework for web agents with standardized observation and ac-
 363 tion spaces, enabling fair and reproducible comparisons across different benchmarks. AWM (Wang
 364 et al., 2024) induce commonly reused routines from web tasks to guide subsequent generations.
 365 AgentOccam (Yang et al., 2024a) is our main baseline, as it employs a navigation agent design
 366 closely aligned with ours; by focusing on observation and action spaces that match LLM pretraining
 367 distributions, it achieves strong results on WebArena without relying on in-context examples or ex-
 368 ternal search. Together, these baselines allow us to evaluate WEBDART against diverse approaches
 369 while ensuring a fair comparison with a closely related navigation agent. We compare WEBDART
 370 with these baselines with three different backbone LLMs including GPT-5, GPT-4o, and GLM-4.5-
 371 air-fp8. The configurations for each model and experiment setup is detailed in Appendix A.2

4.2 EVALUATION ON COMPLEX WEB TASKS.

375 Table 1 presents the main results on the **WebChoreArena** benchmark, which evaluates agent per-
 376 formance on complex multi-step web tasks involving constraints and information extraction. We
 377 compare WEBDART against three baselines: SteP, AWM, BrowserGym, and AgentOccam, under
 three different backbone models (GPT-5, GPT-4o, and GLM-4.5-air-fp8).

378

379
380
Table 2: Efficiency evaluation of **dynamic re-planning** on WebChoreArena with GPT-4o as back-
bone LLM. We report accuracy and average navigation steps.

	Shopping		Reddit		Admin		GitLab	
	Accuracy	Avg. Steps	Accuracy	Avg. Steps	Accuracy	Avg. Steps	Accuracy	Avg. Steps
WEBDART	18.8	32.9	19.8	25.1	12.9	16.7	9.4	23.3
+ Dynamic Re-planning.	26.5 _{↑7.7}	18.2 _{↓14.7}	20.9 _{↑1.1}	21.1 _{↓4.0}	13.6 _{↑0.7}	17.7 _{↑1.0}	11.1 _{↑1.7}	21.2 _{↓2.1}

385

386

387
388
389
390
391
392
Across all model backbones, WEBDART achieves the highest overall success rates, demonstrating
its robustness and effectiveness on complex tasks. With GPT-5, WEBDART reaches 31.1 overall,
outperforming SteP (3.1), BrowserGym (21.2), AWM (22.4), and AgentOccam (21.5). The gains
are particularly pronounced in the Shopping and Reddit domains, where WEBDART improves over
AgentOccam by +13.7 and +15.4 points respectively. This highlights the advantage of shifting con-
straint handling to the data analysis stage, which reduces error propagation from fragile navigation.393
394
395
396
The improvements are consistent for GPT-4o, where WEBDART achieves 15.2 overall compared to
8.0 for AgentOccam, and for GLM-4.5-air-fp8, where WEBDART reaches 19.3 overall compared to
10.8 for AgentOccam. These results suggest that our method generalizes across different backbone
models, even when the underlying LLM has weaker navigation or reasoning capabilities.397
398
399
400
We also note that SteP underperforms significantly on WebChoreArena compared to other baselines
and WEBDART, reflecting its limited ability to handle tasks with deep constraint hierarchies. In
contrast, WEBDART consistently maintains a strong margin over all baselines, confirming that
decomposition is the key to solving complex web chores efficiently.

401

402

403
404
4.3 EVALUATION OF DYNAMIC RE-PLANNING.

405

406
407
408
409
410
In Section 3.2, we introduced *dynamic re-planning*, where the navigation agent adapts its decom-
posed subtasks and plan based on newly discovered web elements (e.g., filters or sorting options)
that can directly apply task constraints. This mechanism aims to reduce redundant navigation and
improve efficiency, while preserving or even improving accuracy. Table 2 reports the results of
comparing agents with and without dynamic re-planning across four domains in using GPT-4o as
the backbone model. We report both task accuracy and the average number of navigation steps.411
412
413
414
415
416
417
418
The results show that dynamic re-planning substantially reduces the number of navigation steps. In
the Shopping domain, the average navigation steps decrease from 32.9 to 18.2 while accuracy im-
proves from 18.8% to 26.5%. A similar trend is observed in Reddit, where the step count drops from
25.1 to 20.8, with a modest accuracy gain (19.8% to 20.9%). The only exception occurs in the Shop-
ping Admin domain. This is because the website inherently relies on numerous filters and sorting
elements, without which the tasks cannot be completed. These improvements confirm that dynam-
ically adapting the decomposition and plan allows the agent to bypass unnecessary exploration and
focus on relevant parts of the environment.

419

420

421
422
423
Table 3: Results on the **WebArena** benchmark. Bold numbers indicate the best performance, and
underlined numbers indicate the second best. All the methods are tested using GPT-4o as backbone
model. The baseline results are taken from previous works (Zhang et al., 2025b; Song et al., 2024).

424

425

Method	Shopping	Admin	Reddit	GitLab	Overall
WebArena (Zhou et al., 2023)	13.9	10.4	6.6	15.0	11.5
AutoEval (Pan et al., 2024)	39.6	20.9	20.8	25.0	26.6
AWM (Wang et al., 2024)	32.1	29.1	54.7	35.0	37.7
SteP (Sodhi et al., 2023)	36.9	24.2	59.4	31.7	38.0
HybridAgent (Song et al., 2024)	25.7	<u>41.2</u>	51.9	<u>44.4</u>	40.8
WebPilot (Zhang et al., 2025b)	36.9	24.7	65.1	39.4	41.5
AgentOccam (Yang et al., 2024a)	<u>37.4</u>	44.0	<u>66.0</u>	38.9	<u>46.6</u>
WEBDART	36.0	41.2	67.9	47.2	48.1

432 Overall, these results validate the effectiveness of dynamic re-planning as a complementary strategy
 433 in WEBDART. By allowing the agent to adjust its task structure in real time, we achieve shorter
 434 navigation paths and, in several domains, notable accuracy improvements.
 435

436 4.4 EVALUATION ON SIMPLE NAVIGATION TASKS.

438 While WEBDART is primarily designed for complex web tasks involving constraints and analysis, it
 439 is also important to verify that the framework does not degrade performance on simpler navigation-
 440 oriented tasks. To this end, we evaluate on the original **WebArena** benchmark, where most tasks
 441 can be completed through direct navigation without requiring decomposition. For these tasks, we
 442 adjust the agent to bypass the decomposition stage and focus solely on the navigation module.

443 Table 3 reports the results, comparing WEBDART against a wide range of existing web agents. We
 444 observe that WEBDART achieves competitive or superior performance across domains, reaching an
 445 overall success rate of 48.1, which is higher than all baselines including AgentOccam (46.6).

446 These results confirm that WEBDART maintains robustness across task types: it significantly im-
 447 proves over baselines in complex settings by leveraging decomposition, while also remaining com-
 448 petitive on simpler navigation tasks by bypassing unnecessary modules. This adaptability demon-
 449 strates the generality of our design.

450

451 4.5 CASE STUDY.

452

453 We further present case study to visualize how dynamic re-planning enhances WEBDART in Ta-
 454 ble 4. In the first example, the agent initially plans to traverse every page in a product category, but
 455 upon detecting a drop-down menu that adjusts the number of displayed products, the plan is revised
 456 to greatly reduce navigation steps. This shows how re-planning exploits newly discovered web ele-
 457 ments to improve efficiency. In the second case, the agent’s initial decomposition requires visiting
 458 all forums to collect a user’s submissions, which is infeasible. Once it identifies that the user profile
 459 page already lists submissions with a direct link, the plan and the navigation objective is updated
 460 to extract information more directly, correcting a flawed decomposition. Finally, in the third case,
 461 the agent relies on keyword search that produces irrelevant results. Dynamic re-planning detects the
 462 mismatch and redirects the strategy to the actual forum page, enabling the agent to recover from
 463 misleading navigation. Together, these examples demonstrate that dynamic re-planning allows the
 464 agent to correct initial mistakes and maintain robustness in complex web environments.

465

466 Table 4: Case studies of dynamic re-planning in WEBDART.

467 Original Task	468 Initial Navigation Objective	469 Web Elements (Description)	470 Navigation Objective after replanning
471 Calculate average product price in <i>Diet & Sports Nutrition</i>	472 Plan includes navigating to <i>Diet & Sports Nutrition</i> category and going over all the pages.	473 Menu to select number of products displayed in each page.	474 Add the step changing the number of products displayed each page from 12 to 36.
475 Count submissions by specific user <i>thebelasnickle1991</i> in each forum	476 Decomposition requires traversing submissions in every forum alphabetically, leading to endless exploration.	477 Button to submission listing page under the user profile page.	478 Revise plan to extract directly from the profile page and aggregate submissions.
479 Count unique users among top 600 hottest submissions in <i>nyc</i> forum	480 Initial plan relies on keyword search for “nyc,” which returns unrelated articles.	481 Direct link to the <i>nyc</i> forum and its sorting options.	482 Bypass search results and directly navigate to the forum page before collecting data.

483

484 5 CONCLUSION

485

486 We introduced WEBDART, a framework that enhances web agents on complex tasks through ex-
 487 plicit subtask decoupling and dynamic re-planning. By shifting constraint handling and other data-

related operations from navigation to the analysis stage, WEBDART reduces error propagation and alleviates the burden on fragile navigation processes. At the same time, dynamic re-planning enables the agent to adapt plans in real time when new web elements are discovered or when the initial decomposition is suboptimal. Experiments on WebChoreArena demonstrate that WEBDART improves task success rates by up to 13.7% over strong baselines while also reducing navigation steps, and evaluation on WebArena confirms that our method maintains performance on simpler tasks. Case studies further show how re-planning allows the agent to exploit new opportunities, correct inefficient strategies, and recover from misleading navigation paths, leading to more efficient and robust web automation.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The benchmarks used in our experiments, including WebChoreArena and WebArena, are publicly available and described in detail in Section 4.1. The implementation details of WEBDART, including decomposition and dynamic re-planning, are provided in Section 3, and additional examples and prompts are included in the Appendix A. Finally, we provide our source code as part of the supplementary materials.

ETHICS STATEMENT

We have carefully reviewed the ICLR Code of Ethics and found no potential ethical issues related to our work. Our study does not involve human subjects, sensitive data, or applications that pose foreseeable risks of harm.

REFERENCES

Alfonso Amayuelas, Jingbo Yang, Saaket Agashe, Ashwin Nagarajan, Antonis Antoniades, Xin Eric Wang, and William Wang. Self-resource allocation in multi-agent llm systems. *arXiv preprint arXiv:2504.02051*, 2025.

De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù, Ori Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym ecosystem for web agent research. *arXiv preprint arXiv:2412.05467*, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work tasks? In *International Conference on Machine Learning*, pp. 11642–11662. PMLR, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 6864–6890, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14281–14290, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

Dongjun Lee, Juyong Lee, Kyuyoung Kim, Jihoon Tack, Jinwoo Shin, Yee Whye Teh, and Kimin Lee. Learning to contextualize web pages for enhanced decision making by llm agents. *arXiv preprint arXiv:2503.10689*, 2025.

Alexander Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning. *Advances in neural information processing systems*, 33:7754–7767, 2020.

540 Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
 541 learning on web interfaces using workflow-guided exploration. *arXiv preprint arXiv:1802.08802*,
 542 2018.

543 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 544 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 545 Representations*, 2023.

546 Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
 547 Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
 548 Evaluating web browsing agents on realistic tedious web tasks. *arXiv preprint arXiv:2506.01952*,
 549 2025.

550 Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
 551 evaluation and refinement of digital agents. *arXiv preprint arXiv:2404.06474*, 2024.

552 Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
 553 Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
 554 lum reinforcement learning. *arXiv preprint arXiv:2411.02337*, 2024.

555 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 556 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 557 agents, 2025. URL <https://arxiv.org/abs/2501.12326>.

558 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 559 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 560 Systems*, 36:8634–8652, 2023.

561 Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for web
 562 actions. *arXiv preprint arXiv:2310.03720*, 2023.

563 Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web
 564 agents. *arXiv preprint arXiv:2410.16464*, 2024.

565 Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arik. Learn-by-
 566 interact: A data-centric framework for self-adaptive agents in realistic environments. *arXiv
 567 preprint arXiv:2501.10893*, 2025.

568 Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
 569 *arXiv preprint arXiv:2409.07429*, 2024.

570 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 571 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 572 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.

573 Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
 574 Huzefa Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. *arXiv
 575 preprint arXiv:2410.13825*, 2024a.

576 Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
 577 Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. *arXiv preprint
 578 arXiv:2507.05791*, 2025.

579 Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
 580 Visual grounding for gui instructions. *arXiv preprint arXiv:2412.16256*, 2024b.

581 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 582 React: Synergizing reasoning and acting in language models. In *International Conference on
 583 Learning Representations (ICLR)*, 2023.

584 Ruichen Zhang, Mufan Qiu, Zhen Tan, Mohan Zhang, Vincent Lu, Jie Peng, Kaidi Xu, Leandro Z
 585 Agudelo, Peter Qian, and Tianlong Chen. Symbiotic cooperation for web agents: Harnessing
 586 complementary strengths of large and small llms. *arXiv preprint arXiv:2502.07942*, 2025a.

594 Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
595 autonomous multi-agent system for web task execution with strategic exploration. In *Proceedings*
596 *of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23378–23386, 2025b.

597 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
598 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
599 ing autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650
651

A.1 AGENT PROMPTS & EXAMPLES

652
653

Inside this section, we displayed the prompts as well as some intermediate outputs as demonstration examples for each module of WEBDART.

654

655

A.1.1 DECOMPOSITION

656

657
658
659
660

The following prompt illustrates an example of decomposition for data-analysis objectives. It explicitly encourages a conservative strategy, as discussed in our method section, by deferring data-related operations to the analysis stage. In addition, we provide three in-context examples to help the LLM better follow this decomposition approach.

661
662

Prompt - Decomposition

663
664
665
666

You are conducting a complex web task that requires information from the web to answer correctly. Directly navigating the web environment to provide a final answer cannot always yield the correct result. Therefore, you need to decompose the task into two decoupled parts to complete it successfully.

667

668
669
670
671
672
673
674

The two parts are the navigation part and the analysis part. The navigation part involves visiting all pages that contain the data needed to solve the task. The observation, the accessibility tree of full web page, at each step will be recorded during navigation.

The analysis part involves extracting information from the observations and writing code to provide the final answer. Note that the extracted information processed during analysis part may be imperfect, which means they may include unnecessary data or not in correct format, you need to make sure the analysis code can be robust to handle such cases.

675
676
677

Another important consideration is to simplify the navigation, as it is a more challenging task. Ignore constraints such as ranges or filters in the navigation objective. Instead, include such constraints in the analysis part to be handled later.

678
679
680
681

Given the original complex user task and some tips for using the target website, decompose it into these two parts following this approach. Your output must follow this format with exact the same headers:

682
683

Part 1 – Navigation

684
685
686

In addition, below are some decomposition examples for your reference:

687
688

Example 1:

689
690
691

User task “List the average rating for every movie genre, using only titles released between 2015 and 2024. Output: ‘Drama : 8.1, Comedy : 7.4, ...’”

692
693
694

Part 1 – Navigation Go to the pages which include each film’s genre, release year, and numeric user rating. Do not go to each film detail page if all the information is available in film listing page.

695
696
697

Part 2 – Analysis Filter and only keep only films released 2015-2024. Compute the average rating per genre and show them as ‘Drama : X.X, Comedy : Y.Y, ...’.

698
699

Example 2:

700
701

User task “Among products tagged ‘wireless earbuds’, count how many cost below \$50, \$50-\$99, and \$100+. Return: ‘<50 : __, 50-99 : __, 100+ : __’”

702
 703 ### Part 1 – Navigation Visit the pages containing product title and price information for “wire-
 704 705 less earbuds” products. Do not go to each product detail page if all the information is available
 in product listing page.
 706
 707 ### Part 2 – Analysis Group the collected items by price brackets < \$50, \$50-\$99, \$100+.
 708 709 Count how many fall into each bracket and output the counts in the following format: ‘<50 :
 -->, 50-99 : ___, 100+ : __’
 710
711 Example 3:
 712 User task “In the travel forum, among the 200 latest hotel reviews, how many mention ‘noise’
 713 714 or ‘quiet’ in the text? Give two numbers: noisy_count, quiet_count.”
 715 ### Part 1 – Navigation Navigate to the pages including the text body of the hotel reviews in
 716 717 most recent order in the travel forum. Go over all hotel reviews in total. Do not go to each
 review detail page if all the information is available in review listing page.
 718
 719 ### Part 2 – Analysis Only keep first 200 reviews. Search each saved review for the words
 720 721 “noise”, “noisy” (noisy_count) and “quiet”. Return two integers: noisy_count and quiet_count.
 722

721 Below is one decomposition example generated conditioned on the prompt above:
 722

723 **Example - Decomposition**

724 **Original Task:**

725 Extract the title of reviews with a rating of 2 or below out of 5 stars from ‘Tea Gift Set for Tea
 726 Lovers - Includes Double Insulated Tea Cup 12 Uniquely Blended Teas and All Natural Honey
 727 Straws — Tea Gift Sets for Women Men — Tea Gifts Bag Presented in Beautiful Gift Bag’ and
 728 output them as a list in alphabetical order, separated by line breaks.
 729

730 **Navigation Objective:**

731 Navigate to the product page for ‘Tea Gift Set for Tea Lovers - Includes Double Insulated Tea
 732 Cup 12 Uniquely Blended Teas and All Natural Honey Straws — Tea Gift Sets for Women Men
 733 — Tea Gifts Bag Presented in Beautiful Gift Bag’. Visit the reviews section of the product and
 734 collect the review titles along with their star ratings.
 735

736 **Analysis Objective:**

737 Filter the collected reviews to include only those with a rating of 2 stars or below. Extract the
 738 titles of these reviews and sort them in alphabetical order. Output the sorted titles as a list, with
 739 each title separated by a line break.
 740

741 A.1.2 NAVIGATION

742 In this section, we display the prompts for each part of navigation module and provide corresponding
 743 examples.
 744

745 **Prompt - Navigation**

746 You are an AI assistant performing navigation tasks on a web browser. You will be provided
 747 with task objective, current step, web page observations, current plan, and interaction history.
 748 You need to issue an action for this step.
 749

750 Your task is mainly about navigating to each page that may contain the needed information.
 751

756

757 Generate the response in the following format: {output_specifications}

758

759 You are ONLY allowed to use the following action commands. Strictly adheres to the given
760 format. Only issue one single action. {navigation_specifications}

761 {website_tips}

762

763

764 **Prompt - Navigation Plan Generation**

765

766 You are an AI assistant that generates initial plans for web navigation tasks. Given a task
767 objective and an initial web page observation in accessibility tree, you need to create a clear,
768 step-by-step plan that will guide the navigation agent.

769 Directly output the navigation plan in your response without other irrelevant information.

770

771 Your plan should be:

772

773 1. Clear and actionable

774

775 2. Broken down into logical steps

776

777 3. Specific enough to guide navigation

778

779 4. Concise, only including necessary steps. Do not dive into more pages if the current page
already contains the needed information

780

781 5. Focused only on how to navigate, do not include other steps including extraction, analysis,
782 opening website, closing environment, etc

783

784 Consider common web navigation patterns like:

785

786 - Searching for information

787

788 - Navigating through menus and links

789

790 - Going over the necessary pages

791

792 - Interacting with buttons and controls

793

794 **Example - Navigation Plan**

795

796 **Objective:**

797

798 Search for the product “Manhattan Comfort Avesta Double Side Table 2.0 Collection Free
799 Standing Modern Side Table / TV Stand with Storage Includes 2 Doors with 3 Shelves and
800 Features Splayed Legs, White/Stamp/Grey Legs” on the website. Navigate to the product page
801 that contains detailed information including customer reviews. Ensure to collect review data
802 that includes the rating scores or star ratings.

803

804 **Plan:**

805

806 1. Locate the search combobox labeled ‘Search’ in the accessibility tree.

807

808 2. Input the product name: “Manhattan Comfort Avesta Double Side Table 2.0 Collection Free
809 Standing Modern Side Table / TV Stand with Storage Includes 2 Doors with 3 Shelves and
Features Splayed Legs, White/Stamp/Grey Legs” into the search combobox.

810
 811 3. Locate and activate the “Search” button to initiate the product search.
 812
 813 4. On the search results page, look for the product name or a closely matching link.
 814
 815 5. Click on the link corresponding to the desired product to navigate to its detailed product
 816 page.
 817
 818 6. On the product page, locate the section containing customer reviews or star ratings.
 819

820 A.1.3 INFORMATION EXTRACTION
 821

822 During information extraction, we first instruct the LLM to select relevant observations based on the
 823 overall trajectory. The prompt is given as follows.

824 **Prompt - Relevant Observation Selection**
 825

826 You are a judge agent in a web navigation and information seeking task.
 827

828 Given a navigation objective (which includes the information to be found in the web environ-
 829 ment) and a list of web navigation agent interaction history (with reason, action, and observa-
 830 tion summary), select the step numbers that their observations are most likely to contain the
 831 information specified in the objective.

832 Analyze each step in one or two sentences. After this, return a JSON list of step numbers (e.g.,
 833 [2, 5, 7]) that you believe contains the needed information in their observations. Note:
 834

835 1) The action in a step will be executed and reflected in the observation in the next step. For
 836 example, if the action is ‘click on the home page button’, the observation in the next step will
 837 be the home page.

838 2) The action you see at each step may contain a number, like ‘click[1316]’. This number is the
 839 index of the element in the observation. You may not know which element is clicked, but you
 840 can still use the reason to infer what that element is.
 841

842 After selecting the relevant observations, we will first let the LLM to generate a prompt for extraction
 843 at each page. The reason for this step is to fix a data schema for easily integrating results from
 844 multiple pages.
 845

846 **Prompt - Extraction Prompt Engineering**
 847

848 You are an expert prompt engineer. Design a SINGLE prompt that, when shown together with
 849 a web-page text accessibility tree, makes another LLM extract and return ONLY a list of JSON
 850 object containing the fields that satisfy the user goal. Only extract the information specified in
 851 the user goal. Make sure each extracted entry also has one identifier field (add only one if there
 852 is no such key specified in user goal) that will help accurate deduplication in the later stage.
 853 You need to specify 1) what information to be extracted, 2) what keys should be used for each
 854 JSON object in extracted list, 3) one simple example of the extracted JSON list. Make your
 855 prompt concise and only include these necessary information.

856
 857 A.1.4 EXECUTION
 858

859 Below we provide the prompt for writing data analytic code during execution phase.
 860

861 **Prompt - Data Analysis**
 862

863 You are an analysis assistant that MUST write Python code.

864
 865 You will be provided with objective and data samples (a small portion of all the data as a
 866 reference) for analysis as a reference.
 867
 868 • The data is pre-loaded in a variable named 'data'.
 869
 870 • Assign your final answer to a variable named 'answer'.
 871
 872 Return only one fenced block:
 873
 874 ``python# code here
 875
 876 answer = ... ``

877 A.1.5 RE-PLANNING

879 We provide the prompt of re-planning and one example here.

881 **Prompt - Re-planning**

882 You are a Dynamic Control Agent responsible for monitoring and adapting the task decompo-
 883 sition and navigation plan based on new observations during web navigation.
 884

885 Your role is to:

- 886 1. Assess whether the current decomposition and navigation plan are still appropriate given the
 887 new web elements and information discovered
- 888 2. Determine if modifications are needed to better achieve the original objective
- 889 3. Update the decomposition and navigation plan when necessary

890
 891 You will be provided with: - The original task objective - Current decomposition (Part 1 - Navi-
 892 gation, Part 2 - Analysis) - Current navigation plan - Current web page observation - Interaction
 893 history

894 Based on this information, you need to decide whether to:

- 895 - Keep the current decomposition and navigation plan unchanged
- 896 - Modify the decomposition to better reflect what needs to be done
- 897 - Update the navigation plan to account for new web elements or information discovered

898
 899 Adhere to the following output format: {output_specs}

900
 901 Guidelines:

- 902 - Only modify decomposition/plan if you discover new web elements or information that sig-
 903 nificantly changes the approach
- 904 - Be conservative - don't change things unnecessarily
- 905 - Focus on practical improvements that will help achieve the objective more effectively
- 906 - Consider if new navigation paths or information sources have been discovered
- 907 - Ensure any updates are clear and actionable
- 908 - Do not include any task in analysis objective into the plan, as the plan is only for navigation

909
 910 {website_tips}

911 **Example - Re-planning**

913 **Initial navigation plan:**

- 914 1. Navigate to the "Forum" tab on the website.
- 915 2. Click on "alphabetical" to view all forums listed alphabetically.

918

919

920

921

922

923

924

3. Visit each forum and locate submissions made by the user "thebelsnickle1991".

4. If there are multiple pages for submissions in a forum, continue navigating using the "More" link until reaching the last page.

Re-planning reasoning:

The current observation reveals that we are already on a page with submissions by the user "thebelsnickle1991." However, the original objective and decomposition specify starting from the "Forum" tab, then navigating to an alphabetical list of forums, and finally visiting pages containing submission data for this user. The current page already provides access to numerous submissions by the user, categorized under different forums, with a "More" link at the bottom for additional pages. This suggests a more direct path to fulfilling the objective.

The decomposition and navigation plan should be updated to prioritize directly extracting and analyzing the user's submissions from this page and subsequent pages accessed via the "More" link. This eliminates the need to navigate to the "Forum" tab or the alphabetical list of forums, streamlining the process.

Updated navigation plan:

1. Extract submission data for "thebelsnickle1991" directly from the user page.

2. Use the "More" link to navigate through additional pages containing submissions by "thebelsnickle1991" and extract data from those pages.

A.1.6 OTHERS

Here we provide the prompt detail of the website tips we used and navigation specification for the navigation prompts above.

Following the WebChoreArena (Miyai et al., 2025), we used website tips for the evaluation in our experiments for our method and all the other baselines.

Prompt - Website Tips

Shopping

1. This website provides very detailed category of products. You can hover categories on the top menu to see subcategories.

2. If you need to find information about your previous purchases, you can go My Account > My Orders, and find order by date, order number, or any other available information

3. An order is considered out of delivery if it is marked as "processing" in the order status

4. When the task asks you to draft and email. DO NOT send the email. Just draft it and provide the content in the last message

5. If the review star rating is not directly available but the rating score is provided, you can estimate the star rating by dividing the rating score by 20. For example, a rating score of 80 corresponds to a 4-star review

6. Utilize the search if you need to find the information of a specific item, and use the top menu when you need to visit a category

972
973
974975 Shopping Admin
976977 Here are tips for using this website:
978

- 979 1. When you add a new product in the CATALOG > Products tab, you can click
980 the downwardarrow beside the "Add Product" button to select options like "Simple
981 Product", "Configurable Product", etc.
982
- 983 2. If you need to add new attribute values (e.g. size, color, etc) to a product, you can
984 find the product at CATALOG > Products, search for the product, edit product with
985 "Configurable Product" type, and use "Edit Configurations" to add the product with
986 new attribute values. If the value that you want does not exist, you may need to add new
987 values to the attribute.
988
- 989 3. If you need to add new values to product attributes (e.g. size, color, etc), you can
990 visit STORES > Attributes > Product, find the attribute and click, and add value after
991 clicking "Add Swatch" button.
992
- 993 4. You can generate various reports by using menus in the REPORTS tab. Select
994 REPORTS > "report type", select options, and click "Show Report" to view report.
995
- 996 5. In this website, there is a UI that looks like a dropdown, but is just a 1-of-n selection
997 menu. For example in REPORTS > Orders, if you select "Specified" Order Status, you
998 will choose one from many options (e.g. Canceled, Closed, ...), but it's not dropdown,
999 so your click will just highlight your selection (1-of-n select UI will not disappear).
1000
- 1001 6. Configurable products have some options that you can mark as "on" or "off". For
1002 example, the options may include "new", "sale", "eco collection", etc.
1003
- 1004 7. You can find all reviews and their counts in the store in MARKETING > User
1005 Content > All Reviews. If you see all reviews grouped by product, go REPORTS > By
1006 Products and search by Product name.
1007
- 1008 8. This website has been operating since 2022. So if you have to find a report for the
1009 entire history, you can select the date from Jan 1, 2022, to Today.
1010
- 1011 9. Do not export or download files, or try to open files. It will not work.
1012

1008
1009
1010
1011
10121013 Reddit
10141015 Here are tips for using this website:
1016

- 1017 1. when the task mentions subreddit, it is referring to 'forum'
1018
- 1019 2. if you need find a relevant subreddit or forum, you can find the name after clicking
1020 "alphabetical" in the "Forum" tab
1021
- 1022 3. you can visit the next page with the link 'More', if the link 'More' is NOT visible in
1023 the current observation, this means you have reached the last page
1024

1020
1021
1022
1023
1024
1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Gitlab

1. your user name is byteblaze
2. To add new members to the project, you can visit project information > members tab and click blue "invite members" button on top right
3. To set your status, click profile button on top right corner of the page (it's next to the question mark button) and click edit status
4. To edit your profile, click profile button on top right corner of the page (it's next to the question mark button) and click edit profile
5. You can also access to your information e.g. access token, notifications, ssh keys and more from "edit profile" page
6. Projects that you have contributed to are listed under Project / Yours / All tab of gitlab.site. You can sort repos using dropdown button on top right
7. Projects's repository tab has menus like Commits, Branches, Contributors, and more. Contributors tab shows contributors and their number of commits
8. If you want to see all the issues for you, you can either click button on the right of + icon on top right menu bar
9. When the task mentions branch main, it often means master

Prompt - Navigation Specification

"click"

click [id]: To click on an element with its numerical ID on the webpage. E.g., 'click [7]' If clicking on a specific element doesn't trigger the transition to your desired web state, this is due to the element's lack of interactivity or GUI visibility. In such cases, move on to interact with OTHER similar or relevant elements INSTEAD.

"go_back"

go_back: To return to the previously viewed page.

"type"

type [id] [content] [press_enter_after=0/1]: To type content into a field with a specific ID. By default, the "Enter" key is pressed after typing unless 'press_enter_after' is set to 0. E.g., 'type [15] [Carnegie Mellon University] [1]' If you can't find what you're looking for on your first attempt, consider refining your search keywords by breaking them down or trying related terms.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

“stop”

stop [answer]: To stop interaction and return response. ONLY use this action when you believe the objective is fully achieved and there is no need to further explore the website. Indicate the reason why you think the task objective has been completed within the brackets. E.g., ‘stop [The review and rating information of all the products under electronic category has been tracked. There are 5 pages of products in total and all of them have been visited.]’

A.2 IMPLEMENTATION DETAILS

A.2.1 EXPERIMENT DETAILS

In our main experiments, we utilize GPT-4o, GPT-5, GLM-4.5-air-fp8 as backbone models. For GPT-4o and GLM model, following AgentOccam, we utilize the same configuration, setting temperature as 0.5, top-p as 0.95. For GPT-5, we set reasoning effort to minimal, due to time and budget constraints.

We report results on four domains. Although the WebArena environment also contains a *Map* domain, we found that the service for this website was no longer accessible and therefore excluded it from evaluation. Moreover, since many multi-domain tasks involve the Map website, we also removed these tasks to ensure fair comparison with other methods that reported results only on the remaining domains.

We also did not compare with AgentSymbiotic (Zhang et al., 2025a) and Learn-by-Interact (Su et al., 2025), as the performance of these methods depends heavily on their proprietary retrieval-augmented generation (RAG) databases. Because neither of these works has released their databases, a direct comparison would not be fair or reproducible, and we therefore exclude them from our evaluation.

A.2.2 NAVIGATION & EXECUTION

In our implementation, we follow the action selection mechanism introduced by AgentOccam (Yang et al., 2024a). Specifically, after the navigation agent generates candidate actions at each step (e.g., clicking an element, entering text, following a link, or stopping), we invoke a separate judge module to evaluate these candidates. The judge receives as input the task instruction, the current observation, the interaction history, and the candidate actions with their rationales. It then ranks or filters the candidates, selecting the action that is most consistent with the high-level objective.

This design allows the system to correct potential errors from the navigation agent. The judge therefore serves as a lightweight second-opinion layer, ensuring that the final action executed at each step is both safe and aligned with task goals.

During the final execution, if the task requires the analysis result as output, we directly output the analysis result. When writing the analysis code, if there is an error of executing the code, the agent will incorporate the error information and previous code to refine its response to generate another response. In the other case where the analysis results will be further used to complete web operations (e.g., post a submission in Reddit), WEBDART will follow a similar mechanism as navigation, but with the analysis result in the context.