
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WEBDART: DYNAMIC DECOMPOSITION AND
RE-PLANNING FOR COMPLEX WEB TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-language-model (LLM) agents are becoming competent at straightforward
web tasks, such as opening an item page or submitting a form, but still strug-
gle with objectives that require long-horizon navigation, large-scale informa-
tion extraction, and reasoning under constraints. We present WEBDART, a
general framework that enables a single LLM to handle such complex chores.
WEBDART (i) dynamically decomposes each objective into three focused sub-
tasks—navigation, information extraction, and execution—so the model concen-
trates on one skill at a time, and (ii) continuously re-plans the decomposition as
new webpages are revealed, taking advantage of newly discovered filters or short-
cuts and avoiding redundant exploration. Evaluated on WebChoreArena, WEB-
DART lifts end-to-end success rates by up to 13.7 percentage points over previous
state-of-the-art agents, while matching their performance on the easier WebArena
suite and completing tasks with up to 14.7 fewer navigation steps. Code will be
publicly available.

1 INTRODUCTION

LLM-powered web agents have recently shown promising abilities in web navigation tasks (Drouin
et al., 2024; He et al., 2024; Wei et al., 2025; Yang et al., 2024a; Pan et al., 2024; Song et al.,
2024). Benchmarks such as WebArena (Zhou et al., 2023) demonstrate that these agents achieve
reasonable accuracy on simple objectives, highlighting their potential as general-purpose automation
tools. However, when the objectives require more complex reasoning and multi-step exploration,
the performance of these agents often collapses. As shown in Figure 1, on WebChoreArena (Miyai
et al., 2025), a benchmark designed to test higher-complexity web tasks, agents powered by GPT-4o
achieve only 8.0% accuracy on tasks across different web domains, far below the 46.6% accuracy on
WebArena. This gap highlights a critical weakness of current worflows: while sufficient for simple
goals, they are not well equipped for tasks demand multi-step reasoning, long-horizon navigation,
and structured information processing.

A closer examination reveals that the difficulty arises from cognitive overload. Complex tasks
require agents to simultaneously navigate across multiple web pages, extract and track large
amounts of information, and reason under constraints. Consider the following task from WebChore-
Arena (Miyai et al., 2025): “Tell me the top 3 products with the highest number of reviews in Home
Audio of Electronics within the price range of $1,000 to $9,999”. As illustrated in Figure 1, prod-
uct information is distributed across multiple nested web pages. Each page may contain tens of
products with attributes such as price and number of reviews. To complete this objective, current
LLM agents (Yang et al., 2024a; Chezelles et al., 2024) attempt to tackle all these aspects in a
single process: while browsing through pages, they must also keep track of which products meet
the price requirement, remember which ones they have already seen, and simultaneously apply the
logic needed to determine the top three by number of reviews. This often overwhelms the agent,
leading to frequent mistakes such as missing relevant information, forgetting the user instructions,
and incorrect analysis (Miyai et al., 2025).

In contrast, human experts may naturally break the task into distinct steps: ❶ first narrowing down to
the pages within the desired price range, ❷ then collecting and recording the attributes of candidate
products, and ❸ finally ranking the products by number of reviews. This stepwise approach reduces

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Tell me the top 3 products with the highest number of
reviews in Home Audio of Electronics within the price
range of $1,000.00 to $9,999.99.

ComplexWeb Task

Tell me the total cost of my latest complete order?
SimpleWeb Task

Go to every product listing pages under Home Audio
of Electronics.

Navigation

Extract product name, price and number of reviews
for each product.

Information Extraction

Filter products priced $1,000–$9,999. Sort by review
count and return top 3.

Execution

WebDART

Price Filter
$0.00 - $999.99 (1192)
$1,000.00 - $1,999.99 (38)
$2,000.00 - $2,999.99 (17)
$3,000.00 - $3,999.99 (20)
$4,000.00 - $4,999.99 (8)
$5,000.00 - $5,999.99 (3)
$8,000.00 - $8,999.99 (1)
$9,000.00 and above (1)

$1,000.00 - $1,099.99 (5)
$1,100.00 - $1,199.99 (8)

…
$1,900.00 and above (5)

$1,940.00 - $1,949.99 (1)
$1,950.00 - $1,959.99 (1)
$1,990.00 and above (3) Task Success Rate with Different Web Agent on

Same Backbone LLM

(Cannot be solved directly by typical LLM web agent.)

Web Environment

Figure 1: (Top) Existing LLM-based web agents perform well on simple tasks, but their success
rates drop on complex tasks that require non-trivial reasoning, such as applying a price-range fil-
ter (bottom left).WEBDART overcomes this limitation by dynamically decomposing the objec-
tive into three subtasks: navigation, information extraction, and execution. (Bottom right) Conse-
quently,WEBDART significantly outperforms the current state of the art on WebChoreArena across
all task categories. Backbone LLM: GPT-5.

complexity of the task and makes the problem tractable, whereas forcing all operations to occur
simultaneously overwhelms current agents and leads to frequent errors.

Motivated by this, we propose WEBDART (Decomposition & Adaptive Re-planning for Tasks), a
framework that adaptively decomposes complex web tasks into simpler, modular subtasks. Unlike
the typical agentic flow, where navigation, information extraction, and execution are interleaved in a
single process, WEBDART separates the original complex tasks into these three subtasks. We adopt
these three subtasks because complex web tasks typically require distinct agent abilities: browsing
through multiple pages, extracting relevant information, and performing analysis or acting on the
results. One example of the decomposition is shown in Figure 1, where we leverage the LLM to
generate a decomposition conditioned on both the task description and the initial web environment.
The task decomposition reduces the cognitive burden on the LLM and makes complex objectives
more tractable by allowing the agent to focus on one subtask at a time.

However, an initial decomposition based only on the task description may be suboptimal. There
are multiple ways to decide what information should be collected during navigation versus deferred
to later analysis, and these trade-offs cannot always be known in advance. Moreover, as the agent
explores, new web elements such as filters or sort options may appear that were unavailable at the
beginning but can drastically reduce navigation effort. For example, in Figure 1, the initial navi-
gation subtask is specified as “visit every product listing page under Home Audio of Electronics”.
Once the agent enters the product page, it may discover a price filter that allows it to restrict results to
$1,000 to $9,999 and avoid traversing irrelevant pages. To exploit such opportunities, WEBDART
incorporates a dynamic replanning mechanism during navigation that allows the agent to revise its
plan after each step based on newly observed pages. This adaptive adjustment helps correct mis-
takes and eliminates redundant exploration. Together, task-adaptive decomposition and navigation
replanning enable WEBDART to achieve higher accuracy with lower cost.

We perform extensive evaluation of our method on both WebChoreArena and WebArena across three
different LLM backbones. With the proposed decomposition framework, WEBDART improves
state-of-the-art agent frameworks including BrowserGym (Chezelles et al., 2024) and AgentOc-
cam (Yang et al., 2024a) by up to 13.7% on the complex tasks in WebChoreArena. Our method also
achieves similar performance on WebArena compared to existing state-of-the-arts, demonstrating
its robustness and flexibility. Finally, by combining the dynamic re-planning module, the accuracy
of our method can be further increased by 7.7% on the shopping tasks in WebChoreArena while
reducing the average navigation steps by 14.7.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Simulated web-agent environments. Progress on web agents has largely mirrored progress on the
testbeds available to them. The first generation of benchmarks—MiniWoB and MiniWoB++ (Liu
et al., 2018)—offers canvas-rendered “toy” sites that evaluate low-level actions such as clicking
or typing within a single, synthetic page. WebShop keeps the single-domain setting but increases
realism by simulating a full e-commerce catalogue, requiring agents to search, filter, and purchase
items.

The next wave introduces multi-domain, fully functional sites. WebArena (Zhou et al., 2023) hosts
independent applications for shopping, forums, software development, and content management,
thereby capturing a broader range of real-world behaviours. More recent suites push two frontiers.
(1) Multimodality: VisualWebArena (Koh et al., 2024) and WebVoyager (He et al., 2024) add image
inputs so that agents must reason jointly over text and vision. (2) Task complexity: WebChore-
Arena (Miyai et al., 2025) reuses the WebArena sites but issues longer “chores” that demand capa-
bilities beyond ordinary browsing—e.g., arithmetic, cross-page memory, and long-horizon planning.

Our study targets the text-only setting and therefore evaluates on WebArena and WebChoreArena,
which together provide diverse domains and richly composed task intents while remaining fully
reproducible.

LLM-powered web agents. Current web agents can be grouped into three broad lines of work.
(1) Leveraging execution feedback. Prompting schemes such as ReAct and its derivatives let an
LLM interleave reasoning and actions during a rollout (Yao et al., 2023; Mialon et al., 2023; Hong
et al., 2024; Yang et al., 2024b; Amayuelas et al., 2025; Yang et al., 2025). Subsequent methods
reuse the generated trajectories to refine future attempts: AWM distils frequently successful action
patterns (Wang et al., 2024); Auto Eval & Refine trains an external evaluator and invokes self-
reflection (Pan et al., 2024; Shinn et al., 2023); WebPilot explores alternate paths with an MCTS-
style search (Zhang et al., 2025b). (2) Synthesising auxiliary data. Learn-by-Interact creates syn-
thetic tasks, relabels the resulting trajectories with hindsight (Su et al., 2025; Li et al., 2020), and
retrieves them at inference time, while AgentSymbiotic uses a large–small model pair to co-generate
training examples (Zhang et al., 2025a). These approaches boost accuracy when the synthetic tasks
closely match the evaluation set but risk data contamination and often degrade when distributions
diverge. (3) Optimising the interface. AgentOccam shows that simply pruning the DOM observa-
tion and restricting the action set already yields large gains and is now a common preprocessing
step (Yang et al., 2024a). (4) Finetuned web agents represent another important line of work com-
plementary to training-free designs like ours. These approaches explicitly fine-tune an LLM policy
using domain-specific trajectories to encode stronger priors for multi-step decision making. Recent
examples include curriculum-based reinforcement learning agents that evolve their own training dis-
tribution over time (Qi et al., 2024), models that learn webpage-specific contextualization layers to
filter DOM observations before acting (Lee et al., 2025), and GUI-generalist agents, finetuned on
large multimodal UI demonstrations, to perform precise manipulation and element grounding (Qin
et al.). While fine-tuning often yields higher in-distribution accuracy, these methods typically re-
quire expensive data generation and can be brittle under distribution shifts. In contrast, our approach
instead relies on structured task decomposition and interface optimization to achieve strong gener-
alization without additional training cost.

WEBDART departs from all of the above. (i) It is training-free: no extra rollouts, synthetic data,
or fine-tuning are required. (ii) It tackles long-horizon chores through dynamic task decomposition:
during execution, the agent continually observes the current webpage and adaptively refines a three-
part plan—navigation, information extraction, and execution—allowing the same frozen backbone
LLM to focus on one capability at a time. This simple yet principled design delivers state-of-the-art
results on both WebArena and WebChoreArena.

3 METHOD

In this paper, we focus on text-based web agents, although the proposed approach naturally extends
to multimodal environments. Each task is specified by a natural-language instruction and a ground-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

{"post_id": "xx",
"comment_num": x}

Extraction format:Action

 Observation of
Selected Steps

</></>

HTML

</>

click, type,
go_back, stop

Information ExtractionNavigation Execution

Decomposition

Code

Python

Extracted
Data

Data

Navigation
Go to forum OldSchoolCool, and
visit all the post listing pages.

Calculate the total number of comments on the top 30 most commented posts on forum OldSchoolCool.
Objective

Final Answer:
1,185 comments in total.

Information Extraction
Extract post id and number of
comment for each post.

Execution
Sort the top 30 commented posts.
Calculate total number of comment.

HTML

</>
Step 1

HTML

</>
Step 2

HTML

</>
Step N

..
Dynamic

Re-planning

Plan

History

Observation

HTML

</>
Initial

Observation

Navigation Objective

Plan

Navigation Objective

Interaction History

Step 1: Go to the
forum 'nyc'

Step 2: ...

Observation
Reason

Action

History Summary

Obs. Description

PlanDecomposition

Reason Action

History Summary

Obs. Description

Navigation: Collect all
posts in forum 'nyc'
Execution: ...

Observed
Web Elements
(e.g.,Sort)

HTML

</>
Current

Observation

Plan

Dynamic
Re-planning

I can sort the posts
based on upvotes

New Decomposition

Navigation: Collect top25
upvoted posts in forum 'nyc'

Plan: Step N: Apply sorting.

New Plan

1

2

3

9/24/25, 10:27 PM Webweaver.svg

file:///Users/jingbo.yang/Library/CloudStorage/OneDrive-Accenture/Desktop/Webweaver.svg 1/1

Figure 2: Overview of the WEBDART framework. A complex web task is dynamically decom-
posed into three sequential subtasks. (1) Navigation: the agent explores the site—issuing actions
such as click, type, and go back—to gather every page that could contain the required infor-
mation. (2) Information extraction: given these pages, a dedicated module isolates task-relevant
content and converts it into a standardised, structured form based on the objective. (3) Execution:
the extracted data are analysed to meet the task constraints, e.g., by generating and running Python
code on the fly to perform filtering, aggregation, or other computations.

truth target for evaluation. The agent receives the instruction and interacts with a web environment
whose pages are represented as accessibility trees, aiming to fulfil the stated objective.

Figure 2 illustrates the WEBDART workflow. A complex web task is first dynamically decomposed
into a sequence of modular subtasks that are executed in order. The central challenge is to choose a
decomposition whose subtasks are both tractable and complementary.

Empirically, most web tasks require three distinct capabilities:

1. Navigation: browsing across multiple pages to locate candidate information;

2. Information extraction: converting raw page content into structured records;

3. Execution: analysing the collected data or acting on the results.

Guided by this observation, WEBDART decomposes every complex task into the ordered subtasks
of navigation, information extraction, and execution, continually updating intermediate objectives as
new observations arrive. In what follows, we first describe the decomposition strategy (Section 3.1),
and then detail the navigation (Section 3.2), information-extraction (Section 3.3), and execution
(Section 3.4) modules.

3.1 TASK DECOMPOSITION

A web task can be decomposed in several ways, and the most suitable granularity depends on the
structure of the target site. Consider the task in Figure 2: “Calculate the total number of comments
on the 30 most-commented posts in the OldSchoolCool forum.” Two natural decompositions are

• Tightly coupled. Embed the numeric constraint in the navigation objective: “Browse Old-
SchoolCool and open the 30 most-commented posts.”

• Conservative. Keep navigation agnostic to the constraint: “Browse OldSchoolCool and
visit all post-listing pages.” Identifying the top 30 posts is then left to the analysis stage.

Both options are valid, but their efficiency hinges on site features. If the forum provides a Sort
by: most commented control, the tight plan is ideal—it satisfies the constraint while touching

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

only a handful of pages. Conversely, when such affordances are absent (or the total number of pages
is already small), the conservative plan is simpler and more reliable: the agent just collects every
listing page and defers heavy reasoning to later stages.

Because these interface aids are unknown a priori, WEBDART adopts the conservative scheme
by default and adapts opportunistically. Specifically, all data–centric operations—filtering, sorting,
ranking—are initially assigned to execution, while navigation is limited to page discovery. To steer
the LLM toward this partitioning, the prompt p contains three in-context examples that consistently
push constraint handling to later stages:

f : (T ,p) −→
(
Tnav, Tie, Texec

)
,

where f(·) is the LLM and the outputs Tnav, Tie, Texec are the navigation, information-extraction, and
execution objectives.

During navigation the agent may encounter helpful widgets (e.g., the aforementioned sort button)
that can fulfill part of the constraint immediately. When detected, WEBDART invokes dynamic re-
planning: the current navigation goal Tnav is updated on-the-fly, allowing the agent to skip irrelevant
pages and accelerate completion. Details of this mechanism are presented in Section 3.2.

Fast-path routing. Finally, the decomposition module also incorporates a lightweight router that
decides whether the task can be satisfied with only a subset of the three modules. For instance, the
instruction “Post "Hello, world!" on /OldSchoolCool” requires navigation (and possibly
execution) but no information extraction; the router therefore bypasses the extraction stage and
invokes the minimal workflow.

3.2 NAVIGATION

{"post_id": "xx",
"comment_num": x}

Extraction format:Action

 Observation of
Selected Steps

</></>

HTML

</>

click, type,
go_back, stop

Information ExtractionNavigation Execution

Decomposition

Code

Python

Extracted
Data

Data

Navigation
Go to forum OldSchoolCool, and
visit all the post listing pages.

Calculate the total number of comments on the top 30 most commented posts on forum OldSchoolCool.
Objective

Final Answer:
1,185 comments in total.

Information Extraction
Extract post id and number of
comment for each post.

Execution
Sort the top 30 commented posts.
Calculate total number of comment.

HTML

</>
Step 1

HTML

</>
Step 2

HTML

</>
Step N

..
Dynamic

Re-planning

Plan

History

Observation

HTML

</>
Initial

Observation

Navigation Objective

Plan

Navigation Objective

Interaction History

Step 1: Go to the
forum 'nyc'

Step 2: ...

Observation
Reason

Action

History Summary

Obs. Description

PlanDecomposition

Reason Action

History Summary

Obs. Description

Navigation: Collect all
posts in forum 'nyc'
Execution: ...

Observed
Web Elements
(e.g.,Sort)

HTML

</>
Current

Observation

Plan

Dynamic
Re-planning

I can sort the posts
based on upvotes

New Decomposition

Navigation: Collect top25
upvoted posts in forum 'nyc'

Plan: Step N: Apply sorting.

New Plan

1

2

3

9/24/25, 10:27 PM Webweaver.svg

file:///Users/jingbo.yang/Library/CloudStorage/OneDrive-Accenture/Desktop/Webweaver.svg 1/1

Figure 3: Illustration of the WEBDART frame-
work in navigation. An initial plan is generated
before starting navigation. The navigation agent
issues an action at each step. When new web el-
ements (e.g., filters, sorting options) appear, the
dynamic re-planning module updates the decom-
position and plan, enabling the agent to adapt its
strategy for more efficient execution.

The navigation module drives the agent through
the website, issuing low-level browser ac-
tions until every page that might contain task-
relevant information has been visited. Our in-
teractive setup follows prior work (Yang et al.,
2024a; Wang et al., 2024; Zhang et al., 2025a).

At time step t the agent outputs a pair
(rt, at): a natural-language reasoning
trace rt and an action at ∈ A, where
A = {click,type,go back,stop}.
The choice is conditioned on (i) the current
navigation objective Tnav, (ii) the current
observation ot (the page rendered as an acces-
sibility tree), and (iii) the interaction history
ht = (o1:t−1,a1:t−1, r1:t−1). After execution,
(rt, at) is appended to the history; when the
agent finally emits stop at step T , the full
interaction history hT = (o[1:T],a[1:T], r[1:T])
is passed to the information-extraction module.
Figure 3 illustrates the workflow.

Plan-guided browsing. Before the first ac-
tion, the LLM is given the navigation objective
Tnav and the initial page o0 and asked to gener-
ate a high-level plan q0. The plan lists (i) pages
to visit, (ii) information to capture, and (iii) a
stopping criterion. During browsing the agent
is prompted with Tnav, the current plan qt−1,
the observation ot, and the history ht. Conditioning on qt−1 stabilises behaviour and substantially
reduces premature termination (sample plans are shown in Appendix A.1.2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dynamic replanning. The conservative decomposition from Section 3.1 defers all constraint han-
dling to the execution stage; this guarantees coverage but can be wasteful when helpful interface
widgets (filters, sort menus, etc.) appear mid-navigation. To exploit such shortcuts, the agent per-
forms dynamic replanning.

At the start of each step t the agent evaluates, based on (ot,ht−1,qt−1, T), whether the navigation
objective or plan should be revised. If a useful widget has been discovered, it outputs an updated
pair (T t

nav,qt) that incorporates the shortcut; otherwise it keeps the previous version. The (possibly)
updated objective and plan are fed back into the action-selection prompt to produce (rt, at).

Dynamic replanning preserves the safety of a conservative start while allowing the agent to exploit
opportunistic efficiencies—for example, switching from “visit every listing page” to “apply sort
by: most-commented and scan only the first 30 posts.” The prompt template used for this
mechanism is provided in Appendix A.1.5.

3.3 INFORMATION EXTRACTION

When navigation ends at step T , we obtain the transcript hT = (o1:T ,a1:T , r1:T), where o1:T

contains every page the agent observed. Blindly extracting from all pages would add substantial
noise—for example, products in the wrong category or outside a specified price range. The extrac-
tion module therefore proceeds in two stages:

Page selection. An LLM is given the original task T , the navigation objective Tnav, and the full
history hT . It returns an index set I ⊆ {1, . . . , T} that marks the pages most likely to contain the
required information (prompt template in Appendix A.1.3).

Field extraction. For each chosen page ot (t ∈ I), a second LLM call extracts the target
fields—e.g., post title and comment count—directly from the page’s accessibility tree, producing
a uniform JSONL record. The resulting structured collection is passed to the execution module.

We also experimented with an LLM-generated parser baseline, where the model generates code
on the fly to traverse the accessibility tree of each ot. In practice, this approach proved brittle:
accessibility trees are deeply nested and site-specific, and minor layout changes frequently break
the generated code. Prompt-based extraction avoids these issues and requires no hand-crafted logic;
therefore, WEBWEAVER adopts it as the default strategy.

3.4 EXECUTION

The execution module converts the structured records produced by the information-extraction stage
into the final deliverable requested by the task. Depending on Texec, this entails one of two sub-
routines.

Data-analysis objectives. When the task calls for statistics, rankings, or other derived quantities,
the agent generates and runs code (Python by default) over the extracted JSON file. Typical opera-
tions include filtering under constraints, aggregation, and sorting. To increase robustness we adopt a
self-reflection loop (Shinn et al., 2023): if the program throws an exception, the LLM examines the
traceback, amends the code, and re-executes it until success or a timeout. Implementation details
are provided in Appendix A.2.

Action-oriented objectives. Some tasks require injecting the computed result back into the en-
vironment—for example, posting a summary to a forum or submitting a completed form. In these
cases the module invokes a short-horizon navigation policy that is initialised with the analysis output
(e.g., the text to post or the value to enter). Because the destination elements are already known, this
policy is far simpler and more reliable than the primary navigation module, yet it preserves the same
interface and action space.

In both settings, once the required code or interactions have concluded, the agent returns the task’s
final answer and the execution stage terminates.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on the WebChoreArena benchmark across different web domains (Shopping, Red-
dit, Admin, GitLab). WEBDART consistently outperforms all baselines across models , achieving
the highest overall success rate. Results with † are reported by WebChoreArena (Miyai et al., 2025).

Model Method Shopping Reddit Admin GitLab Overall

GPT-5

SteP (Sodhi et al., 2023) 2.6 4.4 0.7 4.7 3.1
BrowserGym (Chezelles et al., 2024) 15.4 15.4 26.5 27.6 21.2
AWM (Wang et al., 2024) 18.0 14.3 30.3 26.8 22.4
AgentOccam (Yang et al., 2024a) 21.3 11.0 30.8 22.8 21.5
WEBDART 35.0↑13.7 26.4↑10.0 33.8↑3.0 29.1↑1.5 31.1↑8.7

GPT-4o

SteP (Sodhi et al., 2023) 2.6 0.0 0.0 4.7 1.8
BrowserGym† (Chezelles et al., 2024) 0.9 5.5 2.3 3.9 3.2
AWM (Wang et al., 2024) 3.4 8.8 4.5 4.7 5.4
AgentOccam† (Yang et al., 2024a) 10.3 9.9 4.5 7.1 8.0
WEBDART 18.8↑8.5 19.8↑9.9 12.9↑8.4 9.4↑2.3 15.2↑7.2

GLM-4.5-air-fp8

SteP (Sodhi et al., 2023) 0.0 2.2 1.5 2.4 1.5
BrowserGym (Chezelles et al., 2024) 6.0 4.8 6.1 9.4 6.6
AWM (Wang et al., 2024) 0.9 5.6 4.3 8.7 4.9
AgentOccam (Yang et al., 2024a) 18.8 4.4 11.4 8.7 10.8
WEBDART 26.5↑7.7 16.5↑10.9 18.9↑7.5 15.4↑6.0 19.3↑8.5

4 EXPERIMENT RESULTS AND ANALYSIS

4.1 EXPERIMENT SETUP

Environment. We conduct experiments on two benchmarks: WebChoreArena and WebArena.
WebChoreArena (Miyai et al., 2025) is our primary evaluation benchmark, as it extends the We-
bArena (Zhou et al., 2023) environment with more realistic and challenging chores that require
handling constraints, information extraction, and data analysis in addition to navigation. These
tasks better reflect the complexity of real-world web usage and thus serve as the main testbed for
demonstrating the effectiveness of our method. In parallel, we also evaluate on WebArena tasks to
ensure that our approach does not reduce performance on simpler navigation-oriented objectives.
Both benchmarks share the same set of interactive web environments (e.g., shopping, administra-
tion, forums, and code management), which allows us to make a direct comparison between simple
and complex tasks under consistent conditions.

Baselines. We compare WEBDART against four baselines: SteP (Sodhi et al., 2023), Browser-
Gym (Chezelles et al., 2024), AWM (Wang et al., 2024) and AgentOccam. SteP (Sodhi et al., 2023)
(Stacked LLM Policies) is a method that decomposes the web-agent policy space into multiple sub-
policies, dynamically composing them to adapt to task complexity. BrowserGym (Chezelles et al.,
2024) provides a unified evaluation framework for web agents with standardized observation and ac-
tion spaces, enabling fair and reproducible comparisons across different benchmarks. AWM (Wang
et al., 2024) induce commonly reused rountines from web tasks to guide subsequent generations.
AgentOccam (Yang et al., 2024a) is our main baseline, as it employs a navigation agent design
closely aligned with ours; by focusing on observation and action spaces that match LLM pretraining
distributions, it achieves strong results on WebArena without relying on in-context examples or ex-
ternal search. Together, these baselines allow us to evaluate WEBDART against diverse approaches
while ensuring a fair comparison with a closely related navigation agent. We compare WEBDART
with these baselines with three different backbone LLMs including GPT-5, GPT-4o, and GLM-4.5-
air-fp8. The configurations for each model and experiment setup is detailed in Appendix A.2

4.2 EVALUATION ON COMPLEX WEB TASKS.

Table 1 presents the main results on the WebChoreArena benchmark, which evaluates agent per-
formance on complex multi-step web tasks involving constraints and information extraction. We
compare WEBDART against three baselines: SteP, AWM, BrowserGym, and AgentOccam, under
three different backbone models (GPT-5, GPT-4o, and GLM-4.5-air-fp8).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Efficiency evaluation of dynamic re-planning on WebChoreArena with GPT-4o as back-
bone LLM. We report accuracy and average navigation steps.

Shopping Reddit Admin GitLab
Accuracy Avg. Steps Accuracy Avg. Steps Accuracy Avg. Steps Accuracy Avg. Steps

WEBDART 18.8 32.9 19.8 25.1 12.9 16.7 9.4 23.3
+ Dynamic Re-planning. 26.5↑7.7 18.2↓14.7 20.9↑1.1 21.1↓4.0 13.6↑0.7 17.7↑1.0 11.1↑1.7 21.2↓2.1

Across all model backbones, WEBDART achieves the highest overall success rates, demonstrating
its robustness and effectiveness on complex tasks. With GPT-5, WEBDART reaches 31.1 overall,
outperforming SteP (3.1), BrowserGym (21.2), AWM (22.4), and AgentOccam (21.5). The gains
are particularly pronounced in the Shopping and Reddit domains, where WEBDART improves over
AgentOccam by +13.7 and +15.4 points respectively. This highlights the advantage of shifting con-
straint handling to the data analysis stage, which reduces error propagation from fragile navigation.

The improvements are consistent for GPT-4o, where WEBDART achieves 15.2 overall compared to
8.0 for AgentOccam, and for GLM-4.5-air-fp8, where WEBDART reaches 19.3 overall compared to
10.8 for AgentOccam. These results suggest that our method generalizes across different backbone
models, even when the underlying LLM has weaker navigation or reasoning capabilities.

We also note that SteP underperforms significantly on WebChoreArena compared to other baselines
and WEBDART, reflecting its limited ability to handle tasks with deep constraint hierarchies. In
contrast, WEBDART consistently maintains a strong margin over all baselines, confirming that
decomposition is the key to solving complex web chores efficiently.

4.3 EVALUATION OF DYNAMIC RE-PLANNING.

In Section 3.2, we introduced dynamic re-planning, where the navigation agent adapts its decom-
posed subtasks and plan based on newly discovered web elements (e.g., filters or sorting options)
that can directly apply task constraints. This mechanism aims to reduce redundant navigation and
improve efficiency, while preserving or even improving accuracy. Table 2 reports the results of
comparing agents with and without dynamic re-planning across four domains in using GPT-4o as
the backbone model. We report both task accuracy and the average number of navigation steps.

The results show that dynamic re-planning substantially reduces the number of navigation steps. In
the Shopping domain, the average navigation steps decrease from 32.9 to 18.2 while accuracy im-
proves from 18.8% to 26.5%. A similar trend is observed in Reddit, where the step count drops from
25.1 to 20.8, with a modest accuracy gain (19.8% to 20.9%). The only exception occurs in the Shop-
ping Admin domain. This is because the website inherently relies on numerous filters and sorting
elements, without which the tasks cannot be completed. These improvements confirm that dynam-
ically adapting the decomposition and plan allows the agent to bypass unnecessary exploration and
focus on relevant parts of the environment.

Table 3: Results on the WebArena benchmark. Bold numbers indicate the best performance, and
underlined numbers indicate the second best. All the methods are tested using GPT-4o as backbone
model. The baseline results are taken from previous works (Zhang et al., 2025b; Song et al., 2024).

Method Shopping Admin Reddit GitLab Overall
WebArena (Zhou et al., 2023) 13.9 10.4 6.6 15.0 11.5
AutoEval (Pan et al., 2024) 39.6 20.9 20.8 25.0 26.6
AWM (Wang et al., 2024) 32.1 29.1 54.7 35.0 37.7
SteP (Sodhi et al., 2023) 36.9 24.2 59.4 31.7 38.0
HybridAgent (Song et al., 2024) 25.7 41.2 51.9 44.4 40.8
WebPilot (Zhang et al., 2025b) 36.9 24.7 65.1 39.4 41.5
AgentOccam (Yang et al., 2024a) 37.4 44.0 66.0 38.9 46.6
WEBDART 36.0 41.2 67.9 47.2 48.1

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Overall, these results validate the effectiveness of dynamic re-planning as a complementary strategy
in WEBDART. By allowing the agent to adjust its task structure in real time, we achieve shorter
navigation paths and, in several domains, notable accuracy improvements.

4.4 EVALUATION ON SIMPLE NAVIGATION TASKS.

While WEBDART is primarily designed for complex web tasks involving constraints and analysis, it
is also important to verify that the framework does not degrade performance on simpler navigation-
oriented tasks. To this end, we evaluate on the original WebArena benchmark, where most tasks
can be completed through direct navigation without requiring decomposition. For these tasks, we
adjust the agent to bypass the decomposition stage and focus solely on the navigation module.

Table 3 reports the results, comparing WEBDART against a wide range of existing web agents. We
observe that WEBDART achieves competitive or superior performance across domains, reaching an
overall success rate of 48.1, which is higher than all baselines including AgentOccam (46.6).

These results confirm that WEBDART maintains robustness across task types: it significantly im-
proves over baselines in complex settings by leveraging decomposition, while also remaining com-
petitive on simpler navigation tasks by bypassing unnecessary modules. This adaptability demon-
strates the generality of our design.

4.5 CASE STUDY.

We further present case study to visualize how dynamic re-planning enhances WEBDART in Ta-
ble 4. In the first example, the agent initially plans to traverse every page in a product category, but
upon detecting a drop-down menu that adjusts the number of displayed products, the plan is revised
to greatly reduce navigation steps. This shows how re-planning exploits newly discovered web ele-
ments to improve efficiency. In the second case, the agent’s initial decomposition requires visiting
all forums to collect a user’s submissions, which is infeasible. Once it identifies that the user profile
page already lists submissions with a direct link, the plan and the navigation objective is updated
to extract information more directly, correcting a flawed decomposition. Finally, in the third case,
the agent relies on keyword search that produces irrelevant results. Dynamic re-planning detects the
mismatch and redirects the strategy to the actual forum page, enabling the agent to recover from
misleading navigation. Together, these examples demonstrate that dynamic re-planning allows the
agent to correct initial mistakes and maintain robustness in complex web environments.

Table 4: Case studies of dynamic re-planning in WEBDART.

Original Task Initial Navigation
Objective

Web Elements
(Description)

Navigation Objective
after replanning

Calculate average
product price in
Diet & Sports
Nutrition

Plan includes navigating
to Diet & Sports Nutrition
category and going over
all the pages.

Menu to select number
of products displayed in
each page.

Add the step changing
the number of products
displayed each page from
12 to 36.

Count submissions
by specific user
thebelsnickle1991
in each forum

Decomposition requires
traversing submissions in
every forum
alphabetically, leading to
endless exploration.

Button to submission
listing page under the
user profile page.

Revise plan to extract
directly from the profile
page and aggregate
submissions.

Count unique users
among top 600
hottest submissions
in nyc forum

Initial plan relies on
keyword search for “nyc,”
which returns unrelated
articles.

Direct link to the nyc
forum and its sorting
options.

Bypass search results and
directly navigate to the
forum page before
collecting data.

5 CONCLUSION

We introduced WEBDART, a framework that enhances web agents on complex tasks through ex-
plicit subtask decoupling and dynamic re-planning. By shifting constraint handling and other data-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

related operations from navigation to the analysis stage, WEBDART reduces error propagation and
alleviates the burden on fragile navigation processes. At the same time, dynamic re-planning en-
ables the agent to adapt plans in real time when new web elements are discovered or when the initial
decomposition is suboptimal. Experiments on WebChoreArena demonstrate that WEBDART im-
proves task success rates by up to 13.7% over strong baselines while also reducing navigation steps,
and evaluation on WebArena confirms that our method maintains performance on simpler tasks.
Case studies further show how re-planning allows the agent to exploit new opportunities, correct
inefficient strategies, and recover from misleading navigation paths, leading to more efficient and
robust web automation.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The benchmarks used in
our experiments, including WebChoreArena and WebArena, are publicly available and described
in detail in Section 4.1. The implementation details of WEBDART, including decomposition and
dynamic re-planning, are provided in Section 3, and additional examples and prompts are included
in the Appendix A. Finally, we provide our source code as part of the supplementary materials.

ETHICS STATEMENT

We have carefully reviewed the ICLR Code of Ethics and found no potential ethical issues related
to our work. Our study does not involve human subjects, sensitive data, or applications that pose
foreseeable risks of harm.

REFERENCES

Alfonso Amayuelas, Jingbo Yang, Saaket Agashe, Ashwin Nagarajan, Antonis Antoniades, Xin Eric
Wang, and William Wang. Self-resource allocation in multi-agent llm systems. arXiv preprint
arXiv:2504.02051, 2025.

De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù,
Ori Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym
ecosystem for web agent research. arXiv preprint arXiv:2412.05467, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: How capable are
web agents at solving common knowledge work tasks? In International Conference on Machine
Learning, pp. 11642–11662. PMLR, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6864–6890, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Dongjun Lee, Juyong Lee, Kyuyoung Kim, Jihoon Tack, Jinwoo Shin, Yee Whye Teh, and Kimin
Lee. Learning to contextualize web pages for enhanced decision making by llm agents. arXiv
preprint arXiv:2503.10689, 2025.

Alexander Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.
Advances in neural information processing systems, 33:7754–7767, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
Evaluating web browsing agents on realistic tedious web tasks. arXiv preprint arXiv:2506.01952,
2025.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curricu-
lum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents, 2025. URL https://arxiv. org/abs/2501.12326.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for web
actions. arXiv preprint arXiv:2310.03720, 2023.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web
agents. arXiv preprint arXiv:2410.16464, 2024.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
arXiv preprint arXiv:2409.07429, 2024.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. arXiv
preprint arXiv:2410.13825, 2024a.

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. arXiv preprint
arXiv:2507.05791, 2025.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Ruichen Zhang, Mufan Qiu, Zhen Tan, Mohan Zhang, Vincent Lu, Jie Peng, Kaidi Xu, Leandro Z
Agudelo, Peter Qian, and Tianlong Chen. Symbiotic cooperation for web agents: Harnessing
complementary strengths of large and small llms. arXiv preprint arXiv:2502.07942, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 23378–23386, 2025b.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 AGENT PROMPTS & EXAMPLES

Inside this section, we displayed the prompts as well as some intermediate outputs as demonstration
examples for for each module of WEBDART.

A.1.1 DECOMPOSITION

The following prompt illustrates an example of decomposition for data-analysis objectives. It explic-
itly encourages a conservative strategy, as discussed in our method section, by deferring data-related
operations to the analysis stage. In addition, we provide three in-context examples to help the LLM
better follow this decomposition approach.

Prompt - Decomposition

You are conducting a complex web task that requires information from the web to answer
correctly. Directly navigating the web environment to provide a final answer cannot always
yield the correct result. Therefore, you need to decompose the task into two decoupled parts to
complete it successfully.

The two parts are the navigation part and the analysis part. The navigation part involves visiting
all pages that contain the data needed to solve the task. The observation, the accessibility tree
of full web page, at each step will be recorded during navigation.
The analysis part involves extracting information from the observations and writing code to
provide the final answer. Note that the extracted information processed during analysis part
may be imperfect, which means they may include unnecessary data or not in correct format,
you need to make sure the analysis code can be robust to handle such cases.

Another important consideration is to simplify the navigation, as it is a more challenging task.
Ignore constraints such as ranges or filters in the navigation objective. Instead, include such
constraints in the analysis part to be handled later.

Given the original complex user task and some tips for using the target website, decompose it
into these two parts following this approach. Your output must follow this format with exact
the same headers:

Part 1 – Navigation

Part 2 – Analysis

In addition, below are some decomposition examples for your reference:

Example 1:

User task “List the average rating for every movie genre, using only titles released between
2015 and 2024. Output: ‘Drama : 8.1, Comedy : 7.4, . . . ’”

Part 1 – Navigation Go to the pages which include each film’s genre, release year, and
numeric user rating. Do not go to each film detail page if all the information is available in film
listing page.

Part 2 – Analysis Filter and only keep only films released 2015-2024. Compute the average
rating per genre and show them as ‘Drama : X.X, Comedy : Y.Y, . . . ’.

Example 2:

User task “Among products tagged ‘wireless earbuds’, count how many cost below $50, $50-
$99, and $100+. Return: ‘<50 : , 50-99 : , 100+ : ’.”

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Part 1 – Navigation Visit the pages containing product title and price information for “wire-
less earbuds” products. Do not go to each product detail page if all the information is available
in product listing page.

Part 2 – Analysis Group the collected items by price brackets < $50, $50-$99, $100+.
Count how many fall into each bracket and output the counts in the following format: ‘<50 :

, 50-99 : , 100+ : ’

Example 3:

User task “In the travel forum, among the 200 latest hotel reviews, how many mention ‘noise’
or ‘quiet’ in the text? Give two numbers: noisy count, quiet count.”

Part 1 – Navigation Navigate to the pages including the text body of the hotel reviews in
most recent order in the travel forum. Go over all hotel reviews in total. Do not go to each
review detail page if all the information is available in review listing page.

Part 2 – Analysis Only keep first 200 reviews. Search each saved review for the words
“noise”, “noisy” (noisy count) and “quiet”. Return two integers: noisy count and quiet count.

Below is one decomposition example generated conditioned on the prompt above:

Example - Decomposition

Original Task:

Extract the title of reviews with a rating of 2 or below out of 5 stars from ‘Tea Gift Set for Tea
Lovers - Includes Double Insulated Tea Cup 12 Uniquely Blended Teas and All Natural Honey
Straws — Tea Gift Sets for Women Men — Tea Gifts Bag Presented in Beautiful Gift Bag’ and
output them as a list in alphabetical order, separeted by line breaks.

Navigation Objective:

Navigate to the product page for ‘Tea Gift Set for Tea Lovers - Includes Double Insulated Tea
Cup 12 Uniquely Blended Teas and All Natural Honey Straws — Tea Gift Sets for Women Men
— Tea Gifts Bag Presented in Beautiful Gift Bag’. Visit the reviews section of the product and
collect the review titles along with their star ratings.

Analysis Objective:

Filter the collected reviews to include only those with a rating of 2 stars or below. Extract the
titles of these reviews and sort them in alphabetical order. Output the sorted titles as a list, with
each title separated by a line break.

A.1.2 NAVIGATION

In this section, we display the prompts for each part of navigation module and provide corresponding
examples.

Prompt - Navigation

You are an AI assistant performing navigation tasks on a web browser. You will be provided
with task objective, current step, web page observations, current plan, and interaction history.
You need to issue an action for this step.

Your task is mainly about navigating to each page that may contain the needed information.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Generate the response in the following format: {output specifications}

You are ONLY allowed to use the following action commands. Strictly adheres to the given
format. Only issue one single action. {navigation specifications}

{website tips}

Prompt - Navigation Plan Generation

You are an AI assistant that generates initial plans for web navigation tasks. Given a task
objective and an initial web page observation in accessibility tree, you need to create a clear,
step-by-step plan that will guide the navigation agent.

Directly output the navigation plan in your response without other irrelevant information.

Your plan should be:

1. Clear and actionable

2. Broken down into logical steps

3. Specific enough to guide navigation

4. Concise, only including necessary steps. Do not dive into more pages if the current page
already contains the needed information

5. Focused only on how to navigate, do not include other steps including extraction, analysis,
opening website, closing environment, etc

Consider common web navigation patterns like:

- Searching for information

- Navigating through menus and links

- Going over the necessary pages

- Interacting with buttons and controls

Example - Navigation Plan

Objective:

Search for the product “Manhattan Comfort Avesta Double Side Table 2.0 Collection Free
Standing Modern Side Table / TV Stand with Storage Includes 2 Doors with 3 Shelves and
Features Splayed Legs, White/Stamp/Grey Legs” on the website. Navigate to the product page
that contains detailed information including customer reviews. Ensure to collect review data
that includes the rating scores or star ratings.

Plan:

1. Locate the search combobox labeled S̈earchı̈n the accessibility tree.

2. Input the product name: “Manhattan Comfort Avesta Double Side Table 2.0 Collection Free
Standing Modern Side Table / TV Stand with Storage Includes 2 Doors with 3 Shelves and
Features Splayed Legs, White/Stamp/Grey Legs’́ into the search combobox.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

3. Locate and activate the “Search” button to initiate the product search.

4. On the search results page, look for the product name or a closely matching link.

5. Click on the link corresponding to the desired product to navigate to its detailed product
page.

6. On the product page, locate the section containing customer reviews or star ratings.

A.1.3 INFORMATION EXTRACTION

During information extraction, we first instruct the LLM to select relevant observations based on the
overall trajectory. The prompt is given as follows.

Prompt - Relevant Observation Selection

You are a judge agent in a web navigation and information seeking task.

Given a navigation objective (which includes the information to be found in the web environ-
ment) and a list of web navigation agent interaction history (with reason, action, and observa-
tion summary), select the step numbers that their observations are most likely to contain the
information specified in the objective.

Analyze each step in one or two sentences. After this, return a JSON list of step numbers (e.g.,
[2, 5, 7]) that you believe contains the needed information in their observations. Note:

1) The action in a step will be executed and reflected in the observation in the next step. For
example, if the action is ‘click on the home page button’, the observation in the next step will
be the home page.

2) The action you see at each step may contain a number, like ‘click[1316]’. This number is the
index of the element in the observation. You may not know which element is clicked, but you
can still use the reason to infer what that element is.

After selecting the relevant observations, we will first let the LLM to generate a prompt for extraction
at each page. The reason for this step is to fix a data schema for easily integrating results from
multiple pages.

Prompt - Extraction Prompt Engineering

You are an expert prompt engineer. Design a SINGLE prompt that, when shown together with
a web-page text accessibility tree, makes another LLM extract and return ONLY a list of JSON
object containing the fields that satisfy the user goal. Only extract the information specified in
the user goal. Make sure each extracted entry also has one identifier field (add only one if there
is no such key specified in user goal) that will helps accurate deduplication in the later stage.
You need to specify 1) what information to be extracted, 2) what keys should be used for each
JSON object in extracted list, 3) one simple example of the extracted JSON list. Make your
prompt concise and only include these necessary infromation.

A.1.4 EXECUTION

Below we provide the prompt for writing data analytic code during execution phase.

Prompt - Data Analysis

You are an analysis assistant that MUST write Python code.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You will be provided with objective and data samples (a small portion of all the data as a
reference) for analysis as a reference.

• The data is pre-loaded in a variable named ‘data‘.

• Assign your final answer to a variable named ‘answer‘.

Return only one fenced block:

‘‘‘python# code here

answer = ...‘‘‘

A.1.5 RE-PLANNING

We provide the prompt of re-planning and one example here.

Prompt - Re-planning

You are a Dynamic Control Agent responsible for monitoring and adapting the task decompo-
sition and navigation plan based on new observations during web navigation.

Your role is to:
1. Assess whether the current decomposition and navigation plan are still appropriate given the
new web elements and information discovered
2. Determine if modifications are needed to better achieve the original objective
3. Update the decomposition and navigation plan when necessary

You will be provided with: - The original task objective - Current decomposition (Part 1 - Navi-
gation, Part 2 - Analysis) - Current navigation plan - Current web page observation - Interaction
history

Based on this information, you need to decide whether to:
- Keep the current decomposition and navigation plan unchanged
- Modify the decomposition to better reflect what needs to be done
- Update the navigation plan to account for new web elements or information discovered

Adhere to the following output format: {output specifications}

Guidelines:
- Only modify decomposition/plan if you discover new web elements or information that sig-
nificantly changes the approach
- Be conservative - don’t change things unnecessarily
- Focus on practical improvements that will help achieve the objective more effectively
- Consider if new navigation paths or information sources have been discovered
- Ensure any updates are clear and actionable
- Do not include any task in analysis objective into the plan, as the plan is only for navigation

{website tips}

Example - Re-planning

Initial navigation plan:

1. Navigate to the ”Forum” tab on the website.

2. Click on ”alphabetical” to view all forums listed alphabetically.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

3. Visit each forum and locate submissions made by the user ”thebelsnickle1991”.

4. If there are multiple pages for submissions in a forum, continue navigating using the ”More”
link until reaching the last page.

Re-planning reasoning:

The current observation reveals that we are already on a page with submissions by the user
“thebelsnickle1991.” However, the original objective and decomposition specify starting from
the “Forum” tab, then navigating to an alphabetical list of forums, and finally visiting pages
containing submission data for this user. The current page already provides access to numerous
submissions by the user, categorized under different forums, with a ”More” link at the bottom
for additional pages. This suggests a more direct path to fulfilling the objective.
The decomposition and navigation plan should be updated to prioritize directly extracting and
analyzing the user’s submissions from this page and subsequent pages accessed via the “More”
link. This eliminates the need to navigate to the “Forum” tab or the alphabetical list of forums,
streamlining the process.

Updated navigation plan:

1. Extract submission data for ”thebelsnickle1991” directly from the user page.

2. Use the ”More” link to navigate through additional pages containing submissions by ”thebel-
snickle1991” and extract data from those pages.

A.1.6 OTHERS

Here we provide the prompt detail of the website tips we used and navigation specification for the
navigation prompts above.

Following the WebChoreArena (Miyai et al., 2025), we used website tips for the evaluation in our
experiments for our method and all the other baselines.

Prompt - Website Tips

Shopping

1. This website provides very detailed category of products. You can hover categories
on the top menu to see subcategories.

2. If you need to find information about your previous purchases, you can go My
Account > My Orders, and find order by date, order number, or any other available
information

3. An order is considered out of delivery if it is marked as ”processing” in the order
status

4. When the task asks you to draft and email. DO NOT send the email. Just draft it and
provide the content in the last message

5. If the review star rating is not directly available but the rating score is provided, you
can estimate the star rating by dividing the rating score by 20. For example, a rating
score of 80 corresponds to a 4-star review

6. Utilize the search if you need to find the information of a specific item, and use the
top menu when you need to visit a category

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Shopping Admin

Here are tips for using this website:

1. When you add a new product in the CATALOG > Products tab, you can click
the downwardarrow beside the ”Add Product” button to select options like ”Simple
Product”, ”Configurable Product”, etc.

2. If you need to add new attribute values (e.g. size, color, etc) to a product, you can
find the product at CATALOG > Products, search for the product, edit product with
”Configurable Product” type, and use ”Edit Configurations” to add the product with
new attribute values. If the value that you want does not exist, you may need to add new
values to the attribute.

3. If you need to add new values to product attributes (e.g. size, color, etc), you can
visit STORES > Attributes > Product, find the attribute and click, and add value after
clicking ”Add Swatch” button.

4. You can generate various reports by using menus in the REPORTS tab. Select
REPORTS > ”report type”, select options, and click ”Show Report” to view report.

5. In this website, there is a UI that looks like a dropdown, but is just a 1-of-n selection
menu. For example in REPORTS > Orders, if you select ”Specified” Order Status, you
will choose one from many options (e.g. Canceled, Closed, ...), but it’s not dropdown,
so your click will just highlight your selection (1-of-n select UI will not disappear).

6. Configurable products have some options that you can mark as ”on” of ”off”. For
example, the options may include ”new”, ”sale”, ”eco collection”, etc.

7. You can find all reviews and their counts in the store in MARKETING > User
Content > All Reviews. If you see all reviews grouped by product, go REPORTS > By
Products and search by Product name.

8. This website has been operating since 2022. So if you have to find a report for the
entire history, you can select the date from Jan 1, 2022, to Today.

9. Do not export or download files, or try to open files. It will not work.

Reddit

Here are tips for using this website:

1. when the task mentions subreddit, it is referring to ‘forum’

2. if you need find a relevant subreddit or forum, you can find the name after clicking
”alphabetical” in the ”Forum” tab

3. you can visit the next page with the link ’More’, if the link ’More’ is NOT visible in
the current observation, this means you have reached the last page

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Gitlab

1. your user name is byteblaze

2. To add new members to the project, you can visit project information > members
tab and click blue ”invite members” button on top right

3. To set your status, click profile button on top right corner of the page (it’s next to the
question mark button) and click edit status

4. To edit your profile, click profile button on top right corner of the page (it’s next to
the question mark button) and click edit profile

5. You can also access to your information e.g. access token, notifications, ssh keys and
more from ”edit profile” page

6. Projects that you have contributed to are listed under Project / Yours / All tab of
gitlab.site. You can sort repos using dropdown button on top right

7. Projects’s repository tab has menus like Commits, Branches, Contributors, and more.
Contributors tab shows contributors and their number of commits

8. If you want to see all the issues for you, you can either click button on the right of +
icon on top right menu bar

9. When the task mentions branch main, it often means master

Prompt - Navigation Specification

“click”

click [id]: To click on an element with its numerical ID on the webpage. E.g., ‘click
[7]‘ If clicking on a specific element doesn’t trigger the transition to your desired web
state, this is due to the element’s lack of interactivity or GUI visibility. In such cases,
move on to interact with OTHER similar or relevant elements INSTEAD.

“go back”

go back: To return to the previously viewed page.

“type”

type [id] [content] [press enter after=0/1]: To type content into a field with a specific
ID. By default, the ”Enter” key is pressed after typing unless ‘press enter after‘ is set
to 0. E.g., ‘type [15] [Carnegie Mellon University] [1]‘ If you can’t find what you’re
looking for on your first attempt, consider refining your search keywords by breaking
them down or trying related terms.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

“stop”

stop [answer]: To stop interaction and return response. ONLY use this action when
you believe the objective is fully achieved and there is no need to furthur explore the
website. Indicate the reason why you think the task objective has been completed within
the brackets. E.g., ‘stop [The review and rating information of all the products under
electronic category has been tracked. There are 5 pages of products in total and all of
them have been visited.]‘

A.2 IMPLEMENTATION DETAILS

A.2.1 EXPERIEMENT DETAILS

In our main experiments, we utilize GPT-4o, GPT-5, GLM-4.5-air-fp8 as backbone models. For
GPT-4o and GLM model, following AgentOccam, we utilize the same configuration, setting tem-
perature as 0.5, top p as 0.95. For GPT-5, we set reasoning effort to minimal, due to time and budget
constraints.

We report results on four domains. Although the WebArena environment also contains a Map do-
main, we found that the service for this website was no longer accessible and therefore excluded
it from evaluation. Moreover, since many multi-domain tasks involve the Map website, we also
removed these tasks to ensure fair comparison with other methods that reported results only on the
remaining domains.

We also did not compare with AgentSymbiotic (Zhang et al., 2025a) and Learn-by-Interact (Su et al.,
2025), as the performance of these methods depends heavily on their proprietary retrieval-augmented
generation (RAG) databases. Because neither of these works has released their databases, a direct
comparison would not be fair or reproducible, and we therefore exclude them from our evaluation.

A.2.2 NAVIGATION & EXECUTION

In our implementation, we follow the action selection mechanism introduced by AgentOccam (Yang
et al., 2024a). Specifically, after the navigation agent generates candidate actions at each step (e.g.,
clicking an element, entering text, following a link, or stopping), we invoke a separate judge module
to evaluate these candidates. The judge receives as input the task instruction, the current observation,
the interaction history, and the candidate actions with their rationales. It then ranks or filters the
candidates, selecting the action that is most consistent with the high-level objective.

This design allows the system to correct potential errors from the navigation agent. The judge
therefore serves as a lightweight second-opinion layer, ensuring that the final action executed at
each step is both safe and aligned with task goals.

During the final execution, if the task requires the analysis result as output, we directly output the
analysis result. When writing the analysis code, if there is an error of executing the code, the agent
will incorporate the error information and previous code to refine its response to generate another
response. In the other case where the analysis results will be further used to complete web operations
(e.g., post a submission in Reddit), WEBDART will follow a similar mechanism as navigation, but
with the analysis result in the context.

21

	Introduction
	Related Work
	Method
	Task Decomposition
	Navigation
	Information Extraction
	Execution

	Experiment Results and Analysis
	Experiment Setup
	Evaluation on complex web tasks.
	Evaluation of dynamic re-planning.
	Evaluation on simple navigation tasks.
	Case study.

	Conclusion
	Appendix
	Agent Prompts & Examples
	Decomposition
	Navigation
	Information Extraction
	Execution
	Re-planning
	Others

	Implementation Details
	Experiement Details
	Navigation & Execution

