
Published as a conference paper at ICLR 2021

GENERATIVE SCENE GRAPH NETWORKS

Fei Deng
Rutgers University
fei.deng@rutgers.edu

Zhuo Zhi
University of California, San Diego
zzhi@ucsd.edu

Donghun Lee
ETRI
donghun@etri.re.kr

Sungjin Ahn
Rutgers University
sjn.ahn@gmail.com

ABSTRACT

Human perception excels at building compositional hierarchies of parts and ob-
jects from unlabeled scenes that help systematic generalization. Yet most work
on generative scene modeling either ignores the part-whole relationship or as-
sumes access to predefined part labels. In this paper, we propose Generative Scene
Graph Networks (GSGNs), the first deep generative model that learns to discover
the primitive parts and infer the part-whole relationship jointly from multi-object
scenes without supervision and in an end-to-end trainable way. We formulate
GSGN as a variational autoencoder in which the latent representation is a tree-
structured probabilistic scene graph. The leaf nodes in the latent tree correspond
to primitive parts, and the edges represent the symbolic pose variables required for
recursively composing the parts into whole objects and then the full scene. This al-
lows novel objects and scenes to be generated both by sampling from the prior and
by manual configuration of the pose variables, as we do with graphics engines. We
evaluate GSGN on datasets of scenes containing multiple compositional objects,
including a challenging Compositional CLEVR dataset that we have developed.
We show that GSGN is able to infer the latent scene graph, generalize out of the
training regime, and improve data efficiency in downstream tasks.

1 INTRODUCTION

Learning to discover and represent objects purely from observations is at the core of human cog-
nition (Spelke & Kinzler, 2007). Recent advances in unsupervised object-centric representation
learning have enabled decomposition of scenes into objects (Greff et al., 2019; Lin et al., 2020b;
Locatello et al., 2020), inference and rendering of 3D object models (Chen et al., 2020), and object
tracking and future generation (Crawford & Pineau, 2019a; Jiang et al., 2020; Lin et al., 2020a).
These neuro-symbolic approaches, where the discreteness of discovered objects provides the sym-
bolic representation, facilitate various desired abilities such as out-of-distribution generalization,
relational reasoning, and causal inference.

In this paper, we seek to further discover and represent the structure within objects without super-
vision. Our motivation is that natural scenes frequently contain compositional objects—objects that
are composed of primitive parts. We humans can easily identify the primitive parts and recognize
the part-whole relationship. Representing objects as explicit composition of parts is expected to be
more efficient, since a vast number of complex objects can often be compositionally explained by a
small set of simple primitives. It also allows us to imagine and create meaningful new objects.

A well-established representation for part-whole relationships in computer graphics is called the
scene graph (Foley et al., 1996). It is a tree whose leaf nodes store models of primitive parts, and
whose edges specify affine transformations that compose parts into objects.

While in computer graphics, the scene graph is manually constructed for rendering, in this paper,
we are interested in inferring the scene graph from unlabeled images. To this end, we propose
Generative Scene Graph Networks (GSGNs). We formulate this model as a variational autoencoder
(Kingma & Welling, 2013; Rezende et al., 2014) whose latent representation is a probabilistic scene

1

Published as a conference paper at ICLR 2021

graph. In the latent tree, each node is associated with an appearance variable that summarizes the
composition up to the current level, and each edge with a pose variable that parameterizes the affine
transformation from the current level to the upper level.

The design of the GSGN decoder follows the rendering process of graphics engines, but with differ-
entiable operations helping the encoder to learn inverse graphics (Tieleman, 2014; Wu et al., 2017;
Romaszko et al., 2017; Yao et al., 2018; Deng et al., 2019). As a result, the pose variables inferred
by GSGN are interpretable, and the probabilistic scene graph supports symbolic manipulation by
configuring the pose variables.

One major challenge is to infer the structure of the scene graph. This involves identifying the parts
and grouping them into objects. Notice that unlike objects, parts are often stitched together and
thus can have severe occlusion, making it hard to separate them. Existing methods for learning
hierarchical scene representations circumvent this challenge by working on single-object scenes
(Kosiorek et al., 2019) and also providing predefined or pre-segmented parts (Li et al., 2017; Huang
et al., 2020). In contrast, GSGN addresses this challenge directly, and learns to infer the scene graph
structure from multi-object scenes without knowledge of individual parts.

Our key observation is that the scene graph has a recursive structure—inferring the structure of
the tree should be similar to inferring the structure of its subtrees. Hence, we develop a top-down
inference process that first decomposes the scene into objects and then further decomposes each
object into its parts. This allows us to reuse existing scene decomposition methods such as SPACE
(Lin et al., 2020b) as an inference module shared at each level of the scene graph. However, we find
that SPACE has difficulty separating parts that have severe occlusion, possibly due to its complete
reliance on bottom-up image features. Therefore, simply applying SPACE for decomposition at each
level will lead to suboptimal scene graphs. To alleviate this, GSGN learns a prior over plausible
scene graphs that captures typical compositions. During inference, this prior provides top-down
information which is combined with bottom-up image features to help reduce ambiguity caused by
occlusion.

For evaluation, we develop two datasets of scenes containing multiple compositional 2D and 3D
objects, respectively. These can be regarded as compositional versions of Multi-dSprites (Greff et al.,
2019) and CLEVR (Johnson et al., 2017), two commonly used datasets for evaluating unsupervised
object-level scene decomposition. For example, the compositional 3D objects in our dataset are
made up of shapes similar to those in the CLEVR dataset, with variable sizes, colors, and materials.
Hence, we name our 3D dataset the Compositional CLEVR dataset.

The contributions of this paper are: (i) we propose the probabilistic scene graph representation that
enables unsupervised and end-to-end scene graph inference and compositional scene generation, (ii)
we develop and release the Compositional CLEVR dataset to facilitate future research on object
compositionality, and (iii) we demonstrate that our model is able to infer the latent scene graph,
shows decent generation quality and generalization ability, and improves data efficiency in down-
stream tasks.

2 RELATED WORK

Object-centric representations. Our model builds upon a line of recent work on unsupervised
object-centric representation learning, which aims to eliminate the need for supervision in struc-
tured scene understanding. These methods learn a holistic model capable of decomposing scenes
into objects, learning appearance representations for each object, and generating novel scenes—all
without supervision and in an end-to-end trainable way. We believe such unsupervised and holistic
models are more desirable, albeit more challenging to learn. These models can be categorized into
scene-mixture models (Greff et al., 2017; 2019; Burgess et al., 2019; Engelcke et al., 2020; Locatello
et al., 2020) and spatial-attention models (Eslami et al., 2016; Crawford & Pineau, 2019b; Lin et al.,
2020b; Jiang & Ahn, 2020). Compared to these models, we go a step further by also decomposing
objects into parts. We use spatial-attention models as the inference module at each level of the scene
graph, because they explicitly provide object positions, unlike scene-mixture models. We combine
the inference module with a learned prior to help improve robustness to occlusion. This also allows
sampling novel scenes from the prior, which is not possible with spatial-attention models.

2

Published as a conference paper at ICLR 2021

Figure 1: (A) Probabilistic scene graph representation. Each node represents an entity in the scene, and is as-
sociated with an appearance variable. Each edge is associated with a pose variable that specifies the coordinate
transformation between the child node and the parent node. (B) Spatial attention during inference. We first
decompose the scene into high-level objects, and then attend to each object to figure out the constituent parts.
(C) Recursive decoding process (a single recursive step shown). The image patch x̂u1 and mask m̂u1 of an
internal node u1 are decoded from the image patches and masks of all its children nodes.

Hierarchical scene representations. Modeling the part-whole relationship in scenes has attracted
growing interest, and has been utilized for improving image classification (Sabour et al., 2017; Hin-
ton et al., 2018; Kosiorek et al., 2019), parsing, and segmentation (Zhu et al., 2008). However, these
models have been applied to scenes with one dominant object only, and cannot perform scene gen-
eration. Recent work on assembly-based 3D shape modeling also learns the part-whole relationship
(Tulsiani et al., 2017; Li et al., 2017; Zhu et al., 2018; Huang et al., 2020; Kania et al., 2020), but
these methods require predefined or pre-segmented parts as input, and can only model single shapes
with no background. By contrast, our model learns the part-whole relationship from multi-object
scenes without knowledge of individual parts. There has also been work on 3D part decomposition
(Chen et al., 2019; Deng et al., 2020), but they require voxels or point clouds as input, and typi-
cally focus on geometry (e.g., part occupancy) without learning to represent appearance (e.g., color,
material). Part hierarchies have also been used for shape generation (Mo et al., 2019), where the hi-
erarchy is provided as input rather than inferred from the input. Our approach infers compositional
structures from static scenes, and is orthogonal to methods that use motion cues for decomposing
dynamic scenes (Xu et al., 2019) and methods that infer physical interactions from dynamic scenes
(Li et al., 2020; Stanić et al., 2020). Hinton (2021) recently proposed an iterative procedure that
is expected to form the part hierarchy through multiple rounds of message passing among adjacent
levels. While our model works without iterative message passing, we believe this is important for
parsing more complex scenes.

Hierarchical latent variable models. Our model can be regarded as a hierarchical latent variable
model, and is inspired by several recent advances (Bachman, 2016; Sønderby et al., 2016; Zhao et al.,
2017; Maaløe et al., 2019) that have achieved impressive generation quality. While these methods
focus on designing the hierarchical structure and training method that harness the full expressive
power of generative models, our goal is to learn the hierarchical structure from unlabeled images
that captures the compositional relationship among symbolic entities like objects and parts.

3 GENERATIVE SCENE GRAPH NETWORKS

3.1 GENERATIVE PROCESS

We assume that the image x is generated by a set of foreground variables collectively denoted zfg

and a background variable zbg as follows:

p(x) =

∫∫
p(x |zfg, zbg) p(zbg |zfg) p(zfg) dzfg dzbg . (1)

To represent the compositional structures within foreground objects, GSGN models zfg as a tree-
structured probabilistic scene graph, as shown in Figure 1A. Each leaf node represents a primitive
entity that is not further decomposed. Each internal node represents an abstract entity that is com-
posed from its children nodes. Similar to graphics engines, the composition is modeled as affine

3

Published as a conference paper at ICLR 2021

transformations, and is specified by the relative pose (including rotation, scaling, and translation)
of each child node v with respect to its parent pa(v). We use a pose variable zpose

v to represent the
relative pose, and associate it with the corresponding edge. We also associate an appearance variable
zappr
v with each node v. It is expected to represent the appearance of entity v in its canonical pose1,

summarizing all lower-level composition in the subtree rooted at v. In particular, the appearance
variable zappr

r at the root node r summarizes the full scene. Due to this summarization assumption,
given zappr

v , we can generate the pose and appearance variables for all children nodes of v in a con-
ditionally independent way. Hence, for a given tree structure with V being the set of all nodes, the
prior over foreground variables can be factorized according to the tree structure:

p(zfg) = p(zappr
r)

∏
v∈V \{r} p(z

pose
v |zappr

pa(v)) p(z
appr
v |zappr

pa(v)) . (2)

Here we further assume conditional independence between zpose
v and zappr

v , since in graphics en-
gines, one should be able to specify the pose and appearance separately.

Representing tree structures. The above factorization only works for a given tree structure. To
deal with variable tree structures, we need to include them in the latent representation as well. We
start by setting a maximum out-degree for each node so that the total number of possible structures
is bounded. To determine the structure, it then suffices to specify the presence of each possible edge.
Hence, for an arbitrary edge between node v and its parent, we introduce a Bernoulli variable zpres

v to
indicate its presence. If zpres

v = 0, meaning the edge is not present, then the pose variable associated
with the edge along with all variables in the subtree rooted at v are excluded from the probabilistic
scene graph. More precisely, let us define z̄pres

v to be the product of all the presence variables along
the path from root r to node v:

z̄pres
r = 1 , z̄pres

v = zpres
v × z̄pres

pa(v) for v ∈ V \ {r} . (3)

The foreground variables now become zfg = {zappr
r } ∪ {zpres

v , zpose
v , zappr

v }v∈V \{r}, and the prior
factorizes as follows:

p(zfg) = p(zappr
r)

∏
v∈V \{r} [p(zpres

v |zappr
pa(v))]

z̄pres
pa(v) [p(zpose

v |zappr
pa(v)) p(z

appr
v |zappr

pa(v))]
z̄presv . (4)

We implement the pose and appearance variables as Gaussian variables, p(zappr
r) = N (0,1), and

the parameters of each conditional distribution are output by an MLP.

Differentiable decoder. We design the decoder to follow the recursive compositing process in
graphics engines, helping the encoder to learn inverse graphics. First, for each leaf node v, we use
a neural network g(·) to decode its appearance variable into a small image patch x̂v and a (close to)
binary mask m̂v: (x̂v, m̂v) = g(zappr

v). Here, g(·) is implemented as a spatial broadcast decoder
(Watters et al., 2019) optionally followed by sub-pixel convolutions (Shi et al., 2016).

We then recursively compose these primitive patches into whole objects and the full scene by ap-
plying affine transformations parameterized by the pose variables. Specifically, let u be an internal
node, and ch(u) be the set of its children. We compose the higher-level image patch x̂u and mask
m̂u as follows:

x̂u =
∑

v∈ch(u) zpres
v ·αv � ST −1(x̂v, z

pose
v) , (5)

m̂u =
∑

v∈ch(u) zpres
v ·αv � ST −1(m̂v, z

pose
v) . (6)

Here, � denotes pixel-wise multiplication, and ST −1 is an inverse spatial transformer (Jaderberg
et al., 2015) that differentiably places x̂v and m̂v into the coordinate frame of the parent node u.
To deal with occlusion, we include relative depth in zpose

v , and compute a transparency map αv by
the softmax over negative depth values. This ensures that entities with smaller depth will appear in
front of entities with larger depth. See Figure 1C for an illustration.

When we reach the root node, we obtain an image x̂r and a mask m̂r of all foreground objects. We
then use a spatial broadcast decoder (Watters et al., 2019) to decode zbg into a background image
x̂bg. The full scene x can now be modeled as a pixel-wise mixture of foreground and background,
where m̂r serves as the mixing weight:

p(x |zfg, zbg) = m̂r �N (x | x̂r, σ
2
fg1) + (1− m̂r)�N (x | x̂bg, σ

2
bg1) . (7)

Here, σfg and σbg are hyperparameters.

1We use v to refer to both node v in the probabilistic scene graph and the entity that node v represents.

4

Published as a conference paper at ICLR 2021

3.2 INFERENCE AND LEARNING

Since computing p(x) in Equation 1 involves an intractable integral, we train GSGN with variational
inference. The approximate posterior factorizes similarly as the generative process:

p(zfg, zbg |x) ≈ q(zfg, zbg |x) = q(zfg |x) q(zbg |zfg,x) . (8)

To infer the foreground variables, we make the key observation that the probabilistic scene graph
has a recursive structure. This suggests a recursive inference process, in which the children nodes
of the root node are first inferred, and then inference is recursively performed within each subtree
rooted at the children nodes. Hence, we design a top-down factorization:

q(zfg |x) = q(zappr
r |x)

∏
v∈V \{r} [q(zpres

v |zappr
pa(v),xpa(v))]

z̄pres
pa(v) [q(zpose

v |zappr
pa(v),xpa(v))]

z̄presv

×
∏

v∈V \{r} [q(zappr
v |zappr

pa(v),xv)]z̄
pres
v , (9)

where the inference of child node v is conditioned on the inferred appearance variable zappr
pa(v) of its

parent. This crucially provides top-down information for separating lower-level entities, since zappr
pa(v)

summarizes lower-level composition. We combine this top-down information with bottom-up image
features. Specifically, we use spatial attention to crop a local image region xv that is expected to
capture the entity v. This provides more relevant information for inferring the appearance and struc-
ture of entity v. The region xv is specified by all the predicted pose variables along the path from
root r to node v. More precisely, we define xr = x, and recursively extract xv = ST (xpa(v), z

pose
v)

using a spatial transformer ST (Jaderberg et al., 2015), as shown in Figure 1B.

Parameter sharing between prior and posterior. Inspired by Ladder VAEs (Sønderby et al.,
2016), we find it beneficial to share parameters between the prior and the posterior. Specifically, we
implement each factorized posterior as a product of the corresponding prior and a posterior obtained
solely from image features. This also allows us to reuse existing scene decomposition methods such
as SPACE (Lin et al., 2020b) as an inference module of GSGN. For example,

q(zappr
v |zappr

pa(v),xv) ∝ p(zappr
v |zappr

pa(v)) q(z
appr
v |xv) = p(zappr

v |zappr
pa(v)) qSPACE(zappr

v |xv) . (10)

Training. We use reparameterization trick (Kingma & Welling, 2013; Rezende et al., 2014) to
sample the continuous pose and appearance variables, and Gumbel-Softmax trick (Jang et al., 2016;
Maddison et al., 2016) to sample the discrete presence variables. The entire model can be trained
end-to-end via backpropagation to maximize the evidence lower bound (ELBO):

L = Eq[p(x |zfg, zbg)−DKL[q(zfg |x)‖p(zfg)]−DKL[q(zbg |zfg,x)‖p(zbg |zfg)]] . (11)

Auxiliary KL loss. As pointed out by recent work (Chen et al., 2020), learnable priors have diffi-
culty reflecting our prior knowledge. Hence, similar to Chen et al. (2020), we introduce auxiliary KL
terms between the posterior and some fixed prior that reflects our preference. In particular, we find it
important to introduce a KL term between q(zpres

v |zappr
pa(v),xpa(v)) and a Bernoulli prior distribution

with low success probability to encourage sparse tree structures.

4 EXPERIMENTS

Datasets. In order to evaluate GSGN’s ability to discover scene graph structures, we develop com-
positional versions of Multi-dSprites (Greff et al., 2019) and CLEVR (Johnson et al., 2017), two
commonly used datasets for evaluating unsupervised object-centric representation learning models.
We refer to our new datasets as 2D Shapes and Compositional CLEVR datasets, respectively. For
each dataset, we define three types of primitive parts, and ten types of objects composed from these
parts. Three of the object types contain a single part, another three contain two parts, and the re-
maining four contain three parts. To construct a scene, we randomly sample the number of objects
(between one and four) and their types, sizes, positions, and orientations. The color and material of
each part are also randomly sampled, thus covering a broad range of compositional structures. Each
dataset consists of 128×128 color images, split into 64000 for training, 12800 for validation, and
12800 for testing.

5

Published as a conference paper at ICLR 2021

Figure 2: Visualization of inferred scene graphs on 2D Shapes dataset.

Figure 3: Visualization of inferred scene graphs on Compositional CLEVR dataset.

GSGN implementation. While our formulation of GSGN allows representing and inferring scene
graphs of arbitrary depth, in our experiments, we have only investigated the effectiveness of a three-
level GSGN as a proof-of-concept, containing part-, object-, and scene-level representations. We
set the maximum out-degree to be 4 for each node. We also implemented another version, denoted
GSGN-9, where the maximum out-degree is 9. This is to evaluate the effectiveness of our model
when structural hyperparameters are mismatched to data, and show some potential for scalability.

Baselines. Previous work on hierarchical scene representations assumes single-object scenes (Ko-
siorek et al., 2019) and requires predefined or pre-segmented parts (Li et al., 2017; Huang et al.,
2020), and thus cannot work on our datasets. Hence, we compare with SPACE (Lin et al., 2020b),
a state-of-the-art non-hierarchical scene decomposition model. Although SPACE cannot infer the
scene graph, its hyperparameters can be tuned to decompose the scene into either objects (SPACE-O)
or parts (SPACE-P). This allows us to compare the inference quality of individual nodes.

Ablations. We consider two ablated versions of GSGN. GSGN-No-Share does not share parameters
between prior and posterior, namely it does not factorize the posterior as in Equation 10. Instead,
the posterior mean and variance are computed by another network that takes in both zappr

pa(v) and xv .
GSGN-No-Aux directly optimizes the ELBO without auxiliary KL terms.

Scene graph inference. We visualize the inferred scene graphs in Figure 2 and Figure 3. Here,
the bounding boxes visualize the inferred pose variables (including rotation, scaling, and transla-
tion), and the reconstructions are obtained by feeding the inferred appearance variables through the
decoder. Empty slots indicate that the corresponding presence variables are zero. As can be seen,
GSGN is able to correctly separate the parts and group them into objects, even when objects are
close (Figure 2 Row 1-4, Figure 3 Row 1-2), parts have similar color (Figure 2 Row 4-5, Figure 3
Row 3), and there is occlusion between objects and parts (Figure 3 Row 4-5).

6

Published as a conference paper at ICLR 2021

Table 1: Quantitative results on 2D Shapes dataset.

Metric ELBO Object
Count Accuracy

Object
F1 Score

Part
Count Accuracy

Part
F1 Score

SPACE-O 3.96 99.79% 99.95% — —
SPACE-P 3.95 — — 98.75% 96.73%
GSGN 3.96 99.76% 99.85% 99.54% 99.91%
GSGN-No-Share 3.96 99.72% 99.90% 99.49% 99.89%
GSGN-No-Aux 3.96 25.00% 72.75% 95.79% 97.34%

Table 2: Quantitative results on Compositional CLEVR dataset.

Metric ELBO Object
Count Accuracy

Object
F1 Score

Part
Count Accuracy

Part
F1 Score

SPACE-O 3.50 98.02% 99.17% — —
SPACE-P 3.48 — — 92.71% 99.03%
GSGN 3.49 98.66% 99.37% 98.63% 99.77%
GSGN-9 3.49 96.27% 97.21% 97.73% 97.59%
GSGN-No-Share 3.50 96.21% 98.26% 97.09% 99.38%
GSGN-No-Aux 3.50 25.13% 72.87% 12.38% 79.09%

Table 3: Robustness to occlusion on Compositional CLEVR dataset.

Min Visible
Pixels Per Part <100 100∼200 >200

Metric Part Count
Accuracy

Part
Recall

Part Count
Accuracy

Part
Recall

Part Count
Accuracy

Part
Recall

SPACE-P 12.24% 86.03% 85.66% 97.95% 96.11% 99.48%
GSGN 95.92% 98.93% 98.33% 99.77% 98.76% 99.86%
GSGN-9 89.80% 97.35% 96.92% 97.85% 98.12% 97.62%
GSGN-No-Share 85.71% 96.34% 96.13% 99.15% 97.56% 99.46%

We report quantitative results in Table 1 and Table 2. Here, counting accuracy measures the correct-
ness of the number of nodes in the inferred scene graph. F1 score is the harmonic mean of precision
and recall. We define a node to be true positive if it is sufficiently close to a groundtruth entity.
Hence, F1 score reflects if the inferred nodes indeed capture entities. We measure closeness by the
distance between center positions. The distance threshold for objects and parts are 10 and 5 pixels
respectively. As can be seen, all models obtain similar reconstruction quality. GSGN-No-Aux fails
to infer the scene graph structure. We find that it tends to set all presence variables to be one, re-
sulting in redundant nodes. With auxiliary KL terms, GSGN and GSGN-No-Share are able to infer
sparse structures, achieving comparable object-level decomposition performance with SPACE-O.

On the Compositional CLEVR dataset, GSGN achieves better part-level decomposition than
SPACE-P. We observe that this is because SPACE-P has difficulty separating parts that have se-
vere occlusion. We further investigate this by splitting the test set into three occlusion levels. Here
we measure the amount of occlusion in an image by the minimum number of visible pixels per part.
As shown in Table 3, when an image contains a part that has less than 100 visible pixels, SPACE-P
performs significantly worse than GSGN. Its low recall suggests that SPACE-P tends to miss oc-
cluded parts. We also find GSGN-No-Share performs worse than GSGN in this scenario, indicating
that parameter sharing helps better combine top-down information from the prior to reduce ambi-
guity caused by occlusion. For GSGN-9, although its number of leaf nodes is far more than the
maximum number of parts per scene in our dataset, it only shows a slight drop in performance when
compared to GSGN, and it is still much better than SPACE-P at identifying parts that have severe
occlusion.

The counting accuracy and F1 score evaluate the object- and part-level separately, without taking
into account the overall tree structure. To directly measure the quality of the inferred tree structure,
we perform a manual inspection on 100 test images from each dataset. GSGN achieves 100% and

7

Published as a conference paper at ICLR 2021

Figure 4: Image manipulation results. (A) Object-level manipulation. (B) Part-level manipulation.

99% structural accuracy on the 2D Shapes and Compositional CLEVR datasets, respectively. We
also consider a heuristic baseline, which starts from the parts predicted by SPACE-P, and groups the
parts whose bounding boxes overlap. This baseline achieves 95% and 80% structural accuracy on
the two datasets, respectively.

Scene graph manipulation. The scene graphs inferred by GSGN have interpretable tree structures
and pose variables. Therefore, new objects and scenes can be composited by directly manipulating
the latent variables in an inferred scene graph. In Figure 4A, we show object-level manipulations.
We manipulate the inferred scene graph of the fourth scene of Figure 3, by changing the scale (first
row) and x-coordinate (second row) of an object in the scene. As can be seen, object occlusion
is handled correctly. We can also make these modifications after replacing the object with some
other object from a different scene (third and fourth rows). This is achieved by replacing the subtree
corresponding to that object. Because the subtree stores the relative pose (rather than the absolute
pose) of the parts, the part structure of the newly added object can be automatically preserved. In
Figure 4B, we show part-level manipulations on the first scene of Figure 3. In the first row, we
modify the size of the bronze ball. This requires changing both the relative position and scale of
the ball, so that it remains in contact with the green cube below it. In the second row, we replace
the bronze ball with other parts that can be found in the five scenes of Figure 3. This is achieved
by replacing the appearance and scale variables with those of the new part, and recalculating the
position so that the new part will appear right above the green cube. We note that this allows novel
objects to be composited that have never been seen during training (see the last two columns).

Object and scene generation. GSGN is able to generate objects and scenes by sampling the la-
tent variables from the learned prior and feeding them through the decoder. We show generation
results in Figure 5. We find that GSGN has captured many predefined object types in the two
datasets considered, and also managed to come up with novel compositions. The generated scenes
are also reasonable, with moderate distance and occlusion between objects. The objects generated
by SPACE-O are much less interpretable, since SPACE does not explicitly model the part-whole
relationship. Also, SPACE cannot generate meaningful scenes, because the presence variables sam-
pled from its prior will almost always be zero, leading to no object being put onto the scene.

Generalization performance. We evaluate GSGN’s capacity to generalize to scenes with novel
number of objects. We report the metrics in Table 4 and Table 5 (Section A). As can be seen, GSGN
demonstrates quite decent generalization performance.

Data efficiency in downstream tasks. The compositional structure learned by GSGN can be useful
in downstream tasks that require reasoning of part-object relationships. Here we consider a classi-
fication task. The input images are generated from the same distribution but with different random

8

Published as a conference paper at ICLR 2021

Figure 5: (A) Objects sampled from GSGN learned prior. (B) Objects sampled from SPACE-O prior. (C)
Scenes sampled from GSGN learned prior.

seeds. The label for each image is obtained by first counting the number of distinct parts within
each object, and then summing the count over all objects. Here, two parts are considered the same
if they have the same shape, regardless of their pose, color, and material. We expect the represen-
tation learned by GSGN to bring better data efficiency compared to SPACE. Notice that SPACE-P
cannot group the parts by itself and will fail in this task. Hence, we compare with SPACE-O, whose
object-level representation implicitly encodes the constituent parts. We use pretrained GSGN and
SPACE-O to obtain the latent representation for each image, and then train a classifier on top of the
representation to predict the label. The classifier for SPACE-O first feeds the appearance variable
of each object through an MLP, and then performs a learned weighted sum to aggregate them into
a scene-level representation vector, which is fed to another MLP to output class probabilities. The
classifier for GSGN first aggregates the appearance variables of parts into object-level representa-
tion vectors, and then performs the same operations as the classifier for SPACE-O. The tree structure
learned by GSGN crucially allows us to use a graph net (Battaglia et al., 2018) within the subtree of
each object for aggregation, providing more inductive bias for extracting interactions. We train the
two classifiers using 64, 128, 256, 512, 1024, 2048, 4096, 8192, and 16000 training samples. We
choose the best learning rate for both classifiers using a fixed validation set of size 12800. We report
classification accuracy on a fixed test set also of size 12800. As shown in Figure 6 (Section B),
GSGN approximately doubles the data efficiency on this downstream task compared to SPACE-O.

5 CONCLUSION

We have proposed GSGN, the first deep generative model for unsupervised scene graph discovery
from multi-object scenes without knowledge of individual parts. GSGN infers the probabilistic scene
graph by combining top-down prior and bottom-up image features. This utilizes the higher-level ap-
pearance information to guide lower-level decomposition when there is compositional ambiguity
caused by severe occlusion. GSGN is also able to generate novel out-of-distribution objects and
scenes through scene graph manipulation. While we have demonstrated the effectiveness of a three-
level GSGN as a proof-of-concept, it remains an open question whether GSGN can scale to more
realistic data, with deeper hierarchies and more complex appearance. Interesting future directions
include developing a recurrent module to dynamically control the depth of the scene graph, using it-
erative inference as suggested by Hinton (2021) for better coordination across levels, and improving
the single-level inference module.

ACKNOWLEDGMENTS

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant
funded by the Korean government [21ZR1100, A Study of Hyper-Connected Thinking Internet
Technology by autonomous connecting, controlling and evolving ways]. The authors would like
to thank Skand Vishwanath Peri, Chang Chen, and Jindong Jiang for helpful discussion, and anony-
mous reviewers for constructive comments.

9

Published as a conference paper at ICLR 2021

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE transac-
tions on pattern analysis and machine intelligence, 34(11):2274–2282, 2012.

Philip Bachman. An architecture for deep, hierarchical generative models. In Advances in Neural
Information Processing Systems, pp. 4826–4834, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Jörg Bornschein, Andriy Mnih, Daniel Zoran, and Danilo Jimenez Rezende. Variational memory
addressing in generative models. In Advances in Neural Information Processing Systems, pp.
3920–3929, 2017.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. MONet: Unsupervised scene decomposition and representa-
tion. arXiv preprint arXiv:1901.11390, 2019.

Chang Chen, Fei Deng, and Sungjin Ahn. Object-centric representation and rendering of 3D scenes.
arXiv preprint arXiv:2006.06130, 2020.

Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang. BAE-NET:
Branched autoencoder for shape co-segmentation. In Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 8490–8499, 2019.

Eric Crawford and Joelle Pineau. Exploiting spatial invariance for scalable unsupervised object
tracking. arXiv preprint arXiv:1911.09033, 2019a.

Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolu-
tional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pp. 3412–3420, 2019b.

Boyang Deng, Simon Kornblith, and Geoffrey Hinton. Cerberus: A multi-headed derenderer. arXiv
preprint arXiv:1905.11940, 2019.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea
Tagliasacchi. CvxNet: Learnable convex decomposition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 31–44, 2020.

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS: Generative
scene inference and sampling with object-centric latent representations. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
BkxfaTVFwH.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hin-
ton, et al. Attend, infer, repeat: Fast scene understanding with generative models. In Advances in
Neural Information Processing Systems, pp. 3225–3233, 2016.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. Inter-
national journal of computer vision, 59(2):167–181, 2004.

James D Foley, Foley Dan Van, Andries Van Dam, Steven K Feiner, John F Hughes, J Hughes, and
Edward Angel. Computer graphics: principles and practice, volume 12110. Addison-Wesley
Professional, 1996.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems, pp. 6691–6701, 2017.

10

https://openreview.net/forum?id=BkxfaTVFwH
https://openreview.net/forum?id=BkxfaTVFwH

Published as a conference paper at ICLR 2021

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International Conference on Machine Learning,
pp. 2424–2433, 2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-VAE: Learning basic visual concepts with a con-
strained variational framework. In International Conference on Learning Representations, 2017.

Geoffrey Hinton. How to represent part-whole hierarchies in a neural network. arXiv preprint
arXiv:2102.12627, 2021.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM routing. In Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=HJWLfGWRb.

Jialei Huang, Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Baoquan Chen, Leonidas Guibas,
and Hao Dong. Generative 3D part assembly via dynamic graph learning. arXiv preprint
arXiv:2006.07793, 2020.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Ad-
vances in neural information processing systems, pp. 2017–2025, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-Softmax.
arXiv preprint arXiv:1611.01144, 2016.

Jindong Jiang and Sungjin Ahn. Generative neurosymbolic machines. In Advances in Neural Infor-
mation Processing Systems, pp. 12572–12582, 2020.

Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. SCALOR: Generative
world models with scalable object representations. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SJxrKgStDH.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual
reasoning. In CVPR, 2017.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. UCSG-NET – Unsupervised discovering
of constructive solid geometry tree. In Advances in Neural Information Processing Systems, pp.
8776–8786, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E Hinton. Stacked capsule autoencoders.
In Advances in Neural Information Processing Systems, pp. 15486–15496, 2019.

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. GRASS:
Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG),
36(4):52, 2017.

Yunzhu Li, Antonio Torralba, Animashree Anandkumar, Dieter Fox, and Animesh Garg. Causal
discovery in physical systems from videos. arXiv preprint arXiv:2007.00631, 2020.

Zhixuan Lin, Yi-Fu Wu, Skand Peri, Bofeng Fu, Jindong Jiang, and Sungjin Ahn. Improving gen-
erative imagination in object-centric world models. In International Conference on Machine
Learning, 2020a.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In International Conference on Learning Representations, 2020b.
URL https://openreview.net/forum?id=rkl03ySYDH.

11

https://openreview.net/forum?id=HJWLfGWRb
https://openreview.net/forum?id=HJWLfGWRb
https://openreview.net/forum?id=SJxrKgStDH
https://openreview.net/forum?id=rkl03ySYDH

Published as a conference paper at ICLR 2021

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. arXiv preprint arXiv:2006.15055, 2020.

Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A very deep hierarchy of
latent variables for generative modeling. In Advances in neural information processing systems,
pp. 6548–6558, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas J Guibas. Struc-
tureNet: Hierarchical graph networks for 3D shape generation. arXiv preprint arXiv:1908.00575,
2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted Boltzmann machines.
In ICML, 2010.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Lukasz Romaszko, Christopher KI Williams, Pol Moreno, and Pushmeet Kohli. Vision-as-Inverse-
Graphics: Obtaining a rich 3D explanation of a scene from a single image. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 851–859, 2017.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in neural information processing systems, pp. 3856–3866, 2017.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1874–1883, 2016.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in neural information processing systems, pp. 3738–3746,
2016.

Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–96,
2007.

Aleksandar Stanić, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Hierarchical relational infer-
ence. Workshop on Object-Oriented Learning at ICML, 2020.

Tijmen Tieleman. Optimizing neural networks that generate images. University of Toronto
(Canada), 2014.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. Learning shape
abstractions by assembling volumetric primitives. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2635–2643, 2017.

Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial Broadcast
decoder: A simple architecture for learning disentangled representations in VAEs. arXiv preprint
arXiv:1901.07017, 2019.

Xing Wei, Qingxiong Yang, Yihong Gong, Narendra Ahuja, and Ming-Hsuan Yang. Superpixel
hierarchy. IEEE Transactions on Image Processing, 27(10):4838–4849, 2018.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 699–707, 2017.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

12

Published as a conference paper at ICLR 2021

Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman, Joshua B Tenenbaum, and
Jiajun Wu. Unsupervised discovery of parts, structure, and dynamics. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
rJe10iC5K7.

Shunyu Yao, Tzu Ming Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill Freeman, and Josh
Tenenbaum. 3D-aware scene manipulation via inverse graphics. In Advances in Neural Informa-
tion Processing Systems, pp. 1887–1898, 2018.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from deep gener-
ative models. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 4091–4099. JMLR. org, 2017.

Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. SCORES: Shape com-
position with recursive substructure priors. In SIGGRAPH Asia 2018 Technical Papers, pp. 211.
ACM, 2018.

Long Leo Zhu, Chenxi Lin, Haoda Huang, Yuanhao Chen, and Alan Yuille. Unsupervised structure
learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion.
In European Conference on Computer Vision, pp. 759–773. Springer, 2008.

13

https://openreview.net/forum?id=rJe10iC5K7
https://openreview.net/forum?id=rJe10iC5K7

Published as a conference paper at ICLR 2021

A GENERALIZATION PERFORMANCE

Table 4: Generalization performance on 2D Shapes dataset.

Training Set 1 & 3 Objects

Test Set 2 Objects 4 Objects

Model SPACE-O SPACE-P GSGN SPACE-O SPACE-P GSGN

ELBO 4.00 3.99 4.00 3.85 3.83 3.84
Object Count Accuracy 99.47% — 99.51% 100.0% — 100.0%
Object F1 Score 99.89% — 99.73% 100.0% — 99.47%
Part Count Accuracy — 98.12% 99.21% — 96.82% 99.39%
Part F1 Score — 95.66% 99.86% — 96.50% 99.95%

Table 5: Generalization performance on Compositional CLEVR dataset.

Training Set 1 & 3 Objects

Test Set 2 Objects 4 Objects

Model SPACE-O SPACE-P GSGN SPACE-O SPACE-P GSGN

ELBO 3.62 3.60 3.60 3.06 3.10 3.02
Object Count Accuracy 98.27% — 98.93% 88.86% — 87.78%
Object F1 Score 99.64% — 99.72% 96.72% — 96.41%
Part Count Accuracy — 93.02% 98.69% — 84.96% 87.20%
Part F1 Score — 95.66% 99.71% — 98.92% 97.99%

B DATA EFFICIENCY IN DOWNSTREAM TASKS

Figure 6: Comparison of data efficiency in a downstream classification task that requires reasoning of the
part-whole relationship.

C LEARNING PRIMITIVE TEMPLATES

It is often reasonable to assume that the vast number of complex entities can be composed from only
a modest number of primitive entities. Identifying such primitive entities through discrete latent vari-
ables would bring additional interpretability. Hence, we consider an extension to GSGN (denoted
GSGN-Mem) where the leaf nodes become pointers to a jointly learned memory M of primitive
templates. Each slot in M stores the low-dimensional shape embedding of a learned primitive part.
These embeddings are considered model parameters, and are trained jointly via backpropagation.
To link the probabilistic scene graph with the memory of primitives, we decompose the appearance
variable zappr

v for each leaf node v into zappr
v = (zaddr

v , zwhat
v). Here, zaddr

v is a one-hot addressing

14

Published as a conference paper at ICLR 2021

Figure 7: Visualization of scene graphs inferred by GSGN-Mem on Compositional CLEVR dataset.

Figure 8: Learned memory of primitive parts. Each column corresponds to one slot. The first row shows the
decoded mask that captures the shape of the parts. The remaining rows are samples from the learned prior that
fill in plausible color, material, and lighting effects.

variable that points to one of the slots in M, and zwhat
v is a continuous variable that explains the

remaining variability in the appearance of primitives, such as color, material, and lighting effects.
Similar to Bornschein et al. (2017), we factorize the prior as:

p(zappr
v |zappr

pa(v)) = p(zaddr
v |zappr

pa(v),M) p(zwhat
v |M[zaddr

v]) , (12)

where M[zaddr
v] is the retrieved memory content.

To decode from the templates, we first retrieve the embedding indexed by zaddr
v , and decode it

into a (close to) binary mask m̂v = g(M[zaddr
v]) that captures the shape of v. We then add color,

material, and lighting effects by applying multiplicative modification controlled by zwhat
v , and obtain

x̂v = m̂v � h(zwhat
v). Here, � denotes pixel-wise multiplication, g(·) is implemented as a spatial

broadcast decoder (Watters et al., 2019), and h(·) a spatial broadcast decoder followed by sub-pixel
convolutions (Shi et al., 2016).

We trained GSGN-Mem on the Compositional CLEVR dataset. We find it is able infer the scene
graph, as we show qualitatively in Figure 7. The primitives have learned the appearance of all the
parts in the dataset, while reserving some memory capacity for potential future use (see Figure 8).

D IMPLEMENTATION DETAILS

D.1 FOREGROUND INFERENCE

We provide the implementation outline for computing q(zfg | x) in Algorithm 1 and Algorithm 2.
The inference is carried out in a top-down fashion, starting at level 1 that corresponds to the root
node. The core inference module, GSGN(l+1), takes as input the appearance variable zappr

v and the
local image region xv for a node v in level l, and outputs the latent variables zch(v) and local image
regions xch(v) for all children nodes of v. Here, ch(v) denotes the set of all children nodes of v, and

15

Published as a conference paper at ICLR 2021

zch(v) and xch(v) are defined as:

zch(v) = {(zpres
u , zpose

u , zappr
u)}u∈ch(v), xch(v) = {xu}u∈ch(v) . (13)

GSGN(l+1) is shared for all nodes v in level l, and serves as a generic module for decomposing an
entity at level l into its parts at level (l + 1).

There are three submodules in GSGN(l+1), namely PresPoseApprPri(l+1) for computing the condi-
tional prior, and PresPoseEnc(l+1) and ApprEnc(l+1) that are adapted from the SPACE encoder. All
three submodules can be implemented as CNNs. For PresPoseApprPri(l+1) and PresPoseEnc(l+1),
each cell in the output feature map corresponds to one child node, and the number of cells deter-
mines the maximum out-degree at level l. Hence, the latent variables at the children nodes can be
inferred in parallel through a feedforward pass of each submodule.

Algorithm 1 Foreground Inference

Input: image x, number of scene graph levels L
1: Infer the appearance variable for the root node:

q(zappr
r |x) = ApprEnc(l=1)(x)

zappr
r ∼ q(zappr

r |x), xr = x

2: for each scene graph level l = 1, 2, . . . , L− 1 do
3: for each node v in level l parallel do
4: Infer the latent variables and crop local image regions for all children nodes of v:

zch(v),xch(v) = GSGN(l+1)(zappr
v ,xv)

5: end for
6: end for
7: return all foreground variables zfg

Algorithm 2 GSGN(l+1): Foreground Inference at Level (l + 1)

Input: appearance variable zappr
v and local image region xv for a node v in level l

1: Compute conditional prior:

p(zch(v) |zappr
v) = PresPoseApprPri(l+1)(zappr

v)

2: Use SPACE to predict presence and pose variables from xv:

qSPACE(zpres,pose
ch(v) |xv) = PresPoseEnc(l+1)(xv)

3: Sample the presence and pose variables:

zpres,pose
ch(v) ∼ q(zpres,pose

ch(v) |zappr
v ,xv) ∝ p(zpres,pose

ch(v) |zappr
v) qSPACE(zpres,pose

ch(v) |xv)

4: for each child node u ∈ ch(v) parallel do
5: Use spatial transformer to crop local image region for node u:

xu = ST (xv, z
pose
u)

6: Use SPACE to predict appearance variable from xu:

qSPACE(zappr
u |xu) = ApprEnc(l+1)(xu)

7: Sample the appearance variable:

zappr
u ∼ q(zappr

u |zappr
v ,xu) ∝ p(zappr

u |zappr
v) qSPACE(zappr

u |xu)

8: end for
9: return latent variables zch(v) and local image regions xch(v) for all children nodes of v

16

Published as a conference paper at ICLR 2021

Input
(64 x 64 x 3)

ConvBlock
(c=64, k=4, s=2, p=1)

ConvBlock
(c=64, k=4, s=2, p=1)

ConvBlock
(c=64, k=4, s=2, p=1)

ConvBlock
(c=64, k=4, s=2, p=1)

ConvBlock
(c=64, k=1, s=1, p=0)

ConvBlock
(c=64, k=3, s=1, p=1)

ConvBlock
(c=64, k=1, s=1, p=0)

ConvBlock
(c=64, k=3, s=1, p=1)

ConvBlock
(c=128, k=3, s=1, p=1)

ConvBlock
(c=128, k=2, s=2, p=0)

ConvBlock
(c=64, k=1, s=1, p=0)

ConvBlock
(c=32, k=1, s=1, p=0)

Conv
(c=12, k=1, s=1, p=0)

Output
(2 x 2 x 12)

Input
(1 x 1 x 64)

ConvBlock
(c=256, k=1, s=1, p=0)

ConvBlock
(c=64x2x2, k=1, s=1, p=0)

PixelShuffle(2)

ConvBlock
(c=64, k=1, s=1, p=0)

ConvBlock
(c=32, k=1, s=1, p=0)

Conv
(c=64, k=1, s=1, p=0)

Conv
(c=12, k=1, s=1, p=0)

Output 1
(2 x 2 x 12)

Output 2
(2 x 2 x 64)

Input
(32 x 32 x 3)

ConvBlock
(c=32, k=4, s=2, p=1)

ConvBlock
(c=32, k=4, s=2, p=1)

ConvBlock
(c=32, k=4, s=2, p=1)

ConvReLU
(c=64, k=4, s=1, p=0)

Conv
(c=64, k=1, s=1, p=0)

Output
(1 x 1 x 64)

A B C

Figure 9: CNN architectures of (A) PresPoseApprPri(3), (B) PresPoseEnc(3), and (C) ApprEnc(3) used in our
three-level GSGN. To implement GSGN-9, in which the maximum out-degree is 9, we just need to change the
layers in green so that the output feature maps have spatial size 3× 3.

For concreteness, in Figure 9, we provide the CNN architectures of the submodules of GSGN(3)

used in our experiments. They are responsible for decomposing objects into parts. The submodules
at the other levels are similar. In Figure 9, each ConvBlock involves a convolution layer followed by
group normalization (Wu & He, 2018) and ReLU nonlinearity (Nair & Hinton, 2010). ConvReLU
denotes a convolution layer directly followed by ReLU nonlinearity. The PixelShuffle(r) layer (Shi
et al., 2016) converts an input feature map of size [H,W,C× r× r] to an output feature map of size
[H × r,W × r, C].

PresPoseApprPri(3) (Figure 9A) takes in the 64-dimensional appearance variable of an object, and
outputs the conditional prior for each of its four possible children. Here, output 1 includes two
(unnormalized) logits for the presence variable, and the mean and standard deviation of the 5-
dimensional pose variable, including 2-dimensional position and 1-dimensional rotation, scaling,
and depth values. Output 2 includes the mean and standard deviation of the 32-dimensional appear-
ance variable of a part. Notice that due to the PixelShuffle layer, not all parameters are shared across
the four children. This allows the network to predict a different distribution for the latent variables
of each child. PresPoseEnc(3) (Figure 9B) takes in the cropped image region of an object (resized to
64×64), and infers the presence and pose of its children. ApprEnc(3) (Figure 9C) takes in the image
region of a part (cropped from the input to PresPoseEnc(3) and resized to 32 × 32), and infers the
appearance of that part. Notice that the cropping and appearance inference can be done in parallel
for all parts. We apply Softplus nonlinearity to ensure that the standard deviations are positive.

17

Published as a conference paper at ICLR 2021

D.2 PARAMETERIZATION OF POSE VARIABLES

As mentioned in Section D.1, the pose variable includes position, scaling, rotation, and depth:

zpose
v = (zwhere

v , zscale
v , ztheta

v , zdepth
v) . (14)

These are all Gaussian variables. Before feeding them to the spatial transformer, we first apply
nonlinear squashing functions to convert their values into the desired range. In the following, we
describe each variable in detail.

Position. zwhere
v ∈ R2 represents the center position of v in the image patch of its parent xpa(v).

Similar to SPAIR (Crawford & Pineau, 2019b) and SPACE (Lin et al., 2020b), we divide xpa(v) into
r × r grid cells, with r2 being the maximum out-degree. Each v of the same parent is associated
with a cell index (i, j), and is expected to identify an entity in xpa(v) that is close to cell (i, j).
Specifically, zwhere

v is used to compute the deviation of entity v from the center of cell (i, j). Let
ci,j ∈ R2 denote the center of cell (i, j), and d ∈ R denote the side length of each cell. The center
position of entity v can be computed as:

z̃where
v = ci,j + a · d · tanh(zwhere

v) . (15)
Here, a is a hyperparameter. If a = 0.5, then the center of entity v must be within cell (i, j).
Typically, a is set to be greater than 0.5 so that the network can learn to distribute the entities that
are close together across multiple cells. In our experiments, we set a = 0.55 for GSGN (r = 2), and
a = 0.75 for GSGN-9 (r = 3).

Scaling. zscale
v represents the scale of v in xpa(v). If v is an object, then zscale

v ∈ R2, and the object
scale is computed as:

z̃scale
v = 0.3 + 0.29 · tanh(zscale

v) . (16)
If v is a part, then for simplicity we let zscale

v ∈ R, and compute the part scale as:

z̃scale
v = 0.5 + 0.49 · tanh(zscale

v) . (17)
Here, z̃scale

v = 1 would mean that entity v has the same size as its parent. We find that limiting
the range of object scale is necessary for GSGN-No-Aux to learn object-level decomposition (other-
wise, GSGN-No-Aux tends to explain the entire scene as one object). With the auxiliary KL terms
introducing some preferred prior (described in Section D.3), in GSGN the object scale can probably
be computed in the same way as the part scale, but we have not investigated this.

Rotation. ztheta
v ∈ R represents the rotation of v in xpa(v). Since there is no groundtruth, the

network is free to decide what each entity should look like when there is no rotation, and predict the
rotation angles accordingly. On the 2D Shapes dataset, the rotation is computed as:

z̃theta
v = π · tanh(ztheta

v) . (18)
On the Compositional CLEVR dataset, since all objects are placed upright on a plane, we compute
the rotation as:

z̃theta
v =

π

10
· tanh(ztheta

v) . (19)

Depth. zdepth
v ∈ R represents the relative depth of v with respect to its siblings (other children of

pa(v)). It is transformed to a positive value:

z̃depth
v = Softplus(zdepth

v) . (20)

z̃depth
v is then used to construct a transparency map αv that is the same size as xpa(v). Ideally, for

a pixel (i, j), αv(i, j) = 1 if entity v contains this pixel and at the same time has a smaller z̃depth
v

than all its siblings that also contain the pixel, and αv(i, j) = 0 otherwise. To determine which
pixels are contained in entity v, we can simply use the decoded mask m̂v and the presence variable
zpres
v . Specifically, we first place the mask into the parent coordinate frame by an inverse spatial

transformer:
m̃v = zpres

v · ST −1(m̂v, z̃
where
v , z̃scale

v , z̃theta
v) , (21)

where m̃v is the same size as xpa(v), and ideally m̃v(i, j) = 1 if entity v is present and contains
pixel (i, j), and m̃v(i, j) = 0 otherwise (in practice, αv and m̃v are not strictly binary). We can
now compute αv(i, j) by a masked Softmax over negative depth values:

αv(i, j) =
m̃v(i, j) · exp (−z̃depth

v)∑
u∈ch(pa(v)) m̃u(i, j) · exp (−z̃depth

u)
. (22)

18

Published as a conference paper at ICLR 2021

D.3 AUXILIARY KL TERMS

In this section, we list the auxiliary KL terms used in our experiments. They have the same weight
as the original KL terms that appear in the ELBO.

Table 6 lists the auxiliary KL terms that are the same across all levels. We use a Bernoulli prior
with low success probability for zpres

v to encourage sparse tree structures. The prior for zdepth
v has

its mean value set to 4. This helps avoid the negative half of Softplus nonlinearity that tends to make
the transformed z̃depth

v values (Equation 20) less distinguishable from each other.

Table 7 lists the auxiliary KL terms that are only used at the object level for the Compositional
CLEVR dataset. The prior for zscale

v has its mean value set to −0.2. According to Equation 16,
this corresponds to an approximate mean value of 0.24 for object size z̃scale

v . We note that this
value does not match the average object size in the dataset. It is simply set to be small to encourage
decomposition and avoid explaining the entire scene as one object. The prior for zappr

v is used only
in GSGN-9. We find that it helps prevent posterior collapse, which we observed in GSGN-9 but not
in GSGN. On the 2D Shapes dataset, we use a Gaussian mixture prior for zscale

v , as shown in Table 8.
This is to reflect the prior knowledge that these 2D objects can have significantly different scales.
Neither the mean values nor the mixing weights are chosen to match the actual distribution of object
scales in the dataset. We estimate this auxiliary KL term using 100 samples from the posterior. This
is not expensive since zscale

v has only two dimensions.

Finally, as shown in Table 9, we use a Gaussian mixture prior for the part scales. The component
mean values, after being transformed according to Equation 17, are approximately 0.91, 0.5, and
0.24. Again, we note that neither the mean values nor the mixing weights match the actual distribu-
tion of part scales in our datasets. These values are chosen to encourage decomposition of objects
into parts and at the same time reflect the prior knowledge that parts can have significantly different
scales. We estimate this auxiliary KL term using 100 samples from the posterior.

Table 6: Auxiliary KL terms used at all levels.

Posterior Unconditioned Prior

q(zpres
v |zappr

pa(v),xpa(v)) Bernoulli(1× 10−10)

q(zwhere
v |zappr

pa(v),xpa(v)) N (0,1)

q(ztheta
v |zappr

pa(v),xpa(v)) N (0, 1)

q(zdepth
v |zappr

pa(v),xpa(v)) N (4, 1)

Table 7: Auxiliary KL terms used only at the object level on Compositional CLEVR dataset.

Posterior Unconditioned Prior

q(zscale
v |zappr

pa(v),xpa(v)) N (−0.2,0.1)

q(zappr
v |zappr

pa(v),xv) N (0,1)

Table 8: Auxiliary KL term used only at the object level on 2D Shapes dataset.

Posterior Unconditioned Prior

q(zscale
v |zappr

pa(v),xpa(v)) 0.2N (−0.2,0.1) + 0.8N (−1.2,0.1)

19

Published as a conference paper at ICLR 2021

Table 9: Auxiliary KL term used only at the part level.

Posterior Unconditioned Prior

q(zscale
v |zappr

pa(v),xpa(v)) 0.1N (1.2, 0.1) + 0.1N (0, 0.05) + 0.8N (−0.6, 0.1)

D.4 BACKGROUND INFERENCE

The prior and posterior for the background variable are implemented as:

p(zbg |zfg) = p(zbg |zappr
r) , q(zbg |zfg,x) = q(zbg |zappr

r ,x) . (23)

We provide the implementation outline for computing q(zbg | zappr
r ,x) in Algorithm 3. The two

submodules, BgPri and BgEnc, are implemented as CNNs, and their architectures can be found in
Figure 10. Both submodules output the mean and standard deviation of the background variable. We
apply Softplus nonlinearity to ensure that the standard deviations are positive. zappr

r and zbg have
dimensions 128 and 8, respectively.

Algorithm 3 Background Inference

Input: image x, appearance variable of the root node zappr
r

1: Compute conditional prior:

p(zbg |zappr
r) = BgPri(zappr

r)

2: Predict the background variable from x:

qSPACE(zbg |x) = BgEnc(x)

3: Sample the background variable:

zbg ∼ q(zbg |zappr
r ,x) ∝ p(zbg |zappr

r) qSPACE(zbg |x)

4: return background variable zbg

A BInput
(1 x 1 x 128)

ConvBlock
(c=128, k=1, s=1, p=0)

ConvReLU
(c=32, k=1, s=1, p=0)

Conv
(c=16, k=1, s=1, p=0)

Output
(1 x 1 x 16)

Input
(128 x 128 x 3)

ConvBlock
(c=8, k=4, s=2, p=1)

ConvBlock
(c=8, k=4, s=2, p=1)

ConvBlock
(c=8, k=4, s=2, p=1)

ConvReLU
(c=32, k=4, s=1, p=0)

Conv
(c=16, k=1, s=1, p=0)

Output
(1 x 1 x 16)

ConvBlock
(c=8, k=4, s=2, p=1)

ConvBlock
(c=8, k=4, s=2, p=1)

Figure 10: CNN architectures of (A) BgPri and (B) BgEnc used in our three-level GSGN.

20

Published as a conference paper at ICLR 2021

D.5 TRAINING DETAILS

We train GSGN on a single GPU, using Adam optimizer (Kingma & Ba, 2014) with a batch size of
64 and a learning rate of 3× 10−4, for up to 500 epochs. We use gradient clipping to ensure that the
infinity norm of the gradient does not exceed 1.0. The temperature for Gumbel-Softmax (Jang et al.,
2016; Maddison et al., 2016) is exponentially annealed from 2.5 to 0.5 during the first 20 epochs.
Similar to Slot Attention (Locatello et al., 2020), the learning rate is linearly increased from 0 to
3×10−4 during the first 10 epochs, and exponentially decayed to half of its value every 100 epochs.
We set σfg = 0.3 and σbg = 0.1. On the Compositional CLEVR dataset, σ2

fg has an initial value
of 0.152, and is linearly increased from 0.152 to 0.32 during epochs 20-40. Similar to SPACE (Lin
et al., 2020b), the mixing weight m̂r is fixed at the start of training. On the 2D Shapes dataset, we
fix m̂r = 1×10−5 for 1 epoch, while on the Compositional CLEVR dataset, we fix m̂r = 0.1 for
2 epochs. GSGN-9 is trained on two GPUs, each taking a batch size of 32, using the same schedule.

E COMPARISON WITH SUPERPIXEL HIERARCHY

In this section, we qualitatively compare GSGN with a simple baseline called Superpixel Hierarchy
(Wei et al., 2018). This algorithm hierarchically merges pixels into superpixels based on connectiv-
ity and color histograms, until the full image is merged into one superpixel. Using this hierarchy,
the algorithm is able to produce segmentation results when given the desired number of superpixels
(can be any number between one and the total number of pixels). It has been shown that Super-
pixel Hierarchy outperforms the widely used FH (Felzenszwalb & Huttenlocher, 2004) and SLIC
(Achanta et al., 2012) methods and also some more recent methods.

Figure 11: Segmentation results produced by Superpixel Hierarchy.

In principle, Superpixel Hierarchy (SH) should be able to perform object and part grouping, by
assigning a superpixel to an object or a part. We show qualitative segmentation results on our
datasets in Figure 11, using the publicly available code2. Here, we compute the mean color for each
superpixel, and each pixel is drawn in the mean color of the superpixel to which it belongs. For
object and part grouping, we provide SH with the groundtruth number of components (the number
of objects/parts plus one for background). As can be seen, when doing object grouping, SH tends
to merge some parts into the background. This seems to be caused by some characteristics of
our datasets. Specifically, in the 2D Shapes dataset, the parts within an object do not touch each
other, making it hard to merge them into one superpixel because superpixels are supposed to be
4-connected. In the Compositional CLEVR dataset, the light and dark regions of the background
tend to be split into different superpixels due to dissimilarity in color histograms. For part grouping,

2https://github.com/semiquark1/boruvka-superpixel

21

https://github.com/semiquark1/boruvka-superpixel

Published as a conference paper at ICLR 2021

SH sometimes merges tiny parts into the background on the 2D Shapes dataset, and splits metal
parts that have specular highlights on the Compositional CLEVR dataset. When more superpixels
are allowed, SH is generally able to distinguish foreground from background, but this kind of over-
segmentation cannot serve our purpose of building the scene graph.

F RESULTS ON SEVEN-PART COMPOSITIONAL CLEVR DATASET

In this section, we show results on a slightly more complex version of the Compositional CLEVR
dataset, in which we introduce four new parts and replace some of the objects. The new dataset
contains ten types of objects composed from a total of seven parts. Three of the object types contain
a single part, another three contain two parts, and the remaining four contain three parts. We use the
same network architecture and auxiliary KL terms as those we used for the original Compositional
CLEVR dataset. We find that adjusting the weight of the KL terms like in β-VAEs (Higgins et al.,
2017) helps improve training stability. Specifically, we multiply the original and auxiliary KL terms
of part-level presence and pose variables by a hyperparameter β. We keep β = 1 for the first 50
epochs, then linearly increase β from 1 to 5 during the next 30 epochs, and finally keep β = 1 for
the remaining epochs. We report qualitative results in Figure 12, and quantitative results in Table 10
and Table 11.

Figure 12: Visualization of inferred scene graphs on seven-part Compositional CLEVR dataset.

Table 10: Quantitative results on seven-part Compositional CLEVR dataset.

Metric ELBO Object
Count Accuracy

Object
F1 Score

Part
Count Accuracy

Part
F1 Score

SPACE-O 3.56 96.60% 98.49% — —
SPACE-P 3.55 — — 89.69% 92.10%
GSGN 3.55 96.38% 98.29% 97.48% 94.11%

Table 11: Robustness to occlusion on seven-part Compositional CLEVR dataset.

Min Visible
Pixels Per Part <100 100∼200 >200

Metric Part Count
Accuracy

Part
Recall

Part Count
Accuracy

Part
Recall

Part Count
Accuracy

Part
Recall

SPACE-P 0.00% 81.05% 82.78% 94.50% 93.39% 90.25%
GSGN 100.0% 95.63% 96.72% 96.90% 97.85% 92.76%

22

Published as a conference paper at ICLR 2021

G ANALYSIS OF POSSIBLE SCENE GRAPHS

In this section, we provide a brief analysis of how variational the scene graphs can be on the Com-
positional CLEVR dataset.

Let us first investigate the possible scene graph structures (i.e., ignoring the difference caused by
pose and appearance). There are 1-4 objects in a scene, each consisting of 1-3 parts. This leads to a
total of

∑4
n=1

(
n+3−1

3−1

)
= 34 possibilities.

Now we account for the pose variations of parts in the scene graph. Note that the relative position
and scale of parts in each composite object are different. So the number of variations within an object
is 1(single-part) + 3(two-part) + 4(three-part) = 8. This leads to a total of

∑4
n=1

(
n+8−1

8−1

)
= 494

possibilities.

Finally, we account for the appearance variations. There are 7 colors and 2 materials, leading to 14
choices of appearance for each part. Combining with pose variations, we obtain 3× 14 + 3× 142 +
4×143 = 11606 possible subtrees for each object. Hence, the total number of possible scene graphs
is
∑4

n=1

(
n+11606−1

11606−1

)
= 7.57× 1014.

We note that the above calculation still does not account for the pose variations of objects. In
fact, object poses are sampled from continuous distributions as opposed to discrete ones, leading to
infinite variations.

23

	Introduction
	Related work
	Generative Scene Graph Networks
	Generative process
	Inference and learning

	Experiments
	Conclusion
	Generalization performance
	Data efficiency in downstream tasks
	Learning primitive templates
	Implementation details
	Foreground inference
	Parameterization of pose variables
	Auxiliary KL terms
	Background inference
	Training details

	Comparison with superpixel hierarchy
	Results on seven-part Compositional CLEVR dataset
	Analysis of possible scene graphs

