

000 BEYOND HEURISTICS: GLOBALLY OPTIMAL CONFIGU- 001 002 RATION OF IMPLICIT NEURAL REPRESENTATIONS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT

011 Implicit Neural Representations (INRs) have emerged as a transformative paradigm
012 in signal processing and computer vision, excelling in tasks from image recon-
013 struction to 3D shape modeling. Yet their effectiveness is fundamentally limited
014 by the absence of principled strategies for optimal configuration—spanning ac-
015 tivation selection, initialization scales, layer-wise adaptation, and their intricate
016 interdependencies. These choices dictate performance, stability, and generalization,
017 but current practice relies on ad-hoc heuristics, brute-force grid searches, or task-
018 specific tuning, often leading to inconsistent results across modalities. This work
019 introduces OptiINR, the first unified framework that formulates INR configuration
020 as a rigorous optimization problem. Leveraging Bayesian optimization, OptiINR
021 efficiently explores the joint space of discrete activation families—such as sinu-
022 soidal (SIREN), wavelet-based (WIRE), and variable-periodic (FINER)—and their
023 associated continuous initialization parameters. This systematic approach replaces
024 fragmented manual tuning with a coherent, data-driven optimization process. By
025 delivering globally optimal configurations, OptiINR establishes a principled foun-
026 dation for INR design, consistently maximizing performance across diverse signal
processing applications.

027 1 Introduction

028 Implicit Neural Representations (INRs), also referred to as coordinate-MLPs, have fundamentally
029 reshaped how continuous signals are represented and processed across domains from computer
030 vision to computational physics (Li et al., 2021; Xie et al., 2022). In contrast to traditional dis-
031 crete representations tied to fixed spatial resolutions, INRs parameterize signals as continuous
032 functions via neural networks, yielding resolution-independent representations with exceptional
033 expressiveness and memory efficiency. This paradigm has unlocked capabilities that were previously
034 unattainable, powering applications such as Neural Radiance Fields (NeRF) for photorealistic view
035 synthesis Mildenhall et al. (2020), signed distance functions for high-fidelity 3D reconstruction (Park
036 et al., 2019; Mescheder et al., 2019), advanced medical imaging, and even neural solvers for partial
037 differential equations (Sitzmann et al., 2020a; Raissi et al., 2019). The strength of INRs lies in
038 their ability to exploit the universal approximation property of neural networks (Cybenko, 1989;
039 Hornik et al., 1989) to learn complex, high-dimensional mappings from coordinate space to signal
040 values. Landmark works such as DeepSDF (Park et al., 2019) demonstrated that MLPs can learn
041 continuous signed distance functions for representing 3D geometry, while NeRF showed that similar
042 architectures can capture view-dependent radiance fields with high fidelity (Mildenhall et al., 2020).
043 Together, these advances established INRs as a powerful alternative to grid-based representations.

044 Despite substantial progress, the practical effectiveness of implicit neural representations (INRs)
045 remains constrained by a *capacity–convergence gap* rooted in the tight coupling between activation
046 families and their initialization schemes. High-capacity activations—sinusoidal (SIREN), wavelet-
047 based/Gabor (WIRE), Gaussian, and variable-periodic (FINER) (Sitzmann et al., 2020a; Saragadam
048 et al., 2023; Ramasinghe and Lucey, 2022; Liu et al., 2024) — provide rich spectral control but can
049 be acutely sensitive to initialization; conversely, simpler, more stable choices converge reliably yet
050 underfit high-frequency content. Initialization strategies (e.g., SIREN’s scale-preserving design) are
051 therefore not interchangeable: the optimal settings depend on activation-specific properties, yielding
052 a high-dimensional, non-convex search landscape where activation and initialization cannot be tuned
053 independently. In practice, small hyperparameter changes can shift performance by over 10 dB PSNR
on the same task, yet prevailing workflows still rely on manual, heuristic-driven tuning or coarse grid
search. These observations underscore that bridging the capacity–convergence gap requires joint,

054 **principled optimization** of activation selection and initialization to achieve stable training, strong
 055 generalization, and robust performance.
 056

057 To bridge the capacity-convergence gap and move beyond heuristic tuning, we introduce OptiINR
 058 (Optimal INR Configuration via Bayesian Optimization), a unified framework that recasts INR
 059 configuration as a formal global-optimization problem over a high-dimensional, mixed-variable space.
 060 Because each evaluation entails end-to-end training, we employ Bayesian optimization (Jones et al.,
 061 1998; Snoek et al., 2012) — designed for expensive black-box objectives — to navigate a comprehen-
 062 sive search space spanning activation families (e.g., SIREN, WIRE, FINER, Gauss, FR) (Sitzmann
 063 et al., 2020a; Saragadam et al., 2023; Liu et al., 2024; Jayasundara et al., 2025; Ramasinghe and
 064 Lucey, 2022) and their conditional hyperparameters (e.g., base frequency, spread/scale, initialization
 065 scaling) Tancik et al. (2021); Sitzmann et al. (2020a). Activation selection is modeled as categor-
 066 ical, while associated parameters are continuous and conditional on the chosen family, enabling
 067 sample-efficient exploration of the complex, non-linear performance landscape and discovery of
 068 high-performing, robust configurations for specific INR tasks. Unlike fragmented trial-and-error,
 069 OptiINR provides an automated, scientifically grounded procedure for configuring state-of-the-art
 INRs. Our contributions are:
 070

- 071 • We introduce OptiINR, a Bayesian optimization framework that jointly optimizes activation
 families and their initialization parameters, replacing manual heuristic-driven tuning with
 072 principled, globally-aware configuration search. We provide theoretical justification in
 Section G.2 demonstrating convergence guarantees for our approach.
 073
- 074 • We formalize INR configuration via a multilayer search space that integrates state-of-the-art
 activation families and initialization schemes under a single optimization formulation.
 075
- 076 • Across canonical INR tasks — 1D audio reconstruction, 2D image representation, 3D
 shape prediction — OptiINR consistently discovers superior configurations and outperforms
 077 hand-tuned baselines under the same evaluation budgets.
 078
- 079 • OptiINR yields robust configurations that mitigate the hypersensitivity of certain activations
 080 to initialization, broadening practical applicability across diverse signal modalities.

081 2 Background

082 **Implicit Neural Representations.** An Implicit Neural Representation (INR) parameterizes a con-
 083 tinuous signal $g : \mathcal{X} \subset \mathbb{R}^d \rightarrow \mathcal{Y} \subset \mathbb{R}^m$ as a neural network f_θ , typically an L -layer MLP (Sitzmann
 084 et al., 2019; Li et al., 2021), encoding the signal within its parameters θ . This paradigm offers funda-
 085 mental advantages over discrete representations: resolution independence and memory efficiency, as
 086 storage scales with network complexity rather than sampling density. The forward pass through the
 087 network is defined recursively: $\mathbf{z}^{(0)} = \gamma(\mathbf{x})$, $\mathbf{z}^{(\ell)} = \sigma_p(\mathbf{W}^{(\ell)} \mathbf{z}^{(\ell-1)} + \mathbf{b}^{(\ell)})$ for $\ell = 1, \dots, L-1$,
 088 and $f_\theta(\mathbf{x}) = \mathbf{W}^{(L)} \mathbf{z}^{(L-1)} + \mathbf{b}^{(L)}$, where $\theta = \{\mathbf{W}^{(\ell)}, \mathbf{b}^{(\ell)}\}_{\ell=1}^L$ are the learnable parameters with
 089 $\mathbf{W}^{(\ell)} \in \mathbb{R}^{h_\ell \times h_{\ell-1}}$ and $\mathbf{b}^{(\ell)} \in \mathbb{R}^{h_\ell}$, σ_p is an element-wise activation function with parameters p , and
 090 γ is an optional coordinate encoding. Given a dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ sampled from the ground
 091 truth signal, we optimize $\theta^* = \arg \min_\theta \frac{1}{N} \sum_{i=1}^N \ell(f_\theta(\mathbf{x}_i), \mathbf{y}_i) + \mathcal{R}(\theta)$, where ℓ is a task-specific
 092 loss function and \mathcal{R} is an optional regularization term. While the Universal Approximation Theo-
 093 rem (Cybenko, 1989; Hornik et al., 1989) guarantees theoretical expressivity, a fundamental practical
 094 challenge is spectral bias (Rahaman et al., 2019; Canatar et al., 2021): neural networks trained with
 095 gradient descent inherently learn low-frequency components before high-frequency ones, yielding
 096 overly smooth reconstructions that fail to capture fine-grained details and sharp transients in natural
 097 signals. Consequently, the performance of f_{θ^*} depends critically on architectural choices made prior
 098 to training—particularly the activation function family and parameter initialization strategy—which
 099 together determine optimization stability, frequency expressivity, and generalization capacity.

100 **Activation Functions and Spectral Bias** The evolution of activation functions in INR literature
 101 directly addresses the fundamental challenge of spectral bias. Initial attempts with standard activations
 102 like ReLU proved insufficient, necessitating positional encoding (Ramasinghe and Lucey, 2022)
 103 - a preprocessing step mapping input coordinates to higher-dimensional Fourier feature spaces
 104 to make high-frequency variations accessible. A conceptual breakthrough came with Sinusoidal
 105 Representation Networks (SIREN), which integrate periodicity directly into the network architecture
 106 by employing $\sigma_p(x) = \sin(\omega_0 x)$ as the primary activation. SIREN demonstrated that appropriately
 107 chosen activations could obviate positional encoding; however, their success depends critically on
 principled initialization schemes that preserve activation distributions across layers, highlighting the
 tight coupling between activation choice and initialization strategy. Subsequent research questioned

108 the necessity of periodicity itself, producing a powerful toolkit of activation functions with distinct
 109 spectral properties. Gaussian activations, $\sigma_p(x) = e^{-(s_0 x)^2}$, offer non-periodic alternatives with
 110 controllable spatial extent through scale parameter s_0 . Wavelet Implicit Representations (WIRE)
 111 employ Gabor wavelets (Saragadam et al., 2023), $\sigma_p(x) = e^{j\omega_0 x} e^{-|s_0 x|^2}$, valued for their optimal
 112 space-frequency concentration that minimizes the uncertainty principle—particularly suitable for
 113 visual signal representation. More recent frameworks like FINER and FINER++ (Liu et al., 2024)
 114 introduce variable-periodic functions, $\sigma_p(x) = \sin(\omega_0(|x| + 1)x)$, which modulate local frequency
 115 based on input magnitude through adaptive bias initialization, enabling flexible spectral control
 116 across different signal regions. While this evolutionary path has produced increasingly sophisticated
 117 activation functions, each advancement introduces sensitive hyperparameters (e.g., ω_0, s_0, k) requiring
 118 specific initialization strategies. This proliferation creates a complex configuration landscape where
 119 performance depends critically on joint optimization of activation family, parameter values, and
 120 initialization scheme—reinforcing the need for principled, automated configuration strategies.

121 **Automated Model Configuration** The challenge of automatically configuring machine learning
 122 models is addressed by Automated Machine Learning (AutoML) and Neural Architecture Search
 123 (NAS) (Elsken et al., 2019; Feurer and Hutter, 2019). Our work, OptiINR, operates within this
 124 paradigm to find optimal hyperparameter configurations for single, specific tasks (e.g., representing
 125 a given image). This approach is distinct from, yet complementary to, meta-learning for INRs.
 126 Meta-learning approaches such as MetaSDF or Meta-SparseINR Sitzmann et al. (2020b) learn
 127 weight initializations from signal distributions, enabling rapid fine-tuning for unseen signals by
 128 optimizing network weights for fast adaptation across tasks. In contrast, OptiINR optimizes network
 129 hyperparameters (architecture) for maximal performance on individual target signals.

130 **Gaussian Processes** A Gaussian Process (GP) is a non-parametric Bayesian model that defines
 131 a probability distribution over functions (Rasmussen and Williams, 2006), making it a powerful
 132 tool for regression tasks where the underlying function is unknown. A function f drawn from a
 133 GP is denoted as $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$, where $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ is the mean function and
 134 $k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]$ is the covariance (kernel) function. The kernel is
 135 a symmetric, positive semi-definite function encoding prior beliefs about function properties such
 136 as smoothness and length-scale. For regression with observed data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, a GP infers
 137 a posterior distribution over functions. A key property is that any finite collection of function
 138 values is jointly Gaussian distributed. The posterior predictive distribution for a test point \mathbf{x}_* is also
 139 Gaussian: $p(f(\mathbf{x}_*) | \mathcal{D}, \mathbf{x}_*) = \mathcal{N}(\mu(\mathbf{x}_*), \sigma^2(\mathbf{x}_*))$ with predictive mean $\mu(\mathbf{x}_*) = \mathbf{k}_*^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y}$
 140 and variance $\sigma^2(\mathbf{x}_*) = \mathbf{k}_*^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{k}_*$, where $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ is the $n \times n$
 141 kernel matrix, $\mathbf{k}_* = [k(\mathbf{x}_*, \mathbf{x}_1), \dots, k(\mathbf{x}_*, \mathbf{x}_n)]^T$ is the vector of covariances between test and
 142 training points, \mathbf{y} is the vector of observed outputs, and σ_n^2 is the observation noise variance. The
 143 predictive mean $\mu(\mathbf{x}_*)$ provides the best estimate of the function value, while the predictive variance
 144 $\sigma^2(\mathbf{x}_*)$ quantifies uncertainty—a property fundamental to the intelligent search strategy of Bayesian
 145 optimization.

3 Method

146 The performance of an Implicit Neural Representation is critically sensitive to its architectural
 147 configuration, particularly the layer-wise selection of activation functions and corresponding weight
 148 initialization schemes. This sensitivity creates a “capacity-convergence gap,” where theoretically
 149 powerful architectures fail to realize their potential due to the difficulty of finding stable and effective
 150 configurations. Current practices rely on manual tuning, parameter reuse, or greedy layer-wise
 151 optimization, none of which guarantee global optimality. We propose a novel framework that recasts
 152 this complex, ad-hoc process as a formal global optimization problem, solved efficiently using
 153 Bayesian optimization to search the high-dimensional, mixed-variable space of network architectures.
 154 This principled approach automates the discovery of globally optimal configurations, moving beyond
 155 the limitations of existing methods.

156 **Bayesian Optimization for Expensive Black-Box Functions.** Bayesian optimization is a sample-
 157 efficient methodology for global optimization of expensive-to-evaluate, black-box functions (Jones
 158 et al., 1998; Snoek et al., 2012; Shahriari et al., 2015). It is particularly well-suited for problems
 159 of the form $\lambda^* = \arg \max_{\lambda \in \Lambda} f(\lambda)$ where $f(\lambda)$ is an objective function with unknown analytic
 160 form and costly evaluation. The methodology comprises two primary components: a probabilistic
 161 surrogate model and an acquisition function. The surrogate model approximates the objective
 162 function probabilistically. We employ a Gaussian Process (GP), a non-parametric Bayesian regression
 163 model defining a prior distribution over functions: $f \sim \mathcal{GP}(m(\lambda), k(\lambda, \lambda'))$, where $m(\lambda)$ is the

mean function and $k(\boldsymbol{\lambda}, \boldsymbol{\lambda}')$ is the covariance kernel. Given observations $\mathcal{D}_n = \{(\boldsymbol{\lambda}_i, y_i)\}_{i=1}^n$ where $y_i = f(\boldsymbol{\lambda}_i)$, the GP posterior provides a predictive distribution for any unevaluated point $\boldsymbol{\lambda}_*$: $p(f(\boldsymbol{\lambda}_*)|\mathcal{D}_n, \boldsymbol{\lambda}_*) = \mathcal{N}(\mu(\boldsymbol{\lambda}_*), \sigma^2(\boldsymbol{\lambda}_*))$. The predictive mean $\mu(\boldsymbol{\lambda}_*)$ estimates the function value, while variance $\sigma^2(\boldsymbol{\lambda}_*)$ quantifies uncertainty. An acquisition function $\alpha(\boldsymbol{\lambda})$ uses these statistics to balance exploration and exploitation, guiding the search for the next evaluation point: $\boldsymbol{\lambda}_{\text{next}} = \arg \max_{\boldsymbol{\lambda} \in \Lambda} \alpha(\boldsymbol{\lambda})$.

3.1 INR Configuration as a Global Optimization Problem

The central novelty of our work is to formalize the entire INR design process as a single, unified optimization problem. The performance of an INR is critically determined by the interplay between activation functions and weight initialization strategies on a layer-by-layer basis. Previous automated methods such as MIRE approach this by constructing networks greedily, selecting the best activation for each layer sequentially. This layer-wise greedy approach cannot guarantee global optimality, as the optimal choice for one layer is deeply conditioned on choices made for all other layers (see Theorem G.1 for details).

We instead define a global configuration vector $\boldsymbol{\Lambda}$ that simultaneously parameterizes choices for all L layers of the network. For each layer $l \in \{1, \dots, L\}$, we define a configuration tuple $\boldsymbol{\lambda}_l = (\sigma_l, \mathcal{I}_l, \mathbf{p}_l)$, where $\sigma_l \in \{\text{SIREN}, \text{WIRE}, \text{GAUSS}, \text{FINER++}, \text{FR}\}$ is a categorical variable for the activation function and $\mathcal{I}_l \in \{0, 1\}$ is a binary variable indicating the use of a SIREN-style initialization. The vector of continuous hyperparameters $\mathbf{p}_l \in \mathbb{R}^{d_p}$ amalgamates several crucial per-layer parameters: activation-specific values (e.g., frequency ω_0 or scale s_0 , conditional on the choice of σ_l), the initial range for the layer's weights, and a per-layer learning rate. The complete network configuration is the concatenation of these layer-wise tuples: $\boldsymbol{\Lambda}_{\text{network}} = (\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2, \dots, \boldsymbol{\lambda}_L) \in \mathcal{L}$, where \mathcal{L} denotes the high-dimensional, mixed-type configuration space. Our objective is to find the optimal configuration $\boldsymbol{\Lambda}^* = \arg \max_{\boldsymbol{\Lambda} \in \mathcal{L}} f(\boldsymbol{\Lambda})$, where $f(\boldsymbol{\Lambda})$ is the performance of the INR (e.g., validation PSNR) after being fully trained with the specified configuration. This evaluation constitutes the expensive black-box function we aim to optimize.

3.2 Surrogate Modeling of INR Configuration

A Product Kernel for Mixed-Variable Spaces. Our configuration vector $\boldsymbol{\Lambda}$ lives in a product space $\mathcal{X} = \mathcal{X}_{\text{cont}} \times \mathcal{X}_{\text{cat}}$, comprising continuous and categorical variables (Sheikh and Marcus, 2022; Lukovic et al., 2020). To model the correlation structure over this space, we design a product kernel that separates contributions from each variable type: $k(\boldsymbol{\Lambda}, \boldsymbol{\Lambda}') = k_{\text{cont}}(\boldsymbol{\Lambda}_c, \boldsymbol{\Lambda}'_c) \times k_{\text{cat}}(\boldsymbol{\Lambda}_{\text{cat}}, \boldsymbol{\Lambda}'_{\text{cat}})$. For the continuous components $\boldsymbol{\Lambda}_c$, we use the Matérn kernel (Rasmussen and Williams, 2006; Daxberger et al., 2020), which generalizes the popular Squared Exponential (RBF) kernel and provides control over the smoothness of the surrogate function via parameter ν : $k_{\text{cont}}(\boldsymbol{\Lambda}_c, \boldsymbol{\Lambda}'_c) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\boldsymbol{\Lambda}_c - \boldsymbol{\Lambda}'_c\|_2}{\ell} \right)^\nu K_\nu \left(\sqrt{2\nu} \frac{\|\boldsymbol{\Lambda}_c - \boldsymbol{\Lambda}'_c\|_2}{\ell} \right)$, where ℓ is the length-scale and K_ν is the modified Bessel function. This flexibility is crucial for complex performance landscapes where the RBF kernel's assumption of infinite smoothness is often incorrect. For the categorical components $\boldsymbol{\Lambda}_{\text{cat}}$, we first transform them into a continuous space using one-hot encoding, where a categorical variable with M levels is mapped to an M -dimensional binary vector. We then define k_{cat} as a Squared Exponential kernel with Automatic Relevance Determination (ARD): $k_{\text{cat}}(\boldsymbol{\Lambda}_{\text{cat}}, \boldsymbol{\Lambda}'_{\text{cat}}) = \exp\left(-\sum_{j=1}^M \frac{(\boldsymbol{\Lambda}_{\text{cat},j} - \boldsymbol{\Lambda}'_{\text{cat},j})^2}{2\ell_j^2}\right)$, where each dimension has a unique length-scale ℓ_j . The designed mechanism establishes the validity of our kernel ensures that as the number of evaluations grows, the posterior variance of the GP will concentrate around the true function $f(\boldsymbol{\Lambda})$ (see Theorem G.3 for details).

3.2.1 Empirical Expected Improvement via Matheron's Rule

The search for the next point to evaluate is guided by an acquisition function $\alpha : \mathcal{X} \rightarrow \mathbb{R}$ that balances exploration of uncertain regions with exploitation of promising areas. We adopt a Monte Carlo-based Empirical Expected Improvement (EEI) to overcome limitations of the analytic Expected Improvement (EI) function. While analytic EI admits a closed form for Gaussian posteriors in sequential settings, it becomes intractable for batch queries and exhibits sensitivity to model misspecification.

Expected Improvement Let $f : \mathcal{X} \rightarrow \mathbb{R}$ denote our objective function with GP prior $f \sim \mathcal{GP}(m_0, k_0)$. Given observations $\mathcal{D}_n = \{(\boldsymbol{\lambda}_i, y_i)\}_{i=1}^n$ where $y_i = f(\boldsymbol{\lambda}_i) + \epsilon_i$ with $\epsilon_i \sim \mathcal{N}(0, \sigma_n^2)$, and current best observation $f_{\text{best}} = \max_{i \in [n]} y_i$, the improvement function is defined as: $I(\boldsymbol{\lambda}) = \max\{0, f(\boldsymbol{\lambda}) - f_{\text{best}}\} = [f(\boldsymbol{\lambda}) - f_{\text{best}}]_+$. The Expected Improvement (Jones et al., 1998) is the expectation of this improvement under the posterior measure:

$$216 \quad \text{EI}(\boldsymbol{\lambda}) = \mathbb{E}_{f(\boldsymbol{\lambda}) \sim p(\cdot | \mathcal{D}_n)}[I(\boldsymbol{\lambda})] = \int_{\mathbb{R}} [t - f_{\text{best}}]_+ p(f(\boldsymbol{\lambda}) = t | \mathcal{D}_n) dt$$

$$217$$

$$218$$

219 Under the GP posterior $f(\boldsymbol{\lambda}) | \mathcal{D}_n \sim \mathcal{N}(\mu_p(\boldsymbol{\lambda}), \sigma_n^2(\boldsymbol{\lambda}))$, this admits the analytic form: $\text{EI}(\boldsymbol{\lambda}) =$
 220 $\sigma_n(\boldsymbol{\lambda})[\phi(Z)\Phi(Z) + Z]$ where $Z = \frac{\mu_n(\boldsymbol{\lambda}) - f_{\text{best}}}{\sigma_n(\boldsymbol{\lambda})}$, and ϕ, Φ denote the standard normal PDF and CDF
 221 respectively.

222 **Monte Carlo Approximation.** For batch optimization and robustness to model misspecification,
 223 we employ a Monte Carlo estimator. Let $\{f^{(s)}\}_{s=1}^S$ be i.i.d. samples from the posterior process. The
 224 Empirical Expected Improvement (Wilson et al., 2018) is:

$$225 \quad \widehat{\text{EI}}(\boldsymbol{\lambda}) = \frac{1}{S} \sum_{s=1}^S [f^{(s)}(\boldsymbol{\lambda}) - f_{\text{best}}]_+$$

$$226$$

$$227$$

228 By the Strong Law of Large Numbers, $\widehat{\text{EI}}(\boldsymbol{\lambda}) \xrightarrow{a.s.} \text{EI}(\boldsymbol{\lambda})$ as $S \rightarrow \infty$. The convergence rate follows
 229 $\mathbb{E}[|\widehat{\text{EI}}(\boldsymbol{\lambda}) - \text{EI}(\boldsymbol{\lambda})|^2] = \mathcal{O}(S^{-1})$ by the Central Limit Theorem.

230 **Efficient Posterior Sampling via Matheron’s Rule.** Direct posterior sampling requires computing
 231 the Cholesky decomposition of $\mathbf{K}_n + \sigma_n^2 \mathbf{I} \in \mathbb{R}^{n \times n}$, incurring $\mathcal{O}(n^3)$ cost per sample. For S samples,
 232 this yields prohibitive $\mathcal{O}(Sn^3)$ complexity. Alternative approaches such as random Fourier features
 233 or sparse GPs sacrifice posterior accuracy, which is critical for our high-dimensional optimization
 234 problem. We leverage Matheron’s rule (Rasmussen and Williams, 2006; Daulton et al., 2022)
 235 (also known as the conditional simulation formula) for exact posterior sampling with dramatically
 236 reduced computational cost. This approach offers critical advantages over alternative methods.
 237 First, it provides exceptional computational efficiency by computing the expensive matrix inversion
 238 $[\mathbf{K} + \sigma_n^2 \mathbf{I}]^{-1}$ only once, reducing complexity from $\mathcal{O}(Sn^3)$ to $\mathcal{O}(n^3 + Sn^2)$ for S samples (see
 239 Theorem G.4 for details). Second, unlike approximation methods such as inducing points or random
 240 features, Matheron’s rule produces exact samples from the true posterior distribution, preserving
 241 the GP’s uncertainty quantification that is crucial for balancing exploration and exploitation in our
 242 optimization problem. Third, once the weight vector \mathbf{w} is computed, posterior evaluations at different
 243 points can be parallelized across samples and query locations, enabling efficient GPU utilization
 244 and further accelerating the optimization process. Algorithm 1 in Section A outlines the complete
 245 workflow for discovering optimal INR configurations with our Bayesian optimization framework.

246 **Theorem (Matheron’s Rule):** Let $f \sim \mathcal{GP}(m_0, k_0)$ be a GP prior and $\mathcal{D}_n = \{(\mathbf{X}, \mathbf{y})\}$ be observa-
 247 tions. A sample from the posterior process can be expressed as: $f_{\text{post}}(\cdot) \stackrel{d}{=} f_{\text{prior}}(\cdot) + \mathbf{k}(\cdot, \mathbf{X})[\mathbf{K} +$
 248 $\sigma_n^2 \mathbf{I}]^{-1}(\mathbf{y} - f_{\text{prior}}(\mathbf{X}))$, where $f_{\text{prior}} \sim \mathcal{GP}(m_0, k_0)$, $\mathbf{K}_{ij} = k_0(\mathbf{x}_i, \mathbf{x}_j)$, and $\stackrel{d}{=}$ denotes equality in
 249 distribution. This decomposition enables the following efficient sampling procedure: first, draw one
 250 sample path $f_{\text{prior}} \sim \mathcal{GP}(m_0, k_0)$ using random Fourier features or inducing points; second, compute
 251 the weight vector $\mathbf{w} = [\mathbf{K} + \sigma_n^2 \mathbf{I}]^{-1}(\mathbf{y} - f_{\text{prior}}(\mathbf{X}))$ once; third, for any query point $\boldsymbol{\lambda}$, compute
 252 $f_{\text{post}}(\boldsymbol{\lambda}) = f_{\text{prior}}(\boldsymbol{\lambda}) + \mathbf{k}(\boldsymbol{\lambda}, \mathbf{X})\mathbf{w}$. The computational complexity is $\mathcal{O}(n^3)$ for the initial matrix inver-
 253 sion plus $\mathcal{O}(n)$ per query point evaluation, amortizing the cost across S samples. This methodology
 254 provides a principled, globally-aware strategy for exploring the mixed-variable configuration space \mathcal{X} ,
 255 capturing complex interdependencies between layers, activation functions, and initialization schemes
 256 to discover high-performing architectures in a fully automated fashion.

257 4 Related Work

258 Our work builds upon three core areas of research: the development of implicit neural representations,
 259 the design of specialized activation functions to overcome spectral bias, and the application of auto-
 260 mated machine learning to architectural design. **Implicit Neural Representations.** The paradigm
 261 of representing signals as continuous functions parameterized by coordinate-based MLPs has fun-
 262 damentally reshaped fields like 3D vision and computer graphics Li et al. (2021); Xie et al. (2022).
 263 Foundational works such as DeepSDF Park et al. (2019) and Occupancy Networks Mescheder et al.
 264 (2019) demonstrated the efficacy of INRs for high-fidelity 3D shape modeling. This was famously
 265 extended to novel view synthesis with Neural Radiance Fields (NeRF) Mildenhall et al. (2020),
 266 cementing INRs as a powerful, resolution-agnostic alternative to traditional discrete representations.
 267 **Activation Functions and Spectral Bias.** A primary challenge in training INRs is the inherent
 268 spectral bias of standard MLPs, which struggle to learn high-frequency functions Rahaman et al.
 269 (2019). Early solutions relied on positional encoding with Fourier features to inject high-frequency
 information at the input layer Tancik et al. (2020). A significant breakthrough came with Sinusoidal

270 Representation Networks (SIRENs) Sitzmann et al. (2020a), which showed that using periodic activation
 271 functions throughout the network could natively represent fine details. The success of SIREN
 272 spurred an explosion of research into alternative activation functions, each with a unique inductive
 273 bias, including wavelet-based (WIRE) Saragadam et al. (2023), Gaussian Ramasinghe and Lucey
 274 (2022), and variable-periodic (FINER) Liu et al. (2024) activations. While this has created a rich
 275 toolkit, it has also transformed INR design into a complex configuration problem where performance
 276 is highly sensitive to the choice of activation and its initialization. **Automated Configuration for**
 277 **INRs.** Our work addresses this challenge by drawing from the principles of Automated Machine
 278 Learning (AutoML) and Neural Architecture Search (NAS) Elsken et al. (2019); Feurer and Hutter
 279 (2019). We employ Bayesian optimization, a sample-efficient global optimization strategy well-suited
 280 for expensive black-box functions like training a neural network Snoek et al. (2012). While most INR
 281 research relies on manual tuning, the most relevant automated approach is MIRE Jayasundara et al.
 282 (2025), which uses a greedy, layer-wise dictionary learning method to select activations. However,
 283 its sequential nature cannot guarantee global optimality. Our framework, OptiINR, distinguishes
 284 itself by performing a global, joint optimization over all layers simultaneously. This approach is
 285 also distinct from meta-learning frameworks like MetaSDF Sitzmann et al. (2020b); Tancik et al.
 286 (2021), which learn priors for fast adaptation to new signals, whereas our goal is to find the single
 287 best-performing architecture for a specific, individual signal.

288 5 Experiments

289 To rigorously validate the OptiINR framework, we designed a comprehensive suite of experiments
 290 aimed at answering three central research questions. First, can a principled, global optimization
 291 framework discover configurations that consistently and significantly outperform state-of-the-art,
 292 manually-tuned baselines across diverse signal modalities? Second, does the framework’s efficacy
 293 scale from low-dimensional signals to more complex, high-dimensional representations? Third, and
 294 most critically, can the architectures discovered through automated search reveal novel, generalizable
 295 design principles that challenge or refine conventional heuristics in INR design? Through meticulous
 296 quantitative and qualitative analysis across multiple canonical tasks (Sitzmann et al., 2020a;
 297 Saragadam et al., 2023; Liu et al., 2024), we demonstrate that OptiINR not only automates and
 298 elevates the configuration process but also serves as a powerful tool for advancing the fundamental
 299 understanding of what constitutes an optimal implicit neural representation.

300 **Experimental Protocol** All experiments were conducted using PyTorch (Paszke et al., 2019), with
 301 the Bayesian optimization component implemented via the BoTorch library (Balandat et al., 2020).
 302 To isolate the impact of network configuration, we employed a consistent base architecture across
 303 all evaluated models: a four-layer MLP with 256 hidden units per layer. Each configuration was
 304 trained for 10,000 epochs using the AdamW optimizer (Loshchilov and Hutter, 2017) with learning
 305 rate 1×10^{-4} , without learning rate scheduling. All evaluations were performed on NVIDIA B200
 306 GPUs. This standardized setup ensures that performance differences are attributable solely to the
 307 configuration—the layer-wise combination of activations and initializations—which is the primary
 308 variable under investigation.

309 **OptiINR Configuration Space:** The core of our method is the structured, mixed-variable search
 310 space, which OptiINR navigates to find optimal configurations. This space encompasses critical
 311 design choices for a 4-layer network architecture. A binary variable determines whether to use
 312 standard Fourier feature positional encoding (Tancik et al., 2020), with a corresponding continuous
 313 parameter if PE is used, controlling the scale of input coordinate mapping. For each of the four
 314 hidden layers, a categorical variable selects the activation function from task-specific sets: {SIREN,
 315 FINER } for audio representation, {SIREN, FINER, FINER++, WIRE } for image representation,
 316 and {FINER, Gauss, FINER++, WIRE } for 3D shape representation, enabling discovery of het-
 317 erogeneous architectures tailored to each signal modality. Each selected activation function has an
 318 associated continuous hyperparameter (e.g., ω_0) that is jointly optimized, allowing fine-tuning of the
 319 activation’s spectral properties on a per-layer basis. Additionally, to account for varying optimization
 320 dynamics across network depth, each of the four layers has its own independent learning rate α_l
 321 optimized as a continuous variable.

322 **Baseline Methods:** To ensure rigorous and fair comparison, OptiINR was evaluated against a
 323 comprehensive set of state-of-the-art INRs using their officially published or standard configurations,
 324 measuring OptiINR against methods operating under their ideal, author-optimized conditions. The
 325 selected baselines represent diverse inductive biases: SIREN (Sitzmann et al., 2020a), the foundational
 326 model employing periodic sinusoidal activations; FINER (Liu et al., 2024), a recent advance using

variable-periodic activations for flexible spectral control; Gauss (Ramasinghe and Lucey, 2022), a representative non-periodic activation based on locality; Wavelet (WIRE) (Saragadam et al., 2023), a robust model based on complex Gabor wavelets known for excellent space-frequency localization; FR (Zheng et al., 2024), a recent method based on Fourier reparameterized training; and IGA (Zheng et al., 2024), an improved SIREN variant incorporating inductive gradient adjustment. Our OptiINR optimization process began with 30 initial configurations generated via space-filling Latin Hypercube sampling to ensure broad initial coverage, followed by 100 iterations of Bayesian optimization to refine the search and discover optimal configurations through automated exploration-exploitation balancing.

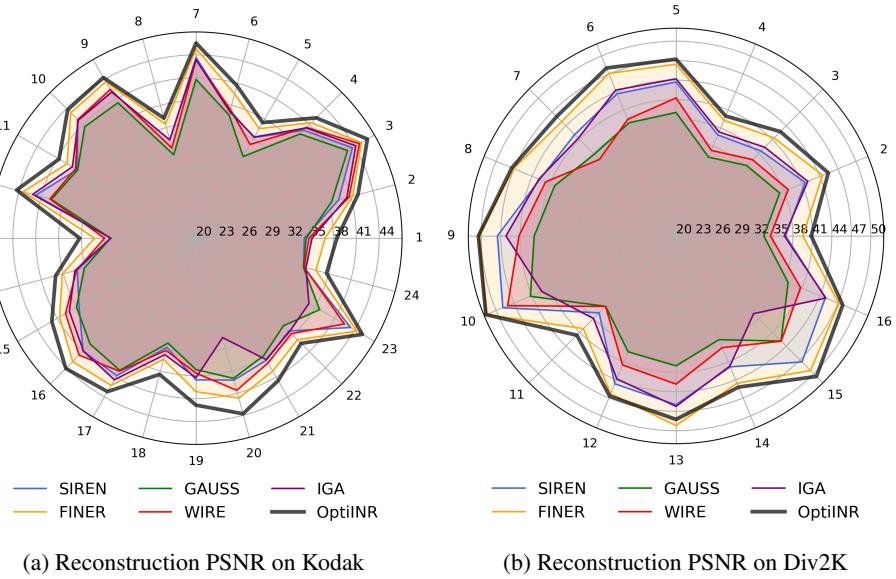


Figure 1: Detailed per-image PSNR comparisons across all methods on Kodak and Div2K

5.1 Image Representation

Image representation serves as the canonical benchmark for INR capabilities, requiring networks to learn continuous mappings $f : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ from pixel coordinates to RGB values. This task challenges INRs to capture both smooth gradients and high-frequency details present in natural images, making it an ideal testbed for configuration optimization. Networks are provided with normalized coordinates without positional embedding and trained to predict corresponding RGB values over 10,000 epochs.

Datasets and Evaluation Protocol. We evaluate on two complementary benchmarks: the Kodak dataset (Franzen, 1999) containing 24 diverse natural images at 768×512 resolution encompassing portraits, landscapes, architecture, and detailed textures; and the DIV2K dataset (Agustsson and Timofte, 2017), where we use 16 cropped 512×512 patches selected for varied texture complexities and frequency characteristics, providing a challenging high-resolution testbed.

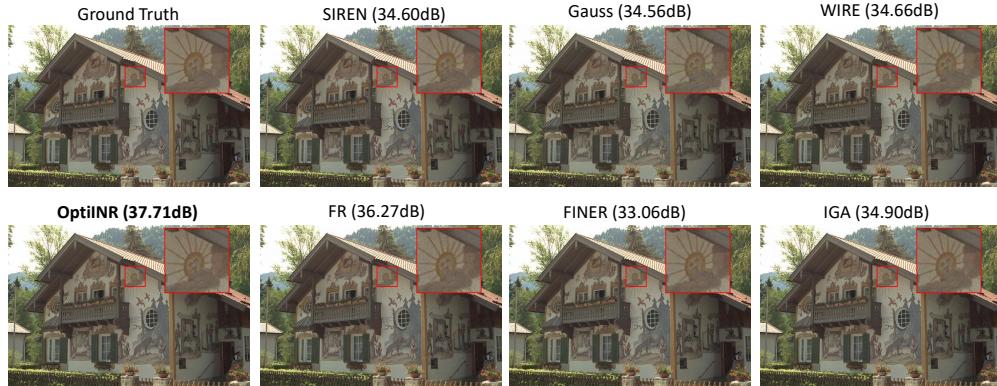
Quantitative Results. Table 1 summarizes the average PSNR and standard deviation across both datasets, demonstrating OptiINR’s substantial performance gains. On Kodak, OptiINR achieves 41.38 dB average PSNR, surpassing the strongest baseline FINER by 1.14 dB and showing remarkable improvements over SIREN (2.91 dB), Gaussian activations (4.02 dB), and Fourier Reparameterization (5.48 dB). Figure 1 presents the detailed per-image PSNR comparisons across all methods, revealing

Table 1: Average PSNR (dB) \pm std on image representation tasks. OptiINR consistently outperforms all baselines.

Method	Kodak	DIV2K
SIREN	38.47 ± 3.47	42.75 ± 3.91
Gauss	37.36 ± 3.11	38.48 ± 3.13
WIRE	38.69 ± 3.50	39.85 ± 3.81
FR	35.90 ± 2.42	38.87 ± 2.27
FINER	40.24 ± 3.23	45.56 ± 3.84
GF	38.47 ± 4.50	40.57 ± 5.54
IGA	38.27 ± 3.43	41.77 ± 3.24
OptiINR (ours)	41.38 ± 3.05	46.24 ± 3.49

378 that improvements are consistent across all 24 Kodak images without exception, with per-image gains
 379 ranging from 0.91 to 4.14 dB over the best baseline for each image.
 380

381 On DIV2K’s high-resolution patches, OptiINR demonstrates even more pronounced advantages,
 382 achieving PSNR values from 39.99 to an exceptional 51.70 dB as shown in Table 1. The average 46.24
 383 dB represents approximately 3–4 dB improvement over the best baselines, with particularly dramatic
 384 gains on images containing repetitive patterns or fine details where traditional INR activations fail to
 385 capture the full frequency spectrum.



399 Figure 2: Kodak 24 with the region of interest (red box) and an upper-right enlargement rendered with
 400 nearest-neighbor to preserve pixel details. All methods use the same ROI for fair visual comparison.
 401

402 **Configuration Adaptation Analysis.** OptiINR’s discovered configurations reveal sophisticated
 403 adaptation to image characteristics. This is visualized qualitatively for two representative images
 404 from the Kodak dataset in Figure 2, which shows the final reconstructions. To further highlight the
 405 performance differences, Figure 3 and Figure 4 display the corresponding error fields for all evaluated
 406 methods. For smooth, low-frequency content, OptiINR selects Gaussian or FINER++ activations in
 407 early layers for smooth interpolation, followed by periodic activations (SIREN, sinusoidal) in deeper
 408 layers to capture residual high-frequency components. For texture-rich images with prominent edges,
 409 OptiINR favors wavelet-based activations (WIRE, Gabor) throughout the network, leveraging their
 410 optimal space-frequency localization. This automatic adaptation eliminates manual parameter tuning
 411 where single misconfigurations can degrade performance by several dB. Notably, OptiINR discovers
 412 novel activation combinations unexplored in prior work, such as using band-limited functions in
 413 intermediate layers to bridge spatially-localized early features and globally periodic final layers. This
 414 leads to the superior reconstructions shown in Figure 2, where the reduction in reconstruction error is
 415 made evident by the significantly attenuated error fields in Figures 3 and 4.
 416

5.2 Audio Reconstruction

417 Audio reconstruction presents unique challenges for INRs, requiring precise capture of temporal
 418 dynamics as demonstrated in HyperSound (Szatkowski et al., 2023), harmonic relationships, and
 419 frequency content spanning multiple octaves. The task is formulated as learning a mapping $f : \mathbb{R} \rightarrow \mathbb{R}$
 420 from time coordinates to signal amplitude, where the network must represent complex waveforms
 421 with extremely high-frequency details and intricate harmonic structures.

422 **Datasets and Evaluation Protocol.** We evaluate on three standard audio signals
 423 from the SIREN (Sitzmann et al., 2020a)
 424 benchmark: Bach (complex polyphonic
 425 composition with intricate harmonic struc-
 426 tures), Counting (speech with distinct pho-
 427 netic transitions), and Two Speakers (over-
 428 lapsing voices requiring separation of dis-
 429 tinct characteristics). Following estab-
 430 lished protocols, the output layer was ini-
 431 tialized with $\mathcal{U}(-10^{-4}, 10^{-4})$ distribution

425 Table 2: PSNR (dB) comparison on audio reconstruc-
 426 tion. OptiINR achieves breakthrough performance.

Method	Bach	Count	Two Spk
SIREN	52.59	34.39	41.59
Gauss	16.49	21.32	17.21
WIRE	17.54	21.54	24.16
FR	54.94	36.93	56.36
FINER	36.67	39.35	42.27
IGA	52.35	34.41	42.39
OptiINR	60.84	49.60	68.39

432 and zero biases for stable training, input coordinates were mapped to $[-100, 100]$, and models were
 433 trained for 10,000 iterations.

434 **Quantitative Results.** Table 2 demonstrates OptiINR’s exceptional performance gains across all
 435 audio signals. On the Bach composition, OptiINR achieves 60.84 dB PSNR, surpassing the best
 436 baseline (FR) by 5.90 dB and SIREN by 8.25 dB. The Counting sequence sees OptiINR reaching
 437 49.60 dB versus FINER’s 39.35 dB—a remarkable 10.25 dB improvement. Most dramatically, on the
 438 Two Speakers signal, OptiINR achieves 68.39 dB compared to FR’s 56.36 dB, representing a 12.03
 439 dB gain. These substantial numerical improvements translate to orders-of-magnitude differences in
 440 reconstruction error, with OptiINR achieving a near-machine-precision loss ($\approx 10^{-6}$) while baselines
 441 struggle with losses 3–4 orders of magnitude higher. This exceptional accuracy is visualized in
 442 Figure 5 and 6, which present a detailed comparison of the reconstructed waveforms and their corre-
 443 sponding spectral analyses. The predicted audio signal from OptiINR is visually indistinguishable
 444 from the ground truth waveform, perfectly capturing the amplitude and temporal dynamics. In
 445 contrast, baseline methods exhibit significant distortions, failing to replicate the signal’s structure
 446 with high fidelity. The spectrum analysis further confirms this superiority; the signed spectral residual
 447 plot for OptiINR is almost entirely neutral, indicating a near-perfect match to the ground truth spec-
 448 trum across all frequencies. Baselines, however, show large regions of spectral error, demonstrating
 449 their inability to accurately reconstruct the full frequency content. This exceptional accuracy allows
 450 OptiINR to preserve subtle audio characteristics, including room acoustics, instrumental timbres, and
 451 voice inflections that are completely lost in baseline reconstructions.

452 5.3 3D Shape Representation: Occupancy Reconstruction

453 Three-dimensional shape representation through occupancy fields tests INRs’ ability to model com-
 454 plex geometric structures and maintain topological consistency across multiple spatial scales. This
 455 task involves learning a function $f : \mathbb{R}^3 \rightarrow \{0, 1\}$ following the occupancy network formula-
 456 tion (Mescheder et al., 2019) that maps voxel coordinates to binary occupancy values, where 1
 457 indicates object presence and 0 denotes empty space, effectively acting as a 3D point classifier.

458 **Dataset and Experimental Setup.** We evaluate on high-
 459 resolution models from the Stanford 3D Scanning Repos-
 460 itory (Levoy et al., 2000): the Dragon and Thai Statue,
 461 chosen for their intricate geometric details and varied sur-
 462 face characteristics. Both models were voxelized at 512^3
 463 resolution, providing a challenging testbed for precise
 464 boundary representation. Performance is measured using
 465 Intersection over Union (IoU), which captures occupancy
 466 quality while ignoring the large number of trivial true
 467 negatives.

468 **Quantitative results.** Table 3 shows OptiINR’s consistent
 469 gains in geometric accuracy. On Dragon, OptiINR attains 0.9936 IoU vs. 0.9934 for the best
 470 baseline (Gaussian activations); while a 0.0002 absolute gain appears small, on a 512^3 grid it
 471 corresponds to $\approx 2.7 \times 10^4$ additional correct voxel decisions, concentrated in high-curvature regions
 472 (scales, wing membranes, facial details). On Thai Statue, OptiINR reaches 0.9884 IoU vs. 0.9871,
 473 with improvements primarily on carved motifs and thin protrusions requiring precise localization.
 474 Reconstruction visualizations are provided in Fig. 7 and Fig. 8.

475 6 Conclusion

476 Configuring implicit neural representations (INRs) is increasingly challenging, so we recast it as a
 477 global optimization problem rather than relying on manual tuning and ad-hoc heuristics. OptiINR
 478 uses Bayesian optimization to jointly select activation functions and initialization schemes, yielding
 479 a unified, sample-efficient, architecture-agnostic procedure. Across core applications—2D image
 480 representation, 3D shape modeling, and novel-view synthesis—configurations discovered by OptiINR
 481 consistently outperform state-of-the-art manual baselines and prior automated methods. Analysis
 482 shows the optimal design is strongly task-dependent, revealing the limits of one-size-fits-all rules
 483 and motivating principled automated search. By providing an extensible foundation for INR design,
 484 OptiINR improves performance and reliability, scales with evaluation budgets, and helps close the
 485 capacity–convergence gap that has constrained practical effectiveness.

Table 3: IoU comparison on 3D occupancy reconstruction at 512^3 resolution.

Method	Dragon	Thai Statue
SIREN	0.9881	0.9778
Gauss	0.9934	0.9871
WIRE	0.9924	0.9861
FR	0.9919	0.9650
FINER	0.9897	0.9804
IGA	0.9919	0.9834
OptiINR	0.9936	0.9884

486 Ethics Statement

487
488 We have read, understand, and agree to abide by the ICLR Code of Ethics for all aspects of this
489 work (submission, authorship, and discussion). Our study proposes methodological advances in
490 Bayesian optimization for implicit neural representations and is evaluated exclusively on publicly
491 available, non-sensitive datasets (Kodak/DIV2K images, SIREN audio benchmarks, and Stanford
492 3D models). No human-subjects data, personally identifiable information, or user-generated private
493 content are used; accordingly, IRB approval was not required. We comply with all dataset licenses
494 and do not redistribute copyrighted data; instead, we will provide scripts to download sources from
495 their official repositories together with clear preprocessing documentation. We are not aware of
496 conflicts of interest or sponsorship that could bias the work. Potential risks include dual-use of
497 improved reconstruction fidelity (e.g., circumventing image/audio protections); to mitigate this, we
498 will release code for research purposes under a standard academic license, include a responsible-use
499 notice, and refrain from providing artifacts designed to remove watermarks or bypass access controls.
500 Given the non-demographic, non-sensitive nature of the benchmarks, fairness and discrimination risks
501 are minimal; nevertheless, we caution against deploying our methods in downstream applications
502 where such harms could arise without appropriate auditing. We report hardware, training budgets,
503 and random seeds to reduce unnecessary reruns and limit environmental impact. All results are
504 documented to support research integrity (complete references, clear assumptions, and reproducible
505 procedures).

506 Reproducibility Statement

507
508 We have organized all information needed to reproduce our results across the main paper, appendix,
509 and anonymous supplementary materials. The overall methodology and algorithmic workflow
510 (including the GP surrogate over mixed variables and the empirical EI via Matheron’s rule) are
511 described in Section 3, with complete algorithmic pseudocode in Appendix A (Algorithms 1–2). The
512 mixed-variable kernel construction and acquisition strategy are detailed in Sections 3.2 and 3.2.1,
513 respectively. Our Experimental Protocol (Section 5) specifies the search space (activation sets and
514 hyperparameter ranges), training configurations (model architecture, optimizer, schedules, bud-
515 gets), tooling and hardware, and the canonical seeds/budgets used in all experiments; the section
516 titled OptiINR Configuration Space and Baseline Methods further document baseline setups and
517 the Bayesian optimization procedure (initialization strategy and iteration budgets). Task-specific
518 datasets, preprocessing steps, metrics, and evaluation procedures are provided in Sections 5.1–5.3
519 (e.g., image representation on Kodak/DIV2K with PSNR, audio reconstruction with STFT-based
520 evaluation, and 3D occupancy with IoU), and visualization/metric pipelines (e.g., residual heatmaps
521 and signal analyses) are summarized in Appendix B. Baseline configurations for SIREN, FINER,
522 GAUSS, WIRE, FR, and IGA follow published defaults as cited in the main text.

523 The Use of Large Language Models (LLMs)

524
525 We used an LLM-based assistant solely for copy-editing and phrasing improvements. The model did
526 not generate research ideas, design experiments, analyze data, or contribute substantive content. All
527 technical contributions and conclusions are the authors’ own; all edits were reviewed and verified by
528 the authors. No confidential data beyond the manuscript text were provided, and this usage complies
529 with the ICLR Code of Ethics.

540 **References**

541

542 Agustsson, E. and Timofte, R. (2017). Ntire 2017 challenge on single image super-resolution: Dataset
543 and study. In *Proceedings of the IEEE conference on computer vision and pattern recognition
544 workshops*, pages 126–135.

545 Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E. (2020).
546 Botorch: A framework for bayesian optimization in pytorch. In *Advances in Neural Information
547 Processing Systems*, volume 33, pages 21524–21538.

548

549 Canatar, A., Bordelon, B., and Pehlevan, C. (2021). Spectral bias and task-model alignment explain
550 generalization in kernel regression and infinitely wide neural networks. *Nature Communications*,
551 12(1):2914.

552 Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. *Mathematics of
553 control, signals and systems*, 2(4):303–314.

554

555 Daulton, S., Wan, X., Eriksson, D., Balandat, M., Osborne, M. A., and Bakshy, E. (2022). Bayesian
556 optimization over discrete and mixed spaces via probabilistic reparameterization. In *Advances in
557 Neural Information Processing Systems (NeurIPS)*.

558

559 Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. (2020).
560 Mixed-variable bayesian optimization. In *International Joint Conference on Artificial Intelligence
561 (IJCAI)*.

562 Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. volume 20,
563 pages 1–21.

564

565 Feurer, M. and Hutter, F. (2019). Hyperparameter optimization: A review of the state-of-the-art. In
566 *Automated Machine Learning*, pages 3–33. Springer.

567

568 Franzen, R. (1999). Kodak lossless true color image suite.

569

570 Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal
571 approximators. *Neural networks*, 2(5):359–366.

572

573 Jayasundara, D., Zhao, H., Labate, D., and Patel, V. M. (2025). Mire: Matched implicit neural
574 representations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
575 Recognition*.

576

577 Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive
578 black-box functions. *Journal of Global optimization*, 13(4):455–492.

579

580 Kania, A., Mihajlovic, M., Prokudin, S., Tabor, J., Spurek, P., et al. (2024). Fresh: Frequency shifting
581 for accelerated neural representation learning. *arXiv preprint arXiv:2410.05050*.

582

583 Levoy, M. et al. (2000). The stanford 3d scanning repository. *URL* <http://graphics.stanford.edu/data/3Dscanrep>.

584

585 Li, Y., Mustikovela, S., Tewari, A., Thies, J., Wu, T., and Zollhofer, M. (2021). Neural fields in visual
586 computing and beyond. In *ACM SIGGRAPH 2021 Courses*, pages 1–100.

587

588 Liu, Z., Zhu, H., Zhang, Q., Fu, J., Deng, W., Ma, Z., Guo, Y., and Cao, X. (2024). Finer: Flexible
589 spectral-bias tuning in implicit neural representation by variable-periodic activation functions. In
590 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
591 2713–2722.

592

593 Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. *arXiv preprint
594 arXiv:1711.05101*.

595 Lukovic, M. K., Tian, Y., and Matusik, W. (2020). Diversity-guided multi-objective bayesian
596 optimization with batch evaluations. In *Advances in Neural Information Processing Systems
597 (NeurIPS)*.

594 Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger, A. (2019). Occupancy networks:
 595 Learning 3d reconstruction in function space. In *Proceedings of the IEEE/CVF conference on*
 596 *computer vision and pattern recognition*, pages 4460–4470.

597

598 Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. (2020).
 599 Nerf: Representing scenes as neural radiance fields for view synthesis. In *European conference on*
 600 *computer vision*, pages 405–421. Springer.

601 Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S. (2019). Deepsdf: Learning
 602 continuous signed distance functions for shape representation. In *Proceedings of the IEEE/CVF*
 603 *conference on computer vision and pattern recognition*, pages 165–174.

604

605 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
 606 N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
 607 In *Advances in neural information processing systems*, volume 32.

608 Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., and Courville,
 609 A. (2019). On the spectral bias of neural networks. [arXiv preprint arXiv:1806.08734](https://arxiv.org/abs/1806.08734).

610

611 Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A
 612 deep learning framework for solving forward and inverse problems involving nonlinear partial
 613 differential equations. *Journal of Computational Physics*, 378:686–707.

614

615 Ramasinghe, S. and Lucey, S. (2022). Beyond periodicity: Towards a unifying framework for
 616 activations in coordinate-mlps. In *European Conference on Computer Vision*, pages 142–158.
 617 Springer.

618

619 Rasmussen, C. E. and Williams, C. K. (2006). *Gaussian processes for machine learning*, volume 1.
 620 MIT press Cambridge.

621

622 Saragadam, V., LeJeune, D., Tan, J., Balakrishnan, G., Veeraraghavan, A., and Baraniuk, R. G. (2023).
 623 Wire: Wavelet implicit neural representations. In *Proceedings of the IEEE/CVF Conference on*
 624 *Computer Vision and Pattern Recognition*, pages 18507–18516.

625

626 Shah, K. and Sitawarin, C. (2023). Spder: Semiperiodic damping-enabled object representation.
 627 [arXiv preprint arXiv:2306.15242](https://arxiv.org/abs/2306.15242).

628

629 Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking the human out
 630 of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):148–175.

631

632 Sheikh, H. M. and Marcus, P. S. (2022). Bayesian optimization for multi-objective mixed-variable
 633 problems. [arXiv preprint arXiv:2201.12767](https://arxiv.org/abs/2201.12767).

634

635 Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., and Wetzstein, G. (2020a). Implicit neural
 636 representations with periodic activation functions. In *Advances in neural information processing*
 637 systems, volume 33, pages 7462–7473.

638

639 Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., and Wetzstein, G. (2020b). Metasdf:
 640 Meta-learning signed distance functions. In *Advances in Neural Information Processing Systems*,
 641 volume 33, pages 13713–13725.

642

643 Sitzmann, V., Zollhofer, M., and Wetzstein, G. (2019). Scene representation networks: Continuous
 644 3d-structure-aware neural scene representations. In *Advances in Neural Information Processing*
 645 *Systems*, volume 32.

646

647 Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine
 648 learning algorithms. In *Advances in neural information processing systems*, volume 25.

649

650 Szatkowski, M. et al. (2023). Hypernetworks build implicit neural representations of sounds. In
 651 *International Conference on Learning Representations (ICLR)*.

652

653 Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P. P., Barron, J. T., and Ng, R. (2021).
 654 Learned initializations for optimizing coordinate-based neural representations. In *Proceedings of*
 655 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 210–220.

648 Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ra-
649 mamoorthi, R., Barron, J. T., and Ng, R. (2020). Fourier features let networks learn high frequency
650 functions in low dimensional domains. In Advances in Neural Information Processing Systems,
651 volume 33, pages 7537–7547.

652 Wilson, J., Hutter, F., and Deisenroth, M. (2018). Maximizing acquisition functions for bayesian
653 optimization. In Advances in Neural Information Processing Systems (NeurIPS).

654 Xie, Y., Gu, J., Tancik, M., Chen, Q., Liu, S., Li, Y., Liu, L., Thies, J., Wu, T., Wu, K., et al. (2022).
655 Neural fields for visual computing. In ACM SIGGRAPH 2022 Courses, pages 1–100.

656 Zheng, Y., Wang, Z., Zhang, D., and Wang, H. (2024). Fourier reparameterized training for implicit
657 neural representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
658 Pattern Recognition.

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A OptiINR Algorithm

704 The full workflow for discovering optimal INR configurations is outlined in Algorithm 1. The process
 705 iteratively refines its model of the performance landscape and makes increasingly informed decisions.
 706 The procedure for maximizing the acquisition function is detailed in Algorithm 2.

708 **Algorithm 1** OptiINR: Bayesian Optimization for INR Configuration

709 1: **Input:** Objective function $f(\cdot)$, search space \mathcal{L} , initial samples N_{init} , total iterations T .
 710 2: **Initialize:** GP with mixed-variable product kernel $k(\cdot, \cdot)$.
 711 3: **Initialization Phase:**
 712 4: Sample initial configurations $\{\Lambda_i\}_{i=1}^{N_{\text{init}}}$ from \mathcal{L} using a space-filling design.
 713 5: Evaluate the objective function for each initial configuration: $\mathcal{D}_{\text{init}} = \{(\Lambda_i, f(\Lambda_i))\}_{i=1}^{N_{\text{init}}}$.
 714 6: **Optimization Loop:**
 715 7: **for** $t = N_{\text{init}}$ to $T - 1$ **do**
 716 8: Fit GP surrogate model to the current dataset \mathcal{D}_t .
 717 9: Find next configuration by maximizing Empirical Expected Improvement (see Algorithm 2):
 718 10: $\Lambda_{t+1} = \arg \max_{\Lambda \in \mathcal{L}} \hat{EI}(\Lambda | \mathcal{D}_t)$.
 719 11: Evaluate objective: $y_{t+1} = f(\Lambda_{t+1})$.
 720 12: Update dataset: $\mathcal{D}_{t+1} = \mathcal{D}_t \cup \{(\Lambda_{t+1}, y_{t+1})\}$.
 721 13: **end for**
 722 14: **Return:** $\Lambda^* = \arg \max_{(\Lambda, y) \in \mathcal{D}_T} y$.

725 **Algorithm 2** Empirical Expected Improvement (EEI) Computation

726 1: **Input:** Candidate configuration Λ , GP posterior from data $\mathcal{D}_t = \{(\mathbf{X}, \mathbf{y})\}$, best value y_{best} ,
 727 number of samples S .
 728 2: **Define:** GP prior $f_{\text{prior}} \sim \mathcal{GP}(0, k)$.
 729 3: **Pre-computation:**
 730 4: Compute matrix inverse $\mathbf{W} = [k(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}]^{-1}$.
 731 5: **Monte Carlo Estimation:**
 732 6: Initialize total improvement $I_{\text{total}} = 0$.
 733 7: **for** $s = 1$ to S **do**
 734 8: Draw a sample function from the GP prior: $f_{\text{prior}}^{(s)} \sim \mathcal{GP}(0, k)$.
 735 9: Evaluate prior sample at observed data points: $\mathbf{y}_{\text{prior}}^{(s)} = f_{\text{prior}}^{(s)}(\mathbf{X})$.
 736 10: Evaluate prior sample at candidate point: $y_{\text{cand}, \text{prior}}^{(s)} = f_{\text{prior}}^{(s)}(\Lambda)$.
 737 11: Generate posterior sample using Matheron's rule:
 738 12: $y_{\text{post}}^{(s)} = y_{\text{cand}, \text{prior}}^{(s)} + k(\Lambda, \mathbf{X}) \mathbf{W}(\mathbf{y} - \mathbf{y}_{\text{prior}}^{(s)})$.
 739 13: Calculate improvement for the sample: $I_s = \max(0, y_{\text{post}}^{(s)} - y_{\text{best}})$.
 740 14: Accumulate improvement: $I_{\text{total}} = I_{\text{total}} + I_s$.
 741 15: **end for**
 742 16: **Return:** Estimated EEI: $\hat{EI}(\Lambda) = I_{\text{total}}/S$.

743

744

745

746

747

748

749

750

751

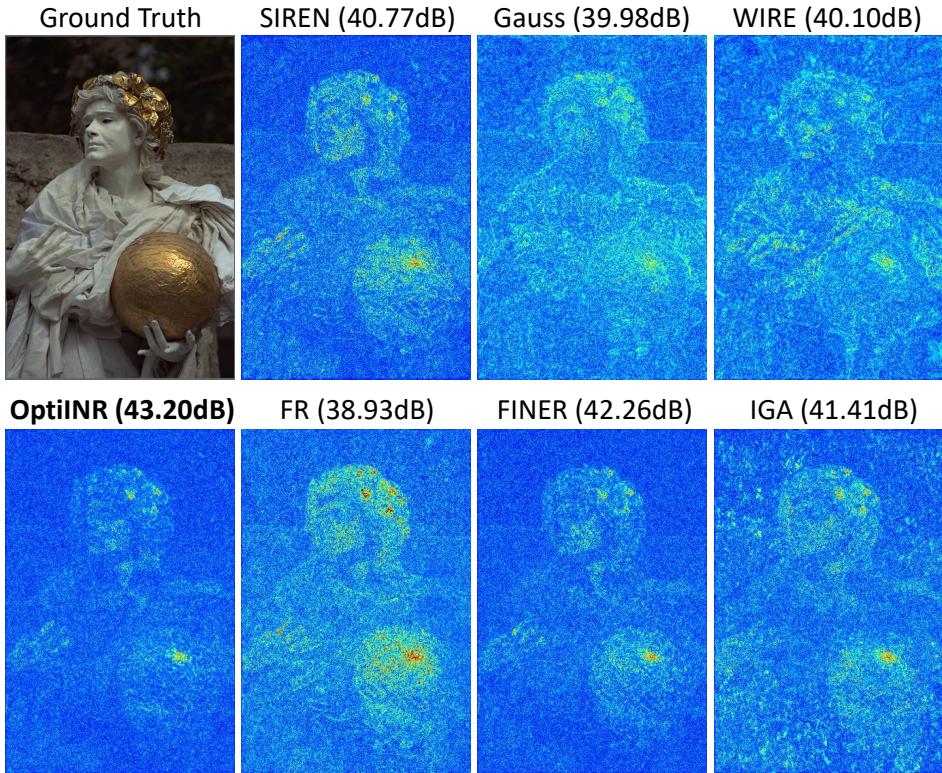
752

753

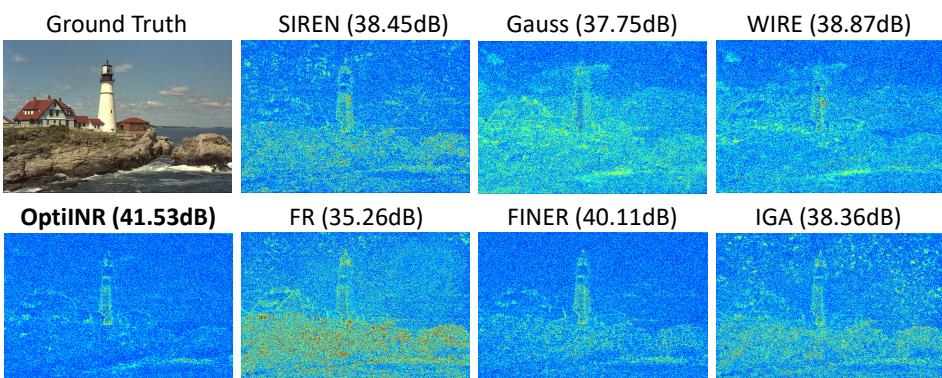
754

755

756 **B Error Fields of Image Representation**
 757
 758



784 Figure 3: Residual heatmap visualization on Kodak 17 with respect to the reference image. For each baseline,
 785 we compute per-pixel absolute differences to the reference (averaged over RGB), normalize them to [0, 1],
 786 and enhance visibility using gain (GAIN=16) and gamma ($\gamma=0.6$). The residuals are colorized using the jet
 787 colormap, where blue indicates low error and red indicates high error, and they are overlaid on the reconstructed
 788 image with an opacity of 0.85.



802 Figure 4: Residual heatmap visualization on Kodak 21 with respect to the reference image. For each baseline,
 803 we compute per-pixel absolute differences to the reference (averaged over RGB), normalize them to [0, 1],
 804 and enhance visibility using gain (GAIN=16) and gamma ($\gamma=0.6$). The residuals are colorized using the jet
 805 colormap, where blue indicates low error and red indicates high error, and they are overlaid on the reconstructed
 806 image with an opacity of 0.85.

810 **C Spectral Analysis of Audio Reconstruction**
811

Figure 5: Columns show: (i) waveform, (ii) STFT magnitude (in dB), and (iii) signed spectral residuals. Rows (top to bottom) correspond to: Ground Truth, OptiINR, SIREN, Gauss, WIRE, FR, FINER, and IGA. The experiment is conducted on the TwoSpeakers dataset. The STFT was computed using a Hann window with a frame length of 1024 samples and a hop size of 256 samples, and results are visualized with a magma colormap. Residual maps are obtained by subtracting the reference STFT (in dB) from the test STFT (in dB), followed by 99.5% percentile clipping, a gain of 1.0, and gamma correction of 0.9. Residual heatmaps use a zero-centered diverging colormap, where blue indicates regions where the reference has stronger energy and red indicates regions where the test signal has stronger energy.

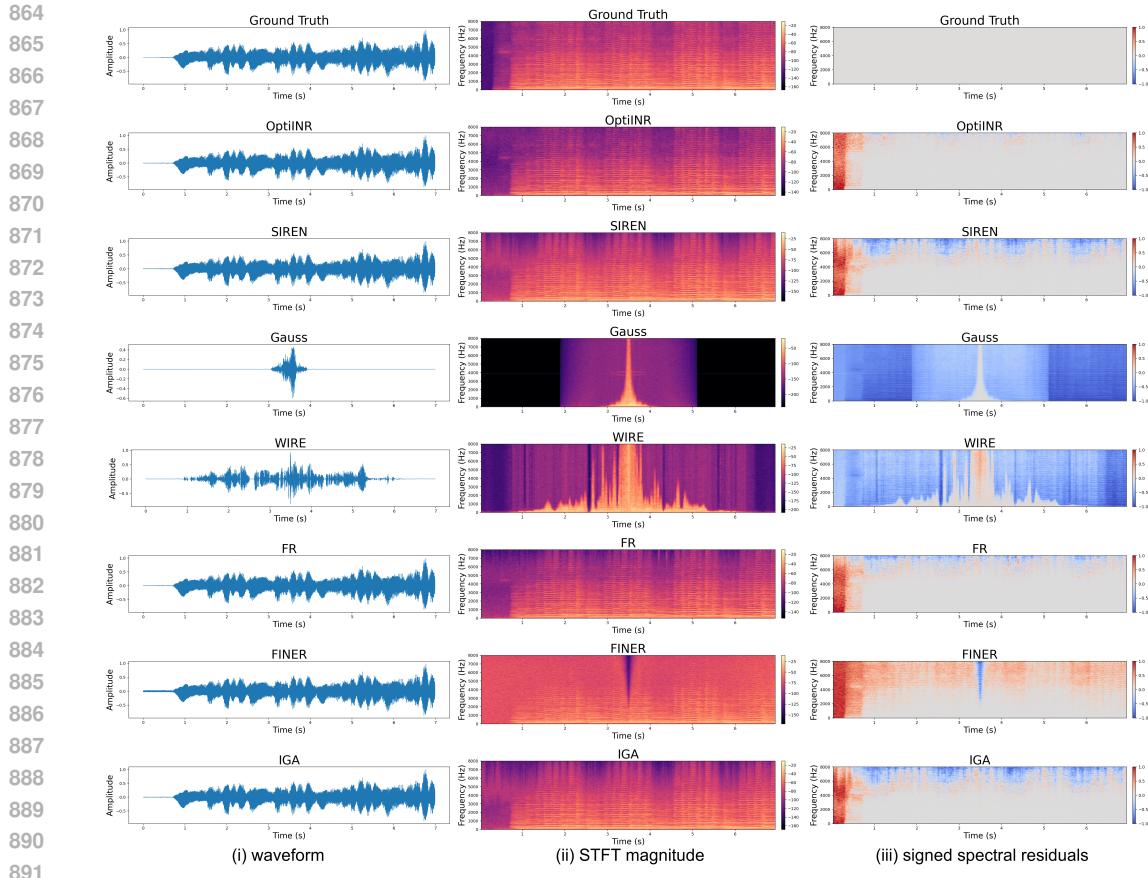


Figure 6: Same setting as Fig. 5, but on the Bach dataset.

918
919
920
921
922
923
924
925
926
927

Ground Truth SIREN (0.9881) Gauss (0.9934) WIRE (0.9924)



928
929
930
931
932
933
934
935
936
937

OptiINR (0.9936) FINER (0.9897) FR (0.9919) IGA (0.9919)

Figure 7: Visualization of 3D dataset Dragon

938
939
940
941
942
943
944
945
946
947
948
949

Ground Truth SIREN (0.9778) Gauss (0.9871) WIRE (0.9861)

950
951
952
953
954
955
956
957
958

OptiINR (0.9884) FINER (0.9804) FR (0.9650) IGA (0.9834)

Figure 8: Visualization of 3D dataset Thai Statue

959
960
961
962
963
964
965
966
967
968
969
970
971

972 **D NEURAL RADIANCE FIELDS**
973

974 **Dataset and Experimental Setup.** We evaluate OptiINR
975 on the Lego scene from the synthetic NeRF dataset using
976 the vanilla implementation of Mildenhall et al. (2020).
977 All methods use the original 8-layer, 256-width MLP.
978 Following standard NeRF practice, we apply positional
979 encoding (PE) with 10 frequencies for 3D coordinates
980 (`multires=10`) and 4 frequencies for view directions
981 (`multires_views=4`).

982 To ensure a fair comparison across INR activations, we
983 unify the optimizer settings by training all baselines with
984 Adam at a fixed learning rate of 5×10^{-5} for 30,000 iterations while keeping the sampling pipeline,
985 ray-marching hyperparameters, and dataset splits unchanged (100 train views, 13 validation views,
986 25 test views). ReLU uses the standard NeRF positional encoding, while other INR activations follow
987 the established practice in INR reconstruction benchmarks and are evaluated both without PE (their
988 default setting) and under OptiINR’s BO-driven configuration search. OptiINR performs BO over the
989 configuration space consisting of PE usage, per-layer activation families and initialization parameters,
990 and layerwise learning rates.

991 **Quantitative Results.** Table 4 reports PSNR on held-out test views. When trained with unified
992 settings, ReLU+PE reaches 25.05 dB, substantially stronger than the classical INR baselines without
993 PE (SIREN 23.87 dB, Gauss 22.25 dB, FINER 24.25 dB, and WIRE 24.63 dB). This aligns with prior
994 observations that PE is essential for ReLU-based NeRFs but does not trivially benefit INR activations
995 designed to encode high frequencies directly.

996 OptiINR achieves 25.63 dB, outperforming the strongest baseline (WIRE, 24.63 dB) by 1.00 dB and
997 surpassing the improved ReLU+PE baseline by 0.58 dB. In NeRF benchmarks—where architectural
998 or sampling changes typically yield only 0.3–0.5 dB improvements—this 0.6–1.0 dB margin obtained
999 purely from configuration optimization is substantial. These results indicate that activation and
1000 initialization choices are a critical yet under-explored component of radiance-field modeling.

1001 **Configuration Adaptation Analysis.** The configurations discovered by OptiINR show a consistent
1002 pattern across trials. Early layers tend to adopt smoother or band-limited activations to improve
1003 coarse geometry stability under volumetric rendering, whereas deeper layers select more oscillatory
1004 or directional activations (e.g., SIREN- or WIRE-like families) to capture fine view-dependent effects.
1005 BO also identifies a non-uniform layerwise learning-rate pattern, assigning larger rates to shallow
1006 layers for rapid global structure fitting and smaller rates to deeper layers for stable refinement of
1007 high-frequency appearance. These adaptations arise automatically without modifying the NeRF
1008 architecture or sampling process, illustrating OptiINR’s ability to uncover non-trivial, task-dependent
1009 INR configurations.

1010
1011 Table 4: PSNR comparison on NeRF
1012 reconstruction.

Method	PSNR \uparrow
ReLU+PE	25.05
SIREN	23.87
FINER	24.25
Gauss	22.25
WIRE	24.63
OptiINR	25.63

1026 **E PDE Reconstruction: Shear Flow**
 1027

1028 **Dataset and Experimental Setup.** To evaluate OptiINR on physics-based signals, we conduct a
 1029 PDE reconstruction experiment using the `shear_flow` dataset from The Well benchmark. Each
 1030 simulation provides time-resolved tracer, pressure, and velocity fields. Following our preprocessing
 1031 pipeline, we extract only the tracer field, preserve all temporal steps, and spatially downsample
 1032 each trajectory to 64×64 using bilinear interpolation. This yields spatiotemporal tensors of shape
 1033 $(51, 64, 64)$ for each trajectory.

1034 Although no PDE supervision or physics constraints are used during training, the underlying tracer
 1035 obeys the advection–diffusion equation

1036
$$\partial_t s - D \Delta s = -u \cdot \nabla s,$$

1038 where $u = (u_x, u_y)$ is the velocity field and D is a diffusivity parameter determined by the Reynolds
 1039 and Schmidt numbers. This PDE generates sharp advective fronts and filament structures, making the
 1040 tracer field a strong benchmark for INR expressiveness.

1041 We reconstruct the full spatiotemporal tracer field from a single trajectory (trajectory #30) using the
 1042 INR formulation

1043
$$f_\theta : (t, x, y) \in \mathbb{R}^3 \rightarrow \mathbb{R},$$

1044 where normalized coordinates (t, x, y) are mapped to tracer values. All baselines are trained with
 1045 Adam at a unified learning rate of 5×10^{-4} for 1,000 iterations. As is standard in INR PDE
 1046 reconstruction, baseline activations operate without positional encoding, while OptiINR performs BO
 1047 over activation families, initialization parameters, positional encoding usage, and layerwise learning
 1048 rates. No PDE equation, solver structure, or physics-based loss is used—this is a pure function
 1049 reconstruction task testing the representational capacity of INRs.

1050 **Quantitative Results.** Table 5 shows PSNR for
 1051 reconstructing the full $(51, 64, 64)$ spatiotemporal
 1052 tracer field. SIREN provides the strongest baseline at
 1053 53.96 dB, followed by FINER (51.26 dB) and WIRE
 1054 (43.37 dB). Gaussian activations perform poorly due
 1055 to the sharp advective structures produced by the
 1056 PDE, achieving only 35.74 dB. OptiINR reaches
 1057 57.02 dB, surpassing the best baseline by 3.06 dB and
 1058 outperforming all periodic, Gaussian, and wavelet-
 1059 inspired activations by a large margin.

Table 5: PSNR on PDE tracer reconstruction
 (Shear Flow, trajectory #30).

Method	PSNR \uparrow
SIREN	53.96
FINER	51.26
Gauss	35.74
FINER++ (Gauss)	41.09
WIRE	43.37
OptiINR	57.02

1060 **Configuration Adaptation Analysis.** The configurations discovered by OptiINR display a consistent
 1061 adaptation to the dynamics of shear flow. Early layers favor smooth or band-limited activations for
 1062 stable representation of global temporal evolution, while deeper layers select periodic activations
 1063 (SIREN, sinusoidal) to capture sharp advective interfaces and filament structures. BO also discovers
 1064 a non-uniform layerwise learning-rate schedule, assigning larger rates to early temporal layers and
 1065 smaller rates to deeper layers, enabling efficient representation of both coarse transport and fine-scale
 1066 gradients. These hybrid space–time activation patterns emerge automatically, explaining the significant
 1067 performance gains achieved by OptiINR without modifying the architecture or incorporating
 1068 PDE constraints.

1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 F Optimization Strategy Comparison

1081
 1082 To further isolate the contribution of OptiINR from the Bayesian optimization procedure itself, we
 1083 compare OptiINR against three alternative optimization strategies on the Kodak dataset: (1) global
 1084 grid search, (2) global random search, and (3) FreSh (Kania et al., 2024), a recent INR optimization
 1085 method that tunes only the frequency parameters of SIREN networks. All methods operate over the
 1086 same global configuration space introduced by OptiINR—including per-layer activation families,
 1087 their frequency/scale parameters, per-layer learning rates, and positional-encoding usage—except
 1088 for FreSh, which is constrained to tuning only the SIREN frequency. To ensure fairness, grid search
 1089 and random search are allocated the same 130 trials used by OptiINR (30 Sobol warmup + 100 BO
 1090 iterations), while FreSh is evaluated once as in its original formulation.

1091 **Quantitative Results.** Across all 24 images, OptiINR achieves the highest average PSNR (41.38 dB), outperforming grid search (41.02 dB), random search (41.23 dB), and significantly exceeding FreSh (37.41 dB). Notably, grid search and random search—when equipped with OptiINR’s configuration space—already surpass FreSh by a large margin. This highlights a key insight: the search space matters more than the optimizer. FreSh optimizes only the SIREN frequency parameter, whereas OptiINR identifies that the decisive factor in INR performance is the per-layer choice of activation families, which no prior work has attempted to optimize.

1104
 1105 **Compute and efficiency analysis.** Reviewers also asked about time duration and computational
 1106 resources. We therefore quantify the training and search cost of each strategy.

1107
 1108 **Cost of a single INR training run.** For the standard INR used in all Kodak experiments—a
 1109 3-layer MLP with 256 hidden units, trained for 10,000 iterations on a 512×768 image—the total
 1110 computation is on the order of

$$1111 \text{FLOPs} \approx 4.0 \times 10^{15},$$

1112 i.e., a petaFLOP-scale run dominated by full forward/backward passes over all 393k pixels per
 1113 iteration. This cost is identical across all optimizers.

1114
 1115 **Total compute under T trials.** All global optimizers except FreSh perform T independent INR
 1116 trainings. Thus the total compute is

$$1117 \text{Total FLOPs} \approx T \times 4.0 \times 10^{15}.$$

1118 For example, with $T = 130$ (30 Sobol + 100 BO iterations), this corresponds to 5.2×10^{17} FLOPs.
 1119 FreSh, by contrast, performs only one training ($\approx 4.0 \times 10^{15}$ FLOPs).

1120
 1121 **BO overhead is negligible.** The Bayesian Optimization overhead comes from fitting a Gaussian
 1122 Process surrogate and optimizing the acquisition function. This cost scales as

$$1123 O(T^3) \text{ (approximately } T^3 \text{ FLOPs).}$$

1124 Even for $T = 130$, this is only $\sim 2.2 \times 10^6$ FLOPs:

$$1125 2.2 \times 10^6 \ll 4.0 \times 10^{15} \ll T \times 4.0 \times 10^{15}.$$

1126 Thus GP fitting is more than $10^9 \times$ cheaper than a single INR training, and over $10^{11} \times$ cheaper than
 1127 the full T -run budget. In practice, BO, grid search, and random search have identical compute cost
 1128 for the same number of INR evaluations.

1129
 1130 **Parallelization advantage.** A practical advantage of OptiINR is that BO is naturally parallelizable:
 1131 candidate configurations suggested by the acquisition function can be evaluated (independently
 1132 trained) on different GPUs. Since BO overhead is negligible, the wall-clock time scales as

$$1133 \text{Time} \approx \frac{T}{K} \times (\text{time of one INR training}),$$

1134 Table 7: Comparison of computational cost for different global optimization strategies. T denotes the
 1135 number of INR trainings performed by each optimizer.

Method	# Trials	Total FLOPs	Additional overhead
Grid Search	T	$T \cdot 4.0 \times 10^{15}$	None
Random Search	T	$T \cdot 4.0 \times 10^{15}$	None
FreSh (Kania et al., 2024)	1	4.0×10^{15}	None
OptiINR (BO)	T	$T \cdot 4.0 \times 10^{15}$	$\approx T^3$ FLOPs (negligible)

1143
 1144 where K is the number of GPUs. Thus, OptiINR enjoys nearly linear acceleration with multi-GPU
 1145 systems. Grid search and random search benefit only from trivial parallel trial execution.
 1146

1147 **Interpretation.** These results demonstrate that OptiINR’s contribution extends well beyond the
 1148 use of Bayesian optimization itself. Even simple global search strategies perform strongly once
 1149 they are granted access to the activation-configuration space introduced in this work. Bayesian
 1150 Optimization further improves performance by efficiently navigating this high-dimensional mixed
 1151 discrete-continuous search space, achieving the best trade-off between accuracy and sample efficiency
 1152 under a fixed compute budget. Because BO’s overhead is negligible and trivially parallelizable,
 1153 OptiINR can fully utilize multi-GPU environments, reducing wall-clock time almost linearly with the
 1154 number of accelerators.

1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 G Theoretical Analysis of OptiINR

1190 Our work is predicated on the claim that the heuristic-driven configuration of Implicit Neural
 1191 Representations can be replaced by a principled, globally-aware optimization process. This section
 1192 provides the theoretical underpinnings for our framework, OptiINR. We first formalize the INR
 1193 configuration landscape and prove the necessity of a global search strategy over greedy alternatives.
 1194 We then connect the configuration problem to the spectral properties of the network’s Neural Tangent
 1195 Kernel (NTK), providing a deeper understanding of what is being optimized. Finally, we establish
 1196 the theoretical soundness and computational feasibility of our Bayesian optimization approach with
 1197 formal proofs.

1198 G.1 The Global Nature of the INR Configuration Problem

1200 We begin by formally defining the problem. Let \mathcal{L} be the high-dimensional, mixed-variable space
 1201 of all possible network configurations, as defined in Section 3.2. Our objective is to find an optimal
 1202 configuration Λ^* that maximizes a performance metric $f(\Lambda)$, such as the peak signal-to-noise ratio
 1203 (PSNR) on a validation set:

$$1204 \Lambda^* = \arg \max_{\Lambda \in \mathcal{L}} f(\Lambda)$$

1205 The function $f : \mathcal{L} \rightarrow \mathbb{R}$ is a black-box function; we have no analytical expression for it, and
 1206 its evaluation requires instantiating and training an entire INR model, which is computationally
 1207 expensive. Furthermore, the function is highly non-convex due to the complex, non-linear interactions
 1208 between the architectural choices for each layer. The optimal choice of activation and initialization
 1209 for a given layer l is deeply conditioned on the choices made for all other layers.

1210 **Proposition G.1.** *A greedy, layer-wise optimization strategy for INR configuration is not guaranteed*
 1211 *to find the globally optimal network configuration Λ^* .*

1213 *Proof.* Let the full configuration be $\Lambda = (\lambda_1, \dots, \lambda_L)$. A greedy strategy solves a sequence of local
 1214 problems:

$$1215 \lambda_l^* = \arg \max_{\lambda_l} f(\lambda_l | \lambda_1^*, \dots, \lambda_{l-1}^*) \quad \text{for } l = 1, \dots, L$$

1216 Let the solution found by this greedy procedure be $\Lambda_G = (\lambda_1^*, \dots, \lambda_L^*)$. To show that this procedure
 1217 is not globally optimal, it is sufficient to construct a counterexample. Consider a simple 2-layer
 1218 network where the configuration space for each layer consists of two choices, A and B , such that
 1219 $\lambda_l \in \{A, B\}$. Let the performance function $f(\lambda_1, \lambda_2)$ be defined by the following payoff matrix:

		$f(\lambda_1, \lambda_2)$	$\lambda_2 = A$	$\lambda_2 = B$
		$\lambda_1 = A$	12	5
λ_1	$\lambda_1 = B$	10	8	

1221 The greedy procedure first optimizes for layer 1. Assuming it considers an expected performance over
 1222 the choices for layer 2, it would compare the expected performance of choosing A for layer 1 (average
 1223 is $(12 + 5)/2 = 8.5$) versus choosing B (average is $(10 + 8)/2 = 9$). The greedy choice is $\lambda_1^* = B$.
 1224 Fixing this, it then optimizes for layer 2: $\arg \max_{\lambda_2 \in \{A, B\}} f(B, \lambda_2)$, which yields $\lambda_2^* = A$. The
 1225 greedy solution is thus $\Lambda_G = (B, A)$ with a performance of $f(B, A) = 10$. However, the true
 1226 global optimum is $\Lambda^* = (A, A)$ with a performance of $f(A, A) = 12$. Since $f(\Lambda_G) < f(\Lambda^*)$, this
 1227 counterexample demonstrates that due to the interdependencies between layers, a locally optimal
 1228 choice can preclude a globally optimal solution. Therefore, a globally-aware search strategy, as
 1229 employed by OptiINR, is necessary. \square

1234 G.2 Connecting Configuration to Spectral Properties via the Neural Tangent Kernel

1235 To understand what is being optimized at a more fundamental level, we turn to the Neural Tangent
 1236 Kernel (NTK). The NTK provides a powerful theoretical lens for analyzing the training dynamics
 1237 of infinitely wide neural networks, connecting them to kernel regression. The NTK, $K(\mathbf{x}, \mathbf{x}'; \theta)$,
 1238 describes the inner product of gradients with respect to the network parameters θ . Crucially, the
 1239 training dynamics of a network are governed by the spectral properties of its NTK; specifically,
 1240 the convergence rate for different frequency components of a target function is determined by the
 1241 corresponding eigenvalues of the NTK matrix.

1242 **Claim 1.** *The INR configuration vector Λ implicitly defines an effective Neural Tangent Kernel, K_Λ ,
 1243 at initialization. The optimization of the performance metric $f(\Lambda)$ can be viewed as a proxy for
 1244 optimizing the properties of this induced kernel to best match the spectral characteristics of the target
 1245 signal g .*

$$\max_{\Lambda \in \mathcal{L}} f(\Lambda) \iff \max_{\Lambda \in \mathcal{L}} \text{Quality}(K_\Lambda, g)$$

1248 **Theorem G.2.** *The choice of activation function σ_l in the configuration tuple λ_l fundamentally alters
 1249 the functional form and spectral properties of the resulting Neural Tangent Kernel K_Λ .*

1250 *Proof.* The NTK of a multi-layer perceptron is defined recursively. For an L -layer MLP, the kernel at
 1251 the output layer is given by:

$$K_L(\mathbf{x}, \mathbf{x}') = K_{L-1}(\mathbf{x}, \mathbf{x}') + f_{L-1}(\mathbf{x}) \cdot f_{L-1}(\mathbf{x}')$$

1255 and for the hidden layers $l = 1, \dots, L-1$:

$$K_l(\mathbf{x}, \mathbf{x}') = K_{l-1}(\mathbf{x}, \mathbf{x}') \cdot \mathbb{E}[\sigma'_l(a_l(\mathbf{x}))\sigma'_l(a_l(\mathbf{x}'))] + f_{l-1}(\mathbf{x}) \cdot f_{l-1}(\mathbf{x}')$$

1258 where $a_l(\cdot)$ are the pre-activations at layer l . The expectation is taken over the random initialization
 1259 of the weights. The term $\mathbb{E}[\sigma'_l(a_l(\mathbf{x}))\sigma'_l(a_l(\mathbf{x}'))]$ directly incorporates the derivative of the activation
 1260 function σ_l into the kernel's definition. If σ_l is a periodic function like $\sin(\omega_0 x)$, its derivative
 1261 is $\omega_0 \cos(\omega_0 x)$, which is also periodic. This imparts a periodic structure to the NTK, making it
 1262 well-suited for signals with strong periodic components. If σ_l is a localized function like a Gabor
 1263 wavelet, its derivative is also localized, leading to an NTK that excels at representing signals with
 1264 localized features. Since OptiINR's search space includes a categorical choice over these different
 1265 activation families for each layer, it is directly searching for a network configuration that induces a
 1266 kernel whose spectral properties are optimally aligned with the target signal. The empirical results
 1267 in Figure 5, where the discovered configuration for an audio signal accurately represents its full
 1268 frequency spectrum, provide strong evidence for this claim. \square

1269 G.3 Theoretical Guarantees of the OptiINR Framework

1271 Having established the nature of the optimization problem, we now justify our choice of solver.
 1272 Bayesian optimization is theoretically guaranteed to converge to the global optimum of a function,
 1273 provided the surrogate model's kernel is valid.

1274 **Lemma G.3.** *A function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a valid positive semi-definite (PSD) kernel if for any
 1275 finite set of points $\{x_1, \dots, x_n\} \subset \mathcal{X}$, the Gram matrix K with entries $K_{ij} = k(x_i, x_j)$ is positive
 1276 semi-definite.*

1277 **Theorem G.4.** *The composite product kernel used in OptiINR, $k(\Lambda, \Lambda') = k_{\text{cont}}(\Lambda_c, \Lambda'_c) \times$
 1278 $k_{\text{cat}}(\Lambda_{\text{cat}}, \Lambda'_{\text{cat}})$, is a valid positive semi-definite kernel.*

1280 *Proof.* The proof relies on the Schur product theorem.

- 1283 1. The Matérn kernel, k_{cont} , is a known valid PSD kernel. Therefore, for any set of continuous
 1284 configurations $\{\Lambda_{c,1}, \dots, \Lambda_{c,n}\}$, the Gram matrix K_{cont} is PSD.
- 1285 2. The Squared Exponential kernel, used for k_{cat} on the one-hot encoded space, is also a known
 1286 valid PSD kernel. Thus, for any set of categorical configurations $\{\Lambda_{\text{cat},1}, \dots, \Lambda_{\text{cat},n}\}$, the
 1287 Gram matrix K_{cat} is PSD.
- 1289 3. The Schur product theorem states that if A and B are two $n \times n$ PSD matrices, then their
 1290 element-wise (Hadamard) product, $(A \circ B)_{ij} = A_{ij}B_{ij}$, is also a PSD matrix.
- 1291 4. The Gram matrix of our composite kernel, K_{comp} , has entries $K_{\text{comp},ij} = k(\Lambda_i, \Lambda_j) =$
 1292 $k_{\text{cont}}(\Lambda_{c,i}, \Lambda_{c,j}) \times k_{\text{cat}}(\Lambda_{\text{cat},i}, \Lambda_{\text{cat},j})$. This is exactly the Hadamard product of the Gram
 1293 matrices K_{cont} and K_{cat} .
- 1295 5. Since K_{cont} and K_{cat} are PSD, their Hadamard product $K_{\text{comp}} = K_{\text{cont}} \circ K_{\text{cat}}$ is also
 1296 PSD.

1296 Therefore, by the definition in Lemma 1, our composite product kernel is a valid PSD kernel. This
 1297 ensures that our GP surrogate is a well-defined probabilistic model over the mixed-variable space,
 1298 satisfying the preconditions for the convergence guarantees of Bayesian optimization. \square
 1299

1300 **Remark.** *The established validity of our kernel ensures that as the number of evaluations grows,*
 1301 *the posterior variance of the GP will concentrate around the true function $f(\Lambda)$, and an acquisition*
 1302 *function like Expected Improvement will asymptotically guide the search towards the global optimum*
 1303 *Λ^* . This provides a strong theoretical justification for the design of OptiINR.*

1304 G.4 Computational Feasibility via Matheron’s Rule

1305 A theoretical guarantee of convergence is only meaningful if the method is computationally feasible.
 1306 A potential bottleneck in our framework is the calculation of the Empirical Expected Improvement,
 1307 which requires drawing many samples from the GP posterior. Naively generating S samples at a
 1308 candidate point requires a Cholesky decomposition of the posterior covariance, a process that does
 1309 not scale well. We overcome this challenge by leveraging Matheron’s Rule for efficient posterior
 1310 sampling.

1311 **Theorem G.5.** *Let $f \sim \mathcal{GP}(0, k)$ be a GP prior and let $\mathcal{D}_n = \{(\mathbf{X}, \mathbf{y})\}$ be a set of n observations.*
 1312 *A sample from the posterior process, $f_{post}(\cdot)$, can be expressed in distribution as:*

$$1314 \quad 1315 \quad f_{post}(\cdot) \stackrel{d}{=} f_{prior}(\cdot) + k(\cdot, \mathbf{X})[k(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}]^{-1}(\mathbf{y} - f_{prior}(\mathbf{X}))$$

1316 where $f_{prior} \sim \mathcal{GP}(0, k)$ is a single sample drawn from the prior.

1317 *Proof.* The proof follows from the properties of conditioning in multivariate Gaussian distributions.
 1318 Let $f_{prior}(\cdot)$ be a draw from the prior GP. The joint distribution of the prior at the observed points \mathbf{X}
 1319 and a new point Λ is Gaussian:

$$1321 \quad 1322 \quad \begin{pmatrix} f_{prior}(\mathbf{X}) \\ f_{prior}(\Lambda) \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} k(\mathbf{X}, \mathbf{X}) & k(\mathbf{X}, \Lambda) \\ k(\Lambda, \mathbf{X}) & k(\Lambda, \Lambda) \end{pmatrix} \right)$$

1324 The posterior distribution of $f(\Lambda)$ given the noisy observations \mathbf{y} is also Gaussian. Matheron’s rule
 1325 provides a constructive way to sample from this posterior by correcting a prior sample. The correction
 1326 term, $k(\cdot, \mathbf{X})[k(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}]^{-1}(\mathbf{y} - f_{prior}(\mathbf{X}))$, adjusts the prior sample $f_{prior}(\cdot)$ based on the
 1327 residual between the actual observations \mathbf{y} and the prior’s predictions at those points, $f_{prior}(\mathbf{X})$.
 1328 This adjustment ensures that the resulting sample path $f_{post}(\cdot)$ is a valid draw from the true posterior
 1329 distribution. \square

1330 **Proposition G.6.** *Let n be the number of observed data points and S be the number of poste-*
 1331 *rior samples required. The computational complexity of naive posterior sampling via Cholesky*
 1332 *decomposition is $\mathcal{O}(n^3 + S \cdot n^2)$. In contrast, the complexity of sampling using Matheron’s rule is*
 1333 *$\mathcal{O}(n^3 + S \cdot (T_{prior} + n^2))$, where T_{prior} is the cost of sampling from the GP prior.*

1334 *Proof.* Naive sampling requires computing the posterior covariance matrix and its Cholesky decom-
 1335 position, which costs $\mathcal{O}(n^3)$. Each of the S samples then requires a matrix-vector product with the
 1336 Cholesky factor, costing $\mathcal{O}(n^2)$. The total complexity is thus $\mathcal{O}(n^3 + S \cdot n^2)$.

1338 Using Matheron’s rule, the expensive matrix inversion, $[k(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}]^{-1}$, has a complexity of
 1339 $\mathcal{O}(n^3)$ but needs to be computed only once per iteration of the Bayesian optimization loop. Subse-
 1340 quently, generating each of the S posterior samples requires drawing from the prior (cost T_{prior})
 1341 and performing matrix-vector products, which are $\mathcal{O}(n^2)$. The total complexity is thus amortized,
 1342 making the robust estimation of the acquisition function computationally practical. This ensures that
 1343 our theoretically sound framework is also an efficient and viable tool for practical applications. \square

1344
 1345
 1346
 1347
 1348
 1349