
FLORA: GNNs as Predictors of Agentic Workflow
Performances

Yuanshuo Zhang
Shanghai Jiao Tong University

BIGAI
yuanshuo.z@sjtu.edu.cn

Yuchen Hou
Shanghai Jiao Tong University

Bohan Tang
University of Oxford

Shuo Chen
BIGAI

Muhan Zhang
Peking University

Xiaowen Dong
University of Oxford

Siheng Chen ∗

Shanghai Jiao Tong University
sihengc@sjtu.edu.cn

Abstract
Agentic workflows invoked by Large Language Models (LLMs) have achieved
remarkable success in handling complex tasks. However, optimizing such work-
flows is costly and inefficient due to extensive invocations of LLMs. To fill
this gap, this paper formulates agentic workflows as computational graphs and
proposes FLORA (workFLOw gRAph neural networks), which are variants
of Graph Neural Networks (GNNs), as efficient predictors of agentic work-
flow performances, thus avoiding repeated LLM invocations for evaluation. To
empirically ground the effectiveness and efficiency of FLORA, we construct
FLORA-Bench, a unified platform for training and benchmarking predictors
of agentic workflow performances. With extensive experiments, we arrive at
the following conclusions: (1) FLORA is a simple yet effective method to accu-
rately predict agentic workflow performances, and (2) it demonstrates significant
practical benefits, achieving up to a 125× speedup with minimal performance
loss. These conclusions support new applications of GNNs and a novel direction
towards automating agentic workflow optimization. All codes, models, and data
will be public.

1 Introduction
The rise of Large Language Models (LLMs) and LLM-based agents have showcased their ability
to execute complex tasks across various domains such as code generation [1, 12, 19], problem solv-
ing [38, 40], reasoning [27, 34, 36], and decision making [20, 28]. Building upon these capabilities,
agentic workflows, which leverage task decomposition and communications within multi-agent
systems, have unlocked the potential to tackle more challenging tasks [12, 15, 24, 44]. Notably,
OpenAI’s five-level framework of Artificial General Intelligence (AGI) and Artificial Superhuman
Intelligence (ASI) positions such agentic workflows as vital path to transitioning from narrow AI
(Level 1-2) to organizational-agentic superintelligence (Level 3-5), where systems autonomously
manage large-scale agents. Despite the immense potential of agentic workflows, reliance on manual
design limits their ability to achieve the self-evolving nature of AGI and ASI. Therefore, automating
agentic workflow optimization is increasingly important as an emerging research topic [17].

To automate the optimization process, researchers have conceptualized agentic workflows as opti-
mizable graphs, where nodes represent agents handling specific subtasks and edges signify the task

∗Corresponding Author

Zhang et al., FLORA: GNNs as Predictors of Agentic Workflow Performances . Proceedings of the Fourth
Learning on Graphs Conference (LoG 2025), PMLR 269, Hybrid Event, December 10–12, 2025.

Submission Guidelines and Formatting Instructions for LoG Conference 2025

dependencies and collaborative interactions as shown in fig. 1. While existing methods have made
strides by optimizing these graphs to improve system performance [19, 27, 42–44, 47], they share a
critical limitation: the optimization process heavily relies on extensive LLM invocations to execute
workflows and evaluate their performance. This dependence introduces significant computational,
temporal, and financial overhead, making the process costly and inefficient in real-world applications.
Therefore, a necessary advancement lies in developing predictors capable of evaluating agentic
workflows without costly LLM invocations.

We propose FLORA (workFLOw gRAph neural networks), Graph Neural Networks (GNNs) variants,
as efficient predictors of agentic workflow performances. GNNs effectively capture graph-level infor-
mation by leveraging a message-passing mechanism to encode node attributes and edge relationships,
thereby generating comprehensive graph representations [8, 9, 18, 39]. Compared to LLMs, GNNs
require significantly fewer parameters, facilitating efficient operation on local hardware, and have
demonstrated success in high-throughput screening for rapid evaluation in drug discovery, material
design, and biological research [7, 37]. Inspired by these capabilities, we propose utilizing GNNs to
evaluate agentic workflow performances without execution, thus reducing the substantial computa-
tional and financial costs of LLM invocations. By representing agentic workflows as optimizable
graphs, GNNs can efficiently predict their performances, which then serve as rewards to guide the
optimization process. This method not only addresses inefficiencies in existing agentic workflow
optimization but also introduces a novel and impactful application of GNNs in the development of
LLM-based multi-agent systems.

clarify task

generate code

generate code

select a solution
test the code

fix the bug

Agentic workflow

1

2

3

4 5

6

Computational graph

node features

Figure 1: An illustration of an agentic workflow and its corresponding computational graph. Nodes
are agents handling subtasks and edges are the task dependencies.

To support our proposed method and encourage technological iterations in the future, we construct the
FLORA-Bench (workFLOw gRAph benchmark), a unified platform for training and benchmarking
predictors of agentic workflow performances. Key features of FLORA-Bench include:

• Large scale with high quality. The entire benchmark consists of 600k workflow-task pairs
and their binary labels denoting success or failure. Moreover, we control the quality of tasks and
workflows, as well as inference results by a filtering process. This process ensures the high quality of
our data, thereby guaranteeing the reliability and robustness of our experimental conclusions. More
details are in section 4.

• Dual evaluation metrics. We employ 2 evaluation metrics in our benchmark: i) accuracy, which
evaluates the correctness of predictions against the ground truth, reflecting the model’s ability to
assess absolute workflow quality; and ii) utility, which assesses the consistency between the predicted
workflow rankings and the ground truth rankings, focusing on the model ability in determining the
relative quality order of different workflows.

By conducting comprehensive experiments, we make the following key contributions:

• Validate the ability of existing GNNs to predict agentic workflow performances. We implement
FLORA using existing GNNs. Results show that they are effective and efficient predictors of agentic
workflow performances compared to alternative predictors, which serves as an experimental ground
for FLORA and subsequent research.

• Find a new application and drive the technological advancements of GNNs. We explore
applying GNNs as predictors of agentic workflow performances, which is an under-explored area.
Moreover, while existing GNNs are promising, there is a pressing need to develop GNNs with

2

Submission Guidelines and Formatting Instructions for LoG Conference 2025

enhanced generalization capabilities, enabling them to perform effectively across diverse domains.
Our FLORA-Bench serves as a fundamental platform for this process.

• Advance an efficient paradigm for agentic workflow optimization. We propose a shift in agentic
workflow optimization from a trial-and-error approach reliant on repeated LLM invocations to a
prediction-driven paradigm powered by rapid evaluations using GNNs. This approach substantially
enhances the efficiency of optimization, enabling faster self-evolution of agentic workflows.

2 Related Work
Agentic Workflows. Agentic workflows enable multiple agents to collaborate by sharing information
and decomposing complex tasks into manageable subtasks, achieving greater effectiveness compared
to single-agent systems [10]. They have demonstrated notable success in various areas such as code
generation [1, 12, 19], math [38, 45], and reasoning [27, 34, 36]. Due to the task dependency between
nodes, agentic workflows are modeled as graphs [29, 43, 47] or codes [17, 44].

Automated agentic workflow optimization. Recent works optimizing agentic workflows primarily
fall into two categories: probability-based and LLM-guided methods. Probability-based approaches,
such as GPTSwarm and G-Designer [43, 47], apply variants of the REINFORCE algorithm [35] to
optimize edges and prompts across probabilistic distributions of Directed Acyclic Graphs (DAGs). In
contrast, LLM-guided methods refine workflows by directly querying LLMs with workflow structures
and performances. Examples include ADAS [17] modifying code-based workflows, EvoMAC [19]
using textual backpropagation informed by environmental feedback, and AFLOW [44] employing a
Monte Carlo Tree Search (MCTS) variant for iterative search. Despite promising results, both types
of approaches rely heavily on repeated LLM invocations for workflow execution and performance
evaluation. This incurs substantial computational, temporal, and financial overhead, limiting their
efficiency and real-world practicality.

Graph Neural Networks. Graph Neural Networks (GNNs) have emerged as a cornerstone in graph
representation learning with various architectures [3, 11, 22, 33], offering a powerful framework for
capturing both local node attributes and global structural patterns through the message-passing mech-
anism. Foundational studies [9, 39] established that GNNs inherently encode relational dependencies
between entities (nodes) and interactions (edges), enabling holistic graph-level representations. More-
over, their parameter efficiency, requiring orders of magnitude fewer parameters than LLMs [18],
positions GNNs as an efficient solution for resource-constrained settings [8]. This efficiency drives
their usage in high-throughput applications such as molecular property prediction, where the rapid
iteration is critical [7, 37]. Inspired by these successes, we propose for the first time that GNNs are
efficient predictors of agentic workflow performances.

3 Methodology
In this section, we formalize the key concepts of agentic workflows and our task: agentic work-
flow performance prediction. Building on these preliminaries, we formally present our proposed
method, the workflow graph neural network, which utilizes GNNs as predictors of agentic workflow
performances.

3.1 Model Agentic Workflows as Graphs

Notations. In agentic workflows, agents communicate and connect to others through task depen-
dencies. Intuitively, the agentic workflows can be modeled as graphs. Therefore, we formalize the
agentic workflow involving N agents as a Directed Acyclic Graph (DAG), G = {V, E ,P}, where
V = {v1, v2, . . . , vN} represents the set of agents, with vi denoting the agent i, and E represents the
set of edges defining the connections between agents. Additionally, we define P = {p1, p2, . . . , pN}
as the system prompt set, where pi corresponds to the system prompt of the agent i. The agent i
receives the task instruction T and outputs from its predecessor agents, which is formulated as:

Xi = {T} ∪ {yj : vj ∈ N (in)
i }, (1)

where Xi denotes the input of agent i, N (in)
i denotes the predecessor agents of the agent i, and yj is

the output of the agent j. For the agent i, the output yi is derived by querying a LLM with the input
Xi as follows,

3

Submission Guidelines and Formatting Instructions for LoG Conference 2025

agentic workflow

GNN
encoder

graph-level embedding

concat

projector

MLP

sentence
transformer

task instruction

sentence
transformer

graph & node features

trainable

frozen
task embedding

predicted performance

Figure 2: Architecture of workflow graph neural network, a framework for predicting agentic
workflow performances with GNNs.

yi = M(Xi, pi), (2)

where M(·) denotes the invoked LLM and pi is the system prompt of agent i, describing the subtask
assigned to it.

Agentic workflow execution. Given a task T , the agentic workflow G autonomously executes agents
recursively in topological order, as described by eqs. (1) and (2). Upon completing the execution
of all agents, the response of this agentic workflow is derived as: r = fM (G, T), where fM is the
execution process driven by M . Note that due to the sampling in the decoding of M , r is random.

Agentic workflow evaluation. Given the agentic workflow’s response r, we can evaluate its
performance. The performance of the agentic workflow e can be obtained as

e = U(r, T) = U(fM (G, T), T), (3)

where U(·, ·) is the criterion function, which is usually implemented through either human evaluation
or LLM-as-a-judge. For example, in the current literature of agentic workflow for coding, [17, 19, 43,
47], each coding task is associated with human-designed unit tests or the evaluation using GPT-4o.

According to eq. (3), the generation of ground-truth performances involves the complete inference
of the agentic workflow and the rigorous evaluation, which is costly with both computational and
financial overhead. This poses a huge challenge for the improvement, optimization and iteration of
the agentic workflows.

3.2 Agentic Workflow Performance Prediction Task

Here, we present a new direction to evaluate agentic workflows without costly LLM invocations;
that is, predicting the performances of agentic workflows through a lightweight model. We detail the
model paradigm for this task and the corresponding learning objective.

Model paradigm. In this task, we require a predictor taking the agentic workflow and the task
instruction as inputs to predict the corresponding performance. The predicted performance of the
agentic workflow G on the task instruction T is obtained as

ê = PreditorΘ(G, T), (4)

where Θ denotes the learnable parameters of the predictor. When the predictor is lightweight and
precise, it is extremely efficient to use the predictor to guide the optimization of an agentic workflow.

Learning objective. To train this predictor, the learning objective is to ensure the predicted perfor-
mance ê closely aligns with the ground-truth performance e. Mathematically, the learning objective
is then,

min
Θ

E(G,T) [L (e, ê)] , (5)

where L(·, ·) is a function that quantifies the difference between the ground truth and predicted perfor-
mance, which could be specifically defined according to the type of prediction such as classification
or regression. Importantly, this function measures the performance of PreditorΘ(·, ·), but not the
agentic workflow performance.

4

Submission Guidelines and Formatting Instructions for LoG Conference 2025

3.3 GNNs as Predictors of Agentic Workflow Performances

In this section, we propose predicting the performances of the agentic workflows through GNNs;
that is, the predicted performance of the agentic workflow G on the task instruction T is obtained as
ê = FLOW-GNNΘ(G, T), where FLOW-GNNΘ(·, ·) is the workflow graph neural network. The intuition
is that the agentic workflow is inherently a computational graph and the graph neural networks can
exploit the graph structure effectively and efficiently. The proposed workflow graph neural network
involves three stages.

Stage 1: Workflow encoding. This stage utilizes GNNs to encode the given agentic workflow G into
a graph-level embedding for prediction. Given the system prompt pi of the agent i, We first generate
the node feature xi:

xi ←− Enc(pi) : vi ∈ V, (6)

where Enc(·) : pi 7→ Rd0 is a sentence transformer and d0 is the output dimension. After this process,
The node features X = [x1,x2, · · · ,xN]⊤ ∈ RN×d0 is derived. Given X and G, GNNs generate
the graph-level embedding g as,

g = GNNθ (G,X) , (7)

where GNNθ(·, ·) denotes a GNN parameterized by θ2. Specifically, GNNθ(·, ·) utilizes the graph
structure to produce informative node embeddings through iterative processes of message passing
and information fusion. The final graph-level representation is then derived by applying a pooling
function to these node embeddings [41]. This detailed process can be formulated as follows,

m
(l)
i = Aggregate(l)

({
h
(l−1)
j : vj ∈ N (in)

i

})
,

h
(l)
i = Propagate(l)

(
h
(l−1)
i ,m

(l)
i

)
,

g = Pool
(
{h(L)

i | vi ∈ V}
)
,

(8)

where h
(l)
i is the embeddings of the node i at layer l, Ni is the set of neighbors of node i, and

m
(l)
i is the neighborhood embeddings for the node i at layer l. The initial node embeddings are

set as h
(0)
i = xi. The Aggregate(l)(·) function performs message passing, aggregating features

from the neighbors of node i to generate the neighborhood embeddings m(l)
i . The Propagate(l)(·)

function updates the embeddings of node i with previous embeddings at layer l− 1 and the generated
neighborhood embeddings at layer l. Finally, Pool(·) represents the pooling operation that takes the
node embeddings from the final layer to generate g.

Stage 2: Task encoding. The task instruction T is encoded into a dense representation t =
Proj(Enc(T)), where Proj(·) represents a projection module implemented by Multi-Layer Percep-
trons (MLPs). This step transforms the raw task instruction into computational embeddings.

Stage 3: Prediction. We fuse the graph-level embedding g and the task embedding t through
concatenation, yielding the combined embedding o = Concat(g, t), where Concat(·, ·) denotes the
concatenation operation. The predicted performance is obtained by,

ê = MLP(o), (9)
where MLP(·) denotes a multi-layer perceptron. The implementation of MLP(·) can be adapted to
different types of prediction tasks such as classification and regression, which ensures the generality
of the workflow graph neural network.

The architecture of the proposed workflow graph neural networks is summarized in fig. 2.

4 FLORA-Bench
In this section, we propose the FLORA-Bench (workFLOw gRAph benchmark), an original
large-scale benchmark designed to evaluate GNNs as predictors of agentic workflow performances.
FLORA-Bench consists of 600k workflow-task pairs with annotated performance data across coding,
mathematics, and reasoning domains. In the following subsections, we provide a detailed introduction
of its construction, key statistics, and evaluation metrics.

2Here θ represents learnable parameters of GNNs, which is different from Θ.

5

Submission Guidelines and Formatting Instructions for LoG Conference 2025

4.1 Benchmark Construction

FLORA-Bench is based on five representative datasets spanning three key topics frequently studied
in the agentic workflow literature: coding, mathematics, and reasoning. Specifically, it incorporates
the HumanEval [4] and MBPP [2] for coding, GSM8K [6] and MATH [14] for mathematics, and
MMLU [13] for reasoning. We construct FLORA-Bench via a three-stage process: 1) workflow
generation, 2) task filtering, and 3) label generation. The construction process is summarized in fig. 5.

Workflow generation. To obtain a diverse and high-quality set of agentic workflows as inputs
for the agentic workflow performance prediction task, we derive workflows from the optimization
processes of two state-of-the-art agentic workflow optimization systems: G-Designer (GD) [43]
and AFLOW (AF) [44]. We run GD and AF on each task in our selected datasets and extract the
agent connections and system prompts from all generated agentic workflows. An extracted agentic
workflow is illustrated in fig. 6, more details of the extraction process are in appendix A.2.

Task filtering. After generating agentic workflows for each task in our selected datasets, we apply
a filtering process to ensure the high quality of data in FLORA-Bench. Specifically, we remove
tasks that are either too simple or too difficult, as such tasks provide limited value for performance
prediction. To achieve this, we first infer a subset of workflows on tasks from the selected datasets
and compute the success rate for each task. Consequently, we filter out tasks that achieve success
rates out of a certain range. The statistics of the filtered tasks are presented in table 5, with further
details provided in appendix A.3.

Label generation. After filtering out unsuitable tasks, we get the performance label for each agentic
workflow by running inference on the remaining tasks. The output of this inference stage serves
as the ground-truth performance, denoted as e ∈ {0, 1}. To ensure the stability of e, we perform
inference three times using GPT-4o-mini, setting the temperature to 0 to strictly control randomness
in the outputs. The evaluation criterion U is predefined by the source datasets: pass@1 is used for
HumanEval and MBPP, while accuracy is used for MATH, GSM8K, and MMLU, as summarized
in table 5. We denote the final dataset as D = {di(Gi, Ti, ei)|ei ∈ {0, 1}}|D|

i=1. More details about the
criterion can be found in appendix A.4

4.2 Benchmark Statistics

FLORA-Bench consists of six domains: Coding-GD, Coding-AF, Math-GD, Math-AF, Reason-GD,
and Reason-AF. Each domain is defined by a task domain (coding, mathematics, or reasoning) and
a system domain (GD or AF). For instance, in the Coding-GD domain, the dataset is constructed
using agentic workflows generated by the GD system and tasks sourced from the coding domain. An
overview of FLORA-Bench is provided in table 6, illustrating its comprehensive coverage and large
scale. To facilitate model training and evaluation, we randomly split each domain into Dtrain, Dval,
and Dtest according to a 0.8 : 0.1 : 0.1 ratio.

4.3 Evaluation Metrics

Our FLORA-Bench employs two evaluation metrics: accuracy and utility. Accuracy quantifies how
well a model predicts agentic workflow performance and is defined as:

accuracy =
1

|Dtest|

|Dtest|∑
i=1

1 (êi = ei) , (10)

where |Dtest| is size of test dataset, êi is predicted performance, ei is ground-truth performance, and
1(·) is the indicator function, which returns 1 if êi = ei, and 0 otherwise. Utility evaluates the
consistency between the workflow rankings predicted by the GNNs and the ground truth rankings,
with an emphasis on the model’s ability to determine the relative order of different workflows. To
obtain utility, we firstly calculate the ground truth success rate si and predicted success rate ŝi of
Gi by averaging e and ê of Gi on all the tasks in Dtest. Then we rank the workflows and extract
top-k workflows respectively, according to si and ŝi, which produces 2 ordered set of workflows
H = {G1,G2, . . . ,Gk} and Ĥ = {G′

1,G
′

2, . . . ,G
′

k}. Finally, we calculate utility by:

utility =
1

k

k∑
i=1

1(G
′

i ∈ H), (11)

6

Submission Guidelines and Formatting Instructions for LoG Conference 2025

where 1(·) is the indicator function that returns 1 if G′

i ∈ H, and 0 otherwise.

5 Experiments
We validate the effectiveness and efficiency of FLORA by answering 5 research questions with exten-
sive experiments on FLORA-Bench: (RQ1) Can existing GNNs demonstrate promising performance
in this prediction task? (RQ2) Are the GNNs’ prediction performances robust when LLM driving
the agents is different? (RQ3) Can GNNs generalize well across domains? (RQ4) Whether using
GNNs as predictors benefit the optimization of the agentic workflow? (RQ5) Are GNNs better than
graph-agnostic alternative predictors?

5.1 Experimental Setups
Datasets & Models. Our experiments are conducted on our FLORA-Bench across 6 domains
mentioned in table 6.Moreover, we select five GNN-based models: 1) GCN [22], 2) GAT [33], 3)
GCNII [5], 4) Graph Transformer [31] denoted as GT, and 5) One For All [26] denoted as OFA.
In section 5.6, we compare these GNN-based models with three alternative predictors: 1) MLP
that processes the raw text-attributed workflow directly using a multilayer perceptron instead of
a GNN encoder; 2) FLORA-Bench-Tuned Llama 3B [32] denoted as Llama, fine-tuned on the
training dataset in 6 domains of FLORA-Bench; and 3) DeepSeek V3 [25] denoted as DeepSeek, a
mixture-of-experts (MoE) architecture-based LLM, which is prestine.
Implementation Details. For the MLP and GNN baselines, we employ a 2-layer backbone with a
hidden dimension of 512. The models are optimized using the Adam optimizer [21] with a learning
rate of 1× 10−4 and a weight decay of 5× 10−4. Training is conducted for 200 epochs on a single
NVIDIA RTX-4090 GPU. The best model checkpoint is selected based on the highest accuracy on
the validation set. For fine-tuning Llama 3B, we utilize Lora [16] with the workflow and task text as
input, training for 10 epochs. During inference, the temperature is set to 0 to ensure deterministic
predictions. For DeepSeek V3, we directly call its API and generate predictions using prompts with
temperature also set to 0.
Evaluation Metrics. We use accuracy and utility, which are defined in eqs. (10) and (11) respectively.

5.2 RQ1: Can existing GNNs demonstrate promising performances in this prediction task?

The feasibility of GNNs as predictors of agentic workflow performances is the foundation of FLORA
and promotes future research. To validate this, we train and test GNNs on the 6 domains of FLORA-
Bench respectively. We evaluate GNNs’ performances by accuracy and utility and report the results
in table 1. These results show that all the GNN baselines demonstrate promising prediction accuracy
and utility in most scenarios with an average accuracy of 0.7812 and an average utility of 0.7227 over
6 domains. Generally, GNNs have demonstrated significant potential in predicting agentic workflow
performances. This supports the feasibility of GNNs as predictors of agentic workflow performances.

Table 1: Main results of GNN baselines on the test set. The best and second-best results for
each metric are in bold and underlined. GNNs demonstrate promising results in predicting agentic
workflow performances.

Model Coding-GD Coding-AF Math-GD Math-AF Reason-GD Reason-AF

acc. util. acc. util. acc. util. acc. util. acc. util. acc. util.

GCN 0.8423 0.7931 0.8345 0.6716 0.6412 0.6303 0.8010 0.7491 0.7222 0.5918 0.8674 0.8909
GAT 0.8514 0.7950 0.8223 0.6941 0.6484 0.6232 0.7985 0.7400 0.7216 0.5944 0.8668 0.8966
GCNII 0.8381 0.7845 0.8290 0.7054 0.6356 0.6602 0.7936 0.7100 0.7229 0.5910 0.8708 0.9066
GT 0.8524 0.8020 0.8250 0.6379 0.6325 0.6497 0.8000 0.7267 0.7226 0.6092 0.8692 0.8647
OFA 0.8374 0.7593 0.8374 0.7593 0.6317 0.6665 0.7985 0.6686 0.7229 0.6035 0.8142 0.9064

Avg. 0.8443 0.7868 0.8296 0.6936 0.6379 0.6460 0.7983 0.7189 0.7224 0.5980 0.8577 0.8930

5.3 RQ2: Are the GNNs’ prediction performances robust when LLM driving the agents is
different?

In practical applications, different LLMs may be used to drive the agentic workflow. We wonder
whether GNNs’ prediction performances are robust when LLM driving the agents is different. To

7

Submission Guidelines and Formatting Instructions for LoG Conference 2025

Table 2: Cross-system generalization results. Compared with table 1, GNNs exhibit a notable drop
in performance when tested on unseen domains.

Model Coding-GD-AF Coding-AF-GD Math-GD-AF Math-AF-GD Reason-GD-AF Reason-AF-GD

acc. util. acc. util. acc. util. acc. util. acc. util. acc. util.

GCN 0.5821 0.5733 0.5676 0.5429 0.6757 0.5463 0.4964 0.5192 0.5751 0.5337 0.6137 0.5413
GAT 0.5929 0.5968 0.5725 0.5605 0.6634 0.5270 0.4829 0.4871 0.5607 0.5038 0.5703 0.5312
GCNII 0.5875 0.6117 0.6416 0.6267 0.6732 0.5296 0.4885 0.5056 0.5593 0.5219 0.6555 0.5276
GT 0.6052 0.6144 0.6083 0.5839 0.5897 0.5749 0.4773 0.4665 0.5650 0.5486 0.5588 0.4887
OFA 0.6201 0.5457 0.5897 0.5325 0.5872 0.6123 0.5060 0.5102 0.5940 0.5417 0.6384 0.5522

Avg. 0.5976 0.5884 0.5959 0.5693 0.6378 0.5580 0.4902 0.4977 0.5708 0.5299 0.6073 0.5282

validate the robustness of GNNs’ performances, which is important for real-world applications,
we use 4 LLM: GPT-4o-mini, DeepSeek V3, Qwen 7B, and Mistral 7B, to infer the same agentic
workflows and tasks collected during benchmark construction to generate 4 datasets. We train and test
GNNs on these datasets respectively. We report the accuracy and utility in table 8. It can be observed
that prediction accuracies of GNNs remain above 0.8 across 4 datasets. Therefore, we believe that
GNNs’ performances remain robustly strong when LLM driving the agents is different.

5.4 RQ3: Can GNNs generalize well across domains?

To evaluate the crucial generalization ability of GNNs for predicting agentic workflow performances,
we conducted cross-system-domain and cross-task-domain tests. The cross-system-domain test
involved training and testing GNNs on different workflow domains while keeping the task domain the
same (e.g., train Coding-GD, test Coding-AF, denoted Coding-GD-AF). Conversely, the cross-task-
domain test used different task domains for training and testing while keeping the workflow domain
constant (e.g., train Coding-AF, test Reason-AF, denoted Coding-Reason). We report accuracy and
utility in tables 2 and 3. These experiments revealed a significant decrease in GNN performance in
the test domains compared to within-domain results in table 1, with GNNs failing to predict accurately.
This indicates that existing GNNs lack generalization ability across system and task domains.

Table 3: Cross-task-domain generalization results. Compared with table 1, GNNs show a considerable
performance drop when transferring across tasks.

Model Coding-Math Coding-Reason Math-Reason Math-Coding Reason-Coding Reason-Math

acc. util. acc. util. acc. util. acc. util. acc. util. acc. util.

GCN 0.4889 0.5407 0.5261 0.5329 0.4938 0.4669 0.5007 0.4875 0.3256 0.5053 0.3342 0.5057
GAT 0.4595 0.4942 0.5371 0.5790 0.4683 0.3890 0.5102 0.4740 0.3379 0.5262 0.3342 0.5110
GCNII 0.5602 0.4449 0.5344 0.4593 0.5038 0.4736 0.3948 0.5155 0.3813 0.5135 0.3661 0.5793
GT 0.4767 0.5618 0.5371 0.5795 0.4790 0.4363 0.5400 0.5620 0.6092 0.5237 0.4177 0.5291
OFA 0.3661 0.6111 0.5033 0.3982 0.4492 0.4588 0.6540 0.5624 0.6336 0.5060 0.3808 0.4527

Avg. 0.4703 0.5305 0.5276 0.5098 0.4788 0.4449 0.5199 0.5203 0.4575 0.5149 0.3666 0.5156

10
2

Time/s (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

HumanEval - Time Consumption vs Score

10
1

10
2

10
3

Time/s (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

MMLU - Time Consumption vs Score

10
2

10
3

Time/s (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

MBPP - Time Consumption vs Score

10
2

10
3

Time/s (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Avg - Time Consumption vs Score

ground truth random MLP GCN

Figure 3: GCN as the predictor indeed benefits the optimization of the agentic workflow in terms of
both effectiveness and efficiency.

8

Submission Guidelines and Formatting Instructions for LoG Conference 2025

10 2 100 102

Parameters (B)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ac
cu

ra
cy

Coding-AF - Parameters (B) vs accuracy

10 2 100 102

Parameters (B)

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

ac
cu

ra
cy

Math-AF - Parameters (B) vs accuracy

10 2 100 102

Parameters (B)

0.5

0.6

0.7

0.8

ac
cu

ra
cy

Reason-AF - Parameters (B) vs accuracy

10 2 100 102

Parameters (B)

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

Avg. - Parameters (B) vs accuracy

MLP
GCN

GAT
GCNII

GT
OFA

LLama
DeepSeek

Figure 4: GNNs are more effective and efficient than others.

5.5 RQ4: Whether using GNNs as predictors benefits the optimization of the agentic
workflow?

We investigate whether GNNs enhance agentic workflow optimization efficiency and quantifies any
performance loss. Using the AFLOW [44] platform, we employed a GCN predictor to provide
performance estimates as rewards during agentic workflow optimization across the HumanEval,
MMLU, and MBPP benchmarks. The scores of these optimized agentic workflows were then
determined by their success rates on test tasks. We compared this GCN-based approach to 3 baselines:
’ground truth’ (using actual inferred performances as rewards), ’random’ (using random predictions),
and ’MLP’ (using MLP’s predictions). We report the duration of the optimization process and scores
across these benchmarks and their average in fig. 3, with detailed results in table 7. It can be observed
from these results that the GCN predictor significantly accelerates refinement cycles by 125 times
while the performance loss is 0.1 on average. Furthermore, GCN outperformed the ’random’ baseline
by a 0.11 performance gain, attributed to its accurate predictions. These findings support GNNs’
potential for advancing an efficient paradigm for agentic workflow optimization.
5.6 RQ5: Are GNNs better than graph-agnostic alternative predictors?
We compared GNN-based predictors with alternative predictors such as LLMs, as described in sec-
tion 5.1. We report accuracy in fig. 4. More results are shown in table 9. It indicates that GNNs
outperform all alternative predictors in most scenarios. Notably, we observe that DeepSeek-V3,
despite its significantly larger parameter volume, fails to achieve accurate predictions compared to
GNNs or MLP. This is likely due to the lack of relevant training data for predicting agentic workflow
performances and it is not tuned, further highlighting the advantages of using GNNs as predictors.
Moreover, the FLORA-Bench-Tuned Llama 3B can outperform GNNs in the Coding-AF domain.
However, considering the training cost and inference time, it is not an efficient alternative. Overall,
GNNs are more efficient compared to alternatives.

6 Conclusions
In this paper, we propose FLORA (workFLOw gRAph neural networks) as efficient predictors
of agentic workflow performances. By conducting extensive experiments we ultimately arrive at
the following conclusions: GNNs are simple yet effective predictors and demonstrate significant
practical benefits. These conclusions support new applications of GNNs and a novel direction towards
automating agentic workflow optimization.

7 Limitations and Future Work
As we pointed out in the experiment, GNNs as predictors for agentic workflows suffer from issues
such as poor generalization performance. This problem requires joint resolution in future work, and
we propose potential directions for solutions here.

The most straightforward solution for generalization is large-scale pretraining, requiring large amounts
of tasks and workflows of high quality from different domains. However, given the associated costs
and overhead, we believe this is not a viable solution at present. Although large-scale pretraining is
challenging, we observed that GNNs converge efficiently within a single domain. Thus, techniques
like transfer learning, domain adaptation, and online learning [23, 30, 46] might enable GNNs to
generalize efficiently. This may be a promising approach to improving GNNs’ generalization ability.

9

Submission Guidelines and Formatting Instructions for LoG Conference 2025

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 1, 3

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021. 6, 14

[3] Ling-Hao Chen, Yuanshuo Zhang, Taohua Huang, Liangcai Su, Zeyi Lin, Xi Xiao, Xiaobo
Xia, and Tongliang Liu. Erase: Error-resilient representation learning on graphs for label
noise tolerance. In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management, pages 270–280, 2024. 3

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. 6, 14

[5] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725–1735.
PMLR, 2020. 7

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 2021. 6, 14

[7] Hongwei Du, Jiamin Wang, Jian Hui, Lanting Zhang, and Hong Wang. Densegnn: universal
and scalable deeper graph neural networks for high-performance property prediction in crystals
and molecules. npj Computational Materials, 10(1):292, 2024. 2, 3

[8] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023. 2, 3

[9] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019. 2, 3

[10] T Guo, X Chen, Y Wang, R Chang, S Pei, NV Chawla, O Wiest, and X Zhang. Large language
model based multi-agents: A survey of progress and challenges. In 33rd International Joint
Conference on Artificial Intelligence (IJCAI 2024). IJCAI; Cornell arxiv, 2024. 3

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 3

[12] Junda He, Christoph Treude, and David Lo. Llm-based multi-agent systems for software
engineering: Literature review, vision and the road ahead. ACM Transactions on Software
Engineering and Methodology, 2025. 1, 3

[13] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020. 6, 15

[14] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021. 6, 14

[15] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023. 1

[16] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685,
2021. 7

[17] Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024. 1, 3, 4

[18] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020. 2, 3

10

Submission Guidelines and Formatting Instructions for LoG Conference 2025

[19] Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang,
and Siheng Chen. Self-evolving multi-agent collaboration networks for software development.
arXiv preprint arXiv:2410.16946, 2024. 1, 2, 3, 4

[20] Yizhe Huang, Xingbo Wang, Hao Liu, Fanqi Kong, Aoyang Qin, Min Tang, Xiaoxi Wang,
Song-Chun Zhu, Mingjie Bi, Siyuan Qi, et al. Adasociety: An adaptive environment with social
structures for multi-agent decision-making. arXiv preprint arXiv:2411.03865, 2024. 1

[21] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 7

[22] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 3, 7

[23] Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, and Xiaohong Guan. Node
classification on graphs with few-shot novel labels via meta transformed network embedding.
Advances in Neural Information Processing Systems, 33:16520–16531, 2020. 9

[24] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for" mind" exploration of large language model society. Advances in
Neural Information Processing Systems, 36:51991–52008, 2023. 1

[25] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024. 7

[26] Hao Liu and Jiarui Feng. Lecheng kong, ningyue liang, dacheng tao, yixin chen, and muhan
zhang. one for all: Towards training one graph model for all classification tasks. arXiv preprint
arXiv:2310.00149, pages 1–2, 2023. 7

[27] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent net-
work: An llm-agent collaboration framework with agent team optimization. arXiv preprint
arXiv:2310.02170, 2023. 1, 2, 3

[28] Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong, Junqi Wang, Bangcheng Yang, Pring Wong,
Yifan Zhong, Xiaoyuan Zhang, Zhaowei Zhang, et al. Civrealm: A learning and reasoning
odyssey in civilization for decision-making agents. arXiv preprint arXiv:2401.10568, 2024. 1

[29] Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. arXiv preprint
arXiv:2410.07869, 2024. 3

[30] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-
ferability of graph neural networks. Advances in Neural Information Processing Systems,
33:1702–1712, 2020. 9

[31] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. arXiv
preprint arXiv:2009.03509, 2020. 7

[32] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 7

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 3, 7

[34] Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng
Wang, Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table:
Evolving tables in the reasoning chain for table understanding. arXiv preprint arXiv:2401.04398,
2024. 1, 3

[35] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992. 3

[36] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023. 1, 3

[37] Xing Wu, Hongye Wang, Yifei Gong, Dong Fan, Peng Ding, Qian Li, and Quan Qian. Graph
neural networks for molecular and materials representation. Journal of Materials Informatics,
3(2), 2023. 2, 3

11

Submission Guidelines and Formatting Instructions for LoG Conference 2025

[38] Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. Mathchat: Converse to tackle challenging math problems
with llm agents. In ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024. 1, 3

[39] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 2, 3

[40] Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello,
Misha Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with
multi-turn iterative preference learning. arXiv preprint arXiv:2409.02392, 2024. 1

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. 5

[42] Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024. 2

[43] Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun
Wang, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies via
graph neural networks. arXiv preprint arXiv:2410.11782, 2024. 3, 4, 6, 13

[44] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow
generation. arXiv preprint arXiv:2410.10762, 2024. 1, 2, 3, 6, 9, 14

[45] Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, Bo Du, and Dacheng Tao.
Achieving> 97% on gsm8k: Deeply understanding the problems makes llms perfect reasoners.
arXiv preprint arXiv:2404.14963, 2024. 3

[46] Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming
the limitations of localized graph training data. Advances in Neural Information Processing
Systems, 34:27965–27977, 2021. 9

[47] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024. 2, 3, 4

12

Submission Guidelines and Formatting Instructions for LoG Conference 2025

A Details of Benchmark Construction
A.1 Benchmark Construction Pipeline

In fig. 5, we show the pipeline of FLORA-Bench construction.

(workflow,
task, label)

source
data

agentic workflow
optimization

systems
workflows

workflow
subsetquality control

filtered
tasks

execution

workflow generation

task filtering

label generation

random
sampling

Figure 5: Pipeline of benchmark construction.

A.2 Workflow Extraction

In GD system, we directly extract the connections between agents from Directed Acyclic Graphs
(DAGs). This approach ensures that the inherent structural relationships within the DAGs are faithfully
captured and represented in the workflow. Moreover, in AF system, we parse the Python source code
into an Abstract Syntax Tree (AST). This enables us to capture the information transmission logic of
agents through variable propagation. Specifically, each new instance of an agent call is treated as a
distinct code unit. When the output variables of one agent instance are used as inputs for the next
agent instance, an edge is created between the corresponding nodes in the workflow. Additionally, the
specific instructions passed to agents in the source code are integrated with the agent system prompt
and embedded as node attributes within the workflow.

For example, consider the workflow generated from a Python class Workflow in fig. 6. The first
node corresponds to the first call to Custom_1 agent and the second node corresponds to the call
to Custom_2, which reviews the solution generated by Custom_1. The edges between these nodes
represent the flow of the solution from Custom_1 to Custom_2. The attributes of the first node include
the instruction "analyze the following question and provide a detailed answer".

class Workflow:
def __init__(self):

self.custom = operator.Custom(self.llm)

def __call__(self, problem: str):
solution = self.custom_1(input=problem,

instruction=“analyze the following question
and provide a detailed answer.“)

review = self.custom_2(input=solution,
instruction=“Review this solution.“)

Source Code Extracted Workflow

system
prompt

Figure 6: Workflow Extraction from AF in FLORA-Bench.

A.3 Task Filter

To achieve a more uniform distribution of tasks within our dataset, we implemented a filtering
mechanism designed to exclude tasks that are either too complex or too straightforward. Tasks that
fall into these categories often provide limited value for training and evaluating predictive models, as
they do not offer a balanced knowledge.

First, We sampled a smaller workflow subset from a specific dataset to capture a wide range of agent
profiles. The workflows generated by GD [43] system are predefined with specific types and numbers
of agents. Therefore, we sampled workflow subsets separately from each unique agent configuration

13

Submission Guidelines and Formatting Instructions for LoG Conference 2025

Table 4: Task filtering of FLORA-Bench.

Data Set Original Task Workflow Subset Success Rate Range Filtered Task

HumanEval 161 26 [0.1, 0.9] 31
MBPP 427 30 [0.2, 0.8] 202
MATH 605 150 [0.2, 0.8] 178

GSM8K 1319 42 [0.3, 0.9] 404
MMLU 14k+ 20 [0.25, 0.75] 2400

Table 5: Task filtering results of FLORA-Bench.

Data Set Original Task Filtered Task Eval Method

HumanEval 161 31 pass@1
MBPP 427 202 pass@1
MATH 605 178 accuracy

GSM8K 1319 404 accuracy
MMLU 14k+ 2400 accuracy

to ensure diversity in agent types and interactions. The workflows generated by AF [44] system are
designed with agent system prompts but feature unpredictable numbers of agents. This is due to
the inherent constraints of the optimization framework, specifically the Monte Carlo Tree Search
(MCTS) process used by AF, which limits the generation of large-scale workflows. As a result, we
included all generated workflows in our sample pool to ensure comprehensive coverage within the
scope of workflows that are feasible with the AF. This approach ensures that our dataset encompasses
a variety of small-scale workflows, providing a comprehensive view of potential agent interactions.

To achieve balanced performance across tasks, we evaluated all tasks in the current dataset through
the workflow subset three times using GPT-4o-mini, with the temperature parameter set to 0. This
setup allows for consistent evaluations of task performance.

Then, we calculated the success rate for each task across the workflow subset within the current
dataset. Tasks were retained if their success rates fell within a predefined range, as detailed in table 4.
This range was carefully chosen to avoid including tasks that are either trivially easy (all-success) or
intractably difficult (all-fail), thus preserving a challenging yet solvable benchmark.

For an example, we selected 26 workflows generated by GD for HumanEval[4] dataset as our
subset. These workflows varied in the number of agents, ranging from 4 to 8, and included diverse
agent types such as "Programming Expert", "Project Manager", "Test Analyst", "Bug Fixer" and
"Algorithm Designer". After evaluating all 161 tasks from the original HumanEval [4] dataset across
this workflow subset, we calculated the success rate for each task. Tasks were retained if their success
rates fell within a predefined range of 0.1 to 0.9. This range was chosen to exclude tasks that were
either trivially easy (success rate >0.9) or intractably difficult (success rate <0.1). This resulted in
a selection of 31 tasks that demonstrated diverse performance across the workflow subset. These
tasks were capable of distinguishing performance differences among various workflows, providing a
balanced and challenging benchmark for our predictive models.

A.4 Details of Criterion.

The methods for generating binary labels vary depending on the nature and requirements of each
dataset. Here, we provide a detailed overview of how binary labels are obtained from several key
datasets used in our research.

• HumanEval[4] and MBPP[2]: For these datasets, the primary focus is on evaluating the
functionality of the model’s output code. Specifically, the code generated by the model is tested
to determine whether it can pass predefined unit tests (pass@1). If the code successfully passes
the unit tests, it is assigned a binary label of "1" (indicating correctness); otherwise, it receives a
binary label of "0" (indicating failure).

• MATH[14] and GSM8K[6]: In these datasets, the model’s output is evaluated based on the
accuracy of the answers. The final answers in the Math dataset are wrapped and delimited with
the \boxed command. For GSM8K, the model’s output answer is compared with the ground

14

Submission Guidelines and Formatting Instructions for LoG Conference 2025

Table 6: Overview of 6 domains of our FLORA-Bench.

Domain Coding-GD Coding-AF Math-GD Math-AF Reason-GD Reason-AF
Num. of workflows 739 38 300 42 189 30

Avg. of nodes 5.96 6.11 6.06 5.49 5.97 6.58
Num. of tasks 233 233 782 782 2400 2400

Num. of samples 30683 7362 12561 4059 453600 72000

truth answer within a tolerance level of 1e-6. If the model’s answer falls within the acceptable
range of the ground truth answer, it is assigned a binary label of "1"; otherwise, it is labeled as
"0".

• MMLU[13]: The binary label is determined by whether the model’s output option matches the
correct answer option. Each question in MMLU is a multiple-choice question with four options
(A, B, C, and D). The model’s performance is evaluated based on its ability to accurately identify
the correct answer among the provided choices. If the model selects the correct option, it is
labeled as "1"; otherwise, it is labeled as "0".

To obtain stable performance, the agentic workflows are inferred 3 times during the label generation
in our benchmark construction.

A.5 Benchmark Statistics

B Visualization of Agentic Workflows

In fig. 7, the coding workflow starts with task initialization (Agent 1). Then Agent 1 connects to
Agents 2, 3, and 4, who each fill different CodeBlocks independently. These components flow into
Agent 5, which aggregates the generated answers into a cohesive solution. From there, Agent 6
reviews the solution for correctness before passing it to Agent 7 for final validation. Finally, Agent 8
make final response by receiving the task and the suggestions from Agent 7.

Figure 7: Example of a extracted coding workflow from AF.

In fig. 8, the math workflow starts with task initialization (Agent 1). Then Agent 2 make some notes
about solving this problem. After this, Agent 3 and 4 receive the notes and attempt to answer this
problem. Their answers are passed to Agent 5, which reviews the answers and analyses the difference.
Agent 6 receive the problem statement and the answers generated by Agent 3 and 4 to generate
additional answer. Finally, the responses of Agent 1, 3, 4, 5, 6 are passed to Agent 7 to make final
decision.

In fig. 9, Agent 1 initiates the process and delegates to multiple subsequent agents. Agent 2 serves as
the analytical thinker who works step-by-step through the problem and feeds insights to Agents 3, 4,
and 5, each of which generates different solution variations based on this thinking. These solutions
flow into Agent 6, which aggregates and synthesizes the various answers. The workflow then moves
to Agent 7, which reviews the consolidated solution for accuracy and correctness, before concluding
with Agent 8, which extracts a short, concise final version.

15

Submission Guidelines and Formatting Instructions for LoG Conference 2025

Figure 8: Example of a extracted math workflow from AF.

Figure 9: Example of a extracted Reason workflow from AF.

C Observation of Agentic Workflow Performances

To analyze the relation between number of nodes and their performances. We group agentic workflows
according to their number of nodes and calculate their average success rate in the collected dataset.
The statistics is shown in fig. 10. Results show that when the number of nodes is small, the workflows
tend to perform poorly. Within the range from 2 to 5, the success rate increases with the number of
nodes. However, as the number of nodes continues to increase, the rate of increase in success rate
slows down until it saturates, and the success rate even starts to decrease as the graph complexity
increases.

2 3 4 5 6 7 8
number of nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

su
cc

es
s r

at
e

Success rate vs number of nodes

Figure 10: Success rate of workflows with different number of nodes.

16

Submission Guidelines and Formatting Instructions for LoG Conference 2025

D Details of Experiments.
D.1 Efficiency Improvement

We provide more detailed results of fig. 3 in table 7. It can be observed that GCN significantly
accelerates refinement cycles by 125 times while the performance loss is 0.1 in average. And
GCN outperforms the ’random’ baseline by 0.11 performance gain because GCN correctly predicts
performance. These results support GNNs’ potential to advance an efficient and effective paradigm
for agentic workflow optimization.

Table 7: Efficiency improvement in terms of Time (s) and Cost ($), and the associated performance
loss (Score). Results are reported on HumanEval, MMLU, and MBPP benchmarks, as well as their
average.

Method HumanEval MMLU MBPP Avg.
Score Time Cost Score Time Cost Score Time Cost Score Time Cost

Ground Truth 0.92 728 0.13 0.73 3073 6.23 0.67 3180 0.48 0.77 2327 2.28
Random 0.78 14 0.01 0.42 23 0.01 0.47 22 0.01 0.56 19.67 0.01
MLP 0.84 20 0.01 0.50 12 0.01 0.49 15 0.01 0.61 8 0.01
GCN 0.89 23 0.01 0.55 15 0.01 0.56 18 0.01 0.67 15.67 0.01

D.2 Detialed results of RQ2: Are the GNNs’ prediction performances robust when LLM
driving the agents is different?

See table 8.

Table 8: Prediction performance of GNNs across datasets generated by different LLMs. Results
demonstrate the robustness and consistency of GNN predictors.

Model GPT-4o-mini DeepSeek Qwen-7B Mistral-7B
acc. util. acc. util. acc. util. acc. util.

GCN 0.8294 0.8040 0.8656 0.7569 0.8671 0.8448 0.9258 0.8848
GAT 0.8303 0.8025 0.8442 0.7518 0.8698 0.8426 0.9262 0.8872
GCNII 0.8281 0.7948 0.8434 0.7568 0.8517 0.8271 0.9094 0.8589
GT 0.8342 0.7983 0.8634 0.7306 0.8676 0.8465 0.9280 0.8887
OFA 0.8124 0.7192 0.8473 0.7323 0.8451 0.8042 0.8913 0.8506

D.3 Comparison with Alternative Predictors

More detailed results of fig. 4 are shown in table 9. It indicates GNNs are simple yet efficient
predictors compared to alternatives.

Table 9: Comparison with alternative predictors. Results are reported on the AF domains.

Model Coding-AF Math-AF Reason-AF Avg.
acc. util. acc. util. acc. util. acc. util.

MLP 0.7748 0.6960 0.7494 0.6888 0.7760 0.9299 0.7667 0.7716
GCN 0.8345 0.6716 0.8010 0.7491 0.8674 0.8909 0.8343 0.7705
GAT 0.8223 0.6941 0.7985 0.7400 0.8668 0.8966 0.8292 0.7769
GCNII 0.8290 0.7054 0.7936 0.7100 0.8708 0.9066 0.8311 0.7740
GT 0.8250 0.6379 0.8000 0.7267 0.8692 0.8647 0.8314 0.7431
OFA 0.8345 0.7104 0.7985 0.6686 0.8142 0.9064 0.8157 0.7618
Llama 0.8453 0.7512 0.7346 0.6705 0.8011 0.8360 0.7937 0.7526
DeepSeek 0.5020 0.4267 0.6412 0.5097 0.4536 0.5036 0.5323 0.4800

17

Submission Guidelines and Formatting Instructions for LoG Conference 2025

Table 10: Expected calibration error (ECE) of predictions across different AF domains.

Model Coding-AF Math-AF Reason-AF
GCN 0.0196 0.0505 0.0322
GAT 0.0201 0.0522 0.0271
GCNII 0.0179 0.0765 0.0279
GT 0.0238 0.0498 0.0295
OFA 0.0245 0.0568 0.0205

D.4 Analysis of Prediction Confidence Calibration

In table 10, we report the Expected Calibration Error (ECE), which measures the deviation between
the model’s predicted confidence and actual accuracy, reflecting its calibration quality. The ideal
ECE is 0, indicating perfect alignment. Empirically, all GNNs are close to this in most scenarios,
demonstrating strong calibration.

18

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Model Agentic Workflows as Graphs
	3.2 Agentic Workflow Performance Prediction Task
	3.3 GNNs as Predictors of Agentic Workflow Performances

	4 FLORA-Bench
	4.1 Benchmark Construction
	4.2 Benchmark Statistics
	4.3 Evaluation Metrics

	5 Experiments
	5.1 Experimental Setups
	5.2 RQ1: Can existing GNNs demonstrate promising performances in this prediction task?
	5.3 RQ2: Are the GNNs' prediction performances robust when LLM driving the agents is different?
	5.4 RQ3: Can GNNs generalize well across domains?
	5.5 RQ4: Whether using GNNs as predictors benefits the optimization of the agentic workflow?
	5.6 RQ5: Are GNNs better than graph-agnostic alternative predictors?

	6 Conclusions
	7 Limitations and Future Work
	A Details of Benchmark Construction
	A.1 Benchmark Construction Pipeline
	A.2 Workflow Extraction
	A.3 Task Filter
	A.4 Details of Criterion.
	A.5 Benchmark Statistics

	B Visualization of Agentic Workflows
	C Observation of Agentic Workflow Performances
	D Details of Experiments.
	D.1 Efficiency Improvement
	D.2 Detialed results of RQ2: Are the GNNs’ prediction performances robust when LLM driving the agents is different?
	D.3 Comparison with Alternative Predictors
	D.4 Analysis of Prediction Confidence Calibration

