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ABSTRACT

Recent advancements in state-space models (SSMs) have showcased effective
performance in modeling long-range dependencies with subquadratic complexity.
However, pure SSM-based models still face challenges related to stability and
achieving optimal performance on computer vision tasks. Our paper addresses
the challenges of scaling SSM-based models for computer vision, particularly the
instability and inefficiency of large model sizes. To address this, we introduce a
Modulated Group Mamba layer which divides the input channels into four groups
and applies our proposed SSM-based efficient Visual Single Selective Scanning
(VSSS) block independently to each group, with each VSSS block scanning in one
of the four spatial directions. The Modulated Group Mamba layer also wraps the
four VSSS blocks into a channel modulation operator to improve cross-channel
communication. Furthermore, we introduce a distillation-based training objective to
stabilize the training of large models, leading to consistent performance gains. Our
comprehensive experiments demonstrate the merits of the proposed contributions,
leading to superior performance over existing methods for image classification on
ImageNet-1K, object detection, instance segmentation on MS-COCO, and semantic
segmentation on ADE20K. Our tiny variant with 23M parameters achieves state-of-
the-art performance with a classification top-1 accuracy of 83.3% on ImageNet-1K,
while being 26% efficient in terms of parameters, compared to the best existing
Mamba design of same model size. Our code and models will be publicly released.

1 INTRODUCTION

Various context modeling methods have emerged in the domains of language and vision understanding.
These include Convolution (He et al., 2016; Yang et al., 2022), Attention (Vaswani et al., 2017), and,
more recently, State Space Models Gu et al. (2022); Gu & Dao (2023). Transformers with their multi-
headed self-attention mechanism (Vaswani et al., 2017) have been central to both language models
such as GPT-3 (Brown et al., 2020) and vision models such as Vision Transformers (Dosovitskiy et al.,
2021; Liu et al., 2021). However, challenges arose due to the quadratic computational complexity
of attention mechanisms particularly for longer sequences, leading to the recent emergence of State
Space models such as S4 (Gu et al., 2022).

While being effective in handling extended input sequences due to their linear complexity in terms
of sequence lengths, S4 (Gu et al., 2022) encountered limitations in global context processing in
information-dense data, especially in domains like computer vision due to the data-independent nature
of the model. Alternatively, approaches such as global convolutions-based state space models (Fu
et al., 2023b) and Liquid S4 (Hasani et al., 2022) have been proposed to mitigate the aforementioned
limitations. The recent Mamba (Gu & Dao, 2023) introduces the S6 architecture which aims to
enhance the ability of state-space models to handle long-range dependencies efficiently. The selective-
scan algorithm introduced by Mamba uses input-dependent state-space parameters, which allow for
better in-context learning while still being computationally efficient compared to self-attention.

However, Mamba, specifically the S6 algorithm, is known to be unstable for e.g., image classification,
especially when scaled to large sizes (Patro & Agneeswaran, 2024). Additionally, the Mamba model
variant used in image classification, generally called the VSS (Visual State Space) block, can be
more efficient in terms of parameters and compute requirements based on the number of channels.
The VSS block includes extensive input and output projections along with depth-wise convolutions,
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Figure 1: Left: Comparison in terms of Parameters vs. Top-1 Accuracy on ImageNet-1k (Deng et al.,
2009). Our GroupMamba-B achieves superior top-1 classification accuracy while reducing parameters
by 36% compared to VMamba (Liu et al., 2024b). Right: Qualitative results of GroupMamba-T on
semantic segmentation (top right), and object detection and instance segmentation (bottom right).
More qualitative examples are presented in Figure 3 and the supplemental material.

whose parameters and compute complexities are directly proportional to the number of channels
in the input. To address this issue, we propose a Modulated Group Mamba layer that mitigates the
aforementioned issues in a computation and parameter-efficient manner. The main contributions of
our paper are:

1. We introduce a Modulated Group Mamba layer, inspired by Group Convolutions, which
enhances computational efficiency and interaction in state-space models by using a multi-
direction scanning method for comprehensive spatial coverage and effective modeling of
local and global information.

2. We introduce a Channel Affinity Modulation (CAM) operator, which enhances communi-
cation across channels to improve feature aggregation, addressing the limited interaction
inherent in the grouping operation.

3. To address the instability issue in the SSM-based architecture, we introduce a distillation-
based training objective designed to stabilize models with a large number of parameters,
leading to better performance and a smooth loss convergence trend.

4. We build a series of parameter-efficient generic classification models called “GroupMamba”,
based on the proposed Modulated Group Mamba layer. Our tiny variant achieves 83.3%
top-1 accuracy on ImageNet-1k (Deng et al., 2009) with 23M parameters and 4.5G FLOPs.
Additionally, our base variant achieves top-1 accuracy of 84.5% with 57M parameters and
14G FLOPs, outperforming all recent SSM methods (see Figure 1).

2 RELATED WORK

Convolutional Neural Networks (ConvNets) have been the popular choice for computer vision tasks
since the introduction of AlexNet (Krizhevsky et al., 2012). The field has rapidly evolved with several
landmark ConvNet architectures (Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016;
Howard et al., 2017; Tan & Le, 2019). Alongside these architectural advances, significant efforts
have been made to refine individual convolution layers, including depthwise convolution (Xie et al.,
2017), group convolution (Cohen & Welling, 2016), and deformable convolution (Dai et al., 2017).
Recently, ConvNeXt variants (Liu et al., 2022b; Woo et al., 2023) have taken concrete steps towards
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modernizing traditional 2D ConvNets by incorporating macro designs with advanced settings and
training recipes to achieve on-par performance with the state-of-the-art models.

In recent years, the pioneering Vision Transformer (ViT) (Dosovitskiy et al., 2021) has significantly
impacted the computer vision field, including tasks such as image classification (Touvron et al., 2021;
Liu et al., 2021; 2022a; Fan et al., 2021), object detection (Carion et al., 2020; Zhu et al., 2021;
Meng et al., 2021; Zhang et al., 2022), and segmentation (Cheng et al., 2022; Shaker et al., 2024;
Kirillov et al., 2023). ViT (Dosovitskiy et al., 2021) introduces a monolithic design that approaches
an image as a series of flattened 2D patches without image-specific inductive bias. The remarkable
performance of ViT for computer vision tasks, along with its scalability, has inspired numerous
subsequent endeavors to design better architectures. The early ViT-based models usually require
large-scale datasets (e.g., JFT-300M (Sun et al., 2017)) for pretraining. Later, DeiT (Touvron et al.,
2021) proposes advanced training techniques in addition to integrating a distillation token into the
architecture, enabling effective training on smaller datasets (e.g., ImageNet-1K (Deng et al., 2009)).
Since then, subsequent studies have designed hierarchical and hybrid architectures by combining
CNN and ViT modules to improve performance on different vision tasks (Srinivas et al., 2021; Maaz
et al., 2022; d’Ascoli et al., 2021; Shaker et al., 2023; Fan et al., 2021). Another line of work is to
mitigate the quadratic complexity inherent in self-attention, a primary bottleneck of ViTs. This effort
has led to significant improvements and more efficient and approximated variants (Wang et al., 2020;
Shaker et al., 2023; Pan et al., 2022; Mehta & Rastegari, 2023; Kitaev et al., 2020; Chu et al., 2021;
Tu et al., 2022), offering reduced complexity while maintaining effectiveness.

Recently, State Space Models (SSMs) have emerged as an alternative to ViTs (Vaswani et al., 2017),
capturing the intricate dynamics and inter-dependencies within language sequences (Gu et al., 2022).
One notable method in this area is the structured state-space sequence model (S4) (Gu et al., 2022),
designed to tackle long-range dependencies while maintaining linear complexity. Following this
direction, several models have been proposed, including S5 (Smith et al., 2023), H3 (Fu et al.,
2023a), and GSS (Mehta et al., 2022). More recently, Mamba (Gu & Dao, 2023) introduces an
input-dependent SSM layer and leverages a parallel selective scan mechanism (S6).

In the visual domain, various works have applied SSMs to different tasks. In particular for image
classification, VMamba (Liu et al., 2024b) uses Mamba with bidirectional scans across both spatial
dimensions in a hierarchical Swin-Transformer (Liu et al., 2021) style design to build a global
receptive field efficiently. A concurrent work, Vision Mamba (Vim) (Zhu et al., 2024), instead
proposed a monolithic design with a single bidirectional scan for the entire image, outperforming
traditional vision transformers like DeiT. LocalVMamba (Huang et al., 2024) addresses the challenge
of capturing detailed local information by introducing a scanning methodology within distinct
windows (inspired from Swin-Transformer (Liu et al., 2021)), coupled with dynamic scanning
directions across network layers. EfficientVMamba (Pei et al., 2024) integrates atrous-based selective
scanning and dual-pathway modules for efficient global and local feature extraction, achieving
competitive results with reduced computational complexity. These models have been applied for
image classification, as well as image segmentation (Liu et al., 2024a; Ma et al., 2024; Ruan & Xiang,
2024; Gong et al., 2024), video understanding (Yang et al., 2024; Li et al., 2024; Chen et al., 2024),
and various other tasks (Guo et al., 2024b; He et al., 2024; Wang et al., 2024; Guo et al., 2024a; Liang
et al., 2024). Their wide applicability shows the effectiveness of SSMs (Gu et al., 2022; Smith et al.,
2023; Fu et al., 2023a; Mehta et al., 2022), and in particular Mamba (Gu & Dao, 2023), in the visual
domain. In this paper, we propose a Modulated Group Mamba layer that mitigates the drawbacks
of the default vision Mamba block, such as lack of stability (Patro & Agneeswaran, 2024) and the
increased number of parameters with respect to the number of channels.

3 METHOD

Motivation: Our method is motivated based on the observations with respect to the limitations of
existing Visual State-Space models.

• Lack of Stability for Larger Models: We observe from Patro & Agneeswaran (2024) that
Mamba (Gu & Dao, 2023) based image classification models with an MLP channel mixer
are unstable when scaled to a large number of parameters. This instability can be seen in
SiMBA-L (MLP) (Patro & Agneeswaran, 2024), which leads to sub-optimal classification
results of 49% accuracy. We mitigate this issue by introducing a Modulated Group Mamba
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Figure 2: Overview of the proposed method. Top Row: The overall architecture of our framework
with a consistent hierarchical design comprising four stages. Bottom Row: We present (b) The design
of the modulated group mamba layer. The input channels are divided into four groups with a single
scanning direction for each VSSS block. This significantly reduces the computational complexity
compared to the standard mamba layer, with similar performance. Channel Affinity Modulation
mechanism is introduced to address the limited interactions within the VSSS blocks. (c) The design
of VSSS block. It consists of Mamba block with 1D Selective Scanning block followed by FFN. (d)
The four scanning directions used for the four VSSS blocks are illustrated.

design alongside a distillation objective (as presented in Section 3.4) that stabilizes the
Mamba SSM training without modifying the channel mixer.

• Efficient Improved Interaction: Given the computational impact of Mamba-based design on
the number of channels, the proposed Modulated Group Mamba layer is computationally
inexpensive and parameter efficient than the default Mamba and able to model both local and
global information from the input tokens through multi-direction scanning. An additional
Channel Affinity Modulation operator is proposed in this work to compensate for the limited
channel interaction due to the grouped operation.

3.1 PRELIMINARIES

State-Space Models: State-space models (SSMs) like S4 (Gu et al., 2022) and Mamba (Gu & Dao,
2023) are structured sequence architectures inspired by a combination of recurrent neural networks
(RNNs) and convolutional neural networks (CNNs), with linear or near-linear scaling in sequence
length. Derived from continuous systems, SSMs define and 1D function-to-function map for an input
x(t) ∈ RL → y(t) ∈ RL via a hidden state h(t) ∈ RN . More formally, SSMs are described by the
continuous time Ordinary Differential Equation (ODE) in Equation 1.

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where h(t) is the current hidden state, h′(t) is the updated hidden state, x(t) is the current input, y(t)
is the output, A ∈ RN×N is SSM’s evolution matrix, and B ∈ RN×1,C ∈ RN×1 are the input and
output projection matrices, respectively.

Discrete State-Space Models: To allow these models to be used in sequence modeling tasks in
deep learning, they need to be discretized, converting the SSM from a continuous time function-to-
function map into a discrete-time sequence-to-sequence map. S4 (Gu et al., 2022) and Mamba (Gu &
Dao, 2023) are among the discrete adaptations of the continuous system, incorporating a timescale
parameter ∆ to convert the continuous parameters A,B into their discrete equivalents A,B. This

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

discretization is typically done through the Zero-Order Hold (ZOH) method given in Equation 2.

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B

ht = Aht−1 +Bxt,

yt = Cht.

(2)

While both S4 (Gu et al., 2022) and Mamba (Gu & Dao, 2023) utilize a similar discretization step
as stated above in Equation 2, Mamba differentiates itself from S4 by conditioning the parameters
∆ ∈ RB×L×D, B ∈ RB×L×N and C ∈ RB×L×N , on the input x ∈ RB×L×D, through the S6
Selective Scan Mechanism, where B is the batch size, L is the sequence length, and D is the feature
dimension.

3.2 OVERALL ARCHITECTURE

As shown in Figure 2 (a), our model uses a hierarchical architecture, similar to Swin Transformer (Liu
et al., 2021), with four stages to efficiently process images at varying resolutions. Assuming an
input image, I ∈ RH×W×3, we first apply a Patch Embedding layer to divide the image into
non-overlapping patches of size 4× 4 and embed each patch into a C1-dimensional feature vector.
The patch embedding layer is implemented using two 3 × 3 convolutions with a stride of 2. This
produces features maps of size H

4 × W
4 × C1 at the first stage. These feature maps are passed to

a stack of our Modulated Grouped Mamba blocks (as detailed in Section 3.3). In each subsequent
stage, a down-sampling layer merges patches in a 2 × 2 region, followed by another stack of our
Modulated Grouped Mamba blocks. Hence, feature size at stages two, three and four are H

8 ×W
8 ×C2,

H
16 × W

16 × C3, and H
32 × W

32 × C4, respectively.

3.3 MODULATED GROUP MAMBA LAYER

We present the overall operations of the proposed Modulated Group Mamba layer (Figure 2 (b)) for
an input sequence Xin, with dimensions (B,H,W,C), where B is the batch size, C is the number of
input channels and H/W are the width and height of the feature map, in Equation 3.

XGM = GroupedMamba(Xin,Θ)

XCAM = CAM(XGM,Affinity(Xin))

Xout = Xin + FFN(LN(XCAM))

(3)

Here, XGM is the output of Equation 6, XCAM is the output of Equation 9, LN is the Layer Normaliza-
tion (Ba et al., 2016) operation, FFN is the Feed-Forward Network as described by Equation 5, and
Xout is the final output of the Modulated Group Mamba block. The individual operations, namely
the GroupedMamba operator, the VSSS block used inside the GroupedMamba operator, and the
CAM operator, are presented in Section 3.3.1, Section 3.3.2 and Section 3.3.3, respectively.

3.3.1 VISUAL SINGLE SELECTIVE SCAN (VSSS) BLOCK

The VSSS block (Figure 2 (c)) is a token and channel mixer based on the Mamba operator. Mathe-
matically, for an input token sequence Zin, the VSSS block performs the operations as described in
Equation 4.

Z′
out = Zin + Mamba(LN(Zin))

Zout = Z′
out + FFN(LN(Z′

out))
(4)

Where Zout is the output sequence, Mamba is the discretized version of the Mamba SSM operator as
described in Equation 2.

FFN(LN(Z′
out)) = GELU(LN(Z′

out)W1 + b1)W2 + b2 (5)

Where GELU (Hendrycks & Gimpel, 2016) is the activation function and W1, W2, b1, and b2 are
weights and biases for the linear projections.
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3.3.2 GROUPED MAMBA OPERATOR

Considering the motivation presented earlier in Section 3, we aim to design a variant of the Mamba (Gu
& Dao, 2023) that is both computationally efficient and can effectively model the spatial dependencies
of the input sequence. Given that Mamba is computationally inefficient on large number of channels C
in the input sequence, we propose a grouped variant of the operator, inspired by Grouped Convolutions.
The Grouped Mamba operation is a variant of the VSSS block presented in Section 3.3.1, where the
input channels are divided into groups, and the VSSS operator is applied separately to each group.
Specifically, we divide the input channels into four groups, each of size C

4 , and an independent
VSSS block is applied to each group. To better model spatial dependencies in the input, each of
the four groups scans in one of four directions across the token sequence: left-to-right, right-to-left,
top-to-bottom, and bottom-to-top, as outlined in Figure 2 (d).

Let G = 4 be the number of groups representing four scanning directions: left-to-right, right-to-left,
top-to-bottom, and bottom-to-top. We form four sequences from the input sequence Xin, namely
XLR, XRL, XTB, and XBT, each of shape (B,H,W, C

4 ), representing one of the four directions
specified earlier. These are then flattened to form a single token sequence of shape (B,N, C

4 ), where
N = W ×H is the number of tokens in the sequence. The parameters for each of the four groups
can be specified by θLR, θRL, θTB, and θBT, respectively, for each of the four groups, representing the
parameters for the VSSS blocks.

Given the above definitions, the overall relation for the Grouped Mamba operator can be written as
shown in Equation 6.

XGM = GroupedMamba(Xin,Θ) = Concat(VSSS(XLR,ΘLR),

VSSS(XRL,ΘRL),

VSSS(XTB,ΘTB),

VSSS(XBT,ΘBT))

(6)

Where:

• XLR, XRL, XTB, and XBT represent the input tensors scanned in the respective directions.

• ΘLR, ΘRL, ΘTB, and ΘBT represents the parameters of the VSSS block for each direction.

• The output of each Mamba operator is reshaped again to (B,H,W, C
4 ), and concatenated

back to form the token sequence XGM, again of the size (B,H,W,C).

3.3.3 CHANNEL AFFINITY MODULATION (CAM)

On its own, the Grouped Mamba operator may have a disadvantage in the form of limited information
exchange across channels, given the fact that each operator in the group only operates over C

4
channels. To encourage the exchange of information across channels, we propose a Channel Affinity
Modulation operator, which recalibrates channel-wise feature responses to enhance the representation
power of the network. In this block, we first average pool the input to calculate the channel statistics
as shown in Equation 7.

ChannelStat(Xin) = AvgPool(Xin) (7)

where Xin is the input tensor, and AvgPool represents the global average pooling operation. Next
comes the affinity calculation operation as shown in Equation 8.

Affinity(Xin) = σ (W2δ (W1ChannelStat(Xin))) (8)

where δ and σ represent non-linearity functions, and W1 and W2 are learnable weights. The role of σ
is to assign an importance weight to each channel to compute the affinity. The result of the affinity
calculation is used to recalibrate the output of the Grouped Mamba operator, as shown in Equation 9.

XCAM = CAM(XGM,Affinity(Xin)) = XGM · Affinity(Xin) (9)

where XCAM is the recalibrated output, XGM is the concatenated output of the four VSSS groups from
Equation 6, Xin is the input tensor, and Affinity(Xin) are the channel-wise attention scores obtained
from the channel affinity calculation operation in Equation 8.
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3.4 DISTILLED LOSS FUNCTION

As mentioned earlier in the motivation in Section 3, the Mamba training is unstable when scaled to
large models (Patro & Agneeswaran, 2024). To mitigate this issue, we propose to utilize a distillation
objective alongside the standard cross-entropy objective. Knowledge distillation involves training
a student model to learn from a teacher model’s behavior by minimizing a combination of the
classification loss and distillation loss. The distillation loss is computed using the cross-entropy
objective between the logits of the teacher and student models. Given the logits (Zs) from the student
model, logits (Zt) from a teacher model (RegNetY-16G (Radosavovic et al., 2020) in our case), the
ground truth label y, and the hard decision of the teacher yt = argmaxcZt(c), the joint loss function
is defined as shown in Equation 10.

Ltotal = αLCE(Zs, y) + (1− α)LCE(Zs, yt). (10)

where LCE is the cross-entropy objective and α is the weighting parameter. We experimentally show
in Section 4 that training with this distillation objective stabilizes training, leading to consistent
performance gains on larger model variants.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

Settings: The image classification experiments are based on ImageNet-1K (Deng et al., 2009),
which comprising of over 1.28 million training images and 50K validation images, spanning 1, 000
categories. Following Liu et al. (2022a), we train our models for using the AdamW (Loshchilov &
Hutter, 2017) optimizer and a cosine decay learning rate scheduler for 300 epochs, including a 20
epoch warm-up. The total batch size is set to 1024, with models trained on 8x A100 GPUs, each with
80GB of CUDA memory. Optimizer betas are set to (0.9, 0.999); momentum is set to 0.9, and an
initial learning rate of 1× 10−3 is used with a weight decay of 0.05. Label smoothing of 0.1 is used
alongside the distillation objective (see Section 3.4).

Results: Table 1 presents a comparison of our proposed GroupMamba models (T, S, B) with various
state-of-the-art methods. The GroupMamba models exhibit a notable balance of accuracy and
computational efficiency. GroupMamba-T achieves a top-1 accuracy of 83.3% with 23 million
parameters and 4.5 GFLOPs, outperforming ConvNeXt-T (Liu et al., 2022b) and Swin-T (Liu
et al., 2021) by 1.2% and 2.0%, respectively, with fewer parameters. Additionally, GroupMamba-T
surpasses the recently introduced SSM models, outperforming VMamba-T (Liu et al., 2024b) and
LocalVMamba-T (Huang et al., 2024) by 0.8% and 0.6%, respectively, while using 26% fewer
parameters than VMamba-T. GroupMamba-S, with 34 million parameters and 7.0 GFLOPs, achieves
an accuracy of 83.9%, surpassing VMamba-S (Liu et al., 2024b), Swin-S (Liu et al., 2021), and
EfficientVMamba-B (Pei et al., 2024). The performance is better than LocalVMamba-S (Huang et al.,
2024) by 0.2% with 32% fewer parameters. Furthermore, GroupMamba-B achieves an accuracy of
84.5% with only 57 million parameters and 14 GFLOPs, exceeding VMamba-B (Liu et al., 2024b)
by 0.6% while using 36% fewer parameters.

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings: We evaluate the performance of GroupMamba-T for object detection on the MS-COCO
2017 dataset (Lin et al., 2014). Our method is based on the Mask-RCNN (He et al., 2017) detector
with the hyperparameters as used for Swin (Liu et al., 2021). We use the AdamW (Loshchilov &
Hutter, 2017) optimizer and train Mask-RCNN with GroupMamba-T backbone for 12 epochs. The
backbone is initialized and fine-tuned from the ImageNet-1K (Deng et al., 2009). We use an initial
learning rate of 1× 10−4 and decay by a factor of 10 at epochs 9 and 11.

Results: Table 2 shows the results of GroupMamba-T, comparing it against various state-of-the-art
models for object detection and instance segmentation using the Mask R-CNN framework on the
MS-COCO dataset. Our model achieves box AP (APb) of 47.6 and mask AP (APm) of 42.9. It
surpasses ResNet-50 (He et al., 2016), Swin-T (Liu et al., 2022a), ConvNeXt-T (Liu et al., 2022b). In
addition, GroupMamba-T has competitive performance compared to VMamba-T (Liu et al., 2024b)
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Table 1: Performance comparison of GroupMamba models with state-of-the-art convolution-
based, attention-based, and SSM-based models on ImageNet-1K (Deng et al., 2009). Our models
demonstrate superior performance and achieve a better trade-off between accuracy and parameters.

Method Token
mixing

Image
size #Param. FLOPs Top-1 acc.

RegNetY-8G (Radosavovic et al., 2020) Conv 2242 39M 8.0G 81.7
RegNetY-16G (Radosavovic et al., 2020) Conv 2242 84M 16.0G 82.9

EffNet-B4 (Tan & Le, 2019) Conv 3802 19M 4.2G 82.9
EffNet-B5 (Tan & Le, 2019) Conv 4562 30M 9.9G 83.6
EffNet-B6 (Tan & Le, 2019) Conv 5282 43M 19.0G 84.0

DeiT-S (Touvron et al., 2021) Attention 2242 22M 4.6G 79.8
DeiT-B (Touvron et al., 2021) Attention 2242 86M 17.5G 81.8
DeiT-B (Touvron et al., 2021) Attention 3842 86M 55.4G 83.1

ConvNeXt-T (Liu et al., 2022b) Conv 2242 29M 4.5G 82.1
ConvNeXt-S (Liu et al., 2022b) Conv 2242 50M 8.7G 83.1
ConvNeXt-B (Liu et al., 2022b) Conv 2242 89M 15.4G 83.8

Swin-T (Liu et al., 2021) Attention 2242 28M 4.6G 81.3
Swin-S (Liu et al., 2021) Attention 2242 50M 8.7G 83.0
Swin-B (Liu et al., 2021) Attention 2242 88M 15.4G 83.5

ViM-S (Zhu et al., 2024) SSM 2242 26M - 80.5
VMamba-T (Liu et al., 2024b) SSM 2242 31M 4.9G 82.5
VMamba-S (Liu et al., 2024b) SSM 2242 50M 8.7G 83.6
VMamba-B (Liu et al., 2024b) SSM 2242 89M 15.4G 83.9

LocalVMamba-T (Huang et al., 2024) SSM 2242 26M 5.7G 82.7
LocalVMamba-S (Huang et al., 2024) SSM 2242 50M 11.4G 83.7
EfficientVMamba-B (Pei et al., 2024) SSM 2242 33M 4.0G 81.8

GroupMamba-T SSM 2242 23M 4.5G 83.3
GroupMamba-S SSM 2242 34M 7.0G 83.9
GroupMamba-B SSM 2242 57M 14G 84.5

and LocalVMamba-T (Huang et al., 2024), with less 20% parameters compared to VMamba-T.
Figure 3 (first row) displays qualitative examples of object detection and instance segmentation.
GroupMamba-T accurately detects and segments the targets in various scenes.

4.3 SEMANTIC SEGMENTATION

Settings: We also evaluate the performance of GroupMamba-T for semantic segmentation on the
ADE20K (Zhou et al., 2017) dataset. The framework is based on the UperNet (Xiao et al., 2018)
architecture, and we follow the same hyperparameters as used for the Swin (Liu et al., 2021) backbone.
More specifically, we use the AdamW (Loshchilov & Hutter, 2017) optimizer for a total of 160k
iterations with an initial learning rate of 6×10−5. The default input resolution used in our experiments
is 512× 512.

Results: The GroupMamba-T model demonstrates favorable performance in semantic segmentation
compared to various state-of-the-art methods, as presented in Table 3. GroupMamba-T achieves a
mIoU of 48.6 in single-scale and 49.2 in multi-scale evaluation, with 49M parameters and 955G
FLOPs. This outperforms ResNet-50 (He et al., 2016), Swin-T (Liu et al., 2021), and ConvNeXt-
T (Liu et al., 2022b). Additionally, GroupMamba-T exceeds the performance of the recent SSM meth-
ods, including ViM-S (Zhu et al., 2024), VMamba-T (Liu et al., 2024b), and LocalVMamba (Huang
et al., 2024) with fewer number of parameters. Figure 3 (second row) shows qualitative examples
of GroupMamba-T. These examples demonstrate our model’s ability to accurately segment various
classes for indoor and outdoor scenes.
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Figure 3: Qualitative results of GroupMamba-T for object detection and instance segmentation (first
row) on the MS-COCO val. set and semantic segmentation (second row) on ADE20k val. set.

Table 2: Performance comparison for object detection and instance segmentation on MS-
COCO (Lin et al., 2014) using Mask R-CNN (He et al., 2017): AP b and APm signify box AP
and mask AP, respectively. FLOPs, are computed for an input dimension of 1280× 800.

Mask R-CNN 1× schedule

Backbone APb APb
50 APb

75 APm APm
50 APm

75 #param. FLOPs

ResNet-50 (He et al., 2016) 38.2 58.8 41.4 34.7 55.7 37.2 44M 260G
Swin-T (Liu et al., 2021) 42.7 65.2 46.8 39.3 62.2 42.2 48M 267G

ConvNeXt-T (Liu et al., 2022b) 44.2 66.6 48.3 40.1 63.3 42.8 48M 262G
PVTv2-B2 (Wang et al., 2022) 45.3 67.1 49.6 41.2 64.2 44.4 45M 309G
VMamba-T (Liu et al., 2024b) 47.4 69.5 52.0 42.7 66.3 46.0 50M 270G

LocalVMamba-T (Huang et al., 2024) 46.7 68.7 50.8 42.2 65.7 45.5 45M 291G
GroupMamba-T 47.6 69.8 52.1 42.9 66.5 46.3 40M 279G

Table 3: Performance comparison for semantic segmentation on ADE20K (Zhou et al., 2017)
using UperNet (Xiao et al., 2018). The terms ’SS’ and ’MS’ refer to evaluation at single-scale and
multi-scale levels, respectively. FLOPs are computed for an input dimension of 512× 2048.

method crop size mIoU (SS) mIoU (MS) #param. FLOPs

ResNet-50 (He et al., 2016) 5122 42.1 42.8 67M 953G
Swin-T (Liu et al., 2021) 5122 44.4 45.8 60M 945G

ConvNeXt-T (Liu et al., 2022b) 5122 46.0 46.7 60M 939G
ViM-S (Zhu et al., 2024) 5122 44.9 - 46M -

VMamba-T (Liu et al., 2024b) 5122 48.3 48.6 62M 948G
EfficientVMamba-B (Pei et al., 2024) 5122 46.5 47.3 65M 930G
LocalVMamba-T (Huang et al., 2024) 5122 47.9 49.1 57M 970G

GroupMamba-T 5122 48.6 49.2 49M 955G

4.4 ABLATION STUDY

Figure 4 showcases the impact of each proposed contribution in terms of top-1 accuracy, number
of parameters, and throughput, compared to other SSM-based methods. GroupMamba-T with 4-D
scanning, comprising 22M parameters, achieves a top-1 accuracy of 82.30% and a throughput of
803. By applying a unidirectional 1D scan across N/4 channels in four directions—left-to-right,
right-to-left, top-to-bottom, and bottom-to-top instead of the full 4-D scanning across all N channels,
the throughput significantly increased from 803 to 1125, with only a negligible accuracy reduction of
0.1%, while keeping the same number of parameters.
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The integration of the CAM module further elevates the top-1 accuracy from 82.20% to 82.50%,
with a minor reduction in throughput (from 1125 to 1069). Finally, incorporating the proposed
distillation-based loss pushes the top-1 accuracy to 83.30%, while preserving the throughput at 1069.

In comparison to Vim-S (Zhu et al., 2024), GroupMamba has fewer parameters and outperforms it by
2.8% in top-1 accuracy, with 1.5× higher throughput. When compared to LocalVMamba-T (Huang
et al., 2024), GroupMamba achieves a 0.5% gain in top-1 accuracy while being 3× faster and having
fewer parameters. Compared to VMamba-T (Liu et al., 2024b), our model demonstrates slightly
faster throughput, a 0.6% increase in top-1 accuracy, and a 26% improvement in parameter efficiency.

To demonstrate the training stability of GroupMamba-Base variant compared to the baseline VMamba-
Base, we evaluate the loss progression and variance throughout the training process. For the baseline
variant, the initial loss at epoch 0 was 6.9325 and decreased to 2.2021 (2.4731) by epoch 300, with
a variance of 0.67142. In contrast, GroupMamba-Base exhibited a starting loss of 6.9272, which
dropped to 1.2651 (1.4827) by epoch 300, accompanied by a lower variance of 0.46916. This indicates
enhanced training stability for GroupMamba-Base, showcasing better convergence compared to the
baseline VMamba-Base.

Parameters Accuracy

22 M

LocalVMamba-T

Vmamba-T V2

Vmamba-T V1

Vim-S

GroupMamba-T 
(1-D Scanning + CAM + Distillation)

GroupMamba-T 
(1-D scanning + CAM)

GroupMamba-T 
(1-D Scanning)

GroupMamba-T 
(4-D Scanning)

22 M

22 M

23 M

23 M

26 M

31 M

26 M

82.30%

82.20%

82.50%

83.30%

80.50%

82.20%

82.50%

82.70%

Throughput

803

1125

1069

1069

736

427

1021

338

Figure 4: Comparison of GroupMamba variants and SSM-based methods in classification accuracy
and computational efficiency. The throughput (number of predicted samples per second) is measured
using a single Nvidia A100 GPU with a batch size of 128 for all methods.

5 CONCLUSION AND FUTURE WORK

In this paper, we tackle the computational inefficiencies and stability challenges associated with
visual SSMs for computer vision tasks by introducing a novel layer called the Modulated Group
Mamba. We also propose a multi-directional scanning method that improves parameter efficiency by
scanning in four spatial directions and leveraging the Channel Affinity Modulation (CAM) operator
to enhance feature aggregation across channels. To stabilize training, especially for larger models, we
employ a distillation-based training objective. Our experimental results demonstrate that the proposed
GroupMamba models outperform recent SSMs while requiring fewer parameters.

Our research has focused on image classification, object detection, instance segmentation, and
semantic segmentation. To further validate and extend the generalization ability of our method,
we aim to explore additional downstream tasks, such as video recognition and time-series data
applications. Evaluating the Modulated Group Mamba layer in these contexts will help to uncover its
potential benefits and limitations, providing deeper insights and guiding further improvements.
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