GROUPMAMBA: PARAMETER-EFFICIENT AND ACCU-RATE GROUP VISUAL STATE SPACE MODEL

Anonymous authors

Paper under double-blind review

Abstract

Recent advancements in state-space models (SSMs) have showcased effective performance in modeling long-range dependencies with subquadratic complexity. However, pure SSM-based models still face challenges related to stability and achieving optimal performance on computer vision tasks. Our paper addresses the challenges of scaling SSM-based models for computer vision, particularly the instability and inefficiency of large model sizes. To address this, we introduce a Modulated Group Mamba layer which divides the input channels into four groups and applies our proposed SSM-based efficient Visual Single Selective Scanning (VSSS) block independently to each group, with each VSSS block scanning in one of the four spatial directions. The Modulated Group Mamba layer also wraps the four VSSS blocks into a channel modulation operator to improve cross-channel communication. Furthermore, we introduce a distillation-based training objective to stabilize the training of large models, leading to consistent performance gains. Our comprehensive experiments demonstrate the merits of the proposed contributions, leading to superior performance over existing methods for image classification on ImageNet-1K, object detection, instance segmentation on MS-COCO, and semantic segmentation on ADE20K. Our tiny variant with 23M parameters achieves state-ofthe-art performance with a classification top-1 accuracy of 83.3% on ImageNet-1K, while being 26% efficient in terms of parameters, compared to the best existing Mamba design of same model size. Our code and models will be publicly released.

029 030 031

032

004

010 011

012

013

014

015

016

017

018

019

020

021

024

025

026

027

028

1 INTRODUCTION

Various context modeling methods have emerged in the domains of language and vision understanding.
These include Convolution (He et al., 2016; Yang et al., 2022), Attention (Vaswani et al., 2017), and, more recently, State Space Models Gu et al. (2022); Gu & Dao (2023). Transformers with their multi-headed self-attention mechanism (Vaswani et al., 2017) have been central to both language models such as GPT-3 (Brown et al., 2020) and vision models such as Vision Transformers (Dosovitskiy et al., 2021; Liu et al., 2021). However, challenges arose due to the quadratic computational complexity of attention mechanisms particularly for longer sequences, leading to the recent emergence of State Space models such as S4 (Gu et al., 2022).

041 While being effective in handling extended input sequences due to their linear complexity in terms 042 of sequence lengths, S4 (Gu et al., 2022) encountered limitations in global context processing in 043 information-dense data, especially in domains like computer vision due to the data-independent nature 044 of the model. Alternatively, approaches such as global convolutions-based state space models (Fu et al., 2023b) and Liquid S4 (Hasani et al., 2022) have been proposed to mitigate the aforementioned limitations. The recent Mamba (Gu & Dao, 2023) introduces the S6 architecture which aims to 046 enhance the ability of state-space models to handle long-range dependencies efficiently. The selective-047 scan algorithm introduced by Mamba uses input-dependent state-space parameters, which allow for 048 better in-context learning while still being computationally efficient compared to self-attention.

However, Mamba, specifically the S6 algorithm, is known to be unstable for e.g., image classification,
especially when scaled to large sizes (Patro & Agneeswaran, 2024). Additionally, the Mamba model
variant used in image classification, generally called the VSS (Visual State Space) block, can be
more efficient in terms of parameters and compute requirements based on the number of channels.
The VSS block includes extensive input and output projections along with depth-wise convolutions,

Figure 1: Left: Comparison in terms of Parameters vs. Top-1 Accuracy on ImageNet-1k (Deng et al., 2009). Our GroupMamba-B achieves superior top-1 classification accuracy while reducing parameters by 36% compared to VMamba (Liu et al., 2024b). Right: Qualitative results of GroupMamba-T on semantic segmentation (top right), and object detection and instance segmentation (bottom right). More qualitative examples are presented in Figure 3 and the supplemental material.

whose parameters and compute complexities are directly proportional to the number of channels in the input. To address this issue, we propose a *Modulated Group Mamba* layer that mitigates the aforementioned issues in a computation and parameter-efficient manner. The main contributions of our paper are:

- 1. We introduce a *Modulated Group Mamba* layer, inspired by Group Convolutions, which enhances computational efficiency and interaction in state-space models by using a multidirection scanning method for comprehensive spatial coverage and effective modeling of local and global information.
- 2. We introduce a *Channel Affinity Modulation (CAM)* operator, which enhances communication across channels to improve feature aggregation, addressing the limited interaction inherent in the grouping operation.
- 3. To address the instability issue in the SSM-based architecture, we introduce a distillationbased training objective designed to stabilize models with a large number of parameters, leading to better performance and a smooth loss convergence trend.
- 4. We build a series of parameter-efficient generic classification models called "GroupMamba", based on the proposed *Modulated Group Mamba* layer. Our *tiny* variant achieves 83.3% top-1 accuracy on ImageNet-1k (Deng et al., 2009) with 23M parameters and 4.5G FLOPs. Additionally, our *base* variant achieves top-1 accuracy of 84.5% with 57M parameters and 14G FLOPs, outperforming all recent SSM methods (see Figure 1).
- 098 099 100

101

077 078

079

081

082

084

085

090

092

093

095

096

2 RELATED WORK

Convolutional Neural Networks (ConvNets) have been the popular choice for computer vision tasks
since the introduction of AlexNet (Krizhevsky et al., 2012). The field has rapidly evolved with several
landmark ConvNet architectures (Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016;
Howard et al., 2017; Tan & Le, 2019). Alongside these architectural advances, significant efforts
have been made to refine individual convolution layers, including depthwise convolution (Xie et al., 2017), group convolution (Cohen & Welling, 2016), and deformable convolution (Dai et al., 2017).
Recently, ConvNeXt variants (Liu et al., 2022b; Woo et al., 2023) have taken concrete steps towards

modernizing traditional 2D ConvNets by incorporating macro designs with advanced settings and training recipes to achieve on-par performance with the state-of-the-art models.

In recent years, the pioneering Vision Transformer (ViT) (Dosovitskiy et al., 2021) has significantly 111 impacted the computer vision field, including tasks such as image classification (Touvron et al., 2021; 112 Liu et al., 2021; 2022a; Fan et al., 2021), object detection (Carion et al., 2020; Zhu et al., 2021; 113 Meng et al., 2021; Zhang et al., 2022), and segmentation (Cheng et al., 2022; Shaker et al., 2024; 114 Kirillov et al., 2023). ViT (Dosovitskiy et al., 2021) introduces a monolithic design that approaches 115 an image as a series of flattened 2D patches without image-specific inductive bias. The remarkable 116 performance of ViT for computer vision tasks, along with its scalability, has inspired numerous 117 subsequent endeavors to design better architectures. The early ViT-based models usually require 118 large-scale datasets (e.g., JFT-300M (Sun et al., 2017)) for pretraining. Later, DeiT (Touvron et al., 2021) proposes advanced training techniques in addition to integrating a distillation token into the 119 architecture, enabling effective training on smaller datasets (e.g., ImageNet-1K (Deng et al., 2009)). 120 Since then, subsequent studies have designed hierarchical and hybrid architectures by combining 121 CNN and ViT modules to improve performance on different vision tasks (Srinivas et al., 2021; Maaz 122 et al., 2022; d'Ascoli et al., 2021; Shaker et al., 2023; Fan et al., 2021). Another line of work is to 123 mitigate the quadratic complexity inherent in self-attention, a primary bottleneck of ViTs. This effort 124 has led to significant improvements and more efficient and approximated variants (Wang et al., 2020; 125 Shaker et al., 2023; Pan et al., 2022; Mehta & Rastegari, 2023; Kitaev et al., 2020; Chu et al., 2021; 126 Tu et al., 2022), offering reduced complexity while maintaining effectiveness. 127

Recently, State Space Models (SSMs) have emerged as an alternative to ViTs (Vaswani et al., 2017), capturing the intricate dynamics and inter-dependencies within language sequences (Gu et al., 2022).
One notable method in this area is the structured state-space sequence model (S4) (Gu et al., 2022), designed to tackle long-range dependencies while maintaining linear complexity. Following this direction, several models have been proposed, including S5 (Smith et al., 2023), H3 (Fu et al., 2023a), and GSS (Mehta et al., 2022). More recently, Mamba (Gu & Dao, 2023) introduces an input-dependent SSM layer and leverages a parallel selective scan mechanism (S6).

134 In the visual domain, various works have applied SSMs to different tasks. In particular for image 135 classification, VMamba (Liu et al., 2024b) uses Mamba with bidirectional scans across both spatial 136 dimensions in a hierarchical Swin-Transformer (Liu et al., 2021) style design to build a global 137 receptive field efficiently. A concurrent work, Vision Mamba (Vim) (Zhu et al., 2024), instead 138 proposed a monolithic design with a single bidirectional scan for the entire image, outperforming 139 traditional vision transformers like DeiT. LocalVMamba (Huang et al., 2024) addresses the challenge 140 of capturing detailed local information by introducing a scanning methodology within distinct windows (inspired from Swin-Transformer (Liu et al., 2021)), coupled with dynamic scanning 141 142 directions across network layers. EfficientVMamba (Pei et al., 2024) integrates atrous-based selective scanning and dual-pathway modules for efficient global and local feature extraction, achieving 143 competitive results with reduced computational complexity. These models have been applied for 144 image classification, as well as image segmentation (Liu et al., 2024a; Ma et al., 2024; Ruan & Xiang, 145 2024; Gong et al., 2024), video understanding (Yang et al., 2024; Li et al., 2024; Chen et al., 2024), 146 and various other tasks (Guo et al., 2024b; He et al., 2024; Wang et al., 2024; Guo et al., 2024a; Liang 147 et al., 2024). Their wide applicability shows the effectiveness of SSMs (Gu et al., 2022; Smith et al., 148 2023; Fu et al., 2023a; Mehta et al., 2022), and in particular Mamba (Gu & Dao, 2023), in the visual 149 domain. In this paper, we propose a Modulated Group Mamba layer that mitigates the drawbacks 150 of the default vision Mamba block, such as lack of stability (Patro & Agneeswaran, 2024) and the 151 increased number of parameters with respect to the number of channels.

152 153 154

156

157 158

159

161

3 Method

155

Motivation: Our method is motivated based on the observations with respect to the limitations of existing Visual State-Space models.

• Lack of Stability for Larger Models: We observe from Patro & Agneeswaran (2024) that Mamba (Gu & Dao, 2023) based image classification models with an MLP channel mixer are unstable when scaled to a large number of parameters. This instability can be seen in SiMBA-L (MLP) (Patro & Agneeswaran, 2024), which leads to sub-optimal classification results of 49% accuracy. We mitigate this issue by introducing a *Modulated Group Mamba*

Figure 2: Overview of the proposed method. Top Row: The overall architecture of our framework with a consistent hierarchical design comprising four stages. Bottom Row: We present (b) The design 182 of the modulated group mamba layer. The input channels are divided into four groups with a single 183 scanning direction for each VSSS block. This significantly reduces the computational complexity compared to the standard mamba layer, with similar performance. Channel Affinity Modulation 185 mechanism is introduced to address the limited interactions within the VSSS blocks. (c) The design of VSSS block. It consists of Mamba block with 1D Selective Scanning block followed by FFN. (d) 186 187 The four scanning directions used for the four VSSS blocks are illustrated.

design alongside a distillation objective (as presented in Section 3.4) that stabilizes the Mamba SSM training without modifying the channel mixer.

- Efficient Improved Interaction: Given the computational impact of Mamba-based design on the number of channels, the proposed Modulated Group Mamba layer is computationally inexpensive and parameter efficient than the default Mamba and able to model both local and global information from the input tokens through multi-direction scanning. An additional Channel Affinity Modulation operator is proposed in this work to compensate for the limited channel interaction due to the grouped operation.
- 3.1 PRELIMINARIES

200 State-Space Models: State-space models (SSMs) like S4 (Gu et al., 2022) and Mamba (Gu & Dao, 201 2023) are structured sequence architectures inspired by a combination of recurrent neural networks (RNNs) and convolutional neural networks (CNNs), with linear or near-linear scaling in sequence 202 length. Derived from continuous systems, SSMs define and 1D function-to-function map for an input 203 $x(t) \in \mathbb{R}^L \to y(t) \in \mathbb{R}^L$ via a hidden state $h(t) \in \mathbb{R}^N$. More formally, SSMs are described by the 204 continuous time Ordinary Differential Equation (ODE) in Equation 1. 205

206 207

208

181

188 189

190

192

193

194

196

197

199

 $h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t),$ (1) $y(t) = \mathbf{C}h(t),$

where h(t) is the current hidden state, h'(t) is the updated hidden state, x(t) is the current input, y(t)209 is the output, $\mathbf{A} \in \mathbb{R}^{N \times N}$ is SSM's evolution matrix, and $\mathbf{B} \in \mathbb{R}^{N \times 1}$, $\mathbf{C} \in \mathbb{R}^{N \times 1}$ are the input and 210 output projection matrices, respectively. 211

Discrete State-Space Models: To allow these models to be used in sequence modeling tasks in 212 deep learning, they need to be discretized, converting the SSM from a continuous time function-to-213 function map into a discrete-time sequence-to-sequence map. S4 (Gu et al., 2022) and Mamba (Gu & 214 Dao, 2023) are among the discrete adaptations of the continuous system, incorporating a timescale 215 parameter Δ to convert the continuous parameters A, B into their discrete equivalents \overline{A} , \overline{B} . This

discretization is typically done through the Zero-Order Hold (ZOH) method given in Equation 2.

218 219

$$\mathbf{A} = \exp(\mathbf{\Delta}\mathbf{A}),$$

$$\overline{\mathbf{B}} = (\mathbf{\Delta}\mathbf{A})^{-1}(\exp(\mathbf{\Delta}\mathbf{A}) - \mathbf{I}) \cdot \mathbf{\Delta}\mathbf{B}$$

$$h_t = \overline{\mathbf{A}}h_{t-1} + \overline{\mathbf{B}}x_t,$$

$$y_t = \mathbf{C}h_t.$$
(2)

225

226

227

228 229

230 231

220

While both S4 (Gu et al., 2022) and Mamba (Gu & Dao, 2023) utilize a similar discretization step as stated above in Equation 2, Mamba differentiates itself from S4 by conditioning the parameters $\Delta \in \mathbb{R}^{B \times L \times D}$, $\mathbf{B} \in \mathbb{R}^{B \times L \times N}$ and $\mathbf{C} \in \mathbb{R}^{B \times L \times N}$, on the input $x \in \mathbb{R}^{B \times L \times D}$, through the S6 Selective Scan Mechanism, where B is the batch size, L is the sequence length, and D is the feature dimension.

3.2 OVERALL ARCHITECTURE

As shown in Figure 2 (a), our model uses a hierarchical architecture, similar to Swin Transformer (Liu 232 et al., 2021), with four stages to efficiently process images at varying resolutions. Assuming an 233 input image, $I \in \mathbb{R}^{H \times W \times 3}$, we first apply a Patch Embedding layer to divide the image into 234 non-overlapping patches of size 4×4 and embed each patch into a C_1 -dimensional feature vector. 235 The patch embedding layer is implemented using two 3×3 convolutions with a stride of 2. This produces features maps of size $\frac{H}{4} \times \frac{W}{4} \times C_1$ at the first stage. These feature maps are passed to a stack of our Modulated Grouped Mamba blocks (as detailed in Section 3.3). In each subsequent 236 237 238 stage, a down-sampling layer merges patches in a 2×2 region, followed by another stack of our 239 Modulated Grouped Mamba blocks. Hence, feature size at stages two, three and four are $\frac{H}{8} \times \frac{W}{8} \times C_2$, $\frac{H}{16} \times \frac{W}{16} \times C_3$, and $\frac{H}{32} \times \frac{W}{32} \times C_4$, respectively. 240

241 242

243

3.3 MODULATED GROUP MAMBA LAYER

We present the overall operations of the proposed *Modulated Group Mamba* layer (Figure 2 (b)) for an input sequence X_{in} , with dimensions (B, H, W, C), where B is the batch size, C is the number of input channels and H/W are the width and height of the feature map, in Equation 3.

 $\begin{array}{ll} \textbf{X}_{GM} = GroupedMamba(\textbf{X}_{in}, \Theta) \\ \textbf{X}_{CAM} = CAM(\textbf{X}_{GM}, Affinity(\textbf{X}_{in})) \\ \textbf{X}_{out} = \textbf{X}_{in} + FFN(LN(\textbf{X}_{CAM})) \end{array}$

Here, X_{GM} is the output of Equation 6, X_{CAM} is the output of Equation 9, LN is the Layer Normalization (Ba et al., 2016) operation, FFN is the Feed-Forward Network as described by Equation 5, and X_{out} is the final output of the Modulated Group Mamba block. The individual operations, namely the GroupedMamba operator, the VSSS block used inside the GroupedMamba operator, and the CAM operator, are presented in Section 3.3.1, Section 3.3.2 and Section 3.3.3, respectively.

256 257

258

262

264

267

268

3.3.1 VISUAL SINGLE SELECTIVE SCAN (VSSS) BLOCK

The VSSS block (Figure 2 (c)) is a token and channel mixer based on the Mamba operator. Mathematically, for an input token sequence \mathbf{Z}_{in} , the VSSS block performs the operations as described in Equation 4.

$$\begin{aligned} \mathbf{Z}_{out}' &= \mathbf{Z}_{in} + \text{Mamba}(\text{LN}(\mathbf{Z}_{in})) \\ \mathbf{Z}_{out} &= \mathbf{Z}_{out}' + \text{FFN}(\text{LN}(\mathbf{Z}_{out}')) \end{aligned} \tag{4}$$

Where \mathbf{Z}_{out} is the output sequence, Mamba is the discretized version of the Mamba SSM operator as described in Equation 2.

$$\mathsf{FFN}(\mathsf{LN}(\mathbf{Z}'_{\mathsf{out}})) = \mathsf{GELU}(\mathsf{LN}(\mathbf{Z}'_{\mathsf{out}})\mathbf{W}_1 + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_2 \tag{5}$$

269 Where GELU (Hendrycks & Gimpel, 2016) is the activation function and W_1 , W_2 , b_1 , and b_2 are weights and biases for the linear projections.

270 3.3.2 GROUPED MAMBA OPERATOR

272 Considering the motivation presented earlier in Section 3, we aim to design a variant of the Mamba (Gu 273 & Dao, 2023) that is both computationally efficient and can effectively model the spatial dependencies of the input sequence. Given that Mamba is computationally inefficient on large number of channels C274 in the input sequence, we propose a grouped variant of the operator, inspired by Grouped Convolutions. 275 The Grouped Mamba operation is a variant of the VSSS block presented in Section 3.3.1, where the 276 input channels are divided into groups, and the VSSS operator is applied separately to each group. 277 Specifically, we divide the input channels into four groups, each of size $\frac{C}{4}$, and an independent 278 VSSS block is applied to each group. To better model spatial dependencies in the input, each of 279 the four groups scans in one of four directions across the token sequence: left-to-right, right-to-left, top-to-bottom, and bottom-to-top, as outlined in Figure 2 (d).

Let G = 4 be the number of groups representing four scanning directions: left-to-right, right-to-left, top-to-bottom, and bottom-to-top. We form four sequences from the input sequence X_{in} , namely X_{LR} , X_{RL} , X_{TB} , and X_{BT} , each of shape $(B, H, W, \frac{C}{4})$, representing one of the four directions specified earlier. These are then flattened to form a single token sequence of shape $(B, N, \frac{C}{4})$, where $N = W \times H$ is the number of tokens in the sequence. The parameters for each of the four groups can be specified by θ_{LR} , θ_{RL} , θ_{TB} , and θ_{BT} , respectively, for each of the four groups, representing the parameters for the VSSS blocks.

289 Given the above definitions, the overall relation for the Grouped Mamba operator can be written as290 shown in Equation 6.

$$\begin{split} \mathbf{X}_{GM} = GroupedMamba(\mathbf{X}_{in}, \Theta) = Concat(VSSS(\mathbf{X}_{LR}, \Theta_{LR}), \\ VSSS(\mathbf{X}_{RL}, \Theta_{RL}), \\ VSSS(\mathbf{X}_{TB}, \Theta_{TB}), \\ VSSS(\mathbf{X}_{BT}, \Theta_{BT})) \end{split} \tag{6}$$

Where:

298 299 300

301

302 303

304

311

315 316

320 321

297

291 292 293

294 295 296

- + X_{LR} , X_{RL} , X_{TB} , and X_{BT} represent the input tensors scanned in the respective directions.
- $\Theta_{LR}, \Theta_{RL}, \Theta_{TB}$, and Θ_{BT} represents the parameters of the VSSS block for each direction.
- The output of each Mamba operator is reshaped again to $(B, H, W, \frac{C}{4})$, and concatenated back to form the token sequence \mathbf{X}_{GM} , again of the size (B, H, W, C).

3.3.3 CHANNEL AFFINITY MODULATION (CAM)

k

On its own, the Grouped Mamba operator may have a disadvantage in the form of limited information exchange across channels, given the fact that each operator in the group only operates over $\frac{C}{4}$ channels. To encourage the exchange of information across channels, we propose a Channel Affinity Modulation operator, which recalibrates channel-wise feature responses to enhance the representation power of the network. In this block, we first average pool the input to calculate the channel statistics as shown in Equation 7.

$$ChannelStat(\mathbf{X}_{in}) = AvgPool(\mathbf{X}_{in})$$
(7)

where X_{in} is the input tensor, and AvgPool represents the global average pooling operation. Next comes the affinity calculation operation as shown in Equation 8.

Affinity
$$(\mathbf{X}_{in}) = \sigma \left(W_2 \delta \left(W_1 \text{ChannelStat}(\mathbf{X}_{in}) \right) \right)$$
 (8)

where δ and σ represent non-linearity functions, and W_1 and W_2 are learnable weights. The role of σ is to assign an importance weight to each channel to compute the affinity. The result of the affinity calculation is used to recalibrate the output of the Grouped Mamba operator, as shown in Equation 9.

$$\mathbf{X}_{\mathsf{CAM}} = \mathsf{CAM}(\mathbf{X}_{\mathsf{GM}}, \mathsf{Affinity}(\mathbf{X}_{\mathsf{in}})) = \mathbf{X}_{\mathsf{GM}} \cdot \mathsf{Affinity}(\mathbf{X}_{\mathsf{in}})$$
(9)

where \mathbf{X}_{CAM} is the recalibrated output, \mathbf{X}_{GM} is the concatenated output of the four VSSS groups from Equation 6, \mathbf{X}_{in} is the input tensor, and Affinity(\mathbf{X}_{in}) are the channel-wise attention scores obtained from the channel affinity calculation operation in Equation 8.

324 3.4 DISTILLED LOSS FUNCTION

326 As mentioned earlier in the motivation in Section 3, the Mamba training is unstable when scaled to 327 large models (Patro & Agneeswaran, 2024). To mitigate this issue, we propose to utilize a distillation objective alongside the standard cross-entropy objective. Knowledge distillation involves training 328 a student model to learn from a teacher model's behavior by minimizing a combination of the classification loss and distillation loss. The distillation loss is computed using the cross-entropy 330 objective between the logits of the teacher and student models. Given the logits (Z_s) from the student 331 model, logits (Z_t) from a teacher model (RegNetY-16G (Radosavovic et al., 2020) in our case), the 332 ground truth label y, and the hard decision of the teacher $y_t = \operatorname{argmax}_c Z_t(c)$, the joint loss function 333 is defined as shown in Equation 10. 334

335

336 337

338

 $\mathcal{L}_{\text{total}} = \alpha \mathcal{L}_{\text{CE}}(Z_s, y) + (1 - \alpha) \mathcal{L}_{\text{CE}}(Z_s, y_t).$ (10)

where \mathcal{L}_{CE} is the cross-entropy objective and α is the weighting parameter. We experimentally show in Section 4 that training with this distillation objective stabilizes training, leading to consistent performance gains on larger model variants.

339340341342

343

4 EXPERIMENTS

344 4.1 IMAGE CLASSIFICATION

345 Settings: The image classification experiments are based on ImageNet-1K (Deng et al., 2009), 346 which comprising of over 1.28 million training images and 50K validation images, spanning 1,000 347 categories. Following Liu et al. (2022a), we train our models for using the AdamW (Loshchilov & 348 Hutter, 2017) optimizer and a cosine decay learning rate scheduler for 300 epochs, including a 20 349 epoch warm-up. The total batch size is set to 1024, with models trained on 8x A100 GPUs, each with 350 80GB of CUDA memory. Optimizer betas are set to (0.9, 0.999); momentum is set to 0.9, and an initial learning rate of 1×10^{-3} is used with a weight decay of 0.05. Label smoothing of 0.1 is used 351 alongside the distillation objective (see Section 3.4). 352

353 Results: Table 1 presents a comparison of our proposed GroupMamba models (T, S, B) with various 354 state-of-the-art methods. The GroupMamba models exhibit a notable balance of accuracy and 355 computational efficiency. GroupMamba-T achieves a top-1 accuracy of 83.3% with 23 million 356 parameters and 4.5 GFLOPs, outperforming ConvNeXt-T (Liu et al., 2022b) and Swin-T (Liu et al., 2021) by 1.2% and 2.0%, respectively, with fewer parameters. Additionally, GroupMamba-T 357 surpasses the recently introduced SSM models, outperforming VMamba-T (Liu et al., 2024b) and 358 LocalVMamba-T (Huang et al., 2024) by 0.8% and 0.6%, respectively, while using 26% fewer 359 parameters than VMamba-T. GroupMamba-S, with 34 million parameters and 7.0 GFLOPs, achieves 360 an accuracy of 83.9%, surpassing VMamba-S (Liu et al., 2024b), Swin-S (Liu et al., 2021), and 361 EfficientVMamba-B (Pei et al., 2024). The performance is better than LocalVMamba-S (Huang et al., 362 2024) by 0.2% with 32% fewer parameters. Furthermore, GroupMamba-B achieves an accuracy of 363 84.5% with only 57 million parameters and 14 GFLOPs, exceeding VMamba-B (Liu et al., 2024b) 364 by 0.6% while using 36% fewer parameters.

365

366 4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION367

Settings: We evaluate the performance of GroupMamba-T for object detection on the MS-COCO 2017 dataset (Lin et al., 2014). Our method is based on the Mask-RCNN (He et al., 2017) detector with the hyperparameters as used for Swin (Liu et al., 2021). We use the AdamW (Loshchilov & Hutter, 2017) optimizer and train Mask-RCNN with GroupMamba-T backbone for 12 epochs. The backbone is initialized and fine-tuned from the ImageNet-1K (Deng et al., 2009). We use an initial learning rate of 1×10^{-4} and decay by a factor of 10 at epochs 9 and 11.

Results: Table 2 shows the results of GroupMamba-T, comparing it against various state-of-the-art models for object detection and instance segmentation using the Mask R-CNN framework on the MS-COCO dataset. Our model achieves box AP (AP^b) of 47.6 and mask AP (AP^m) of 42.9. It surpasses ResNet-50 (He et al., 2016), Swin-T (Liu et al., 2022a), ConvNeXt-T (Liu et al., 2022b). In addition, GroupMamba-T has competitive performance compared to VMamba-T (Liu et al., 2024b)

378 379

380

381

Table 1: Performance comparison of GroupMamba models with state-of-the-art convolutionbased, attention-based, and SSM-based models on ImageNet-1K (Deng et al., 2009). Our models demonstrate superior performance and achieve a better trade-off between accuracy and parameters.

	Method	Token mixing	Image size	#Param.	FLOPs	Top-1 acc.
RegNetY-8	G (Radosavovic et al., 2020)	Conv	224^2	39M	8.0G	81.7
RegNetY-16	G (Radosavovic et al., 2020)	Conv	224^2	84M	16.0G	82.9
EffNe	t-B4 (Tan & Le, 2019)	Conv	380^2	19M	4.2G	82.9
EffNe	t-B5 (Tan & Le, 2019)	Conv	456^2	30M	9.9G	83.6
EffNe	t-B6 (Tan & Le, 2019)	Conv	528^2	43M	19.0G	84.0
DeiT-S	S (Touvron et al., 2021)	Attention	224^2	22M	4.6G	79.8
DeiT-H	3 (Touvron et al., 2021)	Attention	224^2	86M	17.5G	81.8
DeiT-H	3 (Touvron et al., 2021)	Attention	384^2	86M	55.4G	83.1
ConvNe	eXt-T (Liu et al., 2022b)	Conv	224^2	29M	4.5G	82.1
ConvNe	eXt-S (Liu et al., 2022b)	Conv	224^2	50M	8.7G	83.1
ConvNe	eXt-B (Liu et al., 2022b)	Conv	224^2	89M	15.4G	83.8
Swi	n-T (Liu et al., 2021)	Attention	224^2	28M	4.6G	81.3
Swi	n-S (Liu et al., 2021)	Attention	224^2	50M	8.7G	83.0
Swi	n-B (Liu et al., 2021)	Attention	224^2	88M	15.4G	83.5
ViN VMam VMam LocalVMa LocalVMa EfficientV	I-S (Zhu et al., 2024) ba-T (Liu et al., 2024b) ba-S (Liu et al., 2024b) ba-B (Liu et al., 2024b) mba-T (Huang et al., 2024) mba-S (Huang et al., 2024) Mamba-B (Pei et al., 2024)	SSM SSM SSM SSM SSM SSM SSM	224 ² 224 ² 224 ² 224 ² 224 ² 224 ² 224 ² 224 ²	26M 31M 50M 89M 26M 50M 33M	4.9G 8.7G 15.4G 5.7G 11.4G 4.0G	80.5 82.5 83.6 83.9 82.7 83.7 81.8
	GroupMamba-T GroupMamba-S GroupMamba-B	SSM SSM SSM	$224^{2} \\ 224^{2} \\ 224^{2} \\ 224^{2}$	23M 34M 57M	4.5G 7.0G 14G	83.3 83.9 84.5

410

411 412

413

and LocalVMamba-T (Huang et al., 2024), with less 20% parameters compared to VMamba-T. Figure 3 (first row) displays qualitative examples of object detection and instance segmentation. GroupMamba-T accurately detects and segments the targets in various scenes.

414 415 416

417

4.3 SEMANTIC SEGMENTATION

418 Settings: We also evaluate the performance of GroupMamba-T for semantic segmentation on the 419 ADE20K (Zhou et al., 2017) dataset. The framework is based on the UperNet (Xiao et al., 2018) 420 architecture, and we follow the same hyperparameters as used for the Swin (Liu et al., 2021) backbone. 421 More specifically, we use the AdamW (Loshchilov & Hutter, 2017) optimizer for a total of 160kiterations with an initial learning rate of 6×10^{-5} . The default input resolution used in our experiments 422 is 512×512 . 423

424 Results: The GroupMamba-T model demonstrates favorable performance in semantic segmentation 425 compared to various state-of-the-art methods, as presented in Table 3. GroupMamba-T achieves a 426 mIoU of 48.6 in single-scale and 49.2 in multi-scale evaluation, with 49M parameters and 955G427 FLOPs. This outperforms ResNet-50 (He et al., 2016), Swin-T (Liu et al., 2021), and ConvNeXt-428 T (Liu et al., 2022b). Additionally, GroupMamba-T exceeds the performance of the recent SSM meth-429 ods, including ViM-S (Zhu et al., 2024), VMamba-T (Liu et al., 2024b), and LocalVMamba (Huang et al., 2024) with fewer number of parameters. Figure 3 (second row) shows qualitative examples 430 of GroupMamba-T. These examples demonstrate our model's ability to accurately segment various 431 classes for indoor and outdoor scenes.

Figure 3: Qualitative results of GroupMamba-T for object detection and instance segmentation (first row) on the MS-COCO val. set and semantic segmentation (second row) on ADE20k val. set.

Table 2: Performance comparison for object detection and instance segmentation on MS-COCO (Lin et al., 2014) using Mask R-CNN (He et al., 2017): AP^b and AP^m signify box AP and mask AP, respectively. FLOPs, are computed for an input dimension of 1280×800 .

Mask R-CNN 1× schedule								
Backbone	AP ^b	AP_{50}^{b}	AP^b_{75}	AP ^m	AP_{50}^m	AP^m_{75}	#param.	FLOPs
ResNet-50 (He et al., 2016)	38.2	58.8	41.4	34.7	55.7	37.2	44M	260G
Swin-T (Liu et al., 2021)	42.7	65.2	46.8	39.3	62.2	42.2	48M	267G
ConvNeXt-T (Liu et al., 2022b)	44.2	66.6	48.3	40.1	63.3	42.8	48M	262G
PVTv2-B2 (Wang et al., 2022)	45.3	67.1	49.6	41.2	64.2	44.4	45M	309G
VMamba-T (Liu et al., 2024b)	47.4	69.5	52.0	42.7	66.3	46.0	50M	270G
LocalVMamba-T (Huang et al., 2024)	46.7	68.7	50.8	42.2	65.7	45.5	45M	291G
GroupMamba-T	47.6	69.8	52.1	42.9	66.5	46.3	40M	279G

Table 3: Performance comparison for semantic segmentation on ADE20K (Zhou et al., 2017) using UperNet (Xiao et al., 2018). The terms 'SS' and 'MS' refer to evaluation at single-scale and multi-scale levels, respectively. FLOPs are computed for an input dimension of 512×2048 .

	1	1			
method	crop size	mIoU (SS)	mIoU (MS)	#param.	FLOPs
ResNet-50 (He et al., 2016)	512^{2}	42.1	42.8	67M	953G
Swin-T (Liu et al., 2021)	512^{2}	44.4	45.8	60M	945G
ConvNeXt-T (Liu et al., 2022b)	512^{2}	46.0	46.7	60M	939G
ViM-S (Zhu et al., 2024)	512^{2}	44.9	-	46M	-
VMamba-T (Liu et al., 2024b)	512^{2}	48.3	48.6	62M	948G
EfficientVMamba-B (Pei et al., 2024)	512^{2}	46.5	47.3	65M	930G
LocalVMamba-T (Huang et al., 2024)	512^{2}	47.9	49.1	57M	970G
GroupMamba-T	512^{2}	48.6	49.2	49M	955G

4.4 ABLATION STUDY

Figure 4 showcases the impact of each proposed contribution in terms of top-1 accuracy, number of parameters, and throughput, compared to other SSM-based methods. GroupMamba-T with 4-D scanning, comprising 22M parameters, achieves a top-1 accuracy of 82.30% and a throughput of 803. By applying a unidirectional 1D scan across N/4 channels in four directions—left-to-right, right-to-left, top-to-bottom, and bottom-to-top instead of the full 4-D scanning across all N channels, the throughput significantly increased from 803 to 1125, with only a negligible accuracy reduction of 0.1%, while keeping the same number of parameters.

 The integration of the CAM module further elevates the top-1 accuracy from 82.20% to 82.50%, with a minor reduction in throughput (from 1125 to 1069). Finally, incorporating the proposed distillation-based loss pushes the top-1 accuracy to 83.30%, while preserving the throughput at 1069.

In comparison to Vim-S (Zhu et al., 2024), GroupMamba has fewer parameters and outperforms it by 2.8% in top-1 accuracy, with 1.5× higher throughput. When compared to LocalVMamba-T (Huang et al., 2024), GroupMamba achieves a 0.5% gain in top-1 accuracy while being 3× faster and having fewer parameters. Compared to VMamba-T (Liu et al., 2024b), our model demonstrates slightly faster throughput, a 0.6% increase in top-1 accuracy, and a 26% improvement in parameter efficiency.

To demonstrate the training stability of GroupMamba-Base variant compared to the baseline VMamba-Base, we evaluate the loss progression and variance throughout the training process. For the baseline variant, the initial loss at epoch 0 was 6.9325 and decreased to 2.2021 (2.4731) by epoch 300, with a variance of 0.67142. In contrast, GroupMamba-Base exhibited a starting loss of 6.9272, which dropped to 1.2651 (1.4827) by epoch 300, accompanied by a lower variance of 0.46916. This indicates enhanced training stability for GroupMamba-Base, showcasing better convergence compared to the baseline VMamba-Base.

Figure 4: Comparison of GroupMamba variants and SSM-based methods in classification accuracy and computational efficiency. The throughput (number of predicted samples per second) is measured using a single Nvidia A100 GPU with a batch size of 128 for all methods.

524 525 526 527

528

522

523

5 CONCLUSION AND FUTURE WORK

In this paper, we tackle the computational inefficiencies and stability challenges associated with
 visual SSMs for computer vision tasks by introducing a novel layer called the *Modulated Group Mamba*. We also propose a multi-directional scanning method that improves parameter efficiency by
 scanning in four spatial directions and leveraging the *Channel Affinity Modulation* (CAM) operator
 to enhance feature aggregation across channels. To stabilize training, especially for larger models, we
 employ a distillation-based training objective. Our experimental results demonstrate that the proposed
 GroupMamba models outperform recent SSMs while requiring fewer parameters.

Our research has focused on image classification, object detection, instance segmentation, and
semantic segmentation. To further validate and extend the generalization ability of our method,
we aim to explore additional downstream tasks, such as video recognition and time-series data
applications. Evaluating the Modulated Group Mamba layer in these contexts will help to uncover its
potential benefits and limitations, providing deeper insights and guiding further improvements.

540 REFERENCES

552

555

556

561

580

581

582

583

584

- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. *arxiv preprint*, *arXiv:1607.06450*, 2016.
- Tom Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot learners. In *NeurIPS*, 2020.
- 547 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 548 Zagoruyko. End-to-end object detection with transformers. In *ECCV*, 2020.
- Guo Chen, Yifei Huang, Jilan Xu, Baoqi Pei, Zhe Chen, Zhiqi Li, Jiahao Wang, Kunchang Li, Tong Lu, and Limin Wang. Video mamba suite: State space model as a versatile alternative for video understanding. *arxiv preprint, arXiv:2403.09626*, 2024.
- Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked attention mask transformer for universal image segmentation. In *CVPR*, 2022.
 - Xiangxiang Chu et al. Twins: Revisiting the design of spatial attention in vision transformers. In *NIPS*, 2021.
- 558 Taco Cohen and Max Welling. Group equivariant convolutional networks. In *ICML*, 2016.
- Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In *ICCV*, 2017.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
 hierarchical image database. In *CVPR*, 2009.
- Alexey Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.
- Stéphane d'Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
 Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In *ICML*, 2021.
- Haoqi Fan et al. Multiscale vision transformers. In *ICCV*, 2021.
- Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré. Hungry
 hungry hippos: Towards language modeling with state space models. In *ICLR*, 2023a.
- Daniel Y. Fu, Hermann Kumbong, Eric Nguyen, and Christopher Ré. FlashFFTConv: Efficient convolutions for long sequences with tensor cores. *arXiv preprint*, *arXiv:2311.05908*, 2023b.
- Haifan Gong, Luoyao Kang, Yitao Wang, Xiang Wan, and Haofeng Li. nnmamba: 3d biomedical image segmentation, classification and landmark detection with state space model. *arxiv preprint*, *arXiv:2402.03526*, 2024.
 - Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arxiv* preprint, arXiv:2312.00752, 2023.
 - Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. In *ICLR*, 2022.
- Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple baseline for image restoration with state-space model. *arxiv preprint, arXiv:2402.15648*, 2024a.
- Tao Guo, Yinuo Wang, and Cai Meng. Mambamorph: a mamba-based backbone with contrastive feature learning for deformable mr-ct registration. *arxiv preprint, arXiv:2401.13934*, 2024b.
- Ramin Hasani, Mathias Lechner, Tsun-Huang Wang, Makram Chahine, Alexander Amini, and
 Daniela Rus. Liquid structural state-space models. *arXiv preprint, arXiv:2209.12951*, 2022.
- 593 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, 2016.

594 595	Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.
596 597	Xuanhua He, Ke Cao, Keyu Yan, Rui Li, Chengjun Xie, Jie Zhang, and Man Zhou. Pan-mamba: Effective pan-sharpening with state space model. <i>arxiv preprint, arXiv:2402.12192</i> , 2024.
598 599 600	Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arxiv preprint, arXiv:1606.08415, 2016.
601 602	Andrew G. Howard et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. <i>arxiv preprint, arXiv:1704.04861</i> , 2017.
603 604 605	Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual state space model with windowed selective scan. <i>arxiv preprint, arXiv:2403.09338</i> , 2024.
606	Alexander Kirillov et al. Segment anything. In ICCV, 2023.
607 608 609	Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In <i>ICML</i> , 2020.
610 611	Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu- tional neural networks. In <i>NeurIPS</i> , 2012.
612 613 614	Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba: State space model for efficient video understanding. <i>arxiv preprint, arXiv:2403.06977</i> , 2024.
615 616 617	Dingkang Liang, Xin Zhou, Xinyu Wang, Xingkui Zhu, Wei Xu, Zhikang Zou, Xiaoqing Ye, and Xiang Bai. Pointmamba: A simple state space model for point cloud analysis. <i>arxiv preprint, arXiv:2402.10739</i> , 2024.
618 619 620	Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context. In <i>ECCV</i> , 2014.
622 623	Jiarun Liu, et al. Swin-umamba: Mamba-based unet with imagenet-based pretraining. <i>arxiv preprint, arXiv:2402.03302</i> , 2024a.
624 625	Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and Yunfan Liu. Vmamba: Visual state space model. <i>arxiv preprint, arXiv:2401.10166</i> , 2024b.
626 627 628	Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin Transformer: Hierarchical vision transformer using shifted windows. In <i>ICCV</i> , 2021.
629	Ze Liu et al. Swin Transformer V2: Scaling up capacity and resolution. In CVPR, 2022a.
630 631 632	Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. In <i>CVPR</i> , 2022b.
633 634 635	Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. <i>arxiv preprint, arXiv:1711.05101</i> , 2017.
636 637	Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical image segmentation. <i>arxiv preprint, arXiv:2401.04722</i> , 2024.
638 639 640 641	Muhammad Maaz et al. Edgenext: Efficiently amalgamated cnn-transformer architecture for mobile vision applications. In <i>International Workshop on Computational Aspects of Deep Learning at 17th European Conference on Computer Vision (CADL2022)</i> , 2022.
642 643	Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling via gated state spaces. <i>arxiv preprint, arXiv:2206.13947</i> , 2022.
644 645 646	Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers. <i>Transactions on Machine Learning Research</i> , 2023.
0.40	Danu Mang, Visokang Chan, Zaija Fan, Gang Zang, Hougiang Li, Yuhui Yuan, Lai Sun, and Jingdong

647 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang. Conditional detr for fast training convergence. In *ICCV*, 2021.

648 649 650	Junting Pan et al. Edgevits: Competing light-weight cnns on mobile devices with vision transformers. In <i>ECCV</i> , 2022.
651 652	Badri N. Patro and Vijay S. Agneeswaran. Simba: Simplified mamba-based architecture for vision and multivariate time series. <i>arxiv preprint, arXiv:2403.15360</i> , 2024.
653 654	Xiaohuan Pei, Tao Huang, and Chang Xu. Efficientvmamba: Atrous selective scan for light weight visual mamba. <i>arxiv preprint, arXiv:2403.09977</i> , 2024.
656 657	I. Radosavovic, R. Kosaraju, R. Girshick, K. He, and P. Dollar. Designing network design spaces. In <i>CVPR</i> , 2020.
658 659 660	Jiacheng Ruan and Suncheng Xiang. Vm-unet: Vision mamba unit for medical image segmentation. <i>arxiv preprint, arXiv:</i> , 2024.
661 662	Abdelrahman Shaker et al. Swiftformer: Efficient additive attention for transformer-based real-time mobile vision applications. In <i>ICCV</i> , 2023.
663 664	Abdelrahman Shaker et al. Efficient video object segmentation via modulated cross-attention memory. <i>arXiv:2403.17937</i> , 2024.
666 667	Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. <i>ICLR</i> , 2015.
668 669 670	Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence modeling. In <i>ICLR</i> , 2023.
671 672	Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani. Bottleneck transformers for visual recognition. In <i>CVPR</i> , 2021.
673 674 675	Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness of data in deep learning era. In <i>ICCV</i> , 2017.
676	Christian Szegedy et al. Going deeper with convolutions. In CVPR, 2015.
678 679	Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In <i>ICML</i> , 2019.
680 681 682	Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve Jegou. Training data-efficient image transformers & distillation through attention. In <i>ICML</i> , 2021.
683 684	Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit: Multi-axis vision transformer. In <i>ECCV</i> , 2022.
685 686 687	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In <i>NeurIPS</i> , 2017.
688 689	Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph sequence modeling with selective state spaces. <i>arxiv preprint, arXiv:2402.00789</i> , 2024.
690 691 692	Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity. <i>arXiv preprint arXiv:2006.04768</i> , 2020.
693 694	Wenhai Wang et al. Pvt v2: Improved baselines with pyramid vision transformer. In <i>Computational Visual Media</i> , 2022.
695 696 697	Sanghyun Woo et al. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In <i>CVPR</i> , 2023.
698 699 700	Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for scene understanding. In <i>ECCV</i> , 2018.
	Spining Vie Deer Cimbiel Diete Dellée Zhuemen Te and Keiming He. A superstand and deal

701 Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In *CVPR*, 2017.

702 703 704	Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, and Jianfeng Gao. Focal modulation networks. In <i>NeurIPS</i> , 2022.
705 706	Yijun Yang, Zhaohu Xing, and Lei Zhu. Vivim: a video vision mamba for medical video object segmentation. <i>arxiv preprint, arXiv:2401.14168</i> , 2024.
707 708	Hao Zhang et al. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. In <i>ICLR</i> , 2022.
709 710 711	Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In <i>CVPR</i> , 2017.
712 713 714	Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision mamba: Efficient visual representation learning with bidirectional state space model. <i>arxiv preprint</i> , <i>arXiv:2401.09417</i> , 2024.
715 716 717	Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. In <i>ICLR</i> , 2021.
718	
719	
720	
721	
722	
723	
724	
725	
726	
727	
728	
729	
730	
730	
733	
734	
735	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
750	
751	
752	
753	
754	
755	