Transcending Cost-Quality Tradeoff in Agent Serving
via Session-Awareness

Yanyu Ren'! Li Chen? Dan Li'-2 Xizheng Wang!
Zhiyuan Wu'! Yukai Miao? Yu Bai?
!Tsinghua University ~2Zhongguancun Laboratory
{ryy23, wang-xz22, wu-zy25}@mails.tsinghua.edu.cn
tolidan@tsinghua.edu.cn {lichen, miaoyk, baiyu}@zgclab.edu.cn

Abstract

Large Language Model (LLM) agents are capable of task execution across vari-
ous domains by autonomously interacting with environments and refining LLM
responses based on feedback. However, existing model serving systems are not
optimized for the unique demands of serving agents. Compared to classic model
serving, agent serving has different characteristics: predictable request pattern,
increasing quality requirement, and unique prompt formatting. We identify a key
problem for agent serving: LLM serving systems lack session-awareness. They
neither perform effective KV cache management nor precisely select the cheapest
yet competent model in each round. This leads to a cost-quality tradeoff, and we
identify an opportunity to surpass it in an agent serving system.

To this end, we introduce AGSERVE for AGile AGent SERVing. AGSERVE
features a session-aware server that boosts KV cache reuse via Estimated-Time-
of-Arrival-based eviction and in-place positional embedding calibration, a quality-
aware client that performs session-aware model cascading through real-time quality
assessment, and a dynamic resource scheduler that maximizes GPU utilization.
With AGSERVE, we allow agents to select and upgrade models during the session
lifetime, and to achieve similar quality at much lower costs, effectively transcending
the tradeoff. Extensive experiments on real testbeds demonstrate that AGSERVE
(1) achieves comparable response quality to GPT-40 at a 16.5% cost. (2) delivers
1.8 improvement in quality relative to the tradeoff curve.

1 Introduction

Large Language Model (LLM) agents are revolutionizing task execution by incorporating agentic
workflows and refining responses through observational feedback from their surroundings [47, 27]].
Gaining tremendous attention from both academia and industry, the application scenarios of LLM-
based agents range from query agents that automatically extract information from large databases [39]
to embodied agents that carry out household activities following user commands [45] [60].

Despite the rapid development of LLM agents, the serving systems powering them are largely
dependent on existing LLM serving paradigms, which are not optimized for agent workflows. In a
typical LLM serving process, the model takes in human instructions and performs complex reasoning
to generate responses that satisfy human requirements. Compared to classic LLM serving, our
analysis shows that agent serving exhibits distinct characteristics:

e Predictable and High Frequency Interactions. Agents utilize lightweight plug-ins to generate
observations and initiate new requests at intervals of milliseconds [31, 29]] after obtaining the
response. Additionally, the responses to agent requests are usually short (within 100 tokens).
The generation latency is also short and relatively constant.

*Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



. <Shared Prefix (SP)> You are a User: You are a household agent.Here is
Non- household agent. Here is an an example - You need to put a soap in

Truncatable example ... the toilet. You see - around you.
<Task-Specific Template (TST)>

You need to put a soap in the toilet. Usfer' Yiz i:sn‘l;thing i I:;?:::id it}
You see ... around you. ) . | )
& Agent: | see nothing in cabinet 1, | need
Truncated Thought: | need to put a soap in a to check it elsewhere. Action: go to
Agent toilet, I need to find it first. Action: cabinet 2.
go to cabinet 1 LLM User: | see a soap in cabinet 2.
Truncatable — - Agent: | have already found the soap.
You see nothing in cabinet 1 Action: pick soap up
User: You have take the soap. What is
------ your next step?
(a) Session History Pattern (b) Prompt after Truncation

Figure 1: A prompt example in agent serving. LLM interacts with the agent in multiple rounds. The
shared prefix (SP) and task-specific template (TST) are non-truncatable. The interaction history (IH)
is truncatable. (b) shows the actual prompt after the first entry in IH is middle-truncated.

e Growing Contexts and Increasing Difficulties. Agents engage in multi-round sessions, and
their contexts grow rapidly [56, 55] by the number of rounds. The task difficulty for LLMs also
increases with longer context.

e Unique Prompt Formatting. Agents format prompts in unique patterns, such as middle
truncation instead of prefix truncation, as shown in Fig|[T]

Existing systems perform suboptimally in agent serving. Single-model approaches [61} [18] 11}
38| tend to overkill tasks in the early stages and underperform in the later ones. Routing-based
methods [37, [13]] and model cascading systems [7] suffer from inaccurate model selection and
frequent model migrations, respectively. Consequently, they inherit the inherent cost-quality tradeoff
from conventional LLM serving: achieving higher-quality responses requires interaction with larger
models, which leads to increased costs—especially when using commercial APIs.

Looking into agent serving characteristics, we identify an opportunity to transcend the cost-quality
tradeoff. We discover that the session predictability can be exploited to reduce the inference latency,
and that the model of different sizes can be applied in different segments of the session lifetime
to reduce costs. Thus, we conclude that to transcend the cost-quality tradeoff, we can leverage
session-aware KV cache reuse and eviction policies together with session-aware model cascading.

Therefore, we are motivated to design an agent serving system to improve agent serving efficiency
and quality. However, realizing this vision requires addressing three key challenges:

C1 Session-Aware Cache Policy. Modern serving systems employ reuse and eviction policies to
reduce the recomputation overhead across requests. However, existing serving systems enforce
strict prefix-matching for reuse [19]] and adopt simple Least-Recently-Used (LRU) eviction
policies [24}162]]. Neither policy fits well in agent serving, which leads to low KV cache hit rates
and undermines efficiency in heavy agent-serving scenarios.

C2 Quality Assessment. Existing systems overlook session lifetime and lack mechanisms to
dynamically assess model response quality under long-context conditions. As a result, they often
overcommit large models too early, incurring extra costs, or underperform in later stages due to
poor model choices. An effective agent-serving system must not only select a good initial model
to reduce early-stage migration, but also assess response quality in real time to inform upgrades.

C3 Resource Allocation. The model switching imposes dynamic and imbalanced resource demands
across models. Static GPU allocation wastes resources, while existing systems do not adaptively
provision GPUs based on workload shifts. Thus, the serving system must support fine-grained,
dynamic resource allocation to ensure high overall GPU utilization.

To address these challenges, we design AGSERVE, a session-aware cascading agent serving system.
Specifically, to address C1, AGSERVE introduces in-place positional embedding calibration to enable
high KV cache reuse under middle-truncation. It further improves cache efficiency via the novel
cache eviction policy based on the estimated time of arrival (ETA). To address C2, AGSERVE
integrates a Quality Maintenance Module (QMM) to assess task difficulty and response quality in
real time, allowing informed model upgrades throughout session lifetime. To address C3, AGSERVE
implements a resource scheduler that dynamically allocates GPU resources based on supply-demand
statistics. AGSERVE also exposes a set of APIs to facilitate flexible integration by agent developers.
By jointly optimizing KV cache reuse, model selection, and resource allocation, AGSERVE transcends



the traditional cost-quality tradeoff in agent serving. It achieves lower latency and reduced serving
cost while maintaining comparable response quality.

We implement and deploy AGSERVE on real testbeds, and evaluate its performance using Agent-
Bench [29]. Results show that, with similar quality to GPT-40, AGSERVE reduces agent serving cost
by 83.5%. At the same cost, AGSERVE can achieve 1.8 x higher quality relative to the cost-quality
tradeoff curve. For multi-agent workloads, AGSERVE reduces cost by 64% and achieves 1.6x quality
compared to existing LLM serving systems. AGSERVE also raises KV cache hit rate by 2.84 x
and reduces the round duration by up to 50% with session-aware KV cache management. It also
accelerates agent serving by 1.2 x with the dynamic allocation strategy.

Our work is available at https://github.com/robinren03/agservel

2 Understanding Agent Serving

2.1 LLM Agent Preliminary

LLM agents often interact with the model using a structured prompt consisting of a shared prefix, a
task-specific template, and references to available fools, allowing them to iteratively carry out the
task. The shared prefix explains tools and gives few-shot examples [5]], while the task template gives
the specific task. In each round, the agent requests LLM’s chain of thought (CoT) [54] response,
performs the action in it, and appends observations. Due to context length limits, LLM agents may
truncate the interaction history but preserve the SP and TST to maintain correct behavior.

2.2 LLM Serving Systems are Insufficient for Agent Serving

To better understand the motivation behind the design of AGSERVE, we first examine the key

differences between classic LLM serving and agent serving.

We exhibit their workload differences in Fig [2l Mainstream LLM serving systems provide
inference service of a certain model [24, 21]. They schedule and run the sequences in each node with
no quality concerns. To our knowledge, there is currently no system specifically designed for agent
serving. We argue that agent serving systems should go beyond conventional LLM serving systems
since their task is to provide quality-guaranteed actions. They incorporate an additional transparent
layer to choose an LLM from a pool, and then also perform request routing and scheduling.

Their behavioral differences lead to poor performance of existing systems.

B1 Agent serving exhibits frequent and regular request patterns in each round. As shown in Fig[3(a),
the token number grows like a staircase across rounds. The arrival time for the next request
under the same session is predictable [S0]. Compared with human-oriented LLM serving [44],
Fig[3[b) reveals that agent requests have shorter output lengths and shorter request intervals.
These imply that agent serving constitutes a heavy-prefill, light-decode workload. Existing
prefill-decode disaggregation systems such as MoonCake [41] and DistServe [63]] are optimized
for decode-intensive tasks, which brings little benefit for agent serving [21]].

B2 Agent sessions continuously grow by appending new responses to IH, while enforcing middle
truncation if needed. Existing systems employ prefix-based cache reuse [[19]], which assumes
strictly matched prefixes. Middle truncation breaks the prefix pattern and renders techniques
like CachedAttention [17] ineffective. In parallel, existing systems such as VLLM [24] and
SGLang [62] apply LRU policy to manage cache eviction. LRU is unaware of session semantics
and may evict session caches that are about to request, further incurring a low cache hit rate.

B3 As agent sessions progress, the task complexity increases with a growing demand for larger
models. Fig[] captures this trend with a dropping satisfactory rate on one model. Smaller models
tend to generate invalid actions or violate preset rules as shown in appendix §B] Existing rout-
ing [37] and cascading [[13]] systems overlook this trend by treating each request independently,
leading to fragile model choices and costly migrations.

3 AGSERVE Overview

AGSERVE Architecture. As presented in Fig[6| AGSERVE comprises three pieces: server, client,
and scheduler. We describe the roles and submodules of each of these components as follows,

e The Session-Aware Server (SAS, §4) manages session caches and performs LLM inference.
SAS maintains a Session ID-Sequence Table (SIST), which maps session IDs to their latest
sequences. When a new request from an existing session arrives, SAS extracts its session cache
from memory and performs in-place positional embedding calibration if needed. SAS maintains
the ETA-based cache eviction (ECE) policy in case of GPU memory overloads.


https://github.com/robinren03/agserve

Agent Serving ssoo] o T
* cG
. Sequence £ 2001
\ i i Action |=| Scheduling 2 1500] sos
' 'W LLm Serving 10007 - i ‘ ‘ ‘ i 136. 256‘82 004
Observation I I' E Sequence do 2 sh e il s or mterval)
L:=| Scheduling (a)Agene token # vs. time  (b) Human/agent serving pattern
Agent LLMs Servers Figure 3: Comparison of LLM and agent serving

behaviors. PT/OT represent the prompt/output
Figure 2: LLM and Agent Serving workflows. token numbers, tested on our A6000 testbed.

] .
© N SAS Session Cache Management Module
o
0
= +.\ sip:1 . Block Table A
g \/\ Token SP TST IH 2
S| —e— 8B Embedding 0 [0 M B~ j
] |
= 70B Truncation 1 [01 2] [456 5
©
wn Info: 3 toks 6|
Round c fon Required
Session Input SIST Cache Space

Figure 4: Agent serving satisfac-
tory rate drops as round increases. Figure 5: SAS session cache management module.

e The Session Guard Client (SGC, §5) provides observations for the agent and ensures the serving
quality throughout the session. The client monitors the lifetime of the session and determines the
LLM adoption. To achieve this, SGC employs a Q-Judge to select the most cost-efficient model
for the session. It also runs a daemon R-Judge to periodically check response qualities, deciding
mitigation actions if quality issues arise.

e The Resource Scheduler (RS, assigns LLMs onto GPUs and dynamically adjusts the
configurations based on the real-time demand-supply ratio across the system.

AGSERVE Workflow. When a new agent starts, the SGC assesses the task’s difficulty with Q-Judge.
SGC establishes a session with an SAS instance or external API that provides service for the given
model. Within the session, the agent then interacts with the LLM for multiple rounds.

Throughout the session, SGC monitors the reasoning quality using the R-Judge. If performance
falls below a pre-designated threshold, the SGC initiates a retry or requests a migration to a more
powerful model instance. In the case of a migration, SGC terminates the current session and builds a
new session with a SAS or API of a more powerful model. Furthermore, the RS looks at the requests
that each model handles and dynamically adjusts the GPU resource distribution across models.

4 Sessionizing KV Cache to Maximize Cache Hit in SAS

AGSERVE adopts PagedAttention following the practices of vVLLM and SGLang. We incorporate
SIST into the block table as shown in Fig[5] SIST introduces session awareness to the KV cache by
maintaining each session’s block ID. Our two following innovations take advantage of SIST.

In-place KV Cache Calibration. Modern LLMs adopt Rotary Positional Embedding (RoPE, [46])
to embed tokens. CachedAttention [17]] proposes decoupled KV cache. However, the decoupled
cache consumes twice the space, one for the decoupled KV cache to preserve and one for the normal
cache to decode. Instead, AGSERVE adopts in-place calibration to facilitate middle truncation. The
in-place calibration multiplies the original key cache by e*%»? where dp = p’ — p < 01is the opposite

AGSERVE
Session Guard Client Session-Aware Server Resource
— 6?: Eviction 2 Scheduler
V S e Manager ';: - LLM Executor I
| Round Eval - In-place £ | @:-_7|
Calibration b
» = - <> Dynamic Model
- Q@ﬁ Session Rounds E Operator 8 H”‘ Allocation
LLM Agents Quality- Assured Sessi sisT & v I across GPUS
-Judge ity: ion =0 A
w/ tools B oo Cascading Maintainer Session Cache Pool

Round)

Figure 6: AGSERVE Architecture and Workflow.



Time 0:03 0:04 0:05 0:06 (0:07 Unexpected 0:08 0:09
! .

Request SID 3 0 1 2 i_0  Behavior 3 | 1
5o Lru ime |
LRU 00:03 3 00:04 0 0005 1 00:06 2 0007 0 0008 3 00:09
(VLLM, SGLang, )
Cache Hit1y7 L 0002 2 00:03 3 00:04 0 0005 1 0006 2 0007 0 0008

0 00:01 1 00:02 2 00:03 3 00:04 0 00:05 1 00:05 2 00:07

NOS NS 0 O3
Imnts
m Eﬂ m m [ 5D | ETA time |

(ECE) 00:05 00:05 00:06 00:08 00:08 00:07 2 00:10
ours,
Cache Hizas7 L 0006 1 00:06 3 00:08 0 00:09 0 00:09 2 00:10 3 0012

2 00:07 3 00:08 0 00:09 i 00:10 2 00:11 0 00:13 0 00:13

K b ko e Ead s

Figure 7: An illustration of how ECE outperforms LRU. LRU policy decides the evicted session
cache based on the LRU time, while ECE is based on the ETA of the next request from the session.
In this simplified demonstration, there are four sessions ongoing with no shared blocks. The SAS
can only preserve three in the session cache. All sessions share the same arrival pattern, and thus,
their request arrives at SAS in a round-robin fashion. LRU policy, adopted by vLLM and SGLang,
evicts the cache of sessions to arrive, causing a low cache hit rate. On the other hand, ECE achieves a
session cache hit rate of 75% in theory. We also consider an occasional unexpected behavior at 0:07,
causing the reversed order of 0 and 3. ECE still performs robustly with a consistent hit rate. Notably,
the ECE policy does not change the ETA for occasional flapping. Taking all into consideration, ECE
achieves a 4x hit rate compared to LRU under this case. In a more complicated case, ETA of different
sessions from the processing time may differ, and sessions may share blocks.

number of truncated tokens. This operation calibrates the position embedding from e’ to ¢ In
practice, SAS performs

K;;’,% = cos(—0p0;) Kp 2i + sin(—0p0;) K} 2i41

K}y 941 = cos(=0,0;) Kp 211 — sin(—0p0i) Kp 2

ey

to reuse the cosine-sine cache of the RoPE module, further reducing the computation time.

ECE Eviction Policy. SAS needs to evict KV caches due to limited memory in online serving. To
formulate the question, we assume that there are n sessions ranked by the arrival time of their pending
requests scg, 5S¢y, ..., Scp. SAS predicts the arrival time if the next request has not arrived yet. The
cache size of session sc; is [;. We take two steps to review SAS’s ECE eviction policy.

First, we assume that all session caches are of the same size. Inspired by the OPT strategy [40] in
CPU cache, we remove sc; in the order of n to 1. We prove its optimality in appendix §A.2}

However, session cache sizes are different, meaning that evicting one session may not spare enough
space for another session, and the above solution cannot achieve the global optimal. To tackle this,
we introduce a new symbol 7'(k) as the optimal total TTFT for only considering sc¢,,—x to scy,.

To spare enough space for the first £ pending sessions, we need to decide on a set E of session
caches to evict. The eviction of s¢; costs P - [(sc;) to recompute and affects the n — ¢ + 1 sessions
behind, leading to a penalty of (n — i 4+ 1) Pl(sc¢;). Thus, Ti(n) = Liep, (n —i+ 1)P - 1; + (n —
k)Dy + T'(n — k), where Dy, is the average decoding time consumption with k requests handling
in parallel. P is the prefilling overhead of one token relative to the average decoding time cost,
considered as a penalty for evicting the session cache. For each k, SAS finds the F to minimize
Ty (n) with dynamic programming, and overlooks T'(n — k) to avoid excessive eviction. Finally,
SAS finds the minimum 7} (n) among all ks and evicts E;. Each SAS predicts the ETA upon the
request trace of sessions and makes the eviction decision based on the ETA. We discuss the detailed
algorithm and efficiency for ECE policy in appendix §D}

SAS does not swap caches to CPU, since such swapping introduces high overhead with long
contexts and blocks other sequences in the batch. SAS schedules each sequence in a First-Come-
First-Served manner instead of SGLang’s radix approach to avoid starvation.

5 Exploiting Session-Level Cascading to Minimize Cost in SGC

SGC leverages the Q-Judge to assess task difficulty and establish sessions for agents with capable
models. The Q-Judge QJ(t, p) takes the agent task ¢, and the observation p as input. Q.J(-) assigns a
difficulty label among 0, 1, and 2 for each task. SGC leverages the R-Judge for quality monitoring.



5.1 Reducing Overkill and Underkill of the Task

Q-Judge inevitably faces deviation from the ground truth, causing underkill or overkill. In the case of
underkill, SGC needs to migrate several times to reach the capable model, wasting SAS resources.
If overkilled, SGC faces an irreversible cost. We observe that SGC prefers an underkill rather than
an overkill. We optimize the loss function for QJ(-) as follows, with p, g as the ground truth and
predicted probabilities, respectively, and g as the ground truth label.

n n

F0.0,9) == plai)log(q(ai) + B+ (x: — g)°

i=1 i=1

Q4

e~ (@)
1 —q(z;)
in which o; = 1if z; > g (overkill) and 0 < a; = a < 1 if x; < g (underkill), z; is the value of the
i-th label. The first element of the function is the traditional cross-entropy loss. The second element
gives extra loss to the wrong labels if it is far from or larger than the ground truth.
We train the judge on a customized Chatbot-Arena dataset [§]]. Details are disclosed in appendix §C]

5.2 Real-Time Response Quality Monitoring and Issue Mitigation for Long Context

We observe four typical types of quality issues in agent serving, namely service failure, violation
of preset rules, invalid actions, and low reasoning quality. The first three are easy to identify by
algorithmic approaches. For the fourth issue, SGC calls the R-Judge classifier to evaluate the
reasoning quality at a user-customized frequency of v.
Designing and Training R-Judge. The prompt length easily exceeds the context window of modern
classifiers with over a thousand tokens. Thus, we only input selected elements from the context to
reduce the workload. R-Judge RJy(m, 1, t, e) takes in four parameters. m indicates the model size.
It provides the R-Judge with a bias of the serving quality against the model size. r is the thought part
of the CoT response. If the implementation does not adopt CoT, R-Judge takes the whole response as
r. t is the task of the agent. e is the latest actions and observations when AGSERVE sends the request.
RJ(-) judges based on how well 7 can help assist the task of ¢ in the condition of e, covering cases
of evasive and redundant replies. 6 reflects the strictness of the judge. 8 = 0 is the strictest, which
always considers the response as disqualified, and § = 1 allows all responses to pass the test. Users
can adjust this threshold based on their own quality requirements or workload characteristics.

We disclose the training details of R-Judge in appendix §C|
Addressing Quality Issues. SGC adopts retry or migrate to mitigate quality issues. The retry strategy
reruns the response generation, taking advantage of the randomness. However, if the response still
faces quality issues, SGC forces a service-upgrade migration. Migration routes the session to another
serving instance. SGC implements two types of migration. The service-upgrade migration routes the
session to a larger LLM instance or API. The general migration decides the model option, with the
possibility of a smaller model in case of service failures, such as timeouts or network issues.

SGC also supports restoration for certain agents. Restoration reverts the session to the last
checkpoint, shortening the chat history to reduce reasoning complexity and improve performance.

6 Model Allocation across GPUs to Maximize Hardware Utility in RS

Efficient model allocation is crucial for optimizing resource usage in agent serving systems. AGSERVE
employs a dynamic allocation strategy to ensure high resource utilization.

Model Instances. We divide the models into two categories adjustables and presets. Adjustables fit
in a single node, while presets must span across multiple nodes. RS confines adjustable instances
to a single node to minimize communication latency. For each model m, RS profiles the minimum
number of GPUs required for inference, denoted as w,,,. Each instance utilizes a multiple of w,,
GPUs. RS relies on manual operation for presets, since they have heavy initialization overhead.
Dynamic Allocation. RS dynamically allocates models based on model demand and resource
availability. RS tracks the frequency of inference requests across all instances for each model and
calculates its demand by summing up the calling frequency. The scheduler determines the supply by
the available tokens to preserve in the KV cache of all instances.

RS prioritizes models with a high demand-to-supply ratio, scaling up their instances while reducing
instances for models with lower ratios. RS redistributes model instances across available nodes to
optimize resource usage. RS consolidates instances of the same model wherever possible to leverage
parallelism. For example, RS starts three instances, utilizing 1, 2, and 4 GPUs each if 7 GPUs of the
same device are allocated for a model with w,,, = 1.



* AGSERVE @ LUama-8B Llama-70B ‘ GPT-40 A Cascade + RouteLLM

~
[

\
®
| 4
+
»

+

N
v

Average Quality
w
=)

L]
\\
\,
+
»
©-p
3
g\ |
i
i
i
i
H
|
i
|
+ i
L 4

o A
0.00 0.05 0.10 0.000 0.005 0.010, 0.015 0.00
(a) AW (b) CG Average Cost ($)

0.02 0.06 0.00 0. 0.02

0.04 .01
(c) KG (d) M2W
Figure 8: The red line shows the cost-quality tradeoff in each agent. AGSERVE breaks the cost-
quality tradeoff in all four agents, achieving comparable quality to GPT-40 at lower costs.

7 Evaluation

We implement AGSERVE in Python with SAS based on vLLM [24]]. We also implement
customized CUDA kernels to support batched in-place KV cache calibration. We adapt four
agents (AW,CG,KG,M2W) with AGSERVE’s API. We disclose their details in appendix
We evaluate AGSERVE with these four agents and models of the 8B, 30B versions of Llama-3 and
GPT-40, due to generality of Llama structure and our testbed capability(see appendix §D)). Without
explicit benefit from the model selection, our key findings are

e With similar quality to GPT-40, AGSERVE reduces serving cost by 83.5%.

e At the same cost, AGSERVE achieves 1.8 x quality relative to the cost-quality tradeoff curve.

e Under multi-agent workloads, AGSERVE reduces cost by 64% and achieves 1.6x quality com-
pared to an adapted state-of-the-art (SoOTA) LLM serving system.
AGSERVE achieves 2.86x cache hit rate with ECE policy than LRU, and reduces the round
latency by up to 50% with in-place positional embedding calibration combined. AGSERVE
accelerates agent serving by 1.2x with dynamic hardware resource allocation.

7.1 Testbed and Metrics

We evaluate the performance of AGSERVE based on AgentBench [29] over two testbeds. The first
consists of two nodes, each equipped with four A6000 GPUs (48GB per GPU). The second comprises
two nodes, each equipped with eight A800 GPUs (80GB per GPU), interconnected via PCle.

Our evaluation focuses on three metrics of the sessions: end-to-end (e2e) latency, quality, and
cost. Sessions that terminate due to invalid actions or other quality issues before task completion or
reaching the round limit are excluded from latency measurements.

We rank each agent serving system with a quality score out of 100 concerning three aspects to
follow the ranking mechanism of AgentBench,

e 25% for behaving normally until the task is completed or the interaction rounds limit is reached.

e 50% for the wellness of handling the task.

e 25% for completing the task in the fewest rounds possible, to benefit competitive model selection.
We disclose the details of the quality metric of each agent in appendix §E.2]

The cost includes two parts: the cost of nodes decided by the e2e latency of each agent task, and
the cost of OpenAl APIs. For open-source models, we compute the cost based on the testbed capacity,
selected strategy, and e2e latency. We provide details of model costs in appendix

To exhibit AGSERVE’s performance, we enlist a vLLM-adapted cache-centric strategy, and a model
routing strategy, namely RouteLLM [37], as baselines for each experiment.

7.2 End-to-end Cascading Serving

For this evaluation, we disable dynamic allocation and run two instances on the A6000 testbed, one
running Llama-8B and the other running Llama-70B.
Baselines. We compare the cascading strategy of AGSERVE to the following strategies.

e vLLM+. We adopt a single model throughout the serving process, like LLM serving systems.
We pick one model among Llama-8B, Llama-70B, or GPT-40 each time, the same model choices
in AGSERVE. We adopt prefix caching and a retry strategy to facilitate the approach.

e Cascade. Cascade adopts three-layer cascading, but disables the R-Judge and Q-Judge. It always
starts at the smallest model and only addresses explicit quality issues.

e RouteLLM. RouteLLM trains four routers on the same Chatbot-Arena dataset as AGSERVE.
Since matrix factorization and similarity-weighted ranking route almost all requests to the larger
model, we adopt the BERT router with a preference for the smaller model at 0.8.

Evaluation Results. We exhibit the average cost-average quality curves of four agents in Fig
We utilize Piecewise Cubic Hermite Interpolating Polynomial [3]] to draw the tradeoff curve. As



Em RouteLLM Mo AGSERVE s Llumnix++

Latency(s) Cost(.01%) Quality Latency(s) Cost(.01$) Quality Latency(s) Cost(.01$) Quality Latency(s) Cost(.01$) Quality
(a) Uniform (b) Burst (c) Gamma (d) Poisson

Figure 9: AGSERVE’s performance in different distributions.

Table 1: Performance of routing models. S/M/L Table 2: Latency comparison between dynamic
represents small/medium/large labels. and static allocation strategies. Average, P90,
S M L Acc. Low High and P50 exhibit the average, 90th percentile, and
median of the e2e latency, respectively.
GT 112 306 173 -

QJ 190 397 4 1704% 109 Average(s) P90(s) P50(s)

6
RL 374 N/A 185 579% 161 38 AGSERVE 119.38 177.05 106.81
0

FS1 125.43 206.86 106.85
CE 591 0 0 624% 182 FS2 24235 29586  237.93

displayed, AGSERVE breaks the cost-quality tradeoff in all four agents, achieving similar quality
to GPT-40 with a 16.5% cost in AW. For the same cost, AGSERVE gets a 1.8x quality than the
tradeoff curve. In comparison, without R-Judge, the Cascade strategy only significantly transcends
the tradeoff in one of the four agents. On the other hand, RouteLLM performs below the cost-quality
tradeoff in all four agents. We believe that this is largely due to two reasons. First, RouteLLM is
designed for short inputs such as MMLU [20] and GSMS8K [9], not for long-input agent serving.
Second, RouteLLM is sensitive to the output of the routing model due to a lack of session-awareness.

7.3 End-to-end Multi-Agent Serving

In this section, we evaluate the multi-agent performance of AGSERVE in a distributed service scenario.
‘We run the evaluation on our A800 testbed with a TP size constrained to 4 or below.
Baselines. We compare AGSERVE with two baselines.

o Llumnix++ [48]]. Llumnix is the SOTA LLM serving system to manage request allocation backed
by vLLM. We extend Llumnix with support for Llama-3 and integrate Llumnix with AGSERVE’s
QMM. Llumnix++ runs four 4-GPU instances, two each for Llama-8B and Llama-70B, since
Llumnix requires each node to run the same model.

e RouteLLM. We adopt the same route setting in

Datasets. To our best knowledge, there is currently no real dataset on the traces of agent launching.
We generate the traces of uniform and burst distributions. Similar to LLM serving [61} 28 148]], we
also use Poisson and Gamma distributions to synthesize request traces. The trace only defines the
launch time of each agent and does not affect any following interaction rounds in the session.
Evaluation Results. As shown in Fig[9] Llumnix++ has higher latency and lower quality in the high-
frequency agent serving scenario. AGSERVE reduces cost by 64% and, in the meantime, achieves
1.6 quality compared to Llumnix++. RouteLLM routes most of the requests to GPT-40 and utilizes
large and cheap computing resources to achieve low latency, and has a high latency in bursts due to
the rate limit. With a much more expensive hardware rent, AGSERVE achieves comparable quality
with only 81% of RouteLLM costs, and can reach 40% cost with wholesale-price cloud service.

7.4 Ablation Studies and Microbenmarks

7.4.1 Performance of SAS Session Cache

We evaluate the performance of session caching on agent serving. We deploy a Llama-8B instance on
one A6000 node. The temperature is set to 1, following the OpenAl API default.

Correctness. We compare AGSERVE against vLLM, and exhibit the latency and quality of four
agents in Fig [I0] Latency is shown per request for CG due to its nondeterministic response and
varying rounds. AGSERVE achieves up to 2x acceleration as in AW. The quality scores between
AGSERVE and VLLM show a negligible discrepancy with no correctness concerns.

Efficiency. We evaluate the hit rate and TTFT for AW agents on Llama-8B SAS with limited memory
and context window size. Fig fl;fl exhibits a 2.86 hit rate in the batch size of 8 and 2.80x, 2.14 %,



=3 AGSERVE 3 vLLM

o TR IR 1 e EMEE 1

0 0 0 0
Latency Quality Latency Quality Latency Quality Latency Quality
(a) AW (b) CG (c) KG (d) M2wW

Figure 10: Latency (in seconds) and quality of vVLLM and AGSERVE SAS across different agents.

40 o

IS
S
1=

9 — ]
< [ ECE g [ Correct
3 504 = opr . vLLM E = Wrono . s QMM on
5 Z AGSERVE G 300 o) 1 QMM off
Z 404 £ 204 il 5 Accuracy: 75.80% = o
£ g 2 2001 =
2 20 2 =
] £ 100 :
© o0 + t + t 0 T f T z

5 6 7 8 0.0 0.1 0.2 0.3 oLl . Y

Batch Size TTFT (s) Unsatisfactory Satisfactory Routing Interaction

Figure 11: Cache hit Figure 12: KDE plot of Figure 13: R-Judge out- Figure 14: TTFT with
rate by block. TTFT. put against ground truth. and without QMM.

1.73x in the batch sizes of 7, 6, 5, respectively. Fig[I2]shows the Kernel Density Estimation (KDE)
plot of the TTFT. Benefiting from the high cache reuse by ECE eviction (peak around 0.06s) and
in-place calibration (peak around 0.08s), TTFT of AGSERVE is significantly to the right of vLLM,
showing less prefilling latency.

7.4.2 Performance of SGC QMM

We evaluate QMM to ensure proper quality maintenance with low overhead.

Correctness of R-Judge. To our knowledge, there is no existing human preference data for agent
serving. We ask experts to label the responses of different-sized models, spanning across all four
agents. We depict the performance of R-Judge in Fig[I3] with a 95.2% recall of unsatisfiable results.
We exhibit the false positive and false negative rate of the R-Judge when picking different 6 in Table[3]
Correctness of Q-Judge. It is hard to label the difficulty of prompts. We utilize the dataset above
and build a loose restriction on the label given. For example, if the medium model response is
satisfiable, it is considered right to label it as both small and medium. We compare Q-Judge(QJ) with
RouteLLM(RL) and a model trained by the cross-entropy loss(CE) in Table (I} Q-Judge achieves high
accuracy and few predictions that are higher than the ground truth, as we require in §5.1]
Efficiency. In real-world applications, AGSERVE makes the most use of the QMM’s context windows
by filling them up with session history. Fig[T4]shows the influence of QMM on TTFT in the real
application, when the average context length reaches 500 of the 512 window size. Still, QMM causes
negligible overhead in normal interactions and an acceptable overhead when routing. We list their

respective overhead in appendix

7.4.3 Performance of RS Dynamic Allocation

RS only conducts reallocation for a significant imbalance in the demand-supply ratio across models to
avoid excessive weight loading. We manipulate 6 of the R-Judge to create such a scene. We evaluate
the performance of AGSERVE on one A800 node, against two fixed allocation configurations. FS1
allocates four GPUs to Llama-8B and Llama-70B each; FS2 runs an 8-GPU Llama-70B instance.
We disregard sessions that violate preset rules, accounting for roughly 6% of all sessions across FS1,
FS2, and AGSERVE. We reveal the latency of all other sessions in Table@ AGSERVE reduces 14%
P90 latency compared to FS1. Compared to FS2, an LLM serving approach, AGSERVE achieves 49%
average e2e latency. We provide a case study in appendix

Table 3: False positive and false negative rates of the R-Judge under different 6.
1 2 3 4 5 6

False Positive Rate 0.00%  28.09% 40.06% 41.22% 47.93% 57.55%
False Negative Rate  33.64% 17.60%  8.98% 3.94% 0.91% 0.00%




8 Limitations and Discussions

R-Judge Sensitivity. AGSERVE relies on R-Judge to perform cascading. When 6 = 0, AGSERVE
falls to GPT-40, and # = 1 degrades AGSERVE to Cascade as in We show R-Judge’s comparable
performance to humans in appendix §E.§|despite the possible cost of early migration. We acknowledge
that a judge trained with more sufficient data may benefit agent serving better.

Node Routing. SOTA LLM serving frameworks, such as SGLang [62] and MoonCake [41], decide
the machine routing of each request by prefix matching. Due to the limited testbed size, AGSERVE
binds each session to a specific instance (i.e., the most idle one at first-round scheduling). We
recognize that there are two future directions to uncover: (1) the migration of in-flight sessions to
balance load; (2) to exploit the prompt length predictability as in Fig[d[a) to match the instance.
Large Scale Agent Serving. Previous works [48] |42] suggest that a distributed scheduling out-
performs in large-scale environments. We present a theoretical simulation in appendix §F about a
distributed AGSERVE for large-scale serving and show AGSERVE’s potential application.

Broader Impacts. The technologies used in AGSERVE make agent serving cheaper and more
efficient, and do not bring extra societal impact beyond that of existing agents and LLMs. We rely on
external safeguard measures such as red-teaming to minimize negative impacts.

9 Related Work

Cache-centric LLM Serving. Early-stage works such as SpotServe [34] and AlpaServe [28] mainly
focus on parallelism strategies. Orca [61] proposes continuous batching and makes decoding memory-
bounded. vLLM [24] improves KV cache management with PagedAttention. Further, Llumnix [48]
explores multi-instance LLM serving with virtual memory and request migration. Tetrilnfer [21]
proposes the idea of scheduling sequences according to length prediction, which is similar to the
AGSERVE’s session routing strategy. While Tetrilnfer makes scheduling decisions by the memory
usage at present or shortly afterwards, AGSERVE looks into a resource usage function over time.
Splitwise [38] and DistServe [63] disaggregate the prefill and decode in LLM inference. However,
agent serving, a light-decode scenario, does not work well with disaggregation and its tools such as
CacheGen [30], as we previously mentioned in Quantization [16} 6] and kernel optimization
[LO,52]] can also accelerate inference. CacheBlend [58]] selectively recomputes the KV caches for
Retrieval-Augmented Generation, which is orthogonal to AGSERVE.

Multiple-model serving. Tabi [53] proposes automatic cascading using confidence, followed by
FrugalGPT [7] focusing on the financial sector. AGSERVE uses prompt engineering to overcome the
generality problem of Frugal GPT. HybridLLM [13] and RouteLLM [37] route requests to LLMs.
Like other traditional LLM serving systems, they consider requests from the same session indepen-
dently, making the results extra sensitive to the router without quality assurance. OnlineCascade [36]]
proposes an approach to learn cascading strategies, which is orthogonal to AGSERVE. Speculative
decoding [26] uses small models to mimic the large ones with target LLM’s verification. AGSERVE
focuses on the reasoning quality compared to speculative decoding rather than the responses’ consis-
tency with the large models and supports speculative decoding models in its hierarchy.

LLM Agents. ReAct [59] refines LLM’s response with multiple rounds of interactions, while
LangChain [25]] provides an interface for agent coding. Beyond the wide application of LLM
agents [33,145] 29], recent works also propose multi-agent collaboration [49] 32]. Despite its rapid
development, we still see most LLM agents rely on a sole model [25![31]. AGSERVE provides a set
of APIs that wrap up the model cascading and quality maintenance process of agent serving.

10 Conclusion

We present AGSERVE, the first agent serving system designed to overcome the inherent cost-quality
tradeoff in agent serving. AGSERVE addresses the unique demands of agent serving, including
predictable request patterns, growing reasoning complexity, and dynamic resource requirements.
It combines session-aware KV cache management, quality-aware model cascading, and adaptive
resource scheduling to support efficient, high-quality interactions across agent sessions. Experimental
results show that AGSERVE significantly reduces latency and resource costs while maintaining service
quality on par with state-of-the-art LLM serving systems.

10



Acknowledgment

We thank anonymous reviewers for their constructive comments. Li Chen is the corresponding author.
This work is supported by the National Natural Science Foundation of China under Grant U21B2022
and the Beijing Outstanding Young Scientist Program (No. JWZQ20240101008)

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Zhigiang Shen Aidar Myrzakhan, Sondos Mahmoud Bsharat. Open-llm-leaderboard: From
multi-choice to open-style questions for llms evaluation, benchmark, and arena. arXiv preprint
arXiv:2406.07545, 2024.

[3] Garrett Birkhoff, Martin H Schultz, and Richard S Varga. Piecewise hermite interpolation
in one and two variables with applications to partial differential equations. Numer. Math,
11(3):232-256, 1968.

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, page
1247-1250, New York, NY, USA, 2008. Association for Computing Machinery.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[6] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. Advances in Neural Information Processing
Systems, 36, 2024.

[7] Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models
while reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

[8] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena:
An open platform for evaluating llms by human preference. arXiv preprint arXiv:2403.04132,
2024.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[10] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[11] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344-16359, 2022.

[12] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. Advances in Neural Information
Processing Systems, 36, 2024.

[13] Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle,
Laks VS Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-
aware query routing. arXiv preprint arXiv:2404.14618, 2024.

11



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and etc. The llama 3
herd of models, 2024.

Orri Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE Data Eng. Bull., 35(1):3-8,
2012.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2022.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun
Yang, Zhou Yu, and Pengfei Zuo. Cost-efficient large language model serving for multi-turn
conversations with cachedattention. In Proceedings of the 2024 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC 24, USA, 2025. USENIX Association.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong.
Prompt cache: Modular attention reuse for low-latency inference. In P. Gibbons, G. Pekhimenko,
and C. De Sa, editors, Proceedings of Machine Learning and Systems, volume 6, pages 325-338,
2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2021.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao
Feng, Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. Inference without
interference: Disaggregate llm inference for mixed downstream workloads, 2024.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
page 2, 2019.

KVCache-Al. Ktransformers: A flexible framework for experiencing cutting-edge llm inference
optimizations, 2024. https://github.com/kvcache-ai/ktransformers,

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

LangChain. Build an Agent. https://python.langchain.com/docs/tutorials/
agents/, 2025. [Accessed 01-2025].

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding, 2023.

Xinzhe Li. A survey on llm-based agentic workflows and llm-profiled components. arXiv
e-prints, pages arXiv—2406, 2024.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang,
Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. {AlpaServe}: Statistical multiplexing
with model parallelism for deep learning serving. In /7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 663-679, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang

Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating 1lms as agents. arXiv preprint
arXiv:2308.03688, 2023.

12


https://github.com/kvcache-ai/ktransformers
https://python.langchain.com/docs/tutorials/agents/
https://python.langchain.com/docs/tutorials/agents/

[30] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael Maire, Henry Hoffmann, Ari Holtzman,
and Junchen Jiang. Cachegen: Kv cache compression and streaming for fast large language
model serving. In Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM
24, page 38-56, New York, NY, USA, 2024. Association for Computing Machinery.

[31] Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei Yang, Zuxin Liu, Juntao Tan, Prafulla K
Choubey, Tian Lan, Jason Wu, Huan Wang, et al. Agentlite: A lightweight library for building
and advancing task-oriented 1lm agent system. arXiv preprint arXiv:2402.15538, 2024.

[32] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent net-
work: An llm-agent collaboration framework with agent team optimization. arXiv preprint
arXiv:2310.02170, 2023.

[33] Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: LIm
agent operating system, 2024.

[34] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao Jia. Spot-
serve: Serving generative large language models on preemptible instances. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS 24, page 1112-1127, New York, NY, USA, 2024.
Association for Computing Machinery.

[35] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed
framework for emerging {Al} applications. In 13th USENIX symposium on operating systems
design and implementation (OSDI 18), pages 561-577, 2018.

[36] Lunyiu Nie, Zhimin Ding, Erdong Hu, Christopher Jermaine, and Swarat Chaudhuri. Online
cascade learning for efficient inference over streams. arXiv preprint arXiv:2402.04513, 2024.

[37] Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route LLLMs from preference data.
In The Thirteenth International Conference on Learning Representations, 2025.

[38] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, iﬁigo Goiri, Saeed Maleki, and
Ricardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pages
118-132. IEEE, 2024.

[39] Rubén Pérez-Mercado, Antonio Balderas, Andrés Muifioz, Juan Francisco Cabrera, Manuel
Palomo-Duarte, and Juan Manuel Dodero. Chatbotsql: Conversational agent to support relational
database query language learning. SoftwareX, 22:101346, 2023.

[40] Barton G Prieve and Robert S. Fabry. Min—an optimal variable-space page replacement
algorithm. Communications of the ACM, 19(5):295-297, 1976.

[41] Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu,
Weimin Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation — a
KVCache-centric architecture for serving LLM chatbot. In 23rd USENIX Conference on File
and Storage Technologies (FAST 25), pages 155-170, Santa Clara, CA, February 2025. USENIX
Association.

[42] Tareq Si Salem, Gabriele Castellano, Giovanni Neglia, Fabio Pianese, and Andrea Araldo.
Toward inference delivery networks: Distributing machine learning with optimality guarantees.
IEEE/ACM Transactions on Networking, 2023.

[43] Victor Sanh, L Debut, J] Chaumond, and T Wolf. Distilbert, a distilled version of bert: Smaller,
faster, cheaper and lighter. arxiv 2019. arXiv preprint arXiv:1910.01108, 2019.

[44] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E
Gonzalez, and Ion Stoica. Fairness in serving large language models. In /8th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 24), pages 965-988,
2024.

13



[45] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning. arXiv preprint arXiv:2010.03768, 2020.

[46] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomput., 568(C), February 2024.

[47] Malavikha Sudarshan, Sophie Shih, Estella Yee, Alina Yang, John Zou, Cathy Chen, Quan
Zhou, Leon Chen, Chinmay Singhal, and George Shih. Agentic llm workflows for generating
patient-friendly medical reports, 2024.

[48] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin.
Llumnix: Dynamic scheduling for large language model serving. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24), pages 173-191, Santa Clara, CA,
July 2024. USENIX Association.

[49] Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents. arXiv preprint arXiv:2306.03314, 2023.

[50] Jiahao Wang, Jinbo Han, Xingda Wei, Sijie Shen, Dingyan Zhang, Chenguang Fang, Rong
Chen, Wenyuan Yu, and Haibo Chen. Kvcache cache in the wild: Characterizing and optimizing
kvcache cache at a large cloud provider. In 2025 USENIX Annual Technical Conference
(USENIX ATC 25), pages 465-482, 2025.

[51] Wei Wang, Dan Zhang, Tao Feng, Boyan Wang, and Jie Tang. Battleagentbench: A benchmark
for evaluating cooperation and competition capabilities of language models in multi-agent
systems. arXiv preprint arXiv:2408.15971, 2024.

[52] Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, and Lei Li. Lightseq: A high
performance inference library for transformers. arXiv preprint arXiv:2010.13887, 2020.

[53] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. Tabi: An efficient multi-level inference
system for large language models. In Proceedings of the Eighteenth European Conference on
Computer Systems, pages 233248, 2023.

[54] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language

models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS "22, Red Hook, NY, USA, 2022. Curran Associates Inc.

[55] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.

[56] Ruixuan Xiao, Wentao Ma, Ke Wang, Yuchuan Wu, Junbo Zhao, Haobo Wang, Fei Huang, and
Yongbin Li. Flowbench: Revisiting and benchmarking workflow-guided planning for llm-based
agents. arXiv preprint arXiv:2406.14884, 2024.

[57] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

[58] Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du,
Shan Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with
cached knowledge fusion. In Proceedings of the Twentieth European Conference on Computer
Systems, EuroSys 25, page 94—109, New York, NY, USA, 2025. Association for Computing
Machinery.

[59] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

14



[60]

[61]

[62]

[63]

Yining Ye, Xin Cong, Shizuo Tian, Jiannan Cao, Hao Wang, Yujia Qin, Yaxi Lu, Heyang
Yu, Huadong Wang, Yankai Lin, et al. Proagent: From robotic process automation to agentic
process automation. arXiv preprint arXiv:2311.10751, 2023.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In /6th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pages 521-538, 2022.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu,
Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying
Sheng. Sglang: Efficient execution of structured language model programs. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 62557-62583. Curran Associates,
Inc., 2024.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: disaggregating prefill and decoding for goodput-optimized large language
model serving. In Proceedings of the 18th USENIX Conference on Operating Systems Design
and Implementation, OSDI’24, USA, 2024. USENIX Association.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in §8]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

15



* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide proofs in appendix §A|
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the source code of our paper in supplement materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

16



* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide reproducible code of our paper in supplement materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the training and testing details in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use box plots and KDE plots to show statistical significance. Some error
bars are not reported because it would be too computationally and economically expensive.
We have already conducted extensive experiments under various settings that are sufficient
to verify the effectiveness of our proposed method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources (type of compute
workers, memory) in
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research follows the NeurIPS Code of Ethics.

18


https://neurips.cc/public/EthicsGuidelines

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both potential positive societal impacts and negative societal
impacts of the work performed in

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

19



13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited.
In addition, the license and terms of use explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

20


paperswithcode.com/datasets

15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

Appendix

A Proof of Theories
A.1 In-place KV cache calibration

ROPE is a relative positional encoding method and uses circular function to do positional encoding.
In formal, we have a rotating matrix relative to the token position p,

cos(phy) —sin(pby) 0 e 0

sin(pfy)  cos(pby) 0 : 0

Rp)= 0 0 cos(pfy) - 0
0 0 0 oo cos(pfnya—1)

, where 0; is a dimension relative to the dimension. The RoPE performs Q, = R(p)(z,Wg), K, =
R(p)(z,Wk) for the token x,. We denote K, = x,W}. In other words,

cos(po) * Ko — sin(phy) * K 1
sin(pfo) * Kp,o + cos(pbo) * Kp1
K, = cos(pbq) * Kp o — sin(pbr) * K, 3

sin(pfy/a—1) * KP,N,Q + cos(pOn/a—1) * IA(p,N,l
When truncation happens, we still have K 1’,, =K » Which does not change.

cos(p'fo) * IA(ILO — sin(p’p) * [A(Z,,l
sin(p’6y) * K, o + cos(p'6p) * Kp1
K;, — cos(p'6r) x K o —sin(p'y) * Kp 3

sin(p'Onja—1) * I/\{pJV_Q +cos(p'Onja—1) * IA{pyN_l
Here, we verify the correctness of Eq. [I}

K}’j,)% = cos((p + 6p)0;) * kp)gi —sin((p + 9,)0;) * Kp72i+1
= (cos(pb;) cos(d,0;) — sin(pb;) sin(d,6;)) * K
(sin(pb;) cos(d,6;) —|— cos(pb;) sin(, 0)) * Kp 241
= cos(d,0;)(cos(pb; VK, p.2; — sin(pb; VK, p.2i+1)—
sin(6,0;) (sin(pd;) K, 2 + cos(pb;) K 2it1)
= c0s(0p0;) Kp 2 — sin(8,6;) Kp 2i41

= cos(—0p0;) Kp 2i + sin(—0p8;) Kpp 2541

On the other hand, for K, 5,4

K;Io/,2z‘+1 = sin((p + d,)0;) * Kpli + cos((p + 6p)0:) * Kp72i+1
= (sin(ph;) cos(8,0;) + cos(ph;) sin(d,0;)) * K i+
(cos(pb;) cos(0,0;) — sin(ph;) sin(d, 9)) * Kpoit1
— c0s(8,0) (5 (003 K 21 -+ cos(pBe) K i) +

)
sin(0,0;) (cos(pi) Kp o; — sin(pdi) Kp 2i1)
= c0s(0p0;) Kp 2i 1 + sin(d,0;) Kp 2

= cos(—0p0;) Kp 2i+1 — sin(—0,0;) K, 2;

22



A.2 The Optimality of ECE Policy under one Setting

In this section, we prove the optimality of SAS’s ECE policy in the case that each session cache is of
the same size.

Suppose there exists another eviction policy A such that it achieves higher session cache hit rate
than ECE on some session access sequence.

Let Hgcg be the hit rate achieved by ECE on session access sequence .S, and H 4 be the hit rate
incurred by A. By assumption,

H, > Hgck.

Consider the first time ¢ at which A and ECE make different decisions about which session to evict
from the cache.

Let the sessions in cache just before time ¢ be the same for both policies, and suppose the current
access at time ¢ requires an eviction. ECE evicts session sc, and A evicts a different session
SCq F SCo-

Since ECE is defined to evict the session that will not be used for the longest time in the future,
sc, is the optimal choice given perfect knowledge of future accesses.

There are two cases to consider:

1. If sc, is used sooner than sc, in the future, then A’s decision will cause a cache miss before
ECE does, decreasing H 4.

2. If sc, is used later than sc, or never used again, then ECE would have chosen sc, instead,
contradicting the definition of ECE.

In either case, A cannot produce a higher cache hit rate than ECE, which contradicts our assumption.
Thus, the optimality of SAS’s ECE policy is proved in this case.

B Additional Details of Background

As the R-Judge observes, an agent may face invalid actions or preset rule violation prior to final
success or reaching round limit. We present a detailed analysis of agent outcomes for 20 Alfworld
agent cases in Table[d] There is an increasing trend for invalid action or format in the later stages and
smaller models.

Table 4: Outcome comparison between Llama-8B and Llama-70B.

Model Success Reach Round Limit Invalid Actions Rule Violation
Llama-8B 35% 40% 15% 10%
Llama-70B 65% 30% 5% 0%

C Additional Details of Training

The Chatbot-Arena dataset includes 33k pairs of human-labeled preference data of the following
models.

o fastchat-t5-3b e vicuna-13b-v1.2
e chatglm-6b e gptdall-13b-snoozy
. mpt-7b-chat e wizardlm-13b
e vicuna-7b e RWKV-4-Raven-14B
e stablelm-tuned-alpha-7b
e guanaco-33b
e dolly-v2-12b Im-2
e oasst-pythia-12b ¢ paim-=
e alpaca-13b ° ciauge—mlstant—vl
e koala-13b ¢ claude-v
e llama-13b e gpt-3.5-turbo
e vicuna-13b o gpt-4

C.1 Q-Judge Training

To facilitate training, we group the models in the arena into three tiers with increasing model sizes
and higher ranking. A question is classified as solvable by the smaller model if the smaller one either

23



Table 5: Data Distribution of Q-Judge Training Set
Small Medium Large Accuracy

GT 5385% 3352% 12.63% N/A

Eval 4435% 51.55%  4.10% 52.45%

Table 6: Data Distribution of R-Judge Training Set
0 (Unsatisfactory) 1 (Satisfactory) Accuracy
GT 49.59% 50.41% N/A
Eval 43.10% 56.90% 82.76%

wins or ties against a larger model’s response; otherwise, it is considered challenging enough to
require a more powerful model.

We train the Q-Judge for 10 epochs on top of BERT [22] with a batch size of 16 and a warm-up
step of 500, utilizing one A6000 GPU. We choose BERT as the backbone since Q-Judge is less
frequently called and the routing task requires high precision. The training takes 2.9 hours. Under
the customized loss, the Q-Judge achieves 52% accuracy on the evaluation set. Please be noted that
the definition of accuracy here is different from the one in where we define a much looser
restriction due to the difficulty of annotation.

The distribution of the Q-Judge train set and the results on the evaluation set are shown in Table 5]
GT shows the distribution of ground truth labels and Eval shows the distribution of Q-Judge generated
labels on the evaluation set.

C.2 R-Judge Training

We train the R-Judge on top of DistilBERT [43]] using another customization of the Chatbot-Arena
dataset. We choose DistilBERT as the backbone since R-Judge is more frequently called, and its
efficiency is extremely important. We label the winner’s response as capable, while the loser’s as
incapable. For a tie match, we only take the smaller model’s response as capable and drop the larger
LLM’s. We train the R-Judge for 10 epochs with a weight decay of le-2 and warm-up steps of
500. The training takes 17 minutes. R.Jy 5 achieves an 82.8% agreement rate with human-selected
preferences on the evaluation set.

The distribution of the R-Judge train set and the result on the evaluation set are shown in Table 6]
with GT representing ground truth.

D Additional Implementation Details of AGSERVE

We implement the AGSERVE system in approximately thousands lines of Python and CUDA code.
AGSERVE provides an interface for automatic agent programming and supports model hierarchy
customization with agile agent serving support.

LLM Serving. The SAS part of AGSERVE is based on the SOoTA LLM serving system, vLLM
[24]. AGSERVE supports session cache manager and two-level load balancing on the instances to
accelerate inference speed. We extend the APIs to record the session ID and session cache reuse
pattern information (for truncation and restoration) for each request. We also provide more APIs
to support the dynamic model allocation and proactive session cache release. AGSERVE supports
starting session-aware instances of preset models via Ray [35]].

Algorithm in ECE Eviction Decision. The pseudo code of the algorithm used in eviction decision is
shown in Alg. 1] as we describe in In L1 to L15, we adopt a knapsack-like algorithm to give the
optimal recomputation overhead with the number of actual released blocks and evicted sessions. In
L18 to L19, the algorithm calculates the recomputing penalty for each session. In L20 to L26, the
algorithm walks through different s, which defines the actual number of sessions to evict. AGSERVE
predicts ETA in the following manner. First, AGSERVE maintains the metadata of each session.
When a session starts, AGSERVE initializes the metadata by the agent type. Throughout the session,
AGSERVE updates the metadata with the last several rounds’ round duration, and last arrival time
data. AGSERVE will use the average round duration to calculate the ETA. The ETA grows if the next
request has not arrived at the original ETA time, and finally reaches infinite in case of unexpected
session interruption. The ETA prediction will not be drastically affected by the unexpected behaviors,
since it keeps track of multiple rounds of history data. It is robust to workload shift, since each
session is treated independently.

24



1
2
3

[V

o e N

11

12
13
14
15

16

17
18

19
20

21
22

23
24

25
26
27

28

Algorithm 1: ECE Eviction Policy

Input: Number of ongoing sessions n, number of running sessions r, number of waiting sessions
w, session cache size (can be zero) I[1. .. n| ranked by ETA, maximum batch size K,
prefilling per-block overhead P, decoding time consumption D

Output: Available session nums k, sessions to evict £/

Function Knapsack (3, W):

Initialize dp[0] < 0,dp[l ... W] + o0, S[0.W] « [];

Initialize asp + 0, aval < 00, as < [|;

// The first ¢ sessions cache shall remain in the cache and is not

considered in eviction

forz < i1+ 1tondo

for j < W downto W — [[z] do

// for the cases where released blocks exceeds the requiring W

val = dplj] + v[z];

if val < aval then

aval < val;

as = S[j] + [a];

asp = j + I[z];

// No need to update dp, since no better solution comes based
on asp

or j + W — l[z] downto 0 do

// for the cases where released blocks does not exceed the
requiring W

val = dplj] + v[z];

if val < dp[j + l[z]] then
dplj + l[z]] + val;

Lsu+mﬂzsm+uk

)

return aval, asp, as;

k< Dy -(n—r),E<+[;
rsp < 0,asp < O;
// Calculate the recomputation penalty for each session
fori <~ Otondo
| oli] ¢ P-Ufi] - (n—i+1);
// Walk through all possible batch size.
for i < 1to min(w, K —r) do
rsp < rsp + rsli] — l[i];
// Check if new session needs to be evicted, improve efficiency
if asp<rsp then
| t,asp, E; < Knapsack(i,rsp);
val =t + Dyyi - (n — 1 —7);
if val<k then
L k<« i, B+ E;;

return k, £

Each SAS runs its ECE algorithm independently. The theoretical algorithm complexity is
O(k*n*W). We optimize the large constant W (knapsack size) with a Python dictionary in our
implementation. Due to the long context of each session, the number of session cache maintained in
the context is limited. As a result, even in the worst case, the latency per ECE decision remains under
0.1 milliseconds, which we find negligible compared to typical inference latency.

Model Hierarchy. AGSERVE adopts a three-layer hierarchical model structure. We choose the 8B
(Llama-8B) and 70B (Llama-70B) versions of the widely adopted Llama-3 [14] as the first two
layers. These two models also outperform in multiple benchmarks [8, 2l]. We adopt GPT-40 [1]] at the
third layer as an external API, which is one of the best models in multiple agent benchmarks [29}|51].

25



Table 7: AGSERVE APIs

API Description
Implementation Building
set_sp() Set the shared prefix for the implementation.
set_tsp() Set the task specific template for the implementation.
set_tools() Set the tools and its descriptions for the implementation.
Task Executing
Designate the cascading models, ranked by the order from weak to
set_models() strong.
set_tau() Designate the quality threshold for RP(-)
set_nu() Designate the response checking frequency for RP(-)
set_task() Set the task and assemble the prompt.
. Adjust the availability of tools, and add/remove tools at the present
adjust_tool()
round.
inject() Inject the observation.

Query the LLM with the existing prompt, and return the LLM-
generated actions.

req_change() Request a general migration.

req_update()  Request a service-upgrade migration.

go_back() Restore the saved status.

action()

We choose the three-layer hierarchy due to the following reasons. Firstly, the physical limits of our
testbed constrain the number of LLMs we can deploy. Secondly, we ensured that the models at each
layer exhibit a substantial performance gap in reasoning quality, which takes advantage of model
diversity. The benefit of Llama also applies to other models adopting the Llama structure, including
the Qwen family [57]. Notably, AGSERVE does not benefit from dictionary reuse, since the
tokenization process only takes no more than 2 milliseconds even under the full context window, and
is not comparable to the TTFT. As a matter of fact, AGSERVE re-tokenize the prompt for each request.
The cascading structure in AGSERVE is flexible. Adding or removing layers is straightforward: users
only need to customize the Chatbot-Arena dataset and retrain the QMM. Thirdly and importantly ,
both the Llama-8B and Llama-70B models are adjustable models, as stated in §6] and are widely
adopted in agents. They are from the same family and share the same tokens and dictionary. GPT-40
is selected due to its outstanding performance in multiple benchmarks, demonstrating AGSERVE’s
support for commercial model APIs besides SAS.

Fault Tolerance. AGSERVE is capable to handle the possible failures in distributed inference. If
an instance fails, the client sends a request to the scheduler for rerouting. If the scheduler fails,
AGSERVE defaults to a regular LLM serving system with a session cache enabled, establishing
sessions between the agent and a random instance.

Agent Programming. AGSERVE provides a set of APIs like LangChain [25]] for agent programming.
Agent operators can build their own agent implementation with available tools and prompt templates
The clients can also designate the used LLMs, the quality threshold, efc. through the APIs. We
list the APIs for programmers to build the agent implementations as well as those for clients to use
AGSERVE in Table[7} The agent operates on the Session class to perform LLM query and quality
maintenance. Each agent can pass the 7, ip, p parameters and the quality threshold 0 to Session.
For each query, the Session class will return a quality indicator in addition to the response. For the
restorable agents, the quality indicator may instruct them to save or restore the previous history.

E Additional Details of Evaluations

E.1 Implemented Agents
We implement the following four agent implementations to demonstrate the performance of
AGSERVE.

e The AlfWorld (AW) [45] is an embodied household assistant navigating and interacting within
simulated environments. AW is a standard agent that includes multiple rounds of interaction to
attempt and fail.

26



e The card game (CG) [29] plays a two-player game called AquaWar against a random-acted
baseline. The client performs two types of actions: attack and guess. Prompt templates of the
two types vary. We implement CG with two AGSERVE sessions using multi-agent collaboration.
The two sessions perform model cascading independently.

e The knowledge graph (KG) [29]] queries knowledge graphs to answer a question. We start a
Freebase knowledge graph via Virtuoso [4,[15] on a CPU node with 256 GB memory. Queries
do not alter KG, so we implement KG as a restorable agent introduced in §5.2]

e The Mind2Web (M2W) [12] navigates and performs tasks across various domains of real-world
websites. While it presents a complex challenge, an LLM usually completes the task within a
few interaction rounds.

E.2 Quality for Different Agents

We outline the computation of the quality metric in the section. sc is set to 25 if the session ends
successfully in status COMPLETED or TASK_LIMIT_REACHED; otherwise, it is set to 0.

E.2.1 AW Agent Quality
For the AW agent, the quality calculation is as follows:

d
Qaw = sc+vec+ <25— foun S>

The base quality is set to 25, with an additional 50 points of vc if there is a valid result. If the
agent accomplishes the task, vc is set to 50, otherwise, 0. While fewer interaction rounds mean fewer
moves for the embodied agent, a score of 25 is added with a penalty of 0.5 for each move.

E.2.2 CG Agent Quality
For the CG agent, the quality is calculated based on meta-performance metrics:

0 -~ full_play harm_on_enemy < 50
O ™ lest_times total_HP X test_times
d
+ 25 x max( rounc_num 1)

50 x test_times’

The quality of CG partly breaks the common requirement of quality factors due to its "game"
character. It comprises three parts: the normal behavior part by the ratio of full play rounds (in how
many test times the CG agent operates normally), the accomplishing part by the win round ratio, and
a survival part replacing the efficiency part. In most cases, we find LLM loses the battle. In a losing
game, a longer survival should be given a bonus rather than a quick death.

E.2.3 KG Agent Quality
For the KG agent, the quality is computed as:

d
Qra = sc+ 50 x f1 + (25— foun S)

A base quality of sc is added, followed by the F1 score. The F1 score reflects how well the answer
given by the KG agent matches the ground truth. If the F1 score is greater than zero, an additional
score of 25 is applied with a penalty based on the number of actions, with a reason similar to the AW.

E.24 M2W Agent Quality
For the M2W agent, the quality is derived from multiple metrics:

Q2w = sc + element_acc x 25 + step_sr X 25
+ action_f1 x 25

This calculation is based on three key metrics: element accuracy, step success rate, and action F1
score. Each metric contributes equally to the overall quality, with a maximum of 25 points each.

E.3 Cost of Open-Source Models

We use the retail price of cloud server rentals to estimate the cost of open source models. To our
knowledge, the cost of open-source models could be significantly lower (30% to 60% lower) for

27



Table 8: Cost of AGSERVE and baselines for Alfworld under different pricing plans.
AGSERVE Llama-8B Llama-70B GPT-40 RouteLLM Cascade

Original Cost 0.0177 0.0023 0.0376 0.1073 0.0337 0.1395
Cost(-30% Rent) 0.0137 0.0016 0.0263 0.1073 0.0324 0.1353
Cost(-60% Rent) 0.0097 0.0009 0.0151 0.1073 0.0312 0.1311

Quality 90 21 72 94 25 69

self-operated data centers or long-term users with Azure’s spot or reserved plarﬂ The lower cost
could further exhibit the advantage of AGSERVE against the GPT-40-only approach.

E.3.1 The A6000 Testbed

We find the instance of the most similar computing capability offered by cloud service providers
to our testbed is ecs.gn7i-8x.16xlarge on Alibaba Cloud with 8 A10 GPUs. The rent for this
instance is approximately $10 per hour.

The Llama-8B model requires only 1/4 of the node and can run 32 sessions concurrently with no
throughput loss. The price of Llama-8B per session is 10 + 3600 = 4 <+ 32 = $(2.17 x 107°)/s.

The Llama-70B model requires one node and can run 16 requests concurrently with no throughput
loss. The price of Llama-70B per session is 10 = 3600 = 16 = $(1.73 x 10~%)/s.

AGSERVE requires 5/4 of the node to perform both 8B and 70B models. Though with higher
throughput, we calculate the price of itas 5 x $1.73 x 107* = $(2.17 x 107%)/s.

E.3.2 The A800 Testbed

We find the instance of the most similar computing capability offered by cloud service providers to our
A800 testbed is ND96amsr A100 v4 offered by Azure. The rent for this instance is approximately
$33 per hour, with tax included.

All three agent serving systems evaluated in §7.3] utilize two 8 x80GB A800 instances. We
find out that the testbed is capable of handling about 64 sessions (requests) simultaneously without
computing resource preemption. We define the price of using the A800 testbed for each session as
33 x 2+ 3600 < 64 = $(2.86 x 107%)/s.

E.4 AGSERVE Settings

We set the quality control threshold 6 of RJy(-) to 0.5. The reasoning quality check frequency v is
set to 4 for all agents except M2W. AGSERVE checks the LLM’s reasoning quality for every response
(v = 1), as an M2W session usually finishes in 2 to 3 rounds.

E.5 Details of End-to-End Cascaded Serving

In §7.2] we show that AGSERVE shows superior performance under the retail rental price. In this
section, we display the cost of AGSERVE and other baselines for operating the Alfworld agent under
different pricing plans in Table[§] AGSERVE’s rental price is still lower than that of Llama-70B which
has worse quality than it. With a discount in the rental prices, AGSERVE further breaks the current
cost-quality tradeoff curve with only 9.04% cost to achieve similar performance with GPT-4o0.

E.6 Details of Multi-Agent Traces

Uniform, Gamma, Poisson, and Burst traces that we evaluated in comprise 100 agents each. The
uniform, Gamma, and Poisson traces share an average sending rate of 4 seconds per agent. Running
traces is very expensive. It costs us more than 500 USD to produce Fig[9]just for the OpenAI APL

E.7 Details of Ablation Studies

E.7.1 SAS Efficiency

We set the max_memory_utilization of SAS to 0.37 (equivalent to 17.8GB, 3GB of CUDA graph
not included) and the max_model_len to 4096 on one A6000 GPU. Under this setting, there are
745 blocks for KV cache, fitting 6 to 3 sessions depending on their round. This setting promotes
eviction and truncation during agent execution to demonstrate the efficiency of SAS’s ability better.
Nevertheless, this setting could be very common in real-world serving scenarios [23]], where GPUs
have limited memory, such as NVIDIA(R) RTX 4090 (24GB) and A10 (24GB) GPUs.

’See https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/|

28


https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

Table 9: QMM finishes evaluation job in real-time.

B
Time(Minute)
(b) Avg Generation Throughput Over Time

Q-Judge R-Judge AW CG KG M2wW
Overhead (s) 0.05 0.03 0.3 0.04 0.005-2 0.03
50000 T T
i --- Uama-8B | A
! b
i Uama-70B | , v\ ')
40000 i i g
| [ wil
— H o vl 1
@ | I o
& : o ! 1
g i i! P
30000 A . ] Iy
S | 'il 1 ':'
5 ! A f
a i ! ‘| 1
£ 20000 | M | 1
> | i | H
E . I H 1
£ ! |3 '
10000 - i [ i
" i ! 1 1
Y ! ] ! i
0 L-u-Ji_,Jl‘«‘.‘_--J‘L;r‘—r-x_ﬂul : i,,
(a) Avg Prompt Throughput Over Time
I I
1000 i
! i,
| | 1 [r VAR
H e ‘\‘4 ‘Il (il
__ 8004 ! ¥ y o
2 I H \
i B B [l
§ ! I -
i N '-
5 ! l"l‘”‘;‘"!’ \‘1
2 | ! | v
S 400 | H I H \
H | | | \
2 : ! : i
£ i ! 1 I i
200 1 ! 10 !
{ ! ] I !
04 l\..P.l“_:ll.__Ir‘f‘dﬂ\-._"-'.‘\.l"_f'{"‘\'l-‘—fJ"_: : I\__
© “ L > »

Figure 15: The prefilling and generation throughput of different models in AGSERVE. The thin
red line at 4.67 min shows the launch of a two-A800 70B instance and a half-cut of a four-A800

8B instance. The bold red line at 17.67 min shows the two-A800 70B instance replaced by an 8B
instance.

E.7.2 QMM Efficiency

To minimize the bias, we only show the observation and LLM’s response round by round to our
annotators, with no previous knowledge of the session’s final result or the model size. We also utilize
the voting mechanism and each label is agreed by at least three annotators.

We compare the overhead of running Q-Judge, R-Judge, and the response time for four agents in
Table[9] The results show that the R-Judge can finish in the time of response generation in most cases.
The Q-Judge only introduces negligible overhead in its infrequent calling. Please note that we take
the time from the generation of request to the generation of first token as TTFT in Fig[I4] including
the overhead for node routing, which is not counted in other experiments.

E.7.3 Details and Case Study of Dynamic Allocation

To create an imbalanced demand-supply ratio, we continuously launch agent samples every 5 seconds
with 6 at a low value of 0.01, deferring sessions to the Llama-70B instances, mimicking the burst of
difficult tasks at the very beginning. After a period, we raise € to mimic a change to low-cost pursuit.
We forbid AGSERVE from visiting OpenAl APIs to prevent the assistance of external machines.

In this section, we give a case study on the impact of dynamic allocation. The agent launcher keeps
launching the agent at a given speed and shifts the quality maintenance threshold at some time point.
Fig|[I5]depicts the prompt and generation throughput of different models during the experiment. The
prompt throughput shows the prefilling speed, while the generation throughput reflects the decoding
speed. AGSERVE first moves 2 GPUs from the 8B instance to a 70B instance due to the high volume
of 70B instances. And it dynamically moves the 2 GPUs back when the demand for 8B models

29



Method  Cost (.01$) Quality Overhead(s/req) Gross Cost(.01$)
Human 1.505 91.75 14.71 2.944
AGSERVE 1.768 89.57 - 1.768
Table 10: Evaluations of human-like judges in agent serving of Alfworld. The overhead column
shows the time it takes for a human to judge the satisfaction per request. Gross cost shows the cost if
the human-judge overhead is included in the calculation.

Table 11: Comparison of centralized (C) and distributed(D) scheduling by e2e latency (EL), quality
(Q), and scheduling latency (SL) under different agent launch rates (LR). EL and SL are in seconds.

LR (s/agent) EL-C Q-C SL-C EL-D Q-D SL-D

0.8 64.76  84.18 042 4766 8583 0.09
0.4 9745 8339 043 60.12 8586 0.08
0.2 129.99 8503 046 6894 85.06 0.09

increases. Notably, AGSERVE keeps the functionality of both models throughout the time, since there
are always requirements for both models. As we discussed in §7.4.3] we face 6% failures in FS1, FS2
and AGSERVE due to the LLM’s limited capability in long-context scenarios. In routine operation,
AGSERVE will choose to upgrade the model to GPT-4o.

E.8 Performance of an Ideal Human-Like Judge

In a fast-paced request pattern in agent serving, it is impossible for a human to judge in real-time.
Our experience shows that it takes 10 seconds or more for humans to read and understand the context
before rating the response, missing the latency objective of many agents. Fig[I3]depicts a 75.8%
accuracy in response quality judgment relative to human preference. The KV cache of different
models can not be reused. AGSERVE adopt periodical quality check and retry strategy as stated in §5.2]
to avoid excessive model migration, which may lead to extra overhead of KV cache re-computation.
In this experiment, we want to show the performance of an ideal human-like judge on the AW agent.
To do this, we let a human expert determine whether to migrate or not for each response, and evaluate
the cost and quality of each agent serving. We do not include the time for humans to judge in the cost
and latency calculation. Table [I0]shows the performance of the human judge, which only outperforms
AGSERVE with margin benefits, showing that R-Judge is strong enough for the three-layer session
lifetime management. We acknowledge that it may not apply to cascades with more layers of models.

F AGSERVE on a Large Scale

While AGSERVE employs a centralized scheduler for distributed agent serving, it is designed to sup-
port distributed scheduling, where each district has its own RS. We simulate AGSERVE’s performance
on a large scale with the following approaches:
1. The inference latency on instances is based on a sleep operation, and we profile the inference
duration by the GPU setting, concurrent requests, and model size.
2. The quality issues are triggered at a certain probability related to the size/capability of LLM.
3. We define a virtual round-to-go. One interaction round with a larger LLM has a higher probability
of decreasing the virtual round-to-go more than a smaller one.
We simulate the behavior of a 60-node cluster with 8 GPUs per node. The result is shown in Table[TT]
showing that the distributed scheduling version of AGSERVE reduces e2e latency while accelerating
scheduling speed and improving fairness in the cluster.

30



	Introduction
	Understanding Agent Serving
	LLM Agent Preliminary
	LLM Serving Systems are Insufficient for Agent Serving

	AgServe Overview
	Sessionizing KV Cache to Maximize Cache Hit in SAS
	Exploiting Session-Level Cascading to Minimize Cost in SGC
	Reducing Overkill and Underkill of the Task
	Real-Time Response Quality Monitoring and Issue Mitigation for Long Context

	Model Allocation across GPUs to Maximize Hardware Utility in RS
	Evaluation
	Testbed and Metrics
	End-to-end Cascading Serving
	End-to-end Multi-Agent Serving
	Ablation Studies and Microbenmarks
	Performance of SAS Session Cache
	Performance of SGC QMM
	Performance of RS Dynamic Allocation


	Limitations and Discussions
	Related Work
	Conclusion
	Proof of Theories
	In-place KV cache calibration
	The Optimality of ECE Policy under one Setting

	Additional Details of Background
	Additional Details of Training
	Q-Judge Training
	R-Judge Training

	Additional Implementation Details of AgServe
	Additional Details of Evaluations
	Implemented Agents
	Quality for Different Agents
	AW Agent Quality
	CG Agent Quality
	KG Agent Quality
	M2W Agent Quality

	Cost of Open-Source Models
	The A6000 Testbed
	The A800 Testbed

	AgServe Settings
	Details of End-to-End Cascaded Serving
	Details of Multi-Agent Traces
	Details of Ablation Studies
	SAS Efficiency
	QMM Efficiency
	Details and Case Study of Dynamic Allocation

	Performance of an Ideal Human-Like Judge

	AgServe on a Large Scale

