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Abstract

Structural analysis methods (e.g., probing and feature attribution) are increasingly
important tools for neural network analysis. We propose a new structural analy-
sis method grounded in a formal theory of causal abstraction that provides rich
characterizations of model-internal representations and their roles in input/output
behavior. In this method, neural representations are aligned with variables in
interpretable causal models, and then interchange interventions are used to experi-
mentally verify that the neural representations have the causal properties of their
aligned variables. We apply this method in a case study to analyze neural models
trained on Multiply Quantified Natural Language Inference (MQNLI) corpus, a
highly complex NLI dataset that was constructed with a tree-structured natural
logic causal model. We discover that a BERT-based model with state-of-the-art
performance successfully realizes parts of the natural logic model’s causal structure,
whereas a simpler baseline model fails to show any such structure, demonstrating
that BERT representations encode the compositional structure of MQNLI.

1 Introduction

Explainability and interpretability have long been central issues for neural networks, and they have
taken on renewed importance as such models are now ubiquitous in research and technology. Recent
structural evaluation methods seek to reveal the internal structure of these “black box” models.
Structural methods include probes, attributions (feature importance methods), and interventions
(manipulations of model-internal states). These methods can complement standard behavioral
techniques (e.g., performance on gold evaluation sets), and they can yield insights into how and why
models make the predictions they do. However, these tools have their limitations, and it has often
been assumed that more ambitious and systematic causal analysis of such models is beyond reach.

Although there is a sense in which neural networks are “black boxes”, they have the virtue of being
completely closed and controlled systems. This means that standard empirical challenges of causal
inference due to lack of observability simply do not arise. The challenge is rather to identify high-level
causal regularities that abstract away from irrelevant (but arbitrarily observable and manipulable)
low-level details. Our contribution in this paper is to show that this challenge can be met. Drawing
on recent innovations in the formal theory of causal abstraction [1, 2, 5, 22], we offer a methodology
for meaningful causal explanations of neural network behavior.

Our methodology causal abstraction analysis2 consists of three stages. (1) Formulate a hypothesis
by defining a causal model that might explain network behavior. Candidate causal models can be
naturally adapted from theoretical and empirical modeling work in linguistics and cognitive sciences.
(2) Search for an alignment between neural representations in the network and variables in the
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high-level causal model. (3) Verify experimentally that the neural representations have the same
causal properties as their aligned high-level variables using the interchange intervention method of
Geiger et al. [11].

As a case study, we apply this methodology to LSTM-based and BERT-based natural language
inference (NLI) models trained on the logically complex Multiply Quantified NLI (MQNLI) dataset
of Geiger et al. [10]. This challenging dataset was constructed with a tree-structured natural logic
causal model [17, 29, 14]. Our BERT-based model has the structure of a standard NLI classifier,
and yet it is able to perform well on MQNLI (88%), a result Geiger et al. achieved only with highly
customized task-specific models. By contrast, our LSTM-based model is much less successful (46%).

The obvious scientific question in this case study is what drives the success of the BERT-based
model on this challenging task. To answer this we employ our methodology. (1) We formulate
hypotheses by defining simplified variants of the natural logic causal model. (2) We search over
potential alignments between neural representations in BERT and variables in our high-level causal
models. (3) We perform interchange interventions on the BERT model for each alignment. We find
that our BERT model partially realizes the causal structure of the natural logic causal model; crucially,
the LSTM model does not. High-level causal explanation for system behavior is often considered a
gold standard for interpretability, one that may be thought quixotic for complex neural models [16].
The point of our case study is to show that this high standard can be achieved.

We conclude by comparing our methodology to probing and the attribution method of integrated
gradients [27]. We argue probing is unable to provide a causal characterization of models. We show
formally that attribution methods do measure causal properties, and in that way they are similar to the
tool of interchange interventions. However, our methodology of causal abstraction analysis provides
a framework for systematically measuring and aggregating such causal properties in order to evaluate
a precise hypothesis about abstract causal structure.

2 Related Work

Probes Probes are generally supervised models trained on the internal representations of networks
with the goal of determining what those internal representations encode [7, 13, 20, 28]. Probes are
fundamentally unable to directly measure causal properties of neural representations, and Ravichander
et al. [21], Elazar et al. [9], and Geiger et al. [11] have argued that probes are limited in their ability
to provide even indirect evidence of causal properties.

We now present an analytic example in which probing identifies seemingly crucial information in
representations that have no causal impact on behavior. We assume the structure of the simple
addition network N+ in Figure 1. For our embedding, we simply map every integer i in N9 to the
1-dimensional vector [i]. The weight matrices are

W1 =

(
1
1
0

)
W2 =

(
1
1
1

)
W3 =

(
0
0
1

)
w =

(
0
1
0

)
The output for an input sequence x = (i, j, k) is given by (xW1;xW2;xW3)w.

In this network, xW1 perfectly encodes i + j, and xW3 perfectly encodes k. Thus, the identity
model probe will be perfect in probing those representations for this information. However, neither
representation plays a causal role in the network behavior; only xW2 contributes to the output.

Attribution Methods Attribution methods aim to quantify the degree to which a network represen-
tation contributes to the output prediction of the model, for a specific example or set of examples
[3, 24, 26, 27, 32]. In contrast to probing, the well known integrated gradients method (IG) can be
given an unambiguous causal interpretation. Following [27] we define the vector IG(x), for an input
x relative to a baseline b, to have ith component IGi(x) given by the expression on the left:

(xi − bi) ·
∫ 1

α=0

∂F (αx+ (1− α)b)
∂xi

dα = (xi − bi) ·
∫ 1

α=0

lim
ε→0

F (xα,ε)− F (xα)
ε

dα

Abbreviating the weighted average αx+ (1− α)b by xα, letting xα,ε be the vector that differs from
xα in that the ith coordinate is increased by ε, and then expanding the definition of partial derivative,
this can be written in the form given on the right. The difference F (xα,ε)− F (xα) is known in the
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(a) The causal model C+ (right) that first computes S1 = X + Y and W = Z, before computing the final
output S2 = W + S1 aligned with the neural network N+ (left) with L1 highlighted as the hypothesized
location encoding S1 = X + Y and L2 as the location encoding W = Z.
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(b) Low-level neural network interchange intervention.
The network processes two different input sequences.
The neural representation created at L1 for input se-
quence (1, 2, 3) is replaced by the corresponding rep-
resentation created for input sequence (4, 5, 6).
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(c) High-level symbolic computation interchange in-
tervention. The computation processes two different
input sequences. The sum at S1 for input sequence
(1, 2, 3) is replaced by the corresponding representa-
tion created for input sequence (4, 5, 6).

Figure 1: Our motivating example where we hypothesis that a symbolic computation C+ is a causal
abstraction of a neural networkN+ under a particular alignment (top). We can experimentally confirm
this hypothesis by conducting an interchange intervention on both the network and the computation
with every pair of inputs and evaluating whether the intervened network and intervened computation
have the same counterfactual output behavior. We schematically depict an interchange intervention
on the network N+ (bottom left) and the computation C+ (bottom right) with the base input (1, 2, 3)
and the source input (4, 5, 6). Observe that the output of the intervened neural network matches the
output of the intervened symbolic computation, so we have success for this pair of inputs.

causal literature as the (individual) causal effect on the output (e.g., [15]) of increasing neuron i by
ε relative to the fixed input xα. So, essentially, IGi(x) is measuring the average “limiting” causal
effect of increasing neuron i along the straight line from the baseline vector to the input vector x,
weighted by the difference at i between input and baseline. More recently, Chattopadhyay et al. [6]
develop an attribution method that explicitly treats neural models as structured causal models and
directly computes the individual causal effect of a feature to determine its attribution.

Attribution methods can measure causal properties, and, in that way, they are similar to the tool
of interchange interventions. However, our methodology of causal abstraction analysis provides a
framework for systematically measuring and aggregating such causal properties in order to evaluate a
precise hypothesis about abstract causal structure.

Causal Abstraction Our goal is to evaluate whether the internal structure of a neural network
realizes an abstract causal process. To concretize this, we turn to formal, broadly interventionist
theories of causality [25, 19], in which causal processes are characterized by effects of interventions,
and theories of abstraction [1, 2, 5, 22] where relationships between two causal processes are
determined by the presence of systematic correspondences between the effects of interventions.

The notion of abstraction that we employ here is a relatively simple one called constructive abstraction
[1]. Informally, a high-level model is a constructive abstraction of a low-level model if there is a way
to partition the variables in the low-level model where each high-level variable can be assigned to a
low-level partition cell, such that there is a systematic correspondence between interventions on the
low-level partition cells and interventions on the high-level variables.
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There are two properties of constructive abstraction that make it ideal for neural network analysis.
First, the information content of partition cells of low-level variables can be determined by the
high-level variables that they correspond to. For neural networks, the partition cells of low-level
variables are sets of neurons, and our method supports reasoning at the level of vector representations
(sets of neurons). Second, the causal dependencies between partitions of low-level variables are not
necessarily preserved as causal dependencies between the high-level variables corresponding to these
partitions. For example, the low-level model might be a fully connected neural network, whereas
the high-level model might have much sparser connections. For neural network analysis, this means
we can find causal abstractions that have far simpler causal structures than the underlying neural
networks. We provide an example in the next section.

3 Causal Abstraction Analysis of Neural Networks

We now describe our methodology in more detail, illustrating the relevant concepts with an example
of a neural network performing basic arithmetic. Specifically, suppose that we have a neural network
N+ that takes in three vector representations Dx, Dy, Dz representing the integers x, y, and z, and
outputs the sum of the three inputs: N+(Dx, Dy, Dz) = x+ y + z. We seek an informative causal
explanation of this network’s behavior.

Formulating a Hypothesis A human performing this task might follow an algorithm in which they
add together the first two numbers and then add that sum to the third number. We can hypothesize that
the behavior of N+ is explained by this symbolic computation. Specifically, the network combines
Dx and Dy to create an internal representation at some location L1 encoding x + y; it encodes z
at some location L2; and L1 and L2 are composed to encode a + z at the location of the output
representation. This hypothesis is given schematically in Figure 1a.

Following our methodology, we first define the causal model C+ in Figure 1a. Our informal
hypothesis that a neural network’s behavior is explained by a simple algorithm can then be restated
more formally: C+ is a constructive abstraction of the neural network N+.

Alignment Search Now that we have hypothesized that the causal model C+ is a causal abstraction
of the network N+, the next step is to align the neural representations in N+ with the variables in
C+. The input embeddings Dx, Dy, and Dz must be aligned with the input variables X , Y , and Z
and the output neuron O must be aligned with the output variable S2. That leaves the intermediate
variables S1 and W to be aligned with neural representations at some undetermined locations L1 and
L2. If this were an actual experiment (see below), we would perform an alignment search to consider
many possible values for L1 and L2. Each alignment is a hypothesis about where the network N+

stores and uses the values of S1 and W . For the example, we assume the alignment in Figure 1a.

Interchange Interventions Finally, for a given alignment, we experimentally determine whether
the neural representations at L1 and L2 have the same causal properties as S1 and W . The basic
experimental technique is an interchange intervention, in which a neural representation created during
prediction on a “base” input is interchanged with the representation created for a “source” input
[11]. We now show informally that this method can be used to prove that the causal model C+ is a
constructive abstraction of the neural network N+ (Appendix G has formal details).

We first intervene on the causal model. Consider two inputs a,a′ ∈ (N9)
3 where N9 is the set of

integers 0–9. Let a = (x, y, z) be the base input and a′ = (x′, y′, z′) be the source input. Define

CS1←a′

+ (a) = x′ + y′ + z (1)

to be the output provided byC+ when S1, the variable representing the intermediate sum, is intervened
on and set to the value x′+ y′. Thus, for example, if the base input is C+(1, 2, 3) = 6, and the source
input is a′ = (4, 5, 6), then CS1←a′

+ (1, 2, 3) = 4+ 5+ 3 = 12. This process is depicted in Figure 1c.

Next, we intervene on the neural network N+. Let D be an embedding space that provides unique
representations for N9, and consider two inputs D = (Dx, Dy, Dz) and D′ = (Dx′ , Dy′ , Dz′),
where all Di and Di′ are drawn from D. In parallel with (1), define

NL1←D′

+ (D) (2)
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to be the output provided by N+ processing the input D when the representation at location L1 is
replaced with the representation at location L1 created when N+ is processing the input D′. This
process is depicted in Figure 1b.

With these two definitions, we can define what it means to test the hypothesis that N+ computes
x+ y at position L1. Where Da is an embedding for a and Da′ is an embedding for a′, we test:

CS1←a′

+ (a) = N
L1←Da′
+ (Da) (3)

If this equality holds for all source and base inputs a and a′, then we can conclude that, for every
intervention on S1, there is an equivalent intervention on L1. If we can establish a corresponding
claim for W and L2, then we have shown that C+ is a constructive abstraction of N+, since the
inputs’ relationships are established by our embedding and there are no other interventions on C+ to
test.

Analysis Suppose that all of our intervention experiments verify our hypothesis that C+ is a
constructive abstraction of N+ with variables S1 and W aligned to neural representations at L1 and
L2. This explains network behavior by resolving two crucial questions.

First, we learn what information is encoded in the representations L1 and L2. Neural representations
encode the values of the high-level variables they are aligned with. The location L1 encodes
the variable S1 and the location L2 encodes the variable W . This is similar to what probing
achieves. However, our method is crucially different from probing. In probing, information content is
established through purely correlational properties, meaning a neural representation with no causal
role in network behavior can be successfully probed, as we showed in Section 2. In causal abstraction
analysis, information content is established through purely causal properties, ensuring that the neural
representation is actually implicated in model behavior.

Second, we learn what causal role L1 and L2 play in network behavior. Neural representations play a
parallel causal role to their aligned high-level variables. At the location L1, Dx and Dy are composed
to form a neural representation with content x+ y that is then composed with L2 to create an output.
The fact that S1 doesn’t depend on z tells us that while L1 depends on Dz and representations at L1

may even correlate with z, the information about z is not causally represented at L1. At the location
L2, the value of z is simply repeated and then composed with L1 to create a final output.

Our method assigns causally impactful information content, but also identifies the abstract causal
structure along which representations are composed. It thus encompasses and improves on both
correlational (probing) and attribution methods.

4 The Natural Language Inference Task and Models

Multiply Quantified NLI Dataset The Multiply Quantified NLI (MQNLI) dataset of Geiger et al.
[10] contains templatically generated English-language NLI examples that involve very complex
interactions between quantifiers, negation, and modifiers. We provide a few examples in Figure 2b;
the empty-string symbol ε ensures perfect alignments at the token level both between premises and
hypotheses and across all examples.

The MQNLI examples are labeled using an algorithmic implementation of the natural logic of
MacCartney and Manning [18] over tree structures, and MQNLI has train/dev/test splits that vary in
their difficulty. In the hardest setting, the train set is provably the minimal set of examples required to
ensure that the dev and test sets can be perfectly solved by a simple symbolic model; in the easier
settings, the train set redundantly encodes necessary information, which might allow a model to
perform perfectly in assessment by memorization despite not having found a truly general solution.
For a fuller review of the dataset, see Appendix A.

MQNLI is a fitting benchmark given our goals for a few reasons. First, we can focus on the hardest
splits that can be generated, which will stress-test our NLI architectures in a standard behavioral
way. Second, the MQNLI labeling algorithm itself suggests an appropriate causal model of the
data-generating process. Figure 2a summarizes this model in tree form, and it is presented in full
detail in Geiger et al. [10]. This allows us to rigorously assess whether a neural network has learned
to implement variants of this causal model. The complexity of the MQNLI examples creates many
opportunities to do this in linguistically interesting ways.
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(a) The causal structure of the high-level natural logic causal model CNatLog that performs inference on MQNLI.
The superscripts P and H stand for ‘premise’ and ‘hypothesis’ and the subscripts ‘Subj’ and ‘Obj’ stand for
‘Subject’ and ‘Object’. The node labels are used to explain the experimental results in Section 5

ε every ε baker ε ε ε eats ε no ε bread
contradiction

ε no angry baker ε ε ε eats ε no ε bread

ε every silly professor ε ε ε sells not every ε book
neutral

ε every silly professor ε ε ε sells not every ε chair

not every sad baker ε ε fairly admits not every odd idea
entailment

ε some ε baker does not ε admits ε no ε idea

(b) MQNLI examples. The ε token serves as padding (but
still attended to by the model) and ensures a perfect align-
ment between both premises and hypotheses and across all
examples. It is semantically an identity element.

Model Train Dev Test

CBoW 88.04 54.18 53.99
TreeNN 67.01 54.01 53.73
CompTreeNN 99.65 80.17 80.21
BiLSTM 99.42 46.41 46.32
BERT 99.99 88.25 88.50

(c) MQNLI results. The first three models are from
Geiger et al. 10, where the CompTreeNN is a task-
specific model not suitable for general NLI and
functions as an idealized upperbound. Our results
show that BERT-based models can surpass this
without such alignments.

Figure 2: The natural logic causal model (top), MQNLI examples (left) and MQNLI results (right).

Models We evaluated two models on MQNLI: a randomly initialized multilayered Bidirectional
LSTM (BiLSTM; [23]) and a BERT-based classifier model in which the English bert-base param-
eters [8] are fine-tuned on the MQNLI train set. Output predictions are computed using the final
representation above the [CLS] token. Models are trained to predict the relation of every pair of
aligned phrases in Figure 2a. Additional model and training details are given in Appendix B.

Results Figure 2c summarizes the results of our BERT and BiLSTM models on the hardest fair
generalization task Geiger et al. [10] creates with MQNLI. We find that our BiLSTM model is not
able to learn this task, and that our BERT model is able to achieve high accuracy. The only models
in Geiger et al. [10] able to achieve above 50% accuracy were task-specific tree-structured models
with the structure of the tree in Figure 2a. Thus, our BERT-based model is the first general-purpose
model able to achieve good performance on this hard generalization task. Without pretraining, the
BERT-based model achieves ≈49.1%, confirming that pretraining is essential, as expected.

A natural hypothesis is that the BERT-based model achieves this high performance because it has in
effect induced some approximation to the tree-like structure of the data-generating process in its own
internal layers. With causal abstraction analysis, we are actually in a position to test this hypothesis.

5 A Case Study in Structural Neural Network Analysis

5.1 Causal Abstractions of Neural NLI models

Formulating Our Hypotheses We proceed just as we did for the simple motivating example in
Section 3, except that we are now seeking to assess the extent to which the natural logic algebra in
Figure 2a is a causal abstraction of the trained neural models in the above section.

The hallmark of Figure 2a is that it defines an alignment between premise and hypothesis at both
lexical and phrasal levels. This permits us to run interchange interventions in a naturally compositional
way. For a given non-leaf node N in Figure 2a, let CN

NatLog be a submodel of CNatLog that computes
the relation between the aligned phrases under N and uses them to compute the final output relation
between premise and hypothesis. For example, let CNPObj

NatLog be the submodel of CNatLog that computes
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[CLS] QP
Subj AdjPSubj NP

Subj
. . . AdjPObj NP

Obj
. . .

... ... ... ... ... ... ... ...

QP
Subj AdjPSubj NP

Subj NegP AdvP VP QP
Obj

QH
Subj AdjHSubj NH

Subj NegH AdvH VH QH
Obj

AdjPObj NP
Obj

AdjHObj NH
Obj

NPObj

Label

Figure 3: A BERT-based NLI model (left) aligned with the natural logic causal model CNPObj
NatLog (right),

where the fourth vector representation above the AdjPObj token in the network is aligned with NPObj,
the variable representing the relation between the object noun phrases. When analyzing a sample
of 1000 examples, we found a subset of 383 where CNPObj

NatLog is an abstraction of NNLI under this
alignment.

the relation between the two aligned object noun phrases and then uses that relation in computing
the final output relation between premise and hypothesis (see Figure 3 right). We would like to ask
whether our trained neural models also compute this relation between object noun phrases and use it
to make a final prediction. We can pose this same question for other nodes which correspond to a pair
of aligned subphrases.

Alignment Search For each N , we search for an alignment between a neural representation in
NNLI and the variable N in CN

NatLog. In principle, any location in the network could be the right one
for any causal model. Testing every hypothesis in this space would be intractable. Thus, for each
CN

NatLog, we consider a restricted set of hidden representations based on the identity of N . The BERT
model we use has 12 Transformer layers [30], meaning that there are 12 hidden representations for
each input token. Each alignment search considers aligning the intermediate high-level variable with
dozens of possible locations in the grid of BERT representations. Specifically, the following locations
were considered for each N :

• QSubj, AdjSubj, NSubj, Neg, Adv, V, QObj,
AdjObj, NObj: hidden representations above
the two descendant leaf tokens.

• NPSubj,VP, and NPObj: same but above the
four descendant leaf tokens.

• QPObj: hidden representations above QPObj

and QHObj.

• NegP: same but above NegP and NegH .
• All nodes (for BERT): same but above

[CLS] and [SEP].

For each alignment considered, we performed a full causal abstraction analysis. We report the results
from the best alignments in Table 1, and we summarize the results from all alignments in Appendix D.

Interchange Interventions We first focus on our high-level causal models. Consider a non-leaf
node N from Figure 2a and two input token sequences e and e′ from MQNLI. Define

CN←e′
NatLog (e) (4)

to be the output provided by the causal model CN
NatLog when processing input e where the relation

between the aligned subphrases under the node N is changed to the relation between those subphrases
in e′. For example, simplifying for the sake of exposition, suppose e is (some happy baker, no ε
baker), which has output label contradiction, and suppose e′ is (every happy person, some happy
baker), which has output label entailment. We wish to intervene on the noun phrase, so N = NP. In
e, the noun phrase relation is entailment; in e′, it is reverse entailment. Thus, CNP←e′

NatLog (e) changes the
object noun phrase relation in e to entailment while holding everything else about e constant. This
results in the output label for the example (some happy person, no ε baker), which is neutral.

Next, we consider interventions in a neural model NNLI. Define

NL←e′
NLI (e) (5)
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Table 1: Largest subsets of examples on which specific models CNNatLog are abstractions of an LSTM
and BERT model trained on MQNLI. We record the size of such subsets as a percentage of the total
1000 examples. On this subset, we know that the neural models compute a representation of the
relation between the aligned subphrases under N and use this information to make a final prediction.

Causal Model LSTM BERT

QSubj 0.7 13.1
QObj 0.9 7.3
Neg 0.7 21.4
AdjSubj 2.5 6.7
NSubj 1.2 5.5
AdjObj 0.9 14.1
NObj 0.7 8.8
V 0.4 11.4
Adv 1.4 7.9
NPSubj 1.0 6.7
NPObj 0.7 38.3
VP 0.4 11.4
NegP 0.9 11.8

(a) Main results (clique sizes) for non-
leaf nodes of the tree in Figure 2a. The
hypothesis we have most evidence for
is that the BERT model computes a rep-
resentation of the NPObj node with the
alignment shown in Figure 3. Remark-
ably, with 1000 examples sampled, we
found a subset of 383 examples where
C

NPObj
NatLog is an abstraction of BERT.

Nodes removed BERT

NH
Obj 31.9

AH
Obj 15.7

NP
Obj 33.8

AP
Obj 15.8

NH
Obj,AH

Obj 31.9
NH

Obj,NP
Obj 14.1

NH
Obj,AP

Obj 32.2
NP

Obj,AH
Obj 31.6

AH
Obj,AP

Obj 8.8
NP

Obj,AP
Obj 32.1

Nodes added BERT

AdjPSubj 30.5
NP

Subj 37.2
NegP 14.9
AdvP 26.9
VP 35.6
QH

Obj 16.2
AdjHSubj 13.4
NH

Subj 12.0
NegH 34.4
AdvH 16.2
VH 13.4
QH

Obj 12.0

(b) Detailed results (clique sizes) for Alternative causal models
in a “neighborhood” around the model C

NPObj
NatLog, which has a

single intermediate variable composed of four lexical items (See
Figure 3). At left, we have alternative causal models where one
or two of those lexical items are removed from the composition.
At right, we have alternatives obtained by adding one lexical item
to the composition. We observe that no alternative hypothesis
about causal structure considered has more evidence.

to be the output provided by NNLI processing the input e when the representation at location L is
replaced with the representation at location L created when NNLI is processing e′. This is exactly the
process depicted in Figure 1, except now the networks are the complex trained networks of Section 4.

Our hypothesis linking Figure 2a with a model NNLI takes the same form as (3). The causal model
CN

NatLog is a constructive abstraction of NNLI when, for some representation location L, it is the case
that, for all MQNLI examples e and e′, we have

CN←e′
NatLog (e) = NL←e′

NLI (e) (6)

This asserts a correspondence between interventions on the representations at L in network NNLI
and interventions on the variable N in the causal model CN

NatLog. If it holds, then NNLI computes the
relation between the aligned phrases under the node N and uses this information to compute the
relation between the premise and hypothesis.

We call a pair of examples (e, e′) successful if it satisfies equation (6), i.e., interventions in both the
target causal model and neural model produce equal results. In addition, to isolate the causal impact
of our interventions, we specifically focus on pairs (e, e′) for which performing the intervention
produces a different output value than without the intervention. We call a pair (e, e′) impactful if:

CN←e′
NatLog (e) 6= CN

NatLog(e) (7)

Quantifying Partial Success Equation (6) universally quantifies over all examples. We do not
expect this kind of perfect correspondence to emerge in practice for real problems: neural network
training is often approximate and variable in nature, and even our best model does not achieve perfect
performance. However, we can still ask how widely (6) holds for a given model. To do this, we seek
to find the largest subset of MQNLI on which CN

NatLog is an abstraction of our neural models, for each
non-leaf node N in CNatLog.
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More specifically, considering each example in MQNLI as a vertex in a graph, we add an undirected
edge between two examples ei and ej if and only if both the ordered pairs (ei, ej) and (ej , ei) satisfy
(6). In other words, CN

NatLog is an abstraction of a neural model on a subset of examples S of MQNLI
if and only if all examples in S form a clique.

The number of interventions we need to run scales quadratically with the number of inputs we
consider, so we sample 1000 MQNLI examples, producing a total of 10002 = 1M ordered pairs. We
only consider examples for which the neural network outputs a correct label. For each node N and
each of its corresponding neural network locations L, we perform interventions on all of these pairs.

We choose to measure the largest clique with at least one impactful edge, because (1) the causal
abstraction relation holds with full force on that clique, but other measures such as the total number
of connections lack this theoretical grounding, and (2) if a clique has at least one impactful edge, that
guarantees the high-level variable is being used.

Results and Analysis For each target causal model node N and neural network representation
location L, we construct a graph as described above with 1000 examples as vertices and add an edge
between two examples ei and ej if and only if both (ei, ej) and (ej , ei) are successful. We then find
the largest clique in this graph with at least one impactful edge and record its size.

Table 1a shows, for each causal model node N , the maximum size of cliques found among all neural
locations. With this stricter impactful criterion (as opposed to simply using intervention success),
our results show that, for almost all nodes N , our target causal model CN

NatLog is indeed a causal
abstraction of BERT on a significant number of examples in our dataset. These subsets are much
smaller for the BiLSTM model.

We also investigated alternative high-level causal structures that are not variants of CNatLog from
Figure 2a. Specifically, we consider alternative models in a “neighborhood” around the model CNPObj

NatLog
that can be obtained by adding one leaf, or by removing one or two leaves to the composition. These
results are in Table 1b. Remarkably, all of these alternative models result in smaller clique sizes,
significantly so for many of them. This further supports the significance of our results.

This analysis is similar to the analysis of our hypothetical addition example in Section 3, except for
two crucial differences. First, for each variable N , we are hypothesizing that the causal model CN

NatLog
is an abstraction of NNLI, whereas in the addition example there was only one model. To investigate
this difference, we take N = NPObj as a paradigm case, as it is the model with the strongest results.
(The results for other nodes are in Appendix D.) Second, we only achieved partial experimental
success, whereas in the addition example we assumed complete success. Crucially, this means that the
following analysis will be valid only on subsets of the input space on which the abstraction relation
holds between NNLI and CNPObj

NatLog.

We visualize the results of our intervention experiments for the node NPObj in Figure 4. The alignment
with the largest subset of inputs aligns the NPObj variable in CNPObj

NatLog with the neural representation
on the fourth layer of BERT above the AdjPObj token (see Figure 3). Because neural representations
encode the value of their aligned variables and play a parallel causal role to their high-level variables,
we know that, on this subset of input examples, at the fourth neural representation above the AdjPObj
token, the four input embeddings for the object nouns and adjectives in the premise and hypothesis are
composed to form a neural representation with information content of the relation between the object
noun phrases in the premise and hypothesis. Then this representation is composed with the other
input-embeddings to create an output representing the relation between the premise and hypothesis.

5.2 Comparison with Other Structural Analysis Methods

Probes We probed neural representation locations for the relation between aligned subexpressions
on a subset of 12,800 randomly selected MQNLI examples. For a pair of aligned subexpressions
below a node N in Figure 2a, we probe the columns above the same set of restricted class of tokens
as described in Section 5.1.

To evaluate these probes, we report accuracy as well as selectivity as defined by Hewitt and Liang
[12]: probe accuracy minus control accuracy, where control accuracy is the train set accuracy of a
probe with the same architecture but trained on a control task to factor out probe success that can be
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(a) Clique size. (b) Interchange success. (c) Probe selectivity. (d) Probe Accuracy.

Figure 4: Interchange intervention and probing results for the NPObj position. Vertical axes denote
layers of BERT and horizontal axes denote the token position of hidden representations. The
intervention success rates reported here are calculated based on intervention experiments with a
change in the output label. Clique sizes are reported as % of 1000 examples.

attributed to the probe model itself. Our control task is to learn a random mapping from node types to
semantic relations; see Appendix C for full details on how this task was constructed.

Figure 4 summarizes our probing results for N = NPObj, along with corresponding interchange
intervention results for comparison. Probes tell us that information about the relation between the
aligned noun phrases is encoded in nearly all of the locations we considered, and using the selectivity
metric does not result in any qualitative change. In contrast, our intervention heatmaps indicate only a
small number of locations store this information in a causally relevant way. Clearly, our intervention
experiments are far more discriminating than probes. Appendix D provides examples involving
other variables along with the intervention experiments, where the general trend of interchange
interventions being more discriminating holds.

Integrated Gradients Attribution methods that estimate feature importance can measure causal
properties of neural representations, but a single feature importance method is an impoverished
characterization of a representation’s role in network behavior. Whereas our interchange interventions
gave us high-level information about how a neural representation is composed and what it is composed
into, attribution methods simply tell us “how much” a representation contributes to the network output
on a give input. Moreover, intervention interchanges provide a rich, high-level characterization of
causal structure on a space of inputs.

We use integrated gradients on our models to verify the intuitive hypothesis that if a premise and
hypothesis differ by a single token, then the neural representations above that token should be more
causally responsible for the network output than other representations. For example, given premise
‘Every sleepy cat meows’ and hypothesis ‘Some hungry cat meows’, the attributive modifier position
is different and the rest are matched. The neural representations above the adjective tokens sleepy and
hungry should be more important for the network output than others, because if those adjectives were
the same, the example label would change from neutral to entailment. We summarize the results of
our integrated gradient experiments in Appendix E, where we confirm our intuitive hypothesis.

6 Conclusion

We have introduced a methodology for deriving interpretable causal explanations of neural network
behaviors, grounded in a formal theory of causal abstraction. The methodology involves first
formulating a hypothesis in the form of a high-level, interpretable causal model, then searching for
an alignment between the neural network and the causal model, and finally verifying experimentally
that the neural representations encode the same causal properties and information content as the
corresponding components of the high-level causal model. As a case study demonstrating the
feasibility of the approach, we analyzed neural models trained on the semantically formidable
MQNLI dataset. Guided by the intuition that success on this challenging task may call for a way
of recapitulating the causal structure of the natural logic model that generates the MQNLI data, we
were able to verify the hypothesis that a state-of-the-art BERT-based model partially realizes this
structure, whereas baseline models that do not perform as well fail to do so. This suggestive case
study demonstrates that our theoretically grounded methodology can work in practice.
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