
Under review as a conference paper at ICLR 2022

HARDWARE-AWARE NETWORK TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we tackle the problem of network acceleration by proposing hardware-
aware network transformation (HANT), an approach that builds on neural archi-
tecture search techniques and teacher-student distillation. HANT consists of two
phases: in the first phase, it trains many alternative operations for every layer of the
teacher network using layer-wise feature map distillation. In the second phase, it
solves the combinatorial selection of efficient operations using a novel constrained
integer linear optimization approach. In extensive experiments, we show that
HANT can successfully accelerate three different families of network architectures
(EfficientNetsV1, EfficientNetsV2 and ResNests), over two different target hard-
ware platforms with minimal loss of accuracy. For example, HANT accelerates
EfficientNetsV1-B6 by 3.6× with <0.4% drop in top-1 accuracy on ImageNet.
When comparing the same latency level, HANT can accelerate EfficientNetV1-B4
to the same latency as EfficientNetV1-B1 while achieving 3% higher accuracy.
We also show that applying HANT to EfficientNetV1 results in the automated
discovery of the same (qualitative) architecture modifications later incorporated
in EfficientNetV2. Finally, HANT’s efficient search allows us to examine a large
pool of 197 operations per layer, resulting in new insights into the accuracy-latency
tradeoffs for different operations.

1 INTRODUCTION

In many applications, we may have access to a neural network that satisfies desired performance needs
in terms of accuracy but is computationally too expensive to deploy. The goal of hardware-aware
network acceleration (Rastegari et al., 2016; Zhang et al., 2017; Sze et al., 2017; He et al., 2018b; Cai
et al., 2020) is to accelerate a given neural network such that it meets efficiency criteria on a device
without sacrificing accuracy. Network acceleration plays a key role in reducing the operational cost,
power usage, and environmental impact of deploying deep neural networks in real-world applications.

The current network acceleration techniques can be grouped into: (i) pruning that removes inac-
tive neurons (Blalock et al., 2020), (ii) compile-time optimization (Ryoo et al., 2008) or kernel
fusion (Wang et al., 2010; Ding et al., 2021) that combines multiple operations into an equivalent
operation, (iii) quantization that reduces the precision in which the network operates at (Wang et al.,
2019; Rastegari et al., 2016), and (iv) knowledge distillation that distills knowledge from a larger
teacher network into a smaller student network (Hinton et al., 2015; Sau & Balasubramanian, 2016;
Xu et al., 2018). The approaches within (i) to (iii) are restricted to the underlying network operations
and they do not change the architecture. Knowledge distillation changes the network architecture
from teacher to student, however, the student architecture search requires domain knowledge and
multiple iterations due to its manual design.

In this paper, we propose hardware-aware network transformation (HANT), a network acceleration
framework that automatically replaces inefficient operations in a given network with more efficient
counterparts. Given a convolutional teacher network, we formulate the problem as searching in a
large pool of candidate operations to find efficient operations for different layers of the teacher. The
search problem is combinatorial in nature with a space that grows exponentially with the depth of
the network. To solve this problem, we can turn to neural architecture search (NAS) (Zoph & Le,
2016; Tan et al., 2018; Vahdat et al., 2020), which has been proven successful in discovering novel
architectures. However, existing NAS solutions are computationally expensive, and usually handle
only a small number of candidate operations (ranging from 5 to 15) in each layer and they often
struggle with larger candidate pools.

1

Under review as a conference paper at ICLR 2022

Method Knowledge Distillation Diverse Design Space Size Pretrain Search Train Total
Operators Cost Cost Cost Cost

Layer Block Network None To Train L Architectures
Once-For-All Cai et al. (2020) X > O

(
1019

)
1205e 40h 75eL 1205e + 75eL

AKD Liu et al. (2020) X X > O
(
1013

)
0 50000eL 400eL 50400eL

DNA Li et al. (2020) X > O
(
1015

)
320e 14h 450eL 320e + 450eL

DONNA Moons et al. (2020) X X > O
(
1013

)
1920e1 1500e + <1hL 50eL 3420e + 50eL

This Work X X > O
(
10100

)
197e <1hL 100eL 197e + 100eL

Table 1: Related method comparison. Time is mentioned in GPU hours by h, or ImageNet epochs by
e. Our method assumes 197 candidate operations. L is the number of target architectures

To tackle the search problem with a large number of candidate operations in an efficient and scalable
way, we propose a two-phase approach. In the first phase, we define a large candidate pool of
operations ranging from classic residual blocks (He et al., 2016a) to more recent transformer blocks,
such as those employed by Dosovitskiy et al. (2020), with varying hyperparameters. Candidate
operations are pretrained to mimic the teacher’s operations via a simple layer-wise optimization.
Distillation-based pretraining enables a very quick preparation of all candidate operations, offering a
much more competitive starting point for subsequent searching.

In the second phase, we search among the pre-trained operations as well as teacher’s own operations to
construct an efficient network. Since our operation selection problem can be considered as searching
in the proximity of the teacher network in the architecture space, we assume that the accuracy of a
candidate architecture in the search space can be approximated by teacher’s accuracy and a simple
linear function of changes in the accuracy obtained from individual operations. Thus, we propose to
relax the search problem into a constrained integer linear optimization problem that is solved in a few
seconds. As we show extensively in our experiments, such relaxation can drastically cut down on our
computational cost of search and it can be easily applied to huge pool of operations (197 operations
per layer), while offering improvements in model acceleration by a large margin.

In summary, we make the following contributions: (i) We propose a simple two-phase approach for
accelerating a teacher network using NAS-like search. (ii) We propose an effective search algorithm
using constrained integer optimization that can find an architecture in seconds tailored to our setting
where a fitness measure is available for each operation. (iii) We examine a large pool of operations
including the recent state-of-the-art vision transformers and new variants of convolutional networks.
We provide insights into the operations selected by our framework and into final model architectures.

1.1 RELATED WORK

Methods to reduce the computational cost of neural networks can be grouped into two categories:
those that modify the underlying architecture and those that focus on the efficiency of the operations
within a given architecture (e.g. by means of inducing sparsity or reducing precision). Given that
the aim of this work is on discovering new efficient architectures, in the following we focus our
attention on the former. We note, however, that the two directions are highly complementary and can
be applied jointly, as show in our experiments with TensorRT in Section 3.

When looking to automatically identifying architectures to maximize both accuracy and computational
efficiency, there are two main lines of work. One is to design such architectures from scratch while
targeting a specific hardware platform. This has been the focus of an increasingly large body of
work on multiobjective neural architecture search (Cai et al., 2019; Tan et al., 2019a; Wu et al., 2019;
Yang et al., 2018a; Veniat & Denoyer, 2017; Yang et al., 2018b; Wu et al., 2018; Vahdat et al., 2020).
The goal here is to solve an optimization problem maximizing accuracy while meeting performance
constraints specified in terms of latency, memory consumption or number of parameters. Given
that the optimization problem is set up from scratch for each hardware platform one wants to target,
these approaches generally require the search to start from scratch for every new deployment target
(e.g. GPU/CPU family) or objective, incurring a search cost that increases linearly as the number of
constraints and targets increases. Cai et al. (2020) circumvent this issue by building a supernetwork
containing every possible architecture in the search space, training it, and then applying a progressive
shrinking algorithm to produce multiple high-performing architectures. This approach incurs a high
pretraining cost, but once training is complete, new architectures are relatively inexpensive to find.
On the other hand, the high computational complexity of pretraining limits the number of operations

1potentially can be improved by parallelization

2

Under review as a conference paper at ICLR 2022

that can be considered at once. Adding new operations is also costly, since the supernetwork must
be pretrained from scratch every time a new operation is added. And because of the progressive
shrinking search algorithm, only a restricted set of operations are supported by this approach.

The other line of work, more in line with our objective here, focuses on modifying existing ar-
chitectures. Approaches in this area build on teacher-student knowledge distillation, performing
multiobjective NAS on the student to best approximate the teacher network. This approximation
can happen at different levels and can consist of approximating the whole network at once, or
approximating blocks of layers.

Liu et al. (2020) apply knowledge distillation at the network level, training a reinforcement learning
agent to construct an efficient student network given a teacher network and a constraint and then
training that student from scratch using knowledge distillation. Li et al. (2020) and Moons et al.
(2020) take a more fine-grained approach, dividing the network into a small number of blocks, each
of which contain several layers. During knowledge distillation, they both attempt to have student
blocks mimic the output of teacher blocks, but Li et al. (2020) sample random paths through a mix of
operators in each block, whereas Moons et al. (2020) train several candidate blocks with a repeated
single operation for each teacher block. They then both search for an optimal set of blocks, with Li
et al. (2020) using a novel ranking algorithm to predict the best set of operations within each block,
and then applying a traversal search, while Moons et al. (2020) train a linear model that predicts
accuracy of a set of blocks and use that to guide an evolutionary search. While both methods deliver
impressive results, they differ from our approach in important ways. Li et al. (2020) rank each path
within a block, and then use this ranking to search over the blocks, relying on the low number of
blocks to accelerate search. Moons et al. (2020) sample and finetune 30 models to build a linear
accuracy predictor, which incurs a significant startup cost for search.

In this work, we further increase the granularity of the knowledge distillation procedure, focusing on
distilling each layer individually. This not only results in much greater expressivity of the search
space, but it also naturally lets us search over network depth simply by including an identity operation
to the search space, greatly reducing pretraining cost. On the other hand, this increase in expressivity
also comes at the cost of a much larger search space, necessitating the development of a highly
efficient search method based on integer linear optimization (presented in Section 2).

2 METHOD

Our goal in this paper is to accelerate a given pre-trained teacher network by replacing its inefficient
operations with more efficient alternatives. Our method, visualized in Fig. 1, is composed of two
phases: (i) Candidate pretraining phase (Sec. 2.1) in which we use distillation to train a large set of
operations to approximate different layers in the original teacher architecture; (ii) Operation selection
phase (Sec. 2.2) in which we search for an architecture composed of a combination of the original
teacher layers and pretrained efficient operations via linear optimization.

2.1 CANDIDATE PRETRAINING PHASE

Notation: We represent the teacher network as the composition of N teacher operations by T (x) =
tN ◦tN−1◦. . .◦t1 (x) where x is the input tensor, ti is the ith operation (i.e., layer) in the network. We
then define the set of candidate student operations

⋃N
i=1 {sij}

M
j=1, which will be used to approximate

the teacher operations. Here, M denotes the number of candidate operations per layer. The student
operations can draw from a wide variety of operations – the only requirement is that all candidate
operations for a given layer must have the same input and output tensor dimensions as the teacher
operation ti. We denote all the parameters (e.g., trainable convolutional filters) in operations as
W = {wij}N,M

i,j , where wij denotes the parameters of the student operation sij . We use a set of
binary vectors Z = {zi}Ni=1, where zi = {0, 1}M is a one-hot vector to represent operation selection
parameters. We denote the candidate network architecture specified by Z using S(x;Z,W).

The problem of optimal selection of operations is often tackled in NAS. This problem is usually
formulated as a bi-level optimization that selects operations and optimizes their weights jointly (Liu
et al., 2018; Zoph & Le, 2016). Finding the optimal architecture in hardware-aware NAS reduces to:

3

Under review as a conference paper at ICLR 2022

MSE Loss MSE Loss MSE Loss

MSE Loss MSE Loss MSE Loss

 D
istillation

 D
istillation

MSE Loss MSE Loss MSE Loss

 D
istillation

Input

Output

(a) Candidate pretraining phase: We minimize the
MSE loss between the output of the teacher operation
ti and the output of each student operation on each
layer si,j , where the input to each operation is the
teacher output from the previous layer.

Selection 2

Selection 0

Acc: 0.0%
Lat:0.0%

Acc:
Lat

Acc:
Lat

Acc: 0.0%
Lat:0.0%

Acc:
Lat

Acc:
Lat

Acc: 0.0%
Lat:0.0%

Acc:
Lat

Acc:
Lat

Selection 1

Acc:
Lat

Acc:
Lat

Acc:
Lat

Pretrained Operations

In
pu

t

O
ut

pu
t

(b) Operation Selection Phase: We estimate and
record in a lookup table the reduction of network ac-
curacy and latency from replacing a teacher operation
with one of the student operations. We then apply inte-
ger programming to minimize the accuracy reduction
while attaining a target latency reduction.

Figure 1: HANT consists of two phases: a candidate pretraining phase (a) and an architecture search phase (b).

min
Z

min
W

∑
(x,y)∈Xtr

L
(
S(x;Z,W), y

)
objective

, s.t.
N∑
i=1

bT
i zi ≤ B

budget constraint

; 1T zi = 1 ∀ i ∈ [1..N]
one op per layer (1)

where bi ∈ RM
+ is a vector of corresponding cost of each student operation (latency, number of

parameters, FLOPs, etc.) in layer i. The total budget constraint is defined via scalar B. The objective
is to minimize the loss function L that estimates the error with respect to the correct output y while
meeting a budget constraint. In general, the optimization problem in Eq. 1 is an NP-hard combinatorial
problem with an exponentially large state space (i.e., MN). The existing NAS approaches often solve
this optimization using evolutionary search (Real et al., 2017), reinforcement learning (Zoph & Le,
2016) or differentiable search (Liu et al., 2018).

However, the goal of NAS is to find an architecture in the whole search space from scratch, whereas
our goal is to improve efficiency of a given teacher network by replacing operations. Thus, our search
can be considered as searching in the architecture space in the proximity of the teacher network.
That is why we assume that the functionality of each candidate operation is also similar to teacher’s
operation, and we train each candidate operation to mimic the teacher operation using layer-wise
feature map distillation with the mean squared error (MSE) loss:

min
W

∑
x∈Xtr

N,M∑
i,j

‖ti(xi−1)− sij(xi−1;wij)‖22 , (2)

where Xtr is a set of training samples, and xi−1 = ti−1 ◦ ti−2 ◦ . . . ◦ t1 (x) is the output of the
previous layer of the teacher, fed to both the teacher and student operations.

Our layer-wise pretraining has several advantages. First, the minimization in Eq. 2 can be decomposed
into N ×M independent minimization problems as wi,j is specific to one minimization problem
per operation and layer. This allows us to train all candidate operations simultaneously in parallel.
Second, since each candidate operation is tasked with an easy problem of approximating one layer in
the teacher network, we can train the student operation quickly in one epoch. In this paper, instead of
solving all N ×M problems in separate processes, we train a single operation on each layer on the

4

Under review as a conference paper at ICLR 2022

same forward pass of the teacher to maximize reusing the output features produced in all the teacher
layers. This way the pretraining phase roughly takes O(M) epochs of training a full network.

2.2 OPERATION SELECTION PHASE

Since our goal in search is to discover an efficient network in the proximity of the teacher network,
we propose a simple linear relaxation of candidate architecture loss using

∑
Xtr
L
(
S(x;Z), y

)
≈∑

Xtr
L
(
T (x), y

)
+
∑N

i=1 a
T
i zi, where the first term denotes the training loss of teacher which

is constant and ai is a vector of change values in the training loss per operation for layer i. Our
approximation bears similarity to the first-degree Taylor expansion of the student loss with the teacher
as the reference point (since the teacher architecture is a member of the search space). To compute
{ai}Ni , after pretraining operations in the first stage, we plug each candidate operation one-by-one
in the teacher network and we measure the change on training loss on a small labeled set. Our
approximation relaxes the non-linear loss to a linear function. Although this is a weak approximation
that ignores how different layers influence the final loss together, we empirically observe that it
performs well in practice as a proxy for searching the student.

Approximating the architecture loss with a linear function allows us to formulate the search problem
as solving an integer linear program (ILP). This has several main advantages: (i) We can easily
formulate the search problem such that instead of one architecture, we obtain a set of diverse candidate
architectures. (ii) Although solving integer linear programs is generally NP-hard, there exist many
off-the-shelf libraries that can obtain a high-quality solutions in a few seconds. (iii) Since integer
linear optimization libraries easily scale up to millions of variables, our search also scales up easily
to very large number of candidate operations per layer.

Formally, we denote the kth solution with
{
Z(k)

}K
k=1

, which is obtained by solving:

min
Z(k)

N∑
i=1

aT
i z

(k)
i

objective

, s.t.
N∑
i=1

bT
i z

(k)
i ≤ B

budget constraint

; 1T z
(k)
i = 1 ∀ i

one op per layer
;

N∑
i=1

z
(k)
i

T
z
(b)
i

overlap constraint

≤ O, b ∈ [1..k − 1] (3)

where we minimize the change in the loss while satisfying the budget and overlap constraint. The
scalar O sets the maximum overlap with any previous solution which is set to 0.7N in our case. We
obtain K diverse solutions by solving the minimization above K times.

Solving the problem. We use the off-the-shelf PuLP Python package to find feasible candidate
solutions. The cost of finding the first solution is very small, typically less than 1 CPU-second. As K
increases, so does the difficulty of finding a feasible solution, so we typically limit K to be about 100.

Candidate architecture evaluation. Solving Eq. 3 provides us with K architectures. The linear
proxy used for candidates loss is calculated in an isolated setting for each operation. To reduce the
approximation error, we evaluate all K architectures with pretrained weights from phase one on a
small part of the training set (6k images on ImageNet) and select the architecture with the lowest loss.

Candidate architecture fine-tuning. After selecting the best architecture among the K candidate
architectures, we fine-tune it for 100 epochs using the original objective used for training the teacher.
Additionally, we add the distillation loss from teacher to student during fine-tuning.

3 EXPERIMENTS

In this section, we apply HANT to the family of EfficientNetV1 (Tan & Le, 2019a), Efficient-
NetV2 (Tan & Le, 2021) and ResNeST50 (fastest variant 1s4x24d) (Zhang et al., 2020) models.
When naming our models, we use the latency reduction ratio compared to the original model accord-
ing to the latency look-up table (LUT). For example, 0.25×B6 indicates 4× target speedup for the
B6 model. However, we use the LUT-based latency only as the naming convention of our models but
we use the actual latency on the target platform (averaged over 10 runs) when reporting the latency
measurements. Note that our LUT-based latency estimation has ∼0.99 correlation with the actual
on-device latency. However, they often differ by a constant value due to the fixed latency of the input
and output layers that are discarded in LUT-based latency estimation. For experiments, ImageNet-1K
(Russakovsky et al., 2015) is used for pretraining (1 epoch), candidate evaluation (6k training images)
and finetuning (100 epochs).

5

Under review as a conference paper at ICLR 2022

GPU optimized models:

Model Res Accuracy Latency(ms)
px (%) TensorRT PyTorch

EfficientNetV1

EfficientNetV1-B0 224 77.70 17.9 35.6
0.45xB2 260 79.71 (+2.01) 16.2 30.2

EfficientNetV1-B1 240 78.83 29.3 59.0
0.55xB2 260 80.11 (+1.28) 20.6 48.7
0.2xB4 380 80.33 (+1.50) 33.0 52.2
0.25xB4 380 81.83 (+3.00) 30.4 64.5

EfficientNetV1-B2 260 80.39 38.2 77.1
0.3xB4 380 82.16 (+1.77) 38.8 81.8

EfficientNetV1-B3 300 81.67 67.2 125.9
0.5xB4 380 82.66 (+0.99) 61.4 148.1

EfficientNetV1-B4 380 83.02 132.0 262.4
0.25xB6 528 83.77 (+0.75) 128.8 282.1

EfficientNetV1-B5 456 83.81 265.7 525.6
0.5xB6 528 83.99 (+0.18) 266.5 561.2

EfficientNetV1-B6 528 84.11 466.7 895.2

EfficientNetV2

EfficientNetV2-B1 240 79.46 17.9 44.7
0.45xB3 300 80.30 (+0.84) 17.8 43.0

EfficientNetV2-B2 260 80.21 24.3 58.9
0.6xB3 300 81.14 (+0.93) 23.8 56.1

EfficientNetV2-B3 300 81.97 41.2 91.6

ResNeST50d_1s4x24d

ResNeST50 224 80.99 32.3 74.0
0.7x 224 80.85 22.3(1.45x) 52.7

EfficientNets acceleration with HANT:

2000 4000 6000 8000 10000
Throughput, img/sec

78

79

80

81

82

To
p-

1,
 %

B0

B1

B2

B3

B0

B1

B2

B3

0.45xB2

0.55xB2

0.25xB4

0.3xB4

0.4

0.5

0.6
0.65

0.75

NVIDIA V100, TensoRT(fp16)

EfficientNet-V1
EfficientNet-V2
HANT-V1
HANT-V2

CPU optimized models:

Model Res. Accuracy Latency
(px) (%) Pytorch (ms)

EfficientNetB0 224 77.70 57
0.4xB2 (Xeon) 260 78.11 (+0.97) 48
0.5xB2 (Xeon) 260 78.87 (+1.17) 58

EfficientNetB1 240 78.83 86
0.7xB2 (Xeon) 260 79.89 (+1.06) 80

EfficientNetB2 260 80.39 113

Table 2: Models optimized with HANT, evaluated on ImageNet-1K. Latency is computed for a batch
of 128 images over 10 runs on actual hardware. Left: 3 families of models optimized for GPU. Right
top: detailed look at EfficientNets. Right bottom: EfficientNetV1 optimized for CPU inference.

We use the NVIDIA V100 GPU and Intel Xeon Silver 4114 CPU as our target hardware. A
hardware specific look-up table is precomputed for each candidate operation which is used as the bi

vectors in Eq. 3. The candidate operation pool is prefiltered by removing operations that are slower
than the teacher or have an accuracy drop of more than 5%. We explore kernel fusion and lower
precision (e.g., 16-bit floating point) as for additional model optimization. Kernel fusion eliminates
dead computations, folds constants and operations into single kernels (e.g., convolution, activation
function, normalization). We use the state-of-the-art TensorRT (NVIDIA, 2021) framework and
report corresponding numbers with a label "TensorRT" or "TRT". Additionally, we measure latency
in PyTorch to remove the kernel fusion contribution. Note that the exact same setup is used for
evaluating latency of all competing models, our models, and baselines.

Candidate operations. We construct a large of pool of diverse candidate operation including
M = 197 operations for each layer of the teacher network. Our operations include:

Teacher operation is used as is in the pretrained model with teacher model accuracy.
Identity is used to skip teacher’s operation. It changes the depth of the network without explicitly
searching for it in contrast to Cai et al. (2020) and Moons et al. (2020).
Inverted residual blocks efn (Sandler et al., 2018) and efnv2 (Tan & Le, 2021) are studied with
varying expansion factor e = {1, 3, 6}, squeeze and excitation factor se = {1.0(No), 0.04, 0.025},
and kernel size k = {1, 3, 5}.
Dense convolution blocks inspired by He et al. (2016b) with (i) two stacked convolution
(cb_stack) with CBRCB structure, C-conv, B-batchnorm, R-Relu; (ii) bottleneck architecture
(cb_bottle) with CBR-CBR-CB; (ii) CB pair (cb_res); (iii) RepVGG block Ding et al., 2021;
(iv) CBR pairs with perturbations as conv_cs. For all models we vary kernel size k = {1, 3, 5, 7}
and width w = {1/16, 1/10, 1/8, 1/5, 1/4, 1/2, 1, 2, 3, 4}.
Transformer variations (i) visual transformer block (vit) (Dosovitskiy et al., 2020) with depth
d = {1, 2}, dimension w = {25, 26, 27, 28, 29, 210} and heads h = {4, 8, 16}; (ii) bottleneck
transformers (Srinivas et al., 2021) with 4 heads and expansion factor e = {1/4, 1/2, 1, 2, 3, 4};
(iii) lambda bottleneck layers (Bello, 2021) with expansion e = {1/4, 1/2, 1, 2, 3, 4}.

With the pool of 197 operations, distilling from an EfficientNet-B6 model with 46 layers yields a
design space of the size 19746≈10100, exponentially larger than the search space in prior works.

6

Under review as a conference paper at ICLR 2022

65 70 75 80 85 90 95
ILP objective

0

10

20

30

40

50

60

70

80

Tr
ai

n
to

p-
1

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

co
m

pr
es

sio
n

fa
ct

or

(a) Optimization objective

0.65 0.750.6 0.7 0.80.5 0.55
Latency reduction

0

10

20

30

40

50

60

70

80

Tr
ai

n
to

p-
1

ILP (the first solution)
ILP (best in K=100 solutions)
Random sampling

(b) ILP vs random

20 30 40 50 60
Train top-1

76

77

78

79

80

81

82

Va
lid

at
io

n
to

p-
1

Correlation:
Spearman: 0.85
Kendall Tau: 0.66

(c) Candidate evaluation
Figure 2: Analyzing ILP performance on EfficientNetV2-B3. ILP results in significantly higher model
accuracy before finetuning than 1k randomly sampled architectures in (b). Accuracy monotonically
increases with ILP objective (a). Model accuracy before finetuning correctly ranks models after
finetuning (c). Train top-1 is measured before finetuning, while Validation top-1 is after.

3.1 EFFICIENTNET AND RESNEST DERIVATIVES

Our experimental results on accelerating the EfficientNetV1(B2, B4, B6), EfficientNetV2(B3), and
ResNeST50 family for GPUs and CPU are shown in Table 2 for ImageNet-1K. Comparison with
more models from timm is in the Appendix (Figure 8). We make the following observations:

Throughput is significantly improved with HANT making EfficientNets up to 2× faster
(EfficientNetV1-B3 vs. 0.25×B4). EfficientNetV1s are accelerated beyond original EfficientNetV2.
ResNeST50 is accelerated by 1.5× with only 0.14% drop in accuracy.

Accuracy is also significantly higher compared to the models with the same latency. Our 0.25×B4
obtains 3.0% higher top-1 accuracy compared to the original EfficientNetV1-B1 while maintaining a
similar latency. EfficientNetV2-B3 accelerated by 1.7× gains 0.93% with respect to EfficientNetV2-
B2. Trade-off between accuracy and latency is obtained by accelerating EfficientNet models by up to
3.6× while scarifying only 0.3% accuracy as for the 0.25×B6 variant.

As observed in Table 2, we apply HANT to a large spectrum of model sizes on two different target
hardware types. This is possible in HANT due to (i) independent and fully parallel layer-wise
distillation, (ii) separating search from pretraining stage, and hence alleviating the need to retrain
candidate operations before optimizing a network for a new hardware, and (iii) using a light-weight
linear optimization for architecture search that allows for efficient and effective searching in a large
architecture space.

3.2 ANALYSIS

We next provide detailed ablations to analyze and validate our design choices/assumptions in HANT
for both pretraining and search phases, joint with associated insights. Unless otherwise stated we
used EfficientNetV2-B3 as our target for the ablation.

Linear relaxation in architecture search assumes that a candidate architecture can be scored by a
fitness metric measured independently for all operations. Although this relaxation is not accurate, we
observe a strong correlation between our linear objective and the training loss of the architecture. This
assumption is verified by sampling 1000 architectures (different budget constraints) by minimizing
the ILP objective and observing the real loss function (accuracy for simplicity). Results are shown in
Fig. 2(a). We observe that ILP objective ranks models with respect to the measured accuracy correctly
under different latency budgets. The Kendall Tau correlation is 0.966.

To evaluate the quality of the solution provided with ILP, we compare it with random sampling. The
comparison is shown in Fig. 2(b), where we sample 1000 random architectures per 7 latency budgets.
The box plots indicate the poor performance of the randomly sampled architectures. The first ILP
solution has significantly higher accuracy than random architecture. Furthermore, finding multiple
diverse solutions is possible with ILP due to our overlap constraint. If we increase the number of
solutions found by ILP from K=1 to K=100, performance improves further.

7

Under review as a conference paper at ICLR 2022

Candidate architecture evaluation plays an important role in HANT. This step finds the best
architecture quickly out of multiple candidates, generated by the ILP solver, by evaluating them on
6k images from the train data. The procedure is built on the assumption that accuracy of the model
before finetuning (just by plugging all candidate operations) is a reasonable indicator of the relative
model performance after finetuning. As shown in Fig. 2(b), when plugging pretrained operations
into the teacher, the accuracy is high (it is above 30% even at an acceleration factor of 2×). For
EfficientNetV1, this is above 50% for the same compression factor.

Correlation Accuracy Cross-entropy KL divergence MSE

Kendal Tau 0.835 0.824 0.832 0.811
Spearman 0.945 0.947 0.954 0.944

Table 3: Candidate evaluation metrics for
model ranking before and after finetuning.

Verifying pre/post finetuning model ranking. We fine-
tuned 31 models sampled from the pertained operations
and measured their top1 accuracy. The linear objective
used in our ILP ranks those model architectures with the
correlation score of 0.66 for Kendall Tau index and 0.85
for Spearman. When we measure the training accuracy of
the candidate architecture before finetuning as the ranking indicator, the correlation is significantly
improved to 0.835 for Kendall Tau index and 0.945 for Spearman. Those observations are shown in
Fig. 2(c). In Table 3, we use different metrics to rank candidate architectures, and observe that most
correlates well with the final model accuracy after the finetuning.

Method Accuracy Search cost

ILP, K=100 (ours) 79.28 4.5 CPU/m
Random, found 80 arch 76.44 1.4 CPU/m
SNAS (Xie et al., 2019) 74.20 16.3 GPU/h
E-NAS (Pham et al., 2018) 78.85 61.6 GPU/h

Table 4: Comparing methods for candidate
selection (NAS). Our proposed ILP is better
(+0.43%) and 821× faster.

Comparing with other NAS approaches. We compare
our search algorithm with other popular approaches to
solve Eq. (1), including: (i) Random architecture sampling
within a latency constrain; (ii) Differentiable search with
Gumbel Softmax – a popular approach in NAS to relax
binary optimization as a continuous variable optimization
via learning the sampling distribution (Xie et al., 2019; Wu
et al., 2019; Vahdat et al., 2020). We follow SNAS (Xie
et al., 2019) in this experiment; (iii) REINFORCE is a
stochastic optimization framework borrowed from reinforcement learning and adopted for architecture
search (Pham et al., 2018; Zoph et al., 2018; Tan et al., 2019b). We follow an E-NAS-like (Pham et al.,
2018) architecture search for (iii) and use weight sharing for (ii) and (iii). Experiments are conducted
on EfficientNetV1-B2 accelerated to 0.45× original latency. The final validation top-1 accuracy after
finetuning are presented in Table 4. Our proposed ILP achieves higher accuracy (+0.43%) compared
to the second best method E-NAS while being 821× faster in search.

Setup Zero-shot Full

0.55xEfficientNetV1-B2 79.40 80.11
0.45xEfficientNetV1-B2 78.68 79.71

1.00xEfficientNetV1-B2 80.39

Table 5: Zero-shot HANT with
only skip connections.

Zero-shot HANT. Our method can be applied without pretraining
procedure if only teacher cells and Identity (skip) operation are used
(M = 2 operations per layer). Only the score vector for the Identity
operator will be required alongside the LUT for teacher and Identity
operations. We report zero-shot results in Table 5. We observe that
HANT efficiently finds residual blocks that can be skipped. This
unique property of HANT is enabled by search with ILP, and, to
the best of our knowledge, no other NAS-based accelerating techniques are capable of zero-shot
constrained NAS.

Pretraining insights. To gain more insights into the tradeoff between the accuracy and speed of each
operation, we analyze the the pretrained candidate operation pool tailored for EffientNetV1B2. A
detailed Figure 7 is shown in the Appendix A.2, which highlights trade-offs for three layers spaced
equally throughout the network. Here, we provide general observations as follows.

We observe that no operation outperforms the teacher in terms of accuracy; changing pretraining loss
from MSE to cross-entropy may change this but that comes with an increased costs of pretraining. We
also see that it is increasingly difficult to recover the teacher’s accuracy as the depth in the network
increases. The speedups achievable are roughly comparable across different depths, however we note
that achieving such speedups earlier in the network is particularly effective towards reducing total
latency due to the first third of the layers accounting for 54% of the total inference time.

Looking at individual operations, we observe that inverted residual blocks (efn, efnv2) are the
most accurate throughout the network, at the expense of increased computational cost (i.e., lower
speedups). Dense convolutions (cb_stack, cb_bottle, conv_cs, cb_res) exhibit a good com-
promise between accuracy and speed, with stacked convolutions being particularly effective earlier in

8

Under review as a conference paper at ICLR 2022

the network. The identity operation unsurprisingly achieves very high speedups at the expense of
increasingly poor accuracy compared to the teacher as a function of depth. Visual transformer blocks
(ViT) and bottleneck transformer blocks (bot_trans) show neither a speedup advantage nor are
able to recover the accuracy of the teacher.

3.2.1 ARCHITECTURE INSIGHTS

Figures 4-6 in the appendices visualize the final architectures discovered by HANT. Next, we share
the insights observed on these architectures.

EfficientNetV1. Observing final architectures obtained by HANT on EfficientNetV1 family, par-
ticularly 0.55×B2 version optimized for GPU, we discover that most of the modifications are done
to the first half of the model: (i) squeeze-and-excitation are removed, while later layers are still
equipped with them; (ii) dense convolutions (like inverted stacked or bottleneck residual blocks)
replace depth-wise separable counterparts; (iii) expansion factor is reduced from 6 to 3.5 on average.
Surprisingly, HANT automatically discovers the same design choices that are introduced in the
EfficeintNetV2 family when optimized for datacenter inference.

EfficientNetV2. HANT accelerates EfficientNetV2-B3 by 2×, leading to the following conclusions:
(i) the second conv-bn-act layer is not needed and can be removed; (ii) the second third of the model
benefits from reducing the expansion factor from 4 to 1 without squeeze-and-excitation operations.
With these simplifications, the accelerated model still outperforms EfficientNetV2-B2 and B1.

ResNeST50. HANT applied on ResNeST50d_1s4x24d discovers that cardinality can be reduced
from 4 to 1 or 2 for most blocks without any loss in accuracy, yielding a 1.45× speedup.

3.2.2 ABLATIONS ON FINETUNING

Preloaded Final
Setting weights accuracy (%)

0.45xEfficeintNetV1-B2 all 79.71
No Knowledge distil. all 79.06
0.45xB2 none 79.42
0.45xB2 teacher 79.69

B0 (default) all 77.70
B0 with KD loss all 78.72
B0 from scratch none 78.01

Table 6: Ablations on the finetuning

In Table 6, we look deeper into the finetuning step. For
this experiment, we select our 0.45×EfficientNetV1-B2 with
the final accuracy of 79.71%. Reinitializing all weights in
the model, in contrary to loading them from the pretraining
stage, results in 79.42%, while loading only teacher cells
results in 79.69%. The results indicate the importance of
pretraining stage (i) to find a good architecture and (ii) to
boost finetuning.

Knowledge distillation plays a key role in student-teacher
setups. When it is disabled, we observe an accuracy degradation of 0.65%. This emphasises the
benefit of training a larger model and then distilling towards a smaller one for inference.

We further verify whether we can achieve a similar high accuracy through knowledge distillation
from EfficeintNetV1-B2 to EfficeintNetV1-B0 in the same setting. The top-1 accuracy of 78.72% is
still 1% less than HANT’s accuracy. Compared with training 0.45xB2 from scratch (79.42%), B0
achieves 78.01% – a 1.4% drop in accuracy. We conclude that transforming the teacher into more
efficient architecture is significantly more beneficial than fine-tuning smaller models.

4 CONCLUSION

In this paper, we proposed HANT, a hardware-aware network transformation framework for acceler-
ating pretrained neural networks. HANT uses a NAS-like search to replace inefficient operations with
more efficient alternatives. It tackles this problem in two phases including a candidate pretraining
phase and a search phase. The availability of the teacher network allows us to estimate the change in
accuracy for each operation at each layer. Using this, we formulate the search problem as solving a
linear integer optimization problem, which outperforms the commonly used NAS algorithms while
being orders of magnitude faster. We applied our framework to accelerate EfficientNets (V1 and
V2) and ResNets with a pool of 197 operations per layer and we observed that HANT accelerates
these architectures by several folds with only a small drop in the accuracy. We analyzed the selected
operations and we provided new insights for future neural architecture designs.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We provide details on how to reimplement our work in the Appendix. We share hyper parameters for
pretraining, search and finetuning. We are in the midst of releasing the code with exact commands
to reproduce our results. Latency measurements were conducted 10 times and the mean value is
reported.

REFERENCES

Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint
arXiv:2102.08602, 2021.

Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon
Shlens, and Barret Zoph. Revisiting resnets: Improved training and scaling strategies, 2021.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? arXiv preprint arXiv:2003.03033, 2020.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HylVB3AqYm.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://arxiv.org/pdf/1908.09791.pdf.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation, 2018.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual path
networks. arXiv preprint arXiv:1707.01629, 2017.

François Chollet. Xception: Deep learning with depthwise separable convolutions, 2017.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. arXiv preprint arXiv:2101.03697, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV, 2016b.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks, 2018a.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. ECCV, pp. 784–800, 2018b.

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh.
Rethinking spatial dimensions of vision transformers, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation networks, 2019.

10

https://openreview.net/forum?id=HylVB3AqYm
https://arxiv.org/pdf/1908.09791.pdf

Under review as a conference paper at ICLR 2022

Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and Xiaojun
Chang. Block-wisely supervised neural architecture search with knowledge distillation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli, Yukun Zhu, Bradley Green, and Xiaogang
Wang. Search to distill: Pearls are everywhere but not the eyes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani, Dushyant Mehta, Chris Lott, and
Tijmen Blankevoort. Distilling optimal neural networks: Rapid search in diverse spaces. arXiv
preprint arXiv:2012.08859, 2020.

NVIDIA. TensorRT Library. https://developer.nvidia.com/tensorrt, 2021. [Online;
accessed 10-May-2021].

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International Conference
on Machine Learning, pp. 2902–2911. PMLR, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Shane Ryoo, C. Rodrigues, Sara S. Baghsorkhi, S. S. Stone, D. Kirk, and W. Hwu. Optimization
principles and application performance evaluation of a multithreaded gpu using cuda. Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, 2008.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Bharat Bhusan Sau and Vineeth N Balasubramanian. Deep model compression: Distilling knowledge
from noisy teachers. arXiv preprint arXiv:1610.09650, 2016.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. arXiv preprint arXiv:2101.11605, 2021.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2017.

11

https://developer.nvidia.com/tensorrt

Under review as a conference paper at ICLR 2022

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pp. 6105–6114. PMLR, 2019a.

Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise convolutional kernels. arXiv preprint
arXiv:1907.09595, 2019b.

Mingxing Tan and Quoc V Le. Efficientnetv2: Smaller models and faster training. arXiv preprint
arXiv:2104.00298, 2021.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-aware
neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019a.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019b.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021.

Arash Vahdat, Arun Mallya, Ming-Yu Liu, and Jan Kautz. Unas: Differentiable architecture search
meets reinforcement learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11266–11275, 2020.

Tom Veniat and Ludovic Denoyer. Learning time/memory-efficient deep architectures with budgeted
super networks. arXiv preprint arXiv:1706.00046, 2017.

Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau
Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391,
2020a.

Guibin Wang, Yisong Lin, and Wei Yi. Kernel fusion: An effective method for better power
efficiency on multithreaded gpu. 2010 IEEE/ACM Int’l Conference on Green Computing and
Communications and Int’l Conference on Cyber, Physical and Social Computing, pp. 344–350,
2010.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual
recognition. IEEE transactions on pattern analysis and machine intelligence, 2020b.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-aware automated
quantization with mixed precision. In CVPR, 2019.

Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-net:
Efficient channel attention for deep convolutional neural networks. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020c.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed
precision quantization of convnets via differentiable neural architecture search. arXiv preprint
arXiv:1812.00090, 2018.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2022

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. CoRR, abs/1611.05431, 2016. URL http://arxiv.
org/abs/1611.05431.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rylqooRqK7.

Zheng Xu, Yen-Chang Hsu, and Jiawei Huang. Training shallow and thin networks for acceleration
via knowledge distillation with conditional adversarial networks. In ICLR Workshop, 2018.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications.
Energy, 41:46, 2018a.

Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella, Michaela
Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, et al. Synetgy: Algorithm-hardware
co-design for convnet accelerators on embedded fpgas. arXiv preprint arXiv:1811.08634, 2018b.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 2403–2412,
2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong
He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955, 2020.

X Zhang, X Zhou, M Lin, and J Sun. Shufflenet: An extremely efficient convolutional neural network
for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In CVPR, pp. 8697–8710, 2018.

13

http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
http://arxiv.org/abs/1605.07146

Under review as a conference paper at ICLR 2022

A APPENDIX

Distribution of selected operations. In Fig. 3, we provide the histogram of selected operations for
three EfficientNeV1t networks and different acceleration ratios. All statistics are calculated for the
first 100 architectures found via integer optimization.

0.0 0.1 0.2 0.3 0.4

cb_bottle_1x1_ex0.0625
cb_bottle_1x1_ex0.2

cb_bottle_1x1_ex0.25
cb_bottle_1x1_ex1.0

cb_bottle_3x3_ex0.0625
cb_bottle_3x3_ex0.1
cb_bottle_3x3_ex0.5
cb_bottle_3x3_ex1.0
cb_bottle_3x3_ex2.0

cb_bottle_5x5_ex0.0625
cb_bottle_5x5_ex0.1

cb_bottle_5x5_ex0.25
cb_bottle_5x5_ex0.5

cb_bottle_7x7_ex0.0625
cb_res_3x3

cb_stack_1x1_ex0.0625
cb_stack_1x1_ex0.125

cb_stack_1x1_ex1.0
cb_stack_1x1_ex2.0
cb_stack_1x1_ex3.0

cb_stack_3x3_ex0.0625
cb_stack_3x3_ex1.0
cb_stack_3x3_ex2.0
cb_stack_3x3_ex3.0
cb_stack_3x3_ex4.0
cb_stack_5x5_ex0.5
efn_3x3_e1_se1.00
efn_3x3_e3_se0.25
efn_3x3_e3_se1.00
efn_3x3_e6_se0.04
efn_3x3_e6_se0.25
efn_3x3_e6_se1.00

efnv2_1x1_e1_se0.25
efnv2_1x1_e3_se0.25
efnv2_3x3_e1_se0.25

efnv2_3x3_e1_se1.00_brg
efnv2_3x3_e3_se1.00
efnv2_5x5_e6_se1.00

identity
teacher

0.45xB2
0.55xB2

(a) B2 selected ops

0.0 0.1 0.2 0.3 0.4

cb_bottle_1x1

cb_bottle_3x3

cb_bottle_5x5

cb_bottle_7x7

cb_res

cb_res_1x1

cb_stack_1x1

cb_stack_3x3

cb_stack_5x5

efn_3x3_e1

efn_3x3_e3

efn_3x3_e6

efnv2_1x1_e1

efnv2_1x1_e6

efnv2_3x3_e1_se0.04

efnv2_3x3_e1_se0.25

efnv2_3x3_e1_se1.00

efnv2_3x3_e3

efnv2_3x3_e6

efnv2_5x5_e1

efnv2_5x5_e3

efnv2_5x5_e6

identity

teacher
0.3xB4
0.5xB4

(b) B4 selected ops

0.0 0.2 0.4

cb_bottle_1x1

cb_bottle_3x3

cb_bottle_5x5

cb_bottle_7x7

cb_res

cb_res_1x1

cb_stack_1x1

cb_stack_3x3

efn_3x3_e1

efn_3x3_e3

efn_3x3_e6

efnv2_1x1_e1

efnv2_3x3_e3

efnv2_3x3_e6

efnv2_5x5_e6

identity

teacher

0.2xB4
0.25xB4

(c) B4 selected ops

Figure 3: The histogram of selected operations for top-100 models of EfficientNetV1 derivatives.
Teacher layers are often selected especially in the deeper layers of the network as we visualize in
Fig. 4 and Fig. 5. The identity layer is also selected often especially when the target latency is low.
Interestingly, simple layers with two stacked convolution (cb_stack) in the CBRCB structure
(C-convolution, B-batchnorm, R-ReLU) are selected most frequently after the teacher and identity
operations. Additionally we see a higher chance of selecting inverted residual blocks (efn and
efn2) with no squeeze-and-excitation operations se1.00.

Final architectures. Fig. 4 and Fig. 5 visualize the final architectures found by HANT. We observe
that teacher ops usually appear towards the end of the networks. Identity connections appear in the
first few resolution blocks where the latency is the highest to speed up inference, for example 0.2×B4
has 2, 1, 1 in the first 3 resolution blocks from original 3, 4, 4.

A.1 ADDITIONAL IMPLEMENTATION DETAILS

We next provide details on chosen batch size defined as bs and learning rate lr, joint with other
details required to replicate results in the paper.

Pretraining implementation. Pretraining stage was implemented to distill a single operator over
all layers in parallel on 4xV100 NVIDIA GPU with 32GB. For EfficientNet-B2 we set lr=0.008
with bs=128, for EfficientNet-B4 lr=0.0005 with bs=40, and EfficientNet-B6 lr=0.0012 with
bs=12. We set γMSE = 0.001. We run optimization with an SGD optimizer with no weight decay for
1 epoch only.

Finetuning implementation. Final model finetuning runs for 100 epochs. We set bs=128 and
lr=0.02 for EfficientNet-B2 trained on 2x8 V100 NVIDIA GPU; for EfficientNet-B4 derivatives

14

Under review as a conference paper at ICLR 2022

Input

efn_3x3_e1_se1.00

efn_3x3_e1_se1.00

efnv2_5x5_e6_se1.00

cb_stack_3x3_ex2.0

 stride=2

identity

cb_stack_3x3_ex4.0

cb_stack_3x3_ex3.0

 stride=2

identity

teacher

efnv2_3x3_e1_se0.25

 stride=2

cb_stack_1x1_ex0.0625

cb_bottle_3x3_ex0.5

teacher

identity

efn_3x3_e6_se1.00

efn_3x3_e3_se1.00

teacher

teacher

 stride=2

teacher

teacher

teacher

teacher

teacher

Output

(a) 0.45xB2

Input

teacher

efn_3x3_e1_se1.00

cb_stack_3x3_ex4.0

cb_stack_3x3_ex2.0

 stride=2

efnv2_3x3_e3_se1.00

cb_stack_3x3_ex4.0

cb_stack_3x3_ex3.0

 stride=2

cb_stack_3x3_ex4.0

teacher

efn_3x3_e3_se0.25

 stride=2

cb_stack_3x3_ex0.0625

identity

teacher

efn_3x3_e3_se1.00

efn_3x3_e6_se1.00

efn_3x3_e6_se1.00

teacher

teacher

 stride=2

teacher

teacher

teacher

teacher

teacher

Output

(b) 0.55xB2

Input

efn_3x3_e1_se1.00

identity

identity

efnv2_3x3_e6_se1.00

identity

 stride=2

identity

identity

identity

identity

cb_stack_3x3_ex3.0

efnv2_3x3_e1_se0.25

 stride=2

cb_stack_3x3_ex0.5

identity

identity

identity

teacher

cb_bottle_5x5_ex0.25

 stride=2

cb_stack_1x1_ex0.5

cb_bottle_3x3_ex0.125

cb_stack_1x1_ex0.125

cb_bottle_3x3_ex0.125

cb_bottle_5x5_ex0.125

identity

teacher

cb_bottle_3x3_ex0.125

identity

cb_stack_1x1_ex0.125

cb_stack_1x1_ex0.125

cb_bottle_7x7_ex0.125

identity

cb_stack_1x1_ex0.25

teacher

teacher

 stride=2

teacher

teacher

teacher

identity

cb_bottle_7x7_ex0.125

teacher

identity

teacher

cb_res_3x3

teacher

teacher

teacher

Output

(c) 0.25xB6

Input

efn_3x3_e1_se0.25

efn_3x3_e1_se1.00

cb_res_3x3

teacher

cb_stack_3x3_ex1.0

 stride=2

cb_stack_3x3_ex1.0

cb_stack_3x3_ex2.0

identity

cb_stack_1x1_ex2.0

teacher

efnv2_3x3_e1_se0.25

 stride=2

efn_3x3_e3_se0.04

cb_bottle_3x3_ex2.0

cb_stack_3x3_ex1.0

efn_3x3_e3_se0.04

teacher

efn_3x3_e3_se0.04

 stride=2

efn_3x3_e3_se0.04

cb_stack_1x1_ex0.125

cb_bottle_1x1_ex2.0

cb_stack_1x1_ex2.0

cb_res_3x3

cb_bottle_3x3_ex2.0

teacher

cb_bottle_7x7_ex0.5

cb_res_1x1_al1

efn_3x3_e3_se1.00

cb_bottle_5x5_ex0.125

cb_bottle_7x7_ex0.125

cb_stack_3x3_ex1.0

cb_res_3x3

teacher

teacher

 stride=2

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

Output

(d) 0.5xB6

Figure 4: Final architectures selected by HANT as EfficientNet-B2/B6 derivatives.

15

Under review as a conference paper at ICLR 2022

Input

efn_3x3_e1_se1.00

identity

efnv2_3x3_e3_se1.00

identity

 stride=2

identity

identity

efnv2_5x5_e6_se1.00

identity

 stride=2

identity

identity

teacher

cb_bottle_1x1_ex0.2

 stride=2

cb_bottle_1x1_ex0.125

cb_stack_1x1_ex0.1

cb_bottle_5x5_ex0.125

cb_bottle_1x1_ex0.1

efn_3x3_e6_se1.00

cb_bottle_5x5_ex0.125

identity

identity

identity

identity

teacher

teacher

 stride=2

identity

identity

teacher

identity

identity

efn_3x3_e1_se1.00

teacher

teacher

Output

(a) 0.2xV1-B4

Input

efn_3x3_e1_se1.00

identity

efnv2_3x3_e3_se1.00

identity

 stride=2

identity

identity

efnv2_5x5_e6_se1.00

identity

 stride=2

identity

identity

teacher

cb_stack_3x3_ex0.125

 stride=2

cb_bottle_1x1_ex0.125

cb_bottle_7x7_ex0.1

identity

cb_stack_1x1_ex0.2

efn_3x3_e6_se0.25

identity

identity

identity

cb_bottle_3x3_ex0.0625

identity

teacher

teacher

 stride=2

identity

efn_3x3_e3_se1.00

teacher

teacher

teacher

teacher

teacher

teacher

Output

(b) 0.25xV1-B4

Input

efn_3x3_e1_se1.00

identity

efnv2_3x3_e6_se1.00

identity

 stride=2

identity

identity

efnv2_5x5_e6_se1.00

cb_stack_3x3_ex1.0

 stride=2

efnv2_1x1_e1_se1.00

identity

teacher

cb_stack_3x3_ex0.1

 stride=2

cb_bottle_5x5_ex0.125

cb_stack_1x1_ex0.1

cb_bottle_7x7_ex0.125

identity

teacher

identity

cb_bottle_7x7_ex0.1

identity

identity

identity

teacher

teacher

 stride=2

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

Output

(c) 0.3xV1-B4

Input

teacher

efn_3x3_e1_se0.25

cb_stack_3x3_ex2.0

cb_stack_3x3_ex2.0

 stride=2

efnv2_3x3_e3_se1.00

cb_stack_3x3_ex2.0

teacher

cb_stack_3x3_ex2.0

 stride=2

identity

cb_stack_3x3_ex2.0

teacher

cb_stack_3x3_ex0.125

 stride=2

cb_stack_1x1_ex2.0

cb_stack_3x3_ex0.1

efnv2_3x3_e3_se1.00

cb_bottle_3x3_ex1.0

teacher

identity

efnv2_3x3_e3_se1.00

efn_3x3_e3_se1.00

efnv2_3x3_e6_se1.00

identity

teacher

teacher

 stride=2

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

Output

(d) 0.5xV1-B4

Input

teacher

identity

teacher

identity

 stride=2

identity

efnv2_3x3_e4_se1.00

efn_3x3_e1_se1.00

 stride=2

efn_3x3_e1_se0.25

teacher

efn_3x3_e1_se0.25

 stride=2

efnv2_3x3_e1_se0.25

efn_3x3_e0.5_se1.00

identity

teacher

cb_stack_3x3_ex1.0

efn_3x3_e0.5_se1.00

efn_3x3_e0.25_se1.00

efn_3x3_e1_se1.00

efn_3x3_e0.25_se1.00

cb_stack_3x3_ex0.25

teacher

teacher

 stride=2

teacher

teacher

teacher

teacher

teacher

teacher

teacher

teacher

efn_3x3_e0.25_se1.00

efn_3x3_e0.25_se1.00

Output

(e) 0.5xV2-B3

Figure 5: Final architectures selected by HANT as EfficientNetV1-B4/V2-B3 derivatives.

16

Under review as a conference paper at ICLR 2022

In
pu

t

ef
n_

3x
3_

e2
_s

e0
.2

5

re
sn

es
t_

1s
2x

24
d

re
sn

es
t_

1s
1x

24
d

te
ac

he
r

re
sn

es
t_

1s
1x

24
d

 s
tri

de
=2

te
ac

he
r

re
sn

es
t_

0s
1x

24
d

te
ac

he
r

id
en

tit
y

 s
tri

de
=2

id
en

tit
y

re
sn

es
t_

1s
1x

24
d

re
sn

es
t_

0s
2x

4d

te
ac

he
r

te
ac

he
r

te
ac

he
r

 s
tri

de
=2

te
ac

he
r

O
ut

pu
t

Figure 6: Final architectures selected by HANT as 0.7xResNeST50d_1s4x24d

100 101

0.980

0.985

0.990

0.995

1.000

Ac
cu

ra
cy

Layer 7

100 101

Speedup

Layer 14

100 101

Layer 21

efn
cb_res
cb_stack

cb_bottle
conv_cs3
conv_cs1

efnv2
identity

repvgg
dbb_1x1

vit
bot_trans

Figure 7: Result of the pretraining stage for EfficientNetB2, showing three layers equally spaced
throughout the network: 7, 14 and 21. Speedup is measured as the ratio between the latency of the
teacher and the latency of the student operation (higher is better). We measure latency using Pytorch
FP16. Accuracy is the ratio of the operation’s accuracy and the teacher’s (higher is better). The
dashed black lines correspond to the teacher.

we set bs=128 and lr=0.04, for EfficientNet-B6 bs=48 and lr=0.08 on 4x8 V100 NVIDIA GPU.
Learning rate was set to be 0.02. We set γCE and γKL to 1.

Latency look up table creations. We measure the latency on V100 NVIDIA GPU with TensorRT
in FP16 mode for batch size of 128 images. For Xeon CPU latency we use a batch size of 1. Input and
output stems are not included in latency LUT. This results in a small discrepancy between theoretical
and real speed. As a result, we use latency LUT for operator evaluation, and report the final real
latency for the unveiled final models.

A.2 CANDIDATE PRETRAINING INSIGHTS

Latency-accuracy tradeoff for different operations after pretraining is shown in the Figure 7. Observa-
tions from these plots are discussed in Seection 3.2.

The choice of pretraining loss. To motivate our choice of MSE for pretraining, we investigate the
distribution of activations at the output of residual blocks. We observe that for all blocks, activations
follow a Gaussian-like distribution. Shapiro-Wilk test for normality averaged over all layers is 0.99
for EfficientNetV1-B2, and 0.988 for EfficientNetV2-B3. Given this observation, MSE error seems a
reasonable loss function to minimize.

A.3 DETAILED COMPARISON TO PRIOR WORK

For comparison to prior work we look into latest models from the out-of-the-box timm package Wight-
man (2019) with Apache-2.0 License. We include detailed individual method names and references
as follows:

17

Under review as a conference paper at ICLR 2022

• efficientnet: Efficientnet Tan & Le (2019a).
• cait: Class-attention in image transformers Touvron et al. (2021).
• cspnet: Cross-stage partial network Wang et al. (2020a).
• deit: (Data-efficient) vision transformer Touvron et al. (2020).
• dla: Deep layer aggregation Yu et al. (2018).
• dpn: Dual-path network Chen et al. (2017).
• ecanet: Efficient channel attention network Wang et al. (2020c).
• hrnet: High-resolution network Wang et al. (2020b).
• inception: Inception V3 Szegedy et al. (2016) and V4 Szegedy et al. (2017).
• mixnet: MixConv-backed network Tan & Le (2019b).
• ofa: Once-for-all network Cai et al. (2020).
• pit: Pooling Vision Transforms Heo et al. (2021).
• regnetX: Regnet network Radosavovic et al. (2020), accuracy is taken from the original

paper.
• regnetY: Regnet network Radosavovic et al. (2020) with squeeze-and-excitation opera-

tions, accuracy is taken from the original paper.
• repvgg: RepVGG Ding et al. (2021).
• resnest101_e: Resnest101 (with bag of tricks) He et al. (2018a).
• resnest50_d: Resnest50 (with bag of tricks) He et al. (2018a).
• resnet50_d: Resnet50 (with bag of tricks) He et al. (2018a).
• resnetrs10_1: Resnet rescaled Bello et al. (2021).
• resnetrs15_1: Resnet rescaled Bello et al. (2021).
• resnetrs5_0: Resnet rescaled Bello et al. (2021).
• resnext50d_32x4d: Resnext network (with average pooling downsampling) Xie et al.

(2016).
• seresnet5_0: Squeeze Excitement Resnet50 Hu et al. (2019).
• skresnext50_32x4d: Selective kernel Resnext50 Li et al. (2019).
• vit-base: Visual Transformer, base architecture.
• vit-large_384: Visual Transformer, large architecture, 384 resolution Dosovitskiy et al.

(2020).
• wide_resnet50_2: Resnet50 with 2× channel width Zagoruyko & Komodakis (2016).
• xception6_5: Xception network (original) Chollet (2017).
• xception7_1: Xception network aligned Chen et al. (2018).

A more detailed comparison with other models is shown in the Figure 8. We observe that models
resulted from HANT acceleration are performing better than the most of other approaches. All of the
models for HANT used LUTs computed with TensorRT and clearly the speed up in the TensorRT
figure is larger when compared with other methods. On the same time if model latency is estimated
with Pytorch, we still get top models that outperform many other models.

Additional comparison to prior work. For additional insights, we also include detailed experimen-
tal comparisons to DONNA proposed by Moons et al. (2020). In Table 7, we demonstrate consistent
performance improvements by HANT compared to DONNA across varying latency budgets. We
matched the latency of final models with settings (batch size, hardware etc) to those of DONNA.

18

Under review as a conference paper at ICLR 2022

PyTorch FP16: TensorRT:

0 1000 2000 3000 4000 5000
Throughput (images per second)

78

79

80

81

82

83

84

Ac
cu

ra
cy

, t
op

-1

b0

b1

b2

b3

b4

b5

b0

b1

b2

b3

0.45xB2

0.55xB2

0.25xB4

0.30xB4

0.50xB4

0.25xB6

0.40xB3

0.50xB3

0.60xB3

0.65xB3

0.75xB3

0.50

0.70

EFNv1
EFNv2
HANTe1
HANTe2
HANTr
cait
dla102x_2
dm_nfnet_f0
dpn
eca_nfnet_l0
ecaresnet
hrnet_w64
inception
mixnet_xl
nasnetalarg_e
nf_resnet50
nfnet_l0
ofa
pit
pnasnet5larg_e
regnetX
regnetY
repvgg
resnest
resnet
resnext50
rexnet
seresnet5_0
seresnext50_32x4d
skresnext50_32x4d
swin_tiny_patch4_window7_224
tnt_s_patch16_224
wide_resnet50_2
xception

0 2000 4000 6000 8000 10000
Throughput (images per second)

78

79

80

81

82

83

84

Ac
cu

ra
cy

, t
op

-1

b3

b1

b2

b0

b5

b4

b6

b1

b2

b3

b0

0.45xB2

0.55xB2
0.20xB4

0.25xB4

0.30xB4

0.50xB4

0.25xB6
0.5xB6

0.40xB3

0.50xB3

0.60xB3

0.65xB3
0.75xB3

EFNv1
EFNv2
HANTefnv1
HANTefnv2
HANTresnest
cait
dla102x_2
dpn
ecaresnet
hrnet_w64
inception
mixnet_xl
ofa
pit
regnetX
regnetY
repvgg
resnest
resnet
resnext50
seresnet5_0
seresnext50_32x4d
skresnext50_32x4d
vit-base
vit-large
wide_resnet50_2
xception

Figure 8: Comparison with other models from TIMM package.

Models Latency (ms) ↓ Top-1 Acc. (%) ↑
DONNA Moons et al. (2020) 20.0 78.9
0.45×EfficientNetV1-B2 (HANT) 18.9 79.7 (+0.8)
DONNA Moons et al. (2020) 25.0 79.5
0.55×EfficientNetV1-B2 (HANT) 24.1 80.1 (+0.6)

Table 7: Additional comparison to prior work. Latency values measured at batch size 32 with PyTorch
FP32. In brackets are our improvements.

19

	Introduction
	Related Work

	Method
	Candidate Pretraining Phase
	Operation Selection Phase

	Experiments
	EfficientNet and ResNeST Derivatives
	Analysis
	Architecture insights
	Ablations on finetuning

	Conclusion
	Appendix
	Additional implementation details
	Candidate pretraining insights
	Detailed comparison to prior work

