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ABSTRACT

Message-passing graph neural networks (GNNs) excel at capturing local relation-
ships but struggle with long-range dependencies in graphs. In contrast, graph
transformers (GTs) enable global information exchange but often oversimplify the
graph structure by representing graphs as sets of fixed-length vectors. This work
introduces a novel architecture that overcomes the shortcomings of both approaches
by combining the long-range information of random walks with local message
passing. By treating random walks as sequences, our architecture leverages recent
advances in sequence models to effectively capture long-range dependencies within
these walks. Based on this concept, we propose a framework that offers (1) more
expressive graph representations through random walk sequences, (2) the ability
to utilize any sequence model for capturing long-range dependencies, and (3) the
flexibility by integrating various GNN and GT architectures. Our experimental
evaluations demonstrate that our approach achieves competitive performance on
19 graph and node benchmark datasets, notably outperforming existing methods by
up to 13% on the PascalVoc-SP and COCO-SP datasets.

1 INTRODUCTION

Message-passing graph neural networks (GNNs) (Gilmer et al., 2017) and graph transformers
(GTs) (Ying et al., 2021), have emerged as powerful tools for learning on graphs. While GNNs
are efficient in identifying local relationships, they often fail to capture distant interactions due to
the local nature of message passing, leading to issues such as over-smoothing (Oono & Suzuki,
2020) and over-squashing (Alon & Yahav, 2021). In contrast, GTs (Ying et al., 2021; Mialon et al.,
2021; Chen et al., 2022a; Rampášek et al., 2022; Shirzad et al., 2023) address these limitations by
directly modeling long-range interactions through global attention mechanisms, enabling information
exchange between all nodes. However, GTs typically preprocess the complex graph structure into
fixed-length vectors for each node, using positional or structural encodings (Rampášek et al., 2022).
This approach essentially treats the graph as a set of nodes enriched with these vectors. Such vector
representations of graph topologies inevitably result in a loss of structural information, limiting
expressivity even when GTs are combined with local message-passing techniques (Zhu et al., 2023).
In this work, we address these limitations by introducing a novel architecture that captures long-range
dependencies while preserving rich structural information, by leveraging the power of random walks.

Random walks offer a flexible approach to exploring graphs, surpassing the limitations of fixed-length
vector representations. By traversing diverse paths across the graph, random walks can capture
subgraphs with large diameters, such as cycles, which message passing often struggles to represent,
due to its depth-first nature (Grover & Leskovec, 2016). More importantly, the complexity of sampling
random walks is determined by their length and sample size rather than the overall size of the graph.
This characteristic makes random walks a scalable choice for representing large graphs, offering clear
computational advantages compared to many computationally expensive encoding methods.

While several graph learning approaches have employed random walks, their full potential remains
largely untapped. Most existing approaches either focus solely on short walks (Chen et al., 2020;
Nikolentzos & Vazirgiannis, 2020) or use walks primarily for structural encoding, neglecting the
rich information they contain (Dwivedi et al., 2021; Mialon et al., 2021). A more recent method,
CRaWL (Tönshoff et al., 2023b), takes a novel approach by representing a graph as a set of random
walks. While this approach shows promising results, it has two major practical limitations: 1)
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its reliance on convolutional layers to process random walks, particularly with small kernel sizes,
constrains its ability to approximate arbitrary functions on walks and fully capture long-range
dependencies within each walk. 2) Due to the depth-first nature of random walks, it struggles to
efficiently capture local relationships, such as simple subtrees, as illustrated in Figure 1.

Message Passing Random Walks

Figure 1: Message passing efficiently cap-
tures locally sparse subgraphs, like k-star
subgraphs, while random walks struggle,
requiring a length of 2k.

Considering the limitations of existing random-walk-
based models, we propose an approach that leverages
the strengths of two complementary graph exploration
paradigms. Our method combines the local neighbor-
hood information captured by the breadth-first nature
of message passing with the long-range dependencies
obtained through the depth-first nature of random walks.
Unlike GTs (Rampášek et al., 2022; Chen et al., 2022a)
which encode random walks into fixed-length vectors,
our approach preserves their sequential nature, thereby
retaining richer structural information. Our proposed
architecture, named NeuralWalker, achieves this by processing sets of sampled random walks using
powerful sequence models. We then employ local (and optionally global) message passing to capture
complementary information. Multiple alternations of these two operations are stacked to form our
model. A key innovation of our approach is the utilization of long sequence models, such as state
space models, to learn from random walk sequences. To the best of our knowledge, this is the first
application of such models in this context.

Our contributions are summarized as follows. i) We propose a novel framework that leverages both
random walks and message passing, leading to provably more expressive graph representation. ii)
Our model exploits advances in sequence modeling (e.g, transformers and state space models) to
capture long-range dependencies within the walks. iii) Our message-passing block can seamlessly
integrate various GNN and GT architectures, allowing for customization based on specific tasks. iv)
We conduct extensive ablation studies to offer practical insights for choosing the optimal sequence
layer types and message-passing strategies. Notably, the trade-off between model complexity and
expressivity can be flexibly controlled by adjusting walk sampling rate and length, making our model
scalable to graphs with up to 1.6M nodes. v) Our model demonstrates remarkable performance
improvements over existing methods on a comprehensive set of 19 benchmark datasets.

2 RELATED WORK

Local and global message passing. Message-passing neural networks (MPNNs) are a cornerstone
of graph learning. They propagate information between nodes, categorized as either local or global
methods based on the propagation range. Local MPNNs, also known as GNNs (e.g, GCN (Kipf &
Welling, 2016), GIN (Xu et al., 2019)), excel at capturing local relationships but struggle with distant
interactions due to limitations like over-smoothing (Oono & Suzuki, 2020) and over-squashing (Alon
& Yahav, 2021). Global message passing offers a solution by modeling long-range dependencies
through information exchange across all nodes. GTs (Ying et al., 2021; Kreuzer et al., 2021; Mialon
et al., 2021; Chen et al., 2022a; Rampášek et al., 2022; Shirzad et al., 2023), using global attention
mechanisms, are a prominent example. However, GTs achieve this by compressing the graph
structure into fixed-length vectors, leading to a loss of rich structural information. Alternative
techniques include the virtual node approach (Gilmer et al., 2017; Barceló et al., 2020), which enables
information exchange between distant nodes by introducing an intermediary virtual node.
Random walks for graph learning. Random walks have a long history in graph learning, particu-
larly within traditional graph kernels. Due to the computational intractability of subgraph or path
kernels (Gärtner et al., 2003), walk kernels (Gärtner et al., 2003; Kashima et al., 2003; Borgwardt
& Kriegel, 2005) were introduced to compare common walks or paths in two graphs efficiently.
Non-backtracking walks have also been explored (Mahé et al., 2005) for molecular graphs. In deep
graph learning, several approaches utilize walks or paths to enhance GNN expressivity. GCKN (Chen
et al., 2020) pioneered short walk and path feature aggregation within graph convolution, further ex-
plored in Michel et al. (2023). RWGNN (Nikolentzos & Vazirgiannis, 2020) leverages differentiable
walk kernels for subgraph comparison and parametrized anchor graphs. The closest work to ours is
CRaWL (Tönshoff et al., 2023a). However, it lacks message passing and relies on a convolutional
layer, particularly with small kernel sizes, limiting its universality. Additionally, random walks have
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Figure 2: Overview of the NeuralWalker architecture. The random walk sampler samples m random
walks independently without replacement; the walk embedder computes walk embeddings given the
node/edge embeddings at the current layer; the walk aggregator aggregates walk features into the
node features via pooling of the node features encountered in all the walks passing through the node.

been used as structural encoding in GTs such as RWPE (Dwivedi et al., 2021) and relative positional
encoding in self-attention (Mialon et al., 2021).

Sequence modeling. Sequence models, particularly transformers (Vaswani et al., 2017) and state
space models (SSMs) (Gu et al., 2021; Gu & Dao, 2023), have become instrumental in natural lan-
guage processing (NLP) and audio processing due to their ability to capture long-range dependencies
within sequential data. However, directly leveraging these models on graphs remains challenging
due to the inherent structural differences. Existing approaches like GTs treat graphs as sets of nodes,
hindering the application of transformer architectures to sequences within the graph. Similarly, recent
work utilizing SSMs for graph modeling (Wang et al., 2024; Behrouz & Hashemi, 2024) relies on
node ordering based on degrees, a suboptimal strategy that may introduce biases or artifacts when
creating these artificial sequences that do not reflect the underlying graph topology.

Our work addresses this limitation by explicitly treating random walks on graphs as sequences.
This allows us to leverage the power of state-of-the-art (SOTA) sequence models to capture rich
structural information within these walks, ultimately leading to a more universal graph representation.
Furthermore, by integrating both message passing and random walks, our model is provably more
expressive compared to existing MPNNs and random walk-based models, as discussed in Section 4.

3 NEURAL WALKER

In this section, we present the architecture of our proposed NeuralWalker, which processes sequences
obtained from random walks to produce both node and graph representations. Its components consist
of a random walk sampler, described in Section 3.2, and a stack of neural walker blocks, discussed in
Section 3.3. A visualization of the architecture can be found in Figure 2.

3.1 NOTATION AND RANDOM WALKS ON GRAPHS

We first introduce the necessary notation. A graph is a tuple G = (V,E, x, z), where V is the set
of nodes, E is the set of edges, and x : V → Rd and z : E → Rd′

denote the functions assigning
attributes to node and edges, respectively. We denote by G and Gn the space of all graphs and the
space of graphs up to size n, respectively. The neighborhood of a node v is denoted by N (v) and its
degree by d(v). A walk W of length ℓ on a graph G is a sequence of nodes connected by edges, i.e.
W = (w0, . . . , wℓ) ∈ V ℓ+1 such that wi−1wi ∈ E for all i ∈ [ℓ]. We denote by W(G) and Wℓ(G)
the set of all walks and all walks of length ℓ on G, respectively. W is called non-backtracking if
wi−1 ̸= wi+1 for all i and we denote the set of all such walks by Wnb

ℓ (G). A random walk is a
Markov chain that starts with some distribution on nodes P0(v) and transitions correspond to moving
to a neighbor chosen uniformly at random. For non-backtracking random walks, neighbors are chosen
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uniformly from N (wi)\{wi−1}. We denote by P (W(G), P0) the distribution of random walks with
initial distribution P0, and by P (W(G)) the case where P0 = U(V ) is the uniform distribution on V .

3.2 RANDOM WALK SAMPLER

The random walk sampler independently samples a subset of random walks on each graph through
a probability distribution on all possible random walks. For any distribution on random walks
P (W(G), P0), we denote by Pm(W(G)) := {W1, . . . ,Wm} a realization of m i.i.d. samples
Wj ∼ P (W(G), P0). Our model is always operating on such realizations. Motivated by the
successful application in Tönshoff et al. (2023b) and the halting issue in general random walks
of arbitrary length (Sugiyama & Borgwardt, 2015), we consider non-backtracking walks of fixed
length. Specifically, we consider the uniform distribution of length-ℓ random walks P (W(G), P0) :=
P (Wnb

ℓ (G),U(V )). Note that one could also consider a stationary initial distribution P0(v) =
d(v)/2|E| for better theoretical properties (Lovász, 1993).

In practice, we restrict the number of samples m ≤ n where n = |V | for computation efficiency. We
define the sampling rate of random walks as the ratio of random walks to nodes (γ := m/n). Note
that random walks only need to be sampled once for each forward pass and that an efficient CPU
implementation can be achieved through iterative neighbor sampling, with a complexity O(nγℓ),
linear in the number and length of random walks. We remark that during inference, a higher sampling
rate than that used during training can be used to enhance performance. Therefore, we always fix it to
1.0 at inference. In Section 5.3, we empirically study the impact of γ and ℓ used at training on the
performance, showing that once these hyperparameters exceed a certain threshold, their impact on
performance saturates. We present below the positional encodings for random walks, fundamental to
establishing our theoretical results in Section 4, rather than being merely an implementation detail.
Positional encodings for random walks. Similar to Tönshoff et al. (2023b), we utilize additional
encoding features that store connectivity information captured within random walks. In particular,
we consider an identity encoding which encodes whether two nodes in a walk are identical within a
window and an adjacency encoding which includes information about subgraphs induced by nodes
along the walk. Specifically, for a walk W = (w0, . . . , wℓ) ∈ Wℓ(G) and window size s ∈ N+,
the identity encoding W , denoted idsW , is the binary matrix in {0, 1}(ℓ+1)×s with idsW [i, j] = 1 if
wi = wi−j−1 s.t. i − j ≥ 1, and otherwise 0 for any 0 ≤ i ≤ ℓ and 0 ≤ j ≤ s − 1. Similarly,
the adjacency encoding adjsW ∈ {0, 1}(ℓ+1)×(s−1) satisfies adjsW [i, j] = 1 if wiwi−j−1 ∈ E s.t.
i− j ≥ 1, and otherwise 0 for any 0 ≤ i ≤ ℓ and 0 ≤ j ≤ s−1. A visual example of such encodings
is given in Appendix B.1. Finally, the output of the random walk sampler is the concatenation all
encodings into a single matrix hpe ∈ R(ℓ+1)×dpe together with the sampled random walks.

3.3 MODEL ARCHITECTURE

In the following, we describe the architecture of NeuralWalker which conists of several walk encoder
blocks where each block is comprised of three components: a walk embedder, a sequence layer, and
a walk aggregator that are presented in Sections 3.3.1, 3.3.2, and 3.3.3, respectively.

3.3.1 WALK EMBEDDER

The walk embedder generates walk embeddings given the sampled walks, and the node and edge
embeddings at the current layer. It is defined as a function femb : Wℓ(G). Specifically, for any
sampled walk W ∈ Pm(Wℓ(G)), the walk embedding hW := femb(W ) ∈ R(ℓ+1)×d is defined as

hW [i] := hV (wi) + projedge(hE(wiwi+1)) + projpe(hpe[i]), (1)

where hV : V → Rd and hE : E → Rdedge are node and edge embeddings at the current block and
projedge : Rdedge → Rd and projpe : Rdpe → Rd are some trainable projection functions. The resulting
walk embeddings is then processed with a sequence model as discussed below.

3.3.2 SEQUENCE LAYER ON WALK EMBEDDINGS

In principle, any sequence model can be used to process the walk embeddings obtained above. A
sequence layer transforms a sequence of feature vectors into a new sequence, i.e., it is a function
fseq : R(ℓ+1)×d → R(ℓ+1)×d. In the following, we discuss several choices for such a function.
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1D CNNs are simple and fast models for processing sequences, also used in Tönshoff et al. (2023b).
They are GPU-friendly and require relatively limited memory. However, the receptive field of a 1D
CNN is limited by its kernel size, which might fail to capture distant dependencies on long walks.

Transformers are widely used in modeling sequences and graphs due to their universality and strong
performance. However, we found in our experiments (see Table 6) that they are suboptimal encoders
for walk embeddings, even when equipped with the latest techniques like RoPE (Su et al., 2024).

SSMs are a more recent approach for modeling long sequences. In our experiments, we employ
two of the latest instances of SSMs, namely S4 (Gu et al., 2021) and Mamba (Gu & Dao, 2023). In
addition to the original version, we consider the bidirectional version of Mamba (Zhu et al., 2024).
We found that bidirectional Mamba consistently outperforms other options (Section 5.3). For a more
comprehensive background on SSMs, please refer to Appendix A.3.

3.3.3 WALK AGGREGATOR

The walk aggregator aggregates walk features into node features such that the resulting node features
encode context information from all walks passing through that node. It is defined as a function
fagg : (Pm(Wℓ(G)) → R(ℓ+1)×d) → (V → Rd) and the resulting node feature mapping is given
by hagg

V := fagg(fseq(femb|Pm(Wℓ(G))))) where f |. denotes the function restriction. In this work, we
consider the average of all the node features encountered in the walks passing through a given node.
Specifically, the node feature mapping hagg

V with an average pooling is defined as

hagg
V (v) :=

1

Nv(Pm(Wℓ(G)))

∑

W∈Pm(Wℓ(G))

∑

wi∈Wst. wi=v

fseq(hW )[i], (2)

where Nv(Pm(Wℓ(G))) represents the number of occurrences of v in the union of walks in
Pm(Wℓ(G)). One could also average the edge features in the walks passing through a certain
edge to update the edge features: hagg

E (e) :=
∑

W∈Pm(Wℓ(G))

∑
wiwi+1∈Wst. wiwi+1=e fseq(hW )[i]

up to a normalization factor. In practice, we also use skip connections to keep track of the node
features from previous layers.

3.3.4 LOCAL AND GLOBAL MESSAGE PASSING

While random walks are efficient at identifying long-range dependencies due of their depth-first
nature, they are less suited for capturing local substructure information, which often plays an essential
role in many graph learning tasks. To address this limitation, we draw inspiration from classic node
embedding methods (Perozzi et al., 2014; Grover & Leskovec, 2016). We incorporate a message-
passing layer into our encoder block, leveraging its breadth-first characteristics to complement the
information obtained through random walks. Such a (local) message passing step is given by

hmp
V (v) := hagg

V (v) +MPNN(G, hagg
V (v)), (3)

where MPNN denotes a GNN model, typically with one layer in each encoder block.

Following the local message passing layer, we optionally apply a global message passing, allowing
for a global information exchange, as done in GTs (Chen et al., 2022a). We particularly consider two
global message passing techniques, namely virtual node (Gilmer et al., 2017; Tönshoff et al., 2023a)
and transformer layer (Ying et al., 2021; Chen et al., 2022a; Rampášek et al., 2022). We provide
more details on these techniques in Appendix B.2.

4 THEORETICAL RESULTS

In this section, we investigate the theoretical properties of NeuralWalker. The proofs of the following
results as well as more background can be found in Appendix C.

We first define walk feature vectors following Tönshoff et al. (2023b):
Definition 4.1 (Walk feature vector). For any graph G = (V,E, x, z) and W ∈ Wℓ(G), the walk
feature vector XW of W is defined by concatenating the node and edge feature vectors, along with
the positional encodings of W with window size s = ℓ. Formally,

XW = (x(wi), z(wiwi+1), hpe[i])i=0,...,ℓ ∈ R(ℓ+1)×dwalk ,

5
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where hpe represents the positional encoding of Section 3.2, z(wℓwℓ+1) = 0, and dwalk := d+d′+dpe.
For simplicity, we still denote the distribution of walk feature vectors on G by P (W(G)).

For simplicitly, we consider general rather than non-backtracking random walks in this section.
Now assume that we apply an average pooling followed by a linear layer to the output of the walk
aggregator in Eq. (2). By adjusting the normalization factor to a constant mℓ/|V |, we can express the
function gf,m,ℓ on G as an average over functions of walk feature vectors:

gf,m,ℓ(G) =
1

m

∑

W∈Pm(Wℓ(G))

f(XW ) (4)

where f : Rdwalk → R is some function on walk feature vectors.

If we sample a sufficiently large number of random walks, the average function gf,m,ℓ(G) converges
almost surely to gf,ℓ := EXW∼P (Wℓ(G))[f(XW )], due to the law of large numbers. This result can
be further quantified using the central limit theorem, which provides a rate of convergence (see
Theorem C.5 in Appendix). Furthermore, we have the following useful properties of this limit:
Theorem 4.2 (Lipschitz continuity). For some functional space F of functions on walk feature
vectors, we define the following distance dF : G × G → R+:

dF,ℓ(G,G′) := sup
f∈F

∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]
∣∣ . (5)

Then (Gn, dF,ℓ) is a metric space if F is a universal space and ℓ ≥ 4n3.

If F contains f , then for any G,G′ ∈ Gn, we have

|gf,ℓ(G)− gf,ℓ(G
′)| ≤ dF,ℓ(G,G′). (6)

In particular, if f ∈ F is an L-Lipschitz function, the difference in outputs is bounded by the earth
mover’s distance W1(·, ·) between the distributions of walk feature vectors:

|gf,ℓ(G)− gf,ℓ(G
′)| ≤ L ·W1(P (Wℓ(G)), P (Wℓ(G

′))). (7)

The Lipschitz constant, widely used to assess neural network stability under small perturbations (Vir-
maux & Scaman, 2018), guarantees that NeuralWalker maintains stability when subjected to minor
alterations in graph structure. Notably, parameterizing f with several neural network layers yields a
Lipschitz constant comparable to that of MPNNs on a pseudometric space defined by the tree mover’s
distance (Chuang & Jegelka, 2022). However, a key distinction lies in the input space metrics: while
MPNNs operate on tree structures, NeuralWalker focuses on the distribution of walk feature vectors.
A more comprehensive comparison of MPNNs’ and NeuralWalker’s stability and generalization
under distribution shift is left for future research.
Theorem 4.3 (Injectivity). Assume that F is a universal space. If G and G′ are non-isomorphic
graphs, then there exists an f ∈ F such that gf,ℓ(G) ̸= gf,ℓ(G

′) if ℓ ≥ 4max{|V |, |V ′|}3.

The injectivity property ensures that our model with a sufficiently large number of sufficiently long
(≥ 4n3) random walks can distinguish between non-isomorphic graphs. It is worth noting that
although our assumptions include specific conditions on the random walk length to establish the
space as a metric, removing the length constraint still results in a pseudometric space. In this case,
dF,ℓ(G,G′) > 0 if G and G′ are distinguishable by the (⌊ℓ/2⌋ + 1)-subgraph isomorphism test,
where ⌊·⌋ is the floor function (i.e., they do not have the same set of subgraphs up to size (⌊ℓ/2⌋+ 1)).

Using the previous result jointly with the message-passing module, we arrive at the following result,
which particularly highlights the advantage of combining random walks and message passing.
Theorem 4.4. For any ℓ ≥ 2, NeuralWalker equipped with the complete walk set Wℓ is strictly more
expressive than 1-WL and the (⌊ℓ/2⌋+ 1)-subgraph isomorphism test, and thus ordinary MPNNs.

The injectivity in Thm. 4.3 is guaranteed only if F is a universal functional space. This condition
highlights a limitation in approaches like CRaWL (Tönshoff et al., 2023b) which employs CNNs to
process walk feature vectors. CNNs can only achieve universality under strict conditions, including
periodic boundary conditions and a large number of layers (Yarotsky, 2022). However, random
walks generally do not satisfy periodic boundary conditions, and utilizing an excessive number of
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Table 1: Test performance on benchmarks from Dwivedi et al. (2023). Metrics with mean ± std of 4
runs are reported. The result with ⋆ is obtained using the pretraining strategy presented in Section 5.2.

ZINC MNIST CIFAR10 PATTERN CLUSTER
# GRAPHS 12K 70K 60K 14K 12K
AVG. # NODES 23.2 70.6 117.6 118.9 117.2
AVG. # EDGES 24.9 564.5 941.1 3039.3 2150.9
METRIC MAE � ACC � ACC � ACC � ACC �

GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GATEDGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326

SAT 0.089 ± 0.002 – – 86.848 ± 0.037 77.856 ± 0.104
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
EXPHORMER – 98.55 ± 0.03 74.69 ± 0.13 86.70 ± 0.03 78.07 ± 0.037
GRIT 0.059 ± 0.002 98.108 ± 0.111 76.468 ± 0.881 87.196 ± 0.076 80.026 ± 0.277
GRED 0.077 ± 0.002 98.383 ± 0.012 76.853 ± 0.185 86.759 ± 0.020 78.495 ± 0.103
GMN – 98.39 ± 0.18 75.76 ± 0.42 87.14 ± 0.12 –

CRAWL 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259 – –

NEURALWALKER 0.053 ± 0.002⋆ 98.692 ± 0.079 76.903 ± 0.457 86.977 ± 0.012 78.189 ± 0.188

Table 2: Test performance on LRGB (Dwivedi et al., 2022). Metrics with mean ± std of 4 runs
are reported. NeuralWalker improves the best baseline by 10% and 13% on PascalVOC-SP and
COCO-SP respectively. GPS-tuned refers to the results reported by Tönshoff et al. (2023a) with a
more extensive hyperparameter tuning compared to GPS (Rampášek et al., 2022).

PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT
# GRAPHS 11.4K 123.3K 15.5K 15.5K 529.4K
AVG. # NODES 479.4 476.9 150.9 150.9 30.1
AVG. # EDGES 2,710.5 2,693.7 307.3 307.3 61.0
METRIC F1 � F1 � AP � MAE � MRR �

GCN 0.2078 ± 0.0031 0.1338 ± 0.0007 0.6860 ± 0.0050 0.2460 ± 0.0007 0.4526 ± 0.0006
GIN 0.2718 ± 0.0054 0.2125 ± 0.0009 0.6621 ± 0.0067 0.2473 ± 0.0017 0.4617 ± 0.0005
GATEDGCN 0.3880 ± 0.0040 0.2922 ± 0.0018 0.6765 ± 0.0047 0.2477 ± 0.0009 0.4670 ± 0.0004

GPS 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005 –
GPS-TUNED 0.4440 ± 0.0065 0.3884 ± 0.0055 0.6534 ± 0.0091 0.2509 ± 0.0014 0.4703 ± 0.0014
EXPHORMER 0.3975 ± 0.0037 0.3455 ± 0.0009 0.6527 ± 0.0043 0.2481 ± 0.0007 –
GRIT – – 0.6988 ± 0.0082 0.2460 ± 0.0012 –
GRED – – 0.7133 ± 0.0011 0.2455 ± 0.0013 –
GMN 0.4393 ± 0.0112 0.3974 ± 0.0101 0.7071 ± 0.0083 0.2473 ± 0.0025 –

CRAWL – – 0.7074 ± 0.0032 0.2506 ± 0.0022 –

NEURALWALKER 0.4912 ± 0.0042 0.4398 ± 0.0033 0.7096 ± 0.0078 0.2463 ± 0.0005 0.4707 ± 0.0007

layers can exacerbate issues such as over-squashing and over-smoothing. In contrast, the sequence
models considered in this work, such as transformers and SSMs, are universal approximators for
any sequence-to-sequence functions (Yun et al., 2020; Wang & Xue, 2024). Furthermore, the proof
of Thm. 4.4 suggests that random walk-based models without message passing cannot be more
expressive than 1-WL. Consequently, our model is provably more expressive than CRaWL.

Finally, we have the following complexity results:
Theorem 4.5 (Complexity). The complexity of NeuralWalker, when used with Mamba (Gu & Dao,
2023), is O(kdn(γℓ+ β)), where k, d, n, γ, ℓ, β denote the number of layers, hidden dimensions, the
(maximum) number of nodes, sampling rate, length of random walks and average degree, respectively.

5 EXPERIMENTS

In this section, we compare NeuralWalker to several SOTA models on a diverse set of 19 benchmark
datasets. Furthermore, we provide a detailed ablation study on components of our model. Appendix D
provides more details about the experimental setup, datasets, runtime, and additional results.

5.1 BENCHMARKING NEURALWALKER TO STATE-OF-THE-ART METHODS

We compare NeuralWalker against several popular message passing GNNs, GTs, and walk-based mod-
els. GNNs include GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al.,
2019), GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2017). Models using global
message passing include GraphTrans (Wu et al., 2021), SAT (Chen et al., 2022a), GPS (Rampášek
et al., 2022), Exphormer (Shirzad et al., 2023), NAGphormer (Chen et al., 2022b), GRIT (Ma et al.,
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2023), Polynormer (Deng et al., 2024), GREG (Ding et al., 2024), GMN (Behrouz & Hashemi,
2024). Walk-based models include CRaWL (Tönshoff et al., 2023b). To ensure diverse benchmark-
ing tasks, we use datasets from Benchmarking-GNNs (Dwivedi et al., 2023), Long-Range Graph
Benchmark (LRGB) (Dwivedi et al., 2022), Open Graph Benchmark (OGB) (Hu et al., 2020a), and
node classification datasets from Platonov et al. (2022); Leskovec & Krevl (2014).

Benchmarking GNNs. We evaluated NeuralWalker’s performance on five tasks from the Bench-
marking GNNs suite: ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER (results in Table 1).
Notably, NeuralWalker achieved SOTA results on three out of five datasets and matched the best-
performing model on the remaining two. While GRIT exhibited superior performance on the two
small synthetic datasets, its scalability to larger datasets, such as those in LRGB, is limited, as
demonstrated in the subsequent paragraph. It is worth noting that NeuralWalker significantly outper-
forms the previous SOTA random walk-based model, CRaWL. This improvement can be attributed
to the integration of message passing and the Mamba architecture, as discussed in Sections 4. A
more extensive empirical comparison of them is also given in Section 5.3. These results underscore
NeuralWalker’s robust performance across diverse synthetic benchmark tasks.
Long-Range Graph Benchmark. We further evaluated NeuralWalker’s ability to capture long-
range dependencies on the recently introduced LRGB benchmark, encompassing five datasets de-
signed to test this very capability (details in Rampášek et al. (2022); Dwivedi et al. (2022)). Note
that for PCQM-Contact, we used the filtered Mean Reciprocal Rank (MRR), introduced by Tönshoff
et al. (2023a), as the evaluation metric. NeuralWalker consistently outperformed all baseline methods
across all but two tasks (see Table 2). Notably, on PascalVOC-SP and COCO-SP, where previous work
has shown the importance of long-range dependencies (e.g, Tönshoff et al. (2023a)), NeuralWalker
significantly surpassed the SOTA models by a substantial margin, up to a 10% improvement.
Open Graph Benchmark. To assess NeuralWalker’s scalability on massive quantities of graphs,
we evaluated it on the OGB benchmark, which includes datasets exceeding 100K graphs each.
For computational efficiency, we employed 1D CNNs as the sequence layers in this experiment.
NeuralWalker achieved SOTA performance on two out of the three datasets (Table 3), demonstrating
its ability to handle large-scale graph data. However, the OGBG-PPA dataset presented challenges
with overfitting. On this dataset, NeuralWalker with just one block outperformed its multiblock
counterpart on this dataset, suggesting potential limitations in regularization needed for specific tasks.

Node classification on large graphs. We further explored NeuralWalker’s ability to handle large
graphs in node classification tasks. We integrated NeuralWalker with Polynormer (Deng et al., 2024),
the current SOTA method in this domain. In this experiment, NeuralWalker utilized very long walks
(up to 1,000 steps) with a low sampling rate (≤ 0.01) to capture long-range dependencies, replacing
the transformer layer within Polynormer that still struggles to scale to large graphs even with linear
complexity. Despite eschewing transformer layers entirely, NeuralWalker achieved performance
comparable to Polynormer (Table 5), showing its scalability and effectiveness in modeling large
graphs. Indeed, the complexity of NeuralWalker can be flexibly controlled by its sampling rate and
length, as shown in Section 4. A notable highlight is NeuralWalker’s ability to efficiently process the
massive pokec dataset (1.6M nodes) using a single H100 GPU with 80GB of RAM.

5.2 MASKED POSITIONAL ENCODING PRETRAINING

Explicitly utilizing random walks as sequences offers a significant advantage: it allows for the
application of advanced language modeling techniques. As a proof-of-concept, we adapt the BERT
pretraining strategy (Devlin et al., 2019) to the positional encodings hpe of random walks. Our
approach involves randomly replacing 15% of the positions in hpe with a constant vector of 0.5, with
the objective of recovering the original binary encoding vectors for these positions. This method can
be further enhanced by combining it with other established pretraining strategies, such as attributes
masking (Hu et al., 2020b). Our experiments, as shown in Table 4, demonstrate that combining
these strategies (i.e., we first pretrain the model with masked positional encoding prediction and then
continue with masked attributes pretraining) significantly enhances performance on the ZINC dataset.

5.3 ABLATION STUDIES

Here, we dissect the main components of our model architecture to gauge their contribution to
predictive performance and to guide dataset-specific hyperparameter optimization.
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Table 3: Test performance on OGB (Hu et al., 2020a). Met-
rics with mean ± std of 10 runs are reported.

DATASET OGBG-MOLPCBA OGBG-PPA OGBG-CODE2
# GRAPHS 437.9K 158.1K 452.7K
AVG. # NODES 26.0 243.4 125.2
AVG. # EDGES 28.1 2,266.1 124.2
METRIC AP � ACC � F1 �

GCN 0.2424 ± 0.0034 0.6857 ± 0.0061 0.1595 ± 0.0018
GIN 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026

GRAPHTRANS 0.2761 ± 0.0029 – 0.1830 ± 0.0024
SAT – 0.7522 ± 0.0056 0.1937 ± 0.0028
GPS 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

CRAWL 0.2986 ± 0.0025 – –

NEURALWALKER 0.3086 ± 0.0031 0.7888 ± 0.0059 0.1957 ± 0.0025

Table 4: Comparison of different
pretraining strategies on the ZINC
dataset. The pretraining was per-
formed on ZINC without using any
external data.

STRATEGY ZINC�

W/O PRETRAIN 0.063 ± 0.001
MASKED ATTR. 0.061 ± 0.001
MASKED PE 0.055 ± 0.004
MASKED PE + ATTR. 0.053 ± 0.002
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Figure 3: Validation performance when varying sampling rate and length of random walks.

We perform ablation studies on three datasets, from small to large graphs. Our analysis focuses
on three key aspects: 1) We demonstrate the crucial role of integrating local and global message
passing with random walks. 2) we evaluate various options for the sequence layer to identify the
optimal choice. 3) We examine the impact of varying the sampling rate and length of random walks,
revealing a trade-off between expressivity and computational complexity. Notably, these parameters
allow explicit control over model complexity, a unique feature of our approach compared to subgraph
MPNNs, which typically exhibit high complexity. All ablation experiments were performed on
the validation set, with results averaged over four random seeds. The comprehensive findings are
summarized in Table 6. Since NeuralWalker’s output depends on the sampled random walks at
inference, we demonstrate its robustness to sampling variability in Appendix D.5.

Effect of local and global message passing. Motivated by the limitations of the depth-first nature
inherent in pure random walk-based encoders, as discussed in Section 3.3.4, this study investigates
the potential complementary benefits of message passing. We conducted an ablation study (Table 6a)
comparing NeuralWalker’s variants with and without local or global message passing modules. For
local message passing, we employed a GIN with edge features (Xu et al., 2019; Hu et al., 2019).
Global message passing was explored using virtual node layers (Gilmer et al., 2017) and transformer
layers (Vaswani et al., 2017; Chen et al., 2022a). Keeping the sequence layer fixed to Mamba, we
observed that NeuralWalker with GIN consistently outperforms the version without, confirming
the complementary strengths of random walks and local message passing. The impact of global
message passing, however, varies across datasets, a phenomenon also noted by Rosenbluth et al.
(2024). Interestingly, larger graphs like PascalVOC-SP demonstrate more significant gains from
global message passing. This observation suggests promising directions for future research, such as
developing methods to automatically identify optimal configurations for specific datasets.

Comparison of sequence layer architectures. We investigated the impact of various sequence layer
architectures on walk embeddings, as shown in Table 6b. The architectures examined include CNN,
transformer (with RoPE), and SSMs like S4 and Mamba. Surprisingly, transformers consistently
underperformed compared to other architectures, contrasting with their good performance in other
domains. This discrepancy may be attributed to the unique sequential nature of walk embeddings,
which might not align well with the attention mechanism utilized by transformers.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Test performance on node classification benchmarks from Platonov et al. (2022) and
Leskovec & Krevl (2014). Metrics with mean ± std of 10 runs are reported.

DATASET ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER TOLOKERS QUESTIONS POKEC
# NODES 22,662 24,492 10,000 11,758 48,921 1,632,803
# EDGES 32,927 93,050 39,402 519,000 153,540 30,622,564
METRIC ACC � ACC � ROC AUC � ROC AUC � ROC AUC � ACC �

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 75.45 ± 0.17
GRAPHSAGE 85.74 ± 0.67 53.63 ± 0.39 93.51 ± 0.57 82.43 ± 0.44 76.44 ± 0.62 –
GAT(-SEP) 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71 72.23 ± 0.18

GPS 82.00 ± 0.61 53.10 ± 0.42 90.63 ± 0.67 83.71 ± 0.48 71.73 ± 1.47 OOM
NAGPHORMER 74.34 ± 0.77 51.26 ± 0.72 84.19 ± 0.66 78.32 ± 0.95 68.17 ± 1.53 76.59 ± 0.25
EXPHORMER 89.03 ± 0.37 53.51 ± 0.46 90.74 ± 0.53 83.77 ± 0.78 73.94 ± 1.06 OOM
POLYNORMER 92.55 ± 0.37 54.81 ± 0.49 97.46 ± 0.36 85.91 ± 0.74 78.92 ± 0.89 86.10 ± 0.05

NEURALWALKER 92.92 ± 0.36 54.58 ± 0.36 97.82 ± 0.40 85.56 ± 0.74 78.52 ± 1.13 86.46 ± 0.09

Table 6: Ablation studies of NeuralWalker. Average validation performance over 4 runs is reported.

(a) Comparison of local and global message passing
(MP). The sequence layer is fixed to Mamba. VN de-
notes the virtual node and Trans. denotes the trans-
former layer.

MP (LOCAL + GLOBAL) ZINC� CIFAR10� PASCALVOC-SP�

GIN + W/O 0.085 80.885 0.4611
W/O + W/O 0.090 79.035 0.4525

GIN + VN 0.078 78.610 0.4672
GIN + TRANS. 0.083 80.755 0.4877
GIN + W/O 0.085 80.885 0.4611

(b) Comparison of sequence layers. Local and global
MP are selected to give the best validation perfor-
mance except for the highlighted row corresponding
to CRaWL, which does not use message passing.

SEQUENCE LAYER ZINC� CIFAR10� PASCALVOC-SP�

MAMBA 0.078 80.885 0.4877
MAMBA (W/O BID) 0.089 74.910 0.4522
S4 0.082 77.970 0.4559
CNN 0.088 80.665 0.4652
TRANS. 0.084 72.850 0.4316
CNN (W/O MP) 0.116 78.760 0.3954

Mamba emerged as the top performer across all datasets, consistently outperforming its predecessors,
S4 and the unidirectional version. However, CNNs present a compelling alternative for large datasets
due to their faster computation (typically 2-3x faster than Mamba on A100). This presents a practical
trade-off: Mamba offers superior accuracy but requires more computational resources. CNNs
might be preferable for very large datasets or real-time applications where speed is critical. In
our benchmarking experiments, we employed Mamba as the sequence layer, except for the OGB
datasets. Finally, as predicted by Thm. 4.4, both our Mamba and CNN variants with message passing
significantly outperform CRaWL which relies on CNNs and does not use any message passing.

Impact of random walk sampling strategies. We examined the impact of varying random walk
sampling rates and lengths on NeuralWalker’s performance, using Mamba as the sequence layer.
While we adjusted the sampling rate during training, we fixed it at 1.0 for inference to maximize
coverage. As anticipated, a larger number of longer walks led to improved coverage of the graph’s
structure, resulting in clear performance gains (Figure 3). However, this improvement plateaus as
walks become sufficiently long, indicating diminishing returns beyond a certain threshold. Crucially,
these performance gains come at the cost of increased computation time, which scales linearly with
both sampling rate and walk length, as predicted by Thm. 4.5. This underscores the trade-off between
expressivity and complexity, which can be explicitly controlled through these two hyperparameters. In
practice, this trade-off between performance and computational cost necessitates careful consideration
of resource constraints when selecting sampling rates and walk lengths. Future research could explore
more efficient sampling strategies to minimize the necessary sampling rate.

6 CONCLUSION

We have introduced NeuralWalker, a powerful and flexible architecture that combines random walks
and message passing to address the expressivity limitations of structural encoding in graph learning.
By treating random walks as sequences and leveraging advanced sequence modeling techniques,
NeuralWalker achieves superior performance compared to existing GNNs and GTs, as demonstrated
through extensive experiments on various benchmarks. Looking forward, we acknowledge opportuni-
ties for further exploration. First, investigating more efficient random walk sampling strategies with
improved graph coverage could potentially enhance NeuralWalker’s performance. Second, exploring
more self-supervised learning techniques for learning on random walks holds promise for extending
NeuralWalker’s applicability to unlabeled graphs.
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Appendix

This appendix provides both theoretical and experimental materials and is organized as follows:
Section A provides a more detailed background of related work. Section B presents some additional
remarks on Neural Walker, including limitations and societal impacts. Section C provides theoretical
background and proofs. Section D provides experimental details and additional results.

A BACKGROUND

A.1 MESSAGE-PASSING GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) refine node representations iteratively by integrating information
from neighboring nodes. Xu et al. (2019) (Xu et al., 2019) provide a unifying framework for this
process, consisting of three key steps: AGGREGATE, COMBINE, and READOUT. Various GNN
architectures can be seen as variations within these functions.

In each layer, the AGGREGATE step combines representations from neighboring nodes (e.g., using
sum or mean), which are then merged with the node’s previous representation in the COMBINE
step. This is typically followed by a non-linear activation function, such as ReLU. The updated
representations are then passed to the next layer, and this process repeats for each layer in the network.
These steps primarily capture local sub-structures, necessitating a deep network to model interactions
across the entire graph.

The READOUT function ultimately aggregates node representations to the desired output granularity,
whether at the node or graph level. Both AGGREGATE and READOUT steps must be permutation
invariant. This framework offers a comprehensive perspective for understanding the diverse array of
GNN architectures.

A.2 TRANSFORMER ON GRAPHS

While Graph Neural Networks (GNNs) explicitly utilize graph structures, Transformers infer node
relationships by focusing on node attributes. Transformers, introduced by Vaswani et al. (2017), treat
the graph as a (multi-)set of nodes and use self-attention to determine node similarity.

A Transformer consists of two main components: a self-attention module and a feed-forward neural
network (FFN). In self-attention, input features X are linearly projected into query (Q), key (K), and
value (V) matrices. Self-attention is then computed as:

Attn(X) := softmax

(
QKT

√
dout

)
V ∈ Rn×dout ,

where dout is the dimension of Q. Multi-head attention, which concatenates multiple instances of this
equation, has proven effective in practice.

A Transformer layer combines self-attention with a skip connection and FFN:

X′ = X+Attn(X),

X′′ = FFN(X′) := ReLU(X′W1)W2.

Stacking multiple layers forms a Transformer model, resulting in node-level representations. However,
due to self-attention’s permutation equivariance, Transformers produce identical representations for
nodes with matching attributes, regardless of their graph context. Thus, incorporating structural
information, typically through positional or structural encoding such as Laplacian positional encoding
or random walk structural encoding (Dwivedi et al., 2021; Rampášek et al., 2022), is crucial.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 STATE SPACE MODELS

As we treat random walks explicitly as sequences, recent advances in long sequence modeling could
be leveraged directly to model random walks. SSMs are a type of these models that have shown
promising performance in long sequence modeling. SSMs map input sequence x(t) ∈ R to some
response sequence y(t) ∈ R through an implicit state h(t) ∈ RN and three parameters (A,B,C):

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t).

For computational reasons, structured SSMs (S4) (Gu et al., 2021) proposes to discretize the above
system by introducing a time step variable ∆ and a discretization rule, leading to a reparametrization
of the parameters A and B. Then, the discrete-time SSMs can be computed in two ways either as a
linear recurrence or a global convolution. Recently, a selection mechanism (Gu & Dao, 2023) has
been introduced to control which part of the sequence can flow into the hidden states, making the
parameters in SSMs time and data-dependent. The proposed model, named Mamba, significantly
outperforms its predecessors and results in several successful applications in many tasks. More
recently, a bidirectional version of Mamba (Zhu et al., 2024) has been proposed to handle image data,
by averaging the representations of both forward and backward sequences after each Mamba block.

B ADDITIONAL REMARKS ON NEURAL WALKER

B.1 ILLUSTRATION OF THE POSITION ENCODINGS FOR RANDOM WALKS

Here, we give a visual example of the positional encodings that we presented in Section 3.2. The
example is shown in Figure 4.
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Figure 4: An example of the identity encoding and adjacency encoding presented in Secion 3.2. On
the random walk colored in red, we have idW [4, 3] = 1 as w4 = w0 = 6. We have adjW [3, 2] = 1
as w3w0 ∈ E is an edge of the graph.

B.2 GLOBAL MESSAGE PASSING TECHNIQUES

Even though long random walks could be sufficient to capture global information, we empirically
found that global message passing is still useful in certain tasks. Here, we consider two techniques,
namely virtual node and transformer layer. Similar to Gilmer et al. (2017); Tönshoff et al. (2023b), a
virtual node layer could be a simple solution to achieve this. Such a layer is explicitly defined as the
following:

ht
V (⋆) = MLP

(
ht−1
V (⋆) +

∑

v∈V

hmp
V (v)

)
, hvn

V (v) := hmp
V (v) + ht

V (⋆), (8)

where MLP is a trainable MLP, ht
V (⋆) represents the virtual node embedding at block t and h0

V (⋆) =
0. Alternatively, one could use any transformer layer to achieve this. The vanilla transformer layer is
given by:

hattn
V (v) = hmp

V (v) + Attn(hmp
V )(v), htrans

V (v) = hattn
V (v) +MLP(hattn

V (v)), (9)
where Attn is a trainable scaled dot-product attention layer (Vaswani et al., 2017). This layer is
widely used in recent GT models (Ying et al., 2021; Chen et al., 2022a; Rampášek et al., 2022).
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B.3 LIMITATIONS

NeuralWalker demonstrates good scalability to large graphs. However, one potential limitation lies in
the trade-off between the sampling efficiency of random walks and graph coverage for very large
graphs. In this work, we explored a computationally efficient sampling strategy but probably not
with the optimal graph coverage. Investigating more efficient random walk sampling strategies that
improve coverage while maintaining computational efficiency could further enhance NeuralWalker’s
performance.

Additionally, while our experiments focused on modern SSMs like Mamba and S4, which provide
efficient implementations, we acknowledge the potential oversight of classical Recurrent Neural
Networks (RNNs) such as LSTMs. This consideration is particularly relevant for scenarios with
unbounded walk lengths, where RNN-based NeuralWalker models might achieve greater expressivity
than their SSM-based counterparts, given RNNs’ superior expressivity in terms of circuit complexity
when processing unbounded sequences (Merrill et al., 2024).

Finally, we identify a scarcity of publicly available graph datasets with well-defined long-range
dependencies. While datasets like LRGB provide valuable examples, the limited number of such
datasets hinders comprehensive evaluation and the potential to push the boundaries of long-range
dependency capture in graph learning tasks. Furthermore, based on our experiments and Tönshoff
et al. (2023a), only 2 out of the 5 datasets in LRGB seem to present long-range dependencies.

B.4 BROADER IMPACTS

While our research primarily focuses on general graph representation learning, we recognize the
importance of responsible and ethical application in specialized fields. When utilized in domains such
as drug discovery or computational biology, careful attention must be paid to ensuring the trustwor-
thiness and appropriate use of our method to mitigate potential misuse. Our extensive experiments
demonstrate the significant potential of our approach in both social network and biological network
analysis, highlighting the promising societal benefits our work may offer in these specific areas.

C THEORETICAL RESULTS

In this section, we present the background of random walks on graphs and the theoretical properties
of NeuralWalker.

Definition C.1 (Walk feature vector). For any graph G = (V,E, x, z) and W ∈ Wℓ(G), the walk
feature vector XW of W is defined, by concatenating the node and edge feature vectors as well as
the positional encodings along W of window size s = ℓ, as

XW = (x(wi), z(wiwi+1), hpe[i])i=0,...,ℓ ∈ R(ℓ+1)×dwalk ,

where hpe is the positional encoding in Section 3.2, z(wℓwℓ+1) = 0, and dwalk := d+ d′ + dpe. By
abuse of notation, we denote by W(G) the set of walk feature vectors on G, and by P (W(G)) a
distribution of walk feature vectors on G.

Lemma C.2. The walk feature vector with full graph coverage uniquely determines the graph, i.e.,
for two graphs G and G′ in Gn if there exists a walk W ∈ Wℓ(G) visiting all nodes on G and a walk
W ′ ∈ Wℓ visiting all nodes on G′ such that XW = XW ′ , then G and G′ are isomorphic.

Proof. The proof is immediate following the Observation 1 of (Tönshoff et al., 2023b).

Now if we replace the normalization factor Nv(Pm(Wℓ(G))) in the walk aggregator in Section 3.3.3
with a simpler deterministic constant mℓ/|V | and apply an average pooling followed by a linear layer
x 7→ u⊤x+ b ∈ R to the output of the walk aggregator, then the resulting function gf,m,ℓ : G → R
defined on the graph space G can be rewritten as the average of some function of walk feature vectors:

gf,m,ℓ(G) =
1

m

∑

W∈Pm(Wℓ(G))

f(XW ), (10)
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where
f(XW ) =

1

ℓ

∑

wi∈W

(u⊤fseq(hW )[i] + b), (11)

and hW defined in Eq. (1) depend on XW .

Note that the above replacement of the normalization factor is not a strong assumption. It is based on
the following lemmas:
Lemma C.3 ((Lovász, 1993)). Let G be a connected graph. For a random walk W ∼ P (W(G))
with W = (w0, w1, . . . , wt, . . . ), we denote by Pt the distribution of wt. Then,

π(v) =
d(v)

2|E|
,

where d(v) denotes the degree of node v, is the (unique) stationary distribution, i.e., if P0 = π then
Pt = P0 for any t. If P0 = π(v), then we have

E[Nv(Pm(Wℓ(G)))] =
mℓd(v)

2|E|
.

In particular, if G is a regular graph, π(v) = 1/|V | is the uniform distribution nad
E[Nv(Pm(Wℓ(G)))] = mℓ/|V |.
Lemma C.4 ((Lovász, 1993)). If G is a non-bipartite graph, then Pt → π(v) as t → ∞.

The above two lemmas link the random normalization factor to the deterministic one.

If we have a sufficiently large number of random walks, by the law of large numbers, we have

gf,m,ℓ(G)
a.s.−−→ gf,ℓ := EXW∼P (Wℓ(G))[f(XW )], (12)

where a.s.−−→ denotes the almost sure convergence. This observation inspires us to consider the
following integral probability metric (Müller, 1997) comparing distributions of walk feature vectors:

dF,ℓ(G,G′) := sup
f∈F

∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]
∣∣ , (13)

where F is some functional class, such as the class of neural networks defined by the NeuralWalker
model. The following result provides us insight into the rate of convergence of gf,m,ℓ to gf,ℓ:

Theorem C.5 (Convergence rate). Assume that Var[f(XW )] = σ2 < ∞. Then, as m tends to
infinity, we have

√
m (gf,m,ℓ(G)− gf,ℓ(G))

d−→ N (0, σ2),

where d−→ denotes the convergence in distribution.

Proof. The proof follows the central limit theorem (Dudley, 2018).

dF,ℓ is actually a metric on the graph space Gn of bounded order n if F is a universal space and ℓ is
sufficiently large:
Theorem C.6. If F is a universal space and ℓ ≥ 4n3, then dF,ℓ : G × G → R+ is a metric on Gn

satisfying:

• (positivity) if G and G′ are non-isomorphic, then dF,ℓ(G,G′) > 0.

• (symmetry) dF,ℓ(G,G′) = dF,ℓ(G
′, G).

• (triangle inequality) dF,ℓ(G,G′′) ≤ dF,ℓ(G,G′) + dF,ℓ(G
′, G′′).

Proof. The symmetry and triangle inequality are trivial by definition of dF,ℓ. Let us focus on
the positivity. We assume that dF,ℓ(G,G′) = 0. By the universality of F , for any ε > 0 and
f ∈ C(Rdwalk), the space of bounded continuous functions on Rdwalk , there exists a g ∈ F such that

∥f − g∥∞ ≤ ε.
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We then make the expansion
∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]

∣∣ ≤∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW∼P (Wℓ(G))[g(XW )]
∣∣+∣∣EXW∼P (Wℓ(G))[g(XW )]− EXW ′∼P (Wℓ(G′))[g(XW ′)]
∣∣+∣∣EXW ′∼P (Wℓ(G′))[g(XW ′)]− EXW ′∼P (Wℓ(G′))[f(XW ′)]
∣∣ .

The first and third terms satisfy
∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW∼P (Wℓ(G))[g(XW )]

∣∣ ≤ EXW∼P (Wℓ(G)) |f(XW )− g(XW )| ≤ ε,

and the second term equals 0 by assumption. Hence,
∣∣EXW∼P (Wℓ(G))[f(XW )]− EXW ′∼P (Wℓ(G′))[f(XW ′)]

∣∣ ≤ 2ε,

for all f ∈ C(Rdwalk) and ε > 0. This implies P (Wℓ(G)) = P (Wℓ(G
′)) by Lemma 9.3.2 of Dudley

(2018), meaning that the distribution of walk feature vectors of length ℓ in G is identical to the
distribution in G′. Without loss of generality, we assume that G and G′ are connected and our
arguments can be easily generalized to each connected component if G is not connected. Now for a
random walk W ∼ P (W(G)), let us denote by TW the number of steps to reach every node on the
graph. Then E[TW ] is called the cover time. A well-known result in graph theory (Aleliunas et al.,
1979) states that the cover time is upper bounded:

E[TW ] ≤ 4|V ||E|.

Therefore the cover time for graphs in Gn is uniformly bounded by E[TW ] ≤ 4n3 as |V | ≤ n and
|E| ≤ n2. Then, by applying Markov’s inequality, we have

P[TW < 4n3 + ϵ] = 1− P[TW ≥ 4n3 + ϵ] ≥ 1− E[TW ]

4n3 + ϵ
≥ ϵ

4n3 + ϵ
> 0,

for any ϵ > 0. Thus, P[TW ≤ 4n3] > 0 which means that there exists a random walk of not greater
than 4n3 that visits all nodes in G. As a result, there exists a random walk of length ℓ reaching all
nodes for ℓ ≥ 4n3. P (Wℓ(G)) = P (Wℓ(G

′)) implies that there also exists a random walk W ′ in G′

such that XW = XW ′ . As a consequence, G and G′ are isomorphic following Lemma C.2.

Now if we remove the condition on the random walk length ℓ, we still have a pseudometric space
without the positivity in Thm C.6. Moreover, we define the following isomorphism test:

Definition C.7 (k-subgraph isomorphism test). We define that two graphs G and G′ are not distin-
guishable by the k-subgraph isomorphism test iff they have the same set of induced subgraphs of size
k, i.e., Sk(G) = Sk(G

′) with Sk(G) denoting the set of induced subgraphs of size k.

And we have the following result which provides a weak positivity of dF,ℓ for any ℓ > 0:

Theorem C.8. If G and G′ are distinguishable by the (⌊ℓ/2⌋+ 1)-subgraph isomorphism test, then
dF,ℓ(G,G′) > 0.

Proof. We assume that dF,ℓ(G,G′) = 0. Using the same arguments as in Thm. C.6, we have
P (Wℓ(G)) = P (Wℓ(G

′)). Let k := ⌊ℓ/2⌋+ 1. For any induced subgraph H ∈ Sk(G), there exists
a walk of length ℓ, in the worst case, that visits all its nodes. To see this, let us assume that G is
connected without loss of generality. Then, there exists a spanning tree of H . Through a depth-first
search on this spanning tree, there exists a walk of length 2(k − 1) ≤ ℓ that visits all the nodes, by
visiting each edge at most twice in the spanning tree. Now as G and G′ have the same distributions of
walk feature vectors, the same walk feature vector should be found in G′, thus H ∈ Sk(G

′). Thus, we
have Sk(G) ⊆ Sk(G

′). Similarly, we have the other inclusion and therefore Sk(G) = Sk(G
′).

C.1 STABILITY RESULTS

Now that we have a metric space (Gn, dF,ℓ) with ℓ ≥ 4n3, we can show some useful properties of
gf,ℓ:
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Theorem C.9 (Lipschiz continuity of gf,ℓ). For any G and G′ in Gn, if F is a functional space
containing f , we have

|gf,ℓ(G)− gf,ℓ(G
′)| ≤ dF,ℓ(G,G′). (14)

Proof. The proof is immediate from the definition of dF,ℓ.

The Lipschiz property is needed for stability to perturbations in the sense that if G′ is close to G in
(Gn, dF,ℓ), then their images by gf,ℓ (output of the model) are also close.

C.2 EXPRESSIVITY RESULTS

Theorem C.10 (Injectivity of gf,ℓ). Assume F is a universal space. If G and G′ are non-isomorphic
graphs, then there exists a f ∈ F such that gf,ℓ(G) ̸= gf,ℓ(G

′) if ℓ ≥ 4max{|V |, |V ′|}3.

Proof. We can prove this by contrapositive. We note that G,G′ ∈ Gnmax with nmax :=
max{|V |, |V ′|}. Assume that for all f ∈ F , gf,ℓ(G) = gf,ℓ(G

′). This implies that dF,ℓ(G,G′) = 0.
Then by the positivity of dF,ℓ in Gnmax

, G and G′ are isomorphic.

The injectivity property ensures that our model with a sufficiently large number of sufficiently long
(≥ 4n3) random walks can distinguish between non-isomorphic graphs, highlighting its expressive
power.

Complementary to the above results, we now show that the expressive power of our model exceeds
that of ordinary message passing neural networks even when considering random walks of small
size. Additionally, we show that the expressive power of our model is stronger than the subgraph
isomorphism test up to a certain size. We base the following theorem on NeuralWalker’s ability to
distinguish between substructures:

Theorem C.11. For any ℓ ≥ 2, NeuralWalker equipped with the complete walk set Wℓ is strictly more
expressive than 1-WL and the (⌊ℓ/2⌋+ 1)-subgraph isomorphism test, and thus ordinary MPNNs.

For the subgraph isomorphism test, we simply use the above theorem and Thm. C.8 which suggests
that there exists a f ∈ F such that gf,ℓ(G) ̸= gf,ℓ(G

′) if G and G′ are distinguishable by the
(⌊ℓ/2⌋+ 1)-subgraph isomorphism test. Note that 1-WL distinguishable graphs are not necessarily
included in (⌊ℓ/2⌋+ 1)-subgraph isomorphism distinguishable graphs as the size of WL-unfolding
subtrees could be arbitrarily large.

In order to prove the 1-WL expressivity, we first state a result on the expressive power of the walk
aggregator function. We show that there exist aggregation functions such that for a node v this
function counts the number of induced subgraphs that v is part of. Since v assumes a particular role
(also refered to as orbit) in the subgraph, we are essentially interested in the subgraph rooted at v.
In the following, let Gv denote the graph G rooted at node v. Then, the set xℓ(G, v) = {{Gv =
G[{w0, . . . , wk = v}],W = (w0, . . . , wℓ),W ∈ Wℓ(G)}} corresponds to the set of subgraphs with
root v that are identified when using random walks of size ℓ.

Lemma C.12. There exists a function hV
agg such that for any node v ∈ G, v′ ∈ G′ and walk length ℓ,

it holds that hV
agg(v) = hV

agg(v
′) if and only if xℓ(G, v) = xℓ(G

′, v′).

Proof. For simplicity, we assume graphs to be unlabeled, by noting that a generalization to the
labeled case requires only slight modifications. Recall that the positional encoding of a walk W
encodes the pairwise adjacency of nodes contained in W . More formally, for a length-ℓ walk
W ∈ Wℓ(G), the k-th row of the corresponding walk feature vector XW encodes the induced
subgraph G[{w0, . . . , wk}]. Assuming wk = v, we can also infer about the structural role of v in
G[{w0, . . . , wk}]. Now, the function hV

agg aggregates this induced subgraph information for sets of
subgraphs into node embeddings. That is, for a node v ∈ G and the set of walks Wℓ(G), the function
hV

agg(v) maps v to an embedding that aggregates the set {{Gv = G[{w0, . . . , wk = v}],W =
(w0, . . . , wℓ),W ∈ Wℓ(G)}}. By considering the complete set of walks Wℓ(G), we guarantee a
deterministic embedding. Assuming a sufficiently powerful neural network, it is easy to see that such
a function hV

agg can be realized by our model. The claim immediately follows.
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Table 7: Summary of the datasets Dwivedi et al. (2023; 2022); Hu et al. (2020a) used in this study.

DATASET # GRAPHS
AVG. # AVG. # DIRECTED

PREDICTION PREDICTION METRIC
NODES EDGES LEVEL TASK

ZINC 12,000 23.2 24.9 NO GRAPH REGRESSION MEAN ABS. ERROR
MNIST 70,000 70.6 564.5 YES GRAPH 10-CLASS CLASSIF. ACCURACY
CIFAR10 60,000 117.6 941.1 YES GRAPH 10-CLASS CLASSIF. ACCURACY
PATTERN 14,000 118.9 3,039.3 NO INDUCTIVE NODE BINARY CLASSIF. ACCURACY
CLUSTER 12,000 117.2 2,150.9 NO INDUCTIVE NODE 6-CLASS CLASSIF. ACCURACY

PASCALVOC-SP 11,355 479.4 2,710.5 NO INDUCTIVE NODE 21-CLASS CLASSIF. F1 SCORE
COCO-SP 123,286 476.9 2,693.7 NO INDUCTIVE NODE 81-CLASS CLASSIF. F1 SCORE
PEPTIDES-FUNC 15,535 150.9 307.3 NO GRAPH 10-TASK CLASSIF. AVG. PRECISION
PCQM-CONTACT 529,434 30.1 61.0 NO INDUCTIVE LINK LINK RANKING MRR
PEPTIDES-STRUCT 15,535 150.9 307.3 NO GRAPH 11-TASK REGRESSION MEAN ABS. ERROR

OGBG-MOLPCBA 437,929 26.0 28.1 NO GRAPH 128-TASK CLASSIF. AVG. PRECISION
OGBG-PPA 158,100 243.4 2,266.1 NO GRAPH 37-TASK CLASSIF. ACCURACY
OGBG-CODE2 452,741 125.2 124.2 YES GRAPH 5 TOKEN SEQUENCE F1 SCORE

Table 8: Summary of the datasets for transductive node classification Platonov et al. (2022); Leskovec
& Krevl (2014) used in this study.

DATASET HOMOPHILY SCORE # NODES # EDGES # CLASSES METRIC

ROMAN-EMPIRE 0.023 22,662 32,927 18 ACCURACY
AMAZON-RATINGS 0.127 24,492 93,050 5 ACCURACY
MINESWEEPER 0.009 10,000 39,402 2 ROC AUC
TOLOKERS 0.187 11,758 519,000 2 ROC AUC
QUESTIONS 0.072 48,921 153,540 2 ROC AUC
POKEC 0.000 1,632,803 30,622,564 2 ACCURACY

Notice that the above theorem is defined on the entire set of walks of up to size ℓ in order to ensure
a complete enumeration of subgraphs. By using an aggregation function that fulfills Lemma C.12,
the resulting node embeddings encode the set of induced subgraphs that the nodes are part of. For
example, with walk length ℓ = 2, the node embeddings contain information about the number of
triangles that they are part of. In the subsequent message passing step, NeuralWalker propagates this
subgraph information. Analogously to e.g. Bouritsas et al. (2023), it can easily be shown that with
a sufficient number of such message passing layers and a powerful readout network, the resulting
graph representations are strictly more powerful than ordinary MPNNs, proving Thm. C.11 above.

C.3 COMPLEXITY RESULTS

Theorem C.13 (Complexity). The complexity of NeuralWalker, when used with the Mamba sequence
layer (Gu & Dao, 2023), is O(kdn(γℓ + β)), where k, d, n, γ, ℓ, β denote the number of layers,
hidden dimensions, the (maximum) number of nodes, sampling rate, length of random walks, and the
average degree, respectively.

Proof. The complexity of sampling random walks is O(nγℓ). The Mamba model with k layers and
hidden dimensions d operates on O(nγ) random walks of length ℓ. As Mamba scales linearly to
the sequence length, number of layers, and hidden dimensions (Gu & Dao, 2023), its complexity is
O(kdnγℓ). The complexity of k message passing layers of hidden dimensions d is O(kdnβ) where
β should be much smaller than γℓ in general.

D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we provide implementation details and additional experimental results

D.1 DATASET DESCRIPTION

We provide details of the datasets used in our experiments. For each dataset, we follow their respective
training protocols and use the standard train/validation/test splits and evaluation metrics.

ZINC (MIT License) (Dwivedi et al., 2023). The ZINC dataset is a subset of the ZINC database,
containing 12,000 molecular graphs representing commercially available chemical compounds. These
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graphs range from 9 to 37 nodes in size, with each node corresponding to a ”heavy atom” (one
of 28 possible types) and each edge representing a bond (one of 3 types). The goal is to predict
the constrained solubility (logP) using regression. The dataset is conveniently pre-split for training,
validation, and testing, with a standard split of 10,000/1,000/1,000 molecules for each set, respectively.

MNIST and CIFAR10 (CC BY-SA 3.0 and MIT License) Dwivedi et al. (2023). MNIST and
CIFAR10 are adapted for graph-based learning by converting each image into a graph. This is
achieved by segmenting the image into superpixels using SLIC (Simple Linear Iterative Clustering)
and then connecting each superpixel to its 8 nearest neighbors. The resulting graphs maintain the
original 10-class classification task and standard dataset splits (i.e., 55K/5K/10K train/validation/test
for MNIST and 45K/5K/10K for CIFAR10.).

PATTERN and CLUSTER (MIT License) (Dwivedi et al., 2023). PATTERN and CLUSTER are
synthetic graph datasets constructed using the Stochastic Block Model (SBM). They offer a unique
challenge for inductive node-level classification, where the goal is to predict the class label of unseen
nodes. PATTERN: This dataset presents the task of identifying pre-defined sub-graph patterns (100
possible) embedded within the larger graph. These embedded patterns are generated from distinct
SBM parameters compared to the background graph, requiring the model to learn these differentiating
connection characteristics. CLUSTER: Each graph in CLUSTER consists of six pre-defined clusters
generated using the same SBM distribution. However, only one node per cluster is explicitly labeled
with its unique cluster ID. The task is to infer the cluster membership (ID) for all remaining nodes
based solely on the graph structure and node connectivity information.

PASCALVOC-SP and COCO-SP (Custom license for Pascal VOC 2011 respecting Flickr terms
of use, and CC BY 4.0 license) (Dwivedi et al., 2022). PascalVOC-SP and COCO-SP are graph
datasets derived from the popular image datasets Pascal VOC and MS COCO, respectively. These
datasets leverage SLIC superpixellization, a technique that segments images into regions with similar
properties. In both datasets, each superpixel is represented as a node in a graph, and the classification
task is to predict the object class that each node belongs to.

PEPTIDES-FUNC and PEPTIDES-STRUCT (CC BY-NC 4.0) (Dwivedi et al., 2022). Peptides-func
and Peptides-struct offer complementary views of peptide properties by leveraging atomic graphs
derived from the SATPdb database. Peptides-func focuses on multi-label graph classification, aiming
to predict one or more functional classes (out of 10 non-exclusive categories) for each peptide. In
contrast, Peptides-struct employs graph regression to predict 11 continuous 3D structural properties
of the peptides.

PCQM-CONTACT (CC BY 4.0) (Dwivedi et al., 2022). The PCQM-Contact dataset builds upon
PCQM4Mv2 (Hu et al., 2020a) by incorporating 3D molecular structures. This enables the task of
binary link prediction, where the goal is to identify pairs of atoms (nodes) that are considered to be
in close physical proximity (less than 3.5 angstroms) in 3D space, yet appear far apart (more than
5 hops) when looking solely at the 2D molecular graph structure. The standard evaluation metric
for this ranking task is Mean Reciprocal Rank (MRR). As noticed by Tönshoff et al. (2023a), the
original implementation by Dwivedi et al. (2022) suffers from false negatives and self-loops. Thus,
we use the filtered version of the MRR provided by Tönshoff et al. (2023a).

OGBG-MOLPCBA (MIT License) (Hu et al., 2020a). The ogbg-molpcba dataset, incorporated
by the Open Graph Benchmark (OGB) (Hu et al., 2020a) from MoleculeNet, focuses on multi-task
binary classification of molecular properties. This dataset leverages a standardized node (atom)
and edge (bond) feature representation that captures relevant chemophysical information. Derived
from PubChem BioAssay, ogbg-molpcba offers the task of predicting the outcome of 128 distinct
bioassays, making it valuable for studying the relationship between molecular structure and biological
activity.

OGBG-PPA (CC-0 license) (Hu et al., 2020a). The PPA dataset, introduced by OGB (Hu et al.,
2020a), focuses on species classification. This dataset represents protein-protein interactions within
a network, where each node corresponds to a protein and edges denote associations between them.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Edge attributes provide additional information about these interactions, such as co-expression levels.
We employ the standard dataset splits established by OGB (Hu et al., 2020a) for our analysis.

OGBG-CODE2 (MIT License) (Hu et al., 2020a). CODE2 (Hu et al., 2020a) is a dataset containing
source code from the Python programming language. It is made up of Abstract Syntax Trees where
the task is to classify the sub-tokens that comprise the method name. We use the standard splits
provided by OGB (Hu et al., 2020a).

ROMAN-EMPIRE (MIT License) (Platonov et al., 2022). This dataset creates a graph from the
Roman Empire Wikipedia article. Each word becomes a node, and edges connect words that are
either sequential in the text or grammatically dependent (based on the dependency tree). Nodes are
labeled by their syntactic role ( 17 most frequent roles are selected as unique classes and all the other
roles are grouped into the 18th class). We use the standard splits provided by Platonov et al. (2022).

AMAZON-RATINGS (MIT License) (Platonov et al., 2022). Based on the Amazon product co-
purchase data, this dataset predicts a product’s average rating (5 classes). Products (books, etc.) are
nodes, connected if frequently bought together. Mean fastText embeddings are used for product
descriptions as node features and focus on the largest connected component for efficiency (5-core).
We use the standard splits provided by Platonov et al. (2022).

MINESWEEPER (MIT License) (Platonov et al., 2022). This is a synthetic dataset with a regular
100x100 grid where nodes represent cells. Each node connects to its eight neighbors (except edges).
20% of nodes are randomly mined. The task is to predict which are mines. Node features are
one-hot-encoded numbers of neighboring mines, but are missing for 50% of nodes (marked by a
separate binary feature). This grid structure differs from other datasets due to its regularity (average
degree: 7.88). Since mines are random, both adjusted homophily and label informativeness are very
low. We use the standard splits provided by Platonov et al. (2022).

TOLOKERS (MIT License) (Platonov et al., 2022). This dataset features workers (nodes) from
crowdsourcing projects. Edges connect workers who have collaborated on at least one of the 13
projects. The task is to predict banned workers. Node features include profile information and
performance statistics. This graph (11.8K nodes, avg. degree 88.28) is significantly denser compared
to other datasets. We use the standard splits provided by Platonov et al. (2022).

QUESTIONS (MIT License) (Platonov et al., 2022). This dataset focuses on user activity prediction.
Users are nodes, connected if they answered each other’s questions (Sept 2021 - Aug 2022). The task
is to predict which users remained active. User descriptions (if available) are encoded using fastText
embeddings. Notably, 15% lack descriptions and are identified by a separate feature. We use the
standard splits provided by Platonov et al. (2022).

POKEC (unknown License) (Leskovec & Krevl, 2014). This dataset was retrieved from
SNAP (Leskovec & Krevl, 2014) and preprocessed by Lim et al. (2021). The dataset contains
anonymized data of the whole network of Pokec, the most popular online social network in Slovakia
which has been provided for more than 10 years and connects more than 1.6 million people. Profile
data contains gender, age, hobbies, interests, education, etc, and the task is to predict the gender. The
dataset was not released with a license. Thus, we only provide numerical values without any raw
texts from the dataset.

D.2 COMPUTING DETAILS

We implemented our models using PyTorch Geometric (Fey & Lenssen, 2019) (MIT License).
Experiments were conducted on a shared computing cluster with various CPU and GPU configurations,
including a mix of NVIDIA A100 (40GB) and H100 (80GB) GPUs. Each experiment was allocated
resources on a single GPU, along with 4-8 CPUs and up to 60GB of system RAM. The run-time of
each model was measured on a single NVIDIA A100 GPU.
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Table 9: Hyperparameters for the 5 datasets from GNN Benchmarks (Dwivedi et al., 2023).

HYPERPARAMETER ZINC MNIST CIFAR10 PATTERN CLUSTER
# BLOCKS 3 3 3 3 16
HIDDEN DIM 80 80 80 80 32
SEQUENCE LAYER MAMBA (BIDIRECTIONAL)
LOCAL MESSAGE PASSING GIN
GLOBAL MESSAGE PASSING VN NONE NONE VN VN
DROPOUT 0.0 0.0 0.0 0.0 0.0
GRAPH POOLING SUM MEAN MEAN – –

RW SAMPLING RATE 1.0 0.5 0.5 0.5 0.5
RW LENGTH 50 50 50 100 200
RW POSITION ENCODING WINDOW SIZE 8 8 8 16 32
BATCH SIZE 50 32 32 32 32
LEARNING RATE 0.002 0.002 0.002 0.002 0.01
# EPOCHS 2000 100 100 100 100
# WARMUP EPOCHS 50 5 5 5 5
WEIGHT DECAY 0.0 1E-6 1E-6 0.0 0.0

# PARAMETERS 502K 112K 112K 504K 525K
TRAINING TIME (EPOCH/TOTAL) 16S/8.4H 90S/2.5H 95S/2.6H 57S/1.6H 241S/6.7H

Table 10: Hyperparameters for the 5 datasets from LRGB (Dwivedi et al., 2022).

HYPERPARAMETER PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT

# BLOCKS 6 6 6 6 3
HIDDEN DIM 52 56 56 56 80
SEQUENCE LAYER MAMBA (BIDIRECTIONAL)
LOCAL MESSAGE PASSING GIN
GLOBAL MESSAGE PASSING TRANS. NONE VN VN VN
DROPOUT 0.0 0.0 0.0 0.0 0.0
GRAPH POOLING – – MEAN MEAN –

RW SAMPLING RATE 0.5 0.25 0.5 0.5 0.5
RW LENGTH 100 100 100 100 75
RW POSITION ENCODING WINDOW SIZE 16 16 16 32 16
BATCH SIZE 32 32 32 32 256
LEARNING RATE 0.002 0.002 0.002 0.004 0.001
# EPOCHS 200 200 200 200 150
# WARMUP EPOCHS 10 10 10 10 10
WEIGHT DECAY 1E-06 0.0 0.0 0.0 0.0

# PARAMETERS 556K 492K 530K 541K 505K
TRAINING TIME (EPOCH/TOTAL) 218S/12H 1402S/78H 112S/6.2H 112S/6.2H 528S/22H

D.3 HYPERPARAMETERS

Given the large number of hyperparameters and datasets, we did not perform an exhaustive search
beyond the ablation studies in Section 5.3. For each dataset, we then adjusted the number of layers,
the hidden dimension, the learning rate, the weight decay based on hyperparameters reported in the
related literature (Rampášek et al., 2022; Tönshoff et al., 2023b; Deng et al., 2024; Tönshoff et al.,
2023a).

For the datasets from Benchmarking GNNs (Dwivedi et al., 2023) and LRGB (Dwivedi et al., 2022),
we follow the commonly used parameter budgets of 500K parameters.

For the node classification datasets from Platonov et al. (2022) and Leskovec & Krevl (2014), we
strictly follow the experimental setup from the state-of-the-art method Polynormer (Deng et al., 2024).
We only replace the global attention blocks from Polynormer with NeuralWalker’s walk encoder
blocks and use the same hyperparameters selected by Polynormer (Deng et al., 2024).

We use the AdamW optimizer throughout our experiments with the default beta parameters in Pytorch.
We use a linear warm-up increase of the learning rate at the beginning of the training followed by
its cosine decay as in Rampášek et al. (2022). The test sampling rate is always set to 1.0 if not
specified. The detailed hyperparameters used in NeuralWalker as well as the model sizes and runtime
on different datasets are provided in Table 9, 10, 11, and 12.
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Table 11: Hyperparameters for the 3 datasets from OGB (Hu et al., 2020a).

HYPERPARAMETER OGBG-MOLPCBA OGBG-PPA OGBG-CODE2
# BLOCKS 4 1 3
HIDDEN DIM 500 384 256
SEQUENCE LAYER CONV. CONV. CONV.
LOCAL MESSAGE PASSING GATEDGCN GIN GIN
GLOBAL MESSAGE PASSING VN PERFORMER TRANS.
DROPOUT 0.4 0.4 0.0
GRAPH POOLING MEAN MEAN MEAN

RW SAMPLING RATE 0.5 0.5 0.5
RW LENGTH 25 200 100
RW POSITION ENCODING WINDOW SIZE 8 32 64
BATCH SIZE 512 32 32
LEARNING RATE 0.002 0.002 0.0003
# EPOCHS 100 200 30
# WARMUP EPOCHS 5 10 2
WEIGHT DECAY 0.0 0.0 0.0

# PARAMETERS 13.0M 3.1M 12.5M
TRAINING TIME (EPOCH/TOTAL) 226S/6.3H 671S/37H 1597S/13.3H

Table 12: Hyperparameters for node classification datasets from Platonov et al. (2022) and Leskovec
& Krevl (2014). The other hyperparameters strictly follow Polynormer (Deng et al., 2024).

HYPERPARAMETER ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER TOLOKERS QUESTIONS POKEC

SEQUENCE LAYER MAMBA CONV.
DROPOUT 0.3 0.2 0.3 0.1 0.2 0.1

RW SAMPLING RATE 0.01 0.01 0.01 0.01 0.01 0.001
RW TEST SAMPLING RATE 0.1 0.1 0.1 0.1 0.05 0.001
RW LENGTH 1000 1000 1000 1000 1000 500
RW POSITION ENCODING WINDOW SIZE 8 8 8 8 8 8
LEARNING RATE 0.0005 0.0005 0.0005 0.001 5E-5 0.0005

TRAINING TIME (EPOCH/TOTAL) 0.50S/0.35H 0.6S/0.45H 0.22S/0.12H 0.67S/0.19H 0.67S/0.32H 6.44S/4.5H

D.4 ADDITIONAL RESULTS FOR ABLATION STUDIES

We provide more detailed results for ablation studies in Table 13. A time comparison of CNN and
Mamba used as the sequence layers in NeuralWalker is presented in Table 14.

Table 13: Ablation studies of NeuralWalker on different choices of the sequence layer, local and
global message passing. Validation performances with mean ± std of 4 runs are reported. We compare
different choices of sequence layers (Mamba, S4, CNN, and Transformer), local (with or without
GIN) and global (virtual node (VN), Transformer, or none (w/o)) message passing layers. Note that
the row highlighted with the light gray color corresponds to the choices of CRaWL (Tönshoff et al.,
2023b).

SEQUENCE LAYER LOCAL MP GLOBAL MP ZINC CIFAR10 PASCALVOC-SP

MAMBA GIN VN 0.078 ± 0.004 78.610 ± 0.524 0.4672 ± 0.0077
MAMBA GIN TRANS. 0.083 ± 0.003 80.755 ± 0.467 0.4877 ± 0.0042
MAMBA GIN W/O 0.085 ± 0.003 80.885 ± 0.769 0.4611 ± 0.0036
MAMBA W/O VN 0.086 ± 0.008 78.025 ± 0.552 0.4570 ± 0.0064
MAMBA W/O W/O 0.090 ± 0.002 79.035 ± 0.850 0.4525 ± 0.0044
MAMBA (W/O BID) GIN VN 0.089 ± 0.004 74.910 ± 0.547 0.4522 ± 0.0063
S4 GIN VN 0.082 ± 0.004 77.970 ± 0.506 0.4559 ± 0.0064
CNN GIN VN 0.088 ± 0.004 80.240 ± 0.767 0.4652 ± 0.0058
CNN GIN TRANS. 0.092 ± 0.004 80.665 ± 0.408 0.4790 ± 0.0081
CNN GIN W/O 0.102 ± 0.003 80.020 ± 0.279 0.4155 ± 0.0050
CNN W/O W/O 0.116 ± 0.003 78.760 ± 0.242 0.3954 ± 0.0080
TRANS. GIN VN 0.084 ± 0.003 72.850 ± 0.373 0.4316 ± 0.0072

D.5 DETAILED RESULTS AND ROBUSTNESS TO SAMPLING VARIABILITY

Since NeuralWalker’s output depends on the sampled random walks, we evaluate its robustness to
sampling variability. Following Tönshoff et al. (2023b), we measure the local standard deviation
(local std) by computing the standard deviation of performance metrics obtained with five independent
sets of random walks (details in Tönshoff et al. (2023b)). The complete results for all datasets are
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Table 14: Training time (Epoch/Total) comparison when using CNN and Mamba as the sequence
layer in NeuralWalker. The time values are measure on a single A100 GPU.

SEQUENCE LAYER ZINC CIFAR10 PASCALVOC-SP

MAMBA 16S/8.4H 95S/2.6H 218S/12H
CNN 8.9S/5H 29S/0.8H 71S/3.9H

presented in Table 15. Notably, by comparing the local std to the cross-model std obtained from
training different models with varying random seeds, we consistently observe a smaller local std.
This finding suggests that NeuralWalker’s predictions are robust to the randomness inherent in the
random walk sampling process.

Table 15: Detailed results for all the datasets. Note that different metrics are used to measure the
performance on the datasets. For each experiment, we provide the cross-model std using different
random seeds and the local std using different sets of random walks.

DATASET METRIC
TEST VALIDATION

SCORE CROSS MODEL STD LOCAL STD SCORE CROSS-MODEL STD

ZINC MAE 0.0646 0.0007 0.0005 0.0782 0.0038
MNIST ACC 0.9876 0.0008 0.0003 0.9902 0.0006
CIFAR10 ACC 0.8003 0.0019 0.0009 0.8125 0.0053
PATTERN ACC 0.8698 0.0001 0.0001 0.8689 0.0003
CLUSTER ACC 0.7819 0.0019 0.0004 0.7827 0.0007

PASCALVOC-SP F1 0.4912 0.0042 0.0019 0.5053 0.0084
COCO-SP F1 0.4398 0.0033 0.0011 0.4446 0.0030
PEPTIDES-FUNC AP 0.7096 0.0078 0.0014 0.7145 0.0033
PEPTIDES-STRUCT AP 0.2463 0.0005 0.0004 0.2389 0.0021
PCQM-CONTACT MRR 0.4707 0.0007 0.0002 0.4743 0.0006

OGBG-MOLPCBA AP 0.3086 0.0031 0.0010 0.3160 0.0032
OGBG-PPA ACC 0.7888 0.0059 0.0004 0.7460 0.0058
OGBG-CODE2 F1 0.1957 0.0025 0.0005 0.1796 0.0031

ROMAN-EMPIRE ACC 0.9292 0.0036 0.0005 0.9310 0.0032
AMAZON-RATINGS ACC 0.5458 0.0036 0.0009 0.5491 0.0049
MINESWEEPER ROC AUC 0.9782 0.0040 0.0003 0.9794 0.0047
TOLOKERS ROC AUC 0.8556 0.0075 0.0010 0.8540 0.0096
QUESTIONS ROC AUC 0.7852 0.0113 0.0009 0.7902 0.0086
POKEC ACC 0.8646 0.0009 0.0001 0.8644 0.0003
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