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ABSTRACT

One of the key challenges in multimodal variational autoencoders (VAEs) is infer-
ring a joint representation from arbitrary subsets of modalities. The state-of-the-art
approach to achieving this is to sub-sample the modality subsets and learn to gen-
erate all modalities from them. However, this sub-sampling in the mixture-based
approach has been shown to degrade other important features of multimodal VAEs,
such as quality of generation, and furthermore, this degradation is theoretically
unavoidable. In this study, we focus on another approach to learning the joint
representation by bringing unimodal inferences closer to joint inference from all
modalities, which does not have the above limitation. Although there have been
models that can be categorized under this approach, they were derived from dif-
ferent backgrounds; therefore, the relation and superiority between them were
not clear. To take a unified view, we first categorize them as coordination-based
multimodal VAEs and show that these can be derived from the same multimodal
evidence lower bound (ELBO) and that the difference in their performance is
related to whether they are more tightly lower bounded. Next, we point out that
these existing coordination-based models perform poorly on cross-modal genera-
tion (or cross-coherence) because they do not learn to reconstruct modalities from
unimodal inferences. Therefore, we propose a novel coordination-based model that
incorporates these unimodal reconstructions, which avoids the limitations of both
mixture and coordination-based models. Experiments with diverse and challenging
datasets show that the proposed model mitigates the limitations in multimodal
VAEs and performs well in both cross-coherence and generation quality.

1 INTRODUCTION

Deep generative models have recently shown high performance on multimodal data, including images
and captions. In particular, multimodal learning with variational autoencoders (VAEs) (Kingma &
Welling, 2013; Rezende et al., 2014) has attracted much attention to obtain a joint representation from
modalities (Wu & Goodman, 2018; Shi et al., 2019; Sutter et al., 2021). Such representations can be
used for predicting common concepts from these modalities or for generating other modalities.

An essential challenge of multimodal VAEs is inferring a joint representation from subsets of
modalities. State-of-the-art models attempt to accomplish this by training to generate all modalities
from a joint representation inferred from missing (or sub-sampled) modalities. These are called
mixture-based multimodal VAEs (Daunhawer et al., 2021a), and examples include MMVAE (Shi
et al., 2019) and MoPoE-VAE (Sutter et al., 2021) 1. However, it has been pointed out that the quality
of modality generation is lower than that of unimodal VAEs, and furthermore, cross-generation
between modalities, or cross-coherence, can be degraded. This is an inherent limitation on mixture-
based VAEs due to modality sub-sampling during training, and theoretical and empirical evidence
shows that this limitation cannot be avoided (Daunhawer et al., 2021a).

To alleviate this issue, we focus on another approach in multimodal VAEs that brings the representation
inferred from each modality closer to that inferred from all modalities. This approach avoids the

1Daunhawer et al. (2021a) also include a special case of MVAE (Wu & Goodman, 2018) in mixture-based
models. However, we focus on the mixture-based nature of cross-generation of modalities from subsets as their
shortcomings, so we exclude MVAE, which does not perform cross-generation.
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limitation of degraded generation quality because its objective does not include generation from
sub-sampled modalities. Models that fit this approach have been proposed, but their objectives are
derived from different backgrounds. For example, MVTCAE (Hwang et al., 2021), which can be
regarded as one of them, is derived its objective from the total correlation; therefore, its relationship to
the multimodal VAEs’ objective, multimodal evidence lower bound (ELBO), is not clear. Moreover,
another model of this approach, MMJSD (Sutter et al., 2020), has been shown experimentally to
perform worse than MVTCAE (Hwang et al., 2021), but the theoretical reason for this is unclear.

We first categorize them as coordination-based multimodal VAEs 2 and show that these models can
be viewed as unified, i.e., all are derived from multimodal ELBO, and that the differences in models
correspond to whether they are more tightly lower bounded. We also prove that MVTCAE encourages
unimodal posterior to approach the average of joint posterior, which might be one of the reasons for
learning good inference. Next, we point out that the existing coordination-based VAEs still have
a shortcoming in cross-coherence since no generation from unimodal inferences is included in the
training. We then propose a novel objective that introduces unimodal reconstruction terms. Since this
objective does not include cross-generation, it also avoids the generation degradation issue of the
mixture-based models while mitigating the issue of coordination-based models. Note that our model
alleviates the issues by only changing the objective, unlike other methods for improving multimodal
VAEs by changing the architecture, such as introducing additional latent variables (Tsai et al., 2018;
Hsu & Glass, 2018; Sutter et al., 2020; Palumbo et al., 2022).

We conducted experiments on five diverse multimodal datasets, including challenging ones, e.g.,
those that cannot be adequately trained with existing models or require additional architecture
for adequate training. We confirmed that the proposed method outperforms existing mixture- and
coordination-based models in terms of cross-coherence and generation quality.

2 MULTIMODAL VAES

Suppose that we have a set of multimodal examples, where each example is a set of M modalities
X = {xm}Mm=1. We assume that these examples are derived from data distribution pd(X) and that
each example X has a corresponding common latent concept z, i.e., a joint representation.

Given a training set {X(i)}Ni=1, our goals are to infer a joint representation from the subset of
modalities XS ⊆ X3 and to generate another subset XS′ ⊆ X via that representation. In other words,
we aim to obtain an inference p(z|X) and a joint distribution p(X, z) =

∏
xm∈X p(xm|z)p(z).

To achieve this, it is a natural choice to use VAEs (Kingma & Welling, 2013), deep generative models
that can learn inference to acquire representations from data in addition to the generation. The
generative model pθ(X|z) =

∏
m:xm∈X pθ(xm|z) is parameterized by deep neural networks, and

the prior of the latent variable is set as a standard Gaussian p(z) = N (0, I). The objective of VAEs
is to maximize the expected log-likelihood over data distribution Since it is tractable to optimize
this likelihood directly, we introduce an approximated posterior qϕ(z|X) and instead optimize the
following evidence lower bound (ELBO) on the expected log-likelihood:

L(θ, ϕ) ≡ Epd(X)[Eqϕ(z|X)[log pθ(X|z)]−DKL(qϕ(z|X)||p(z))] ≤ Epd(X)[pθ(X)]. (1)

In this paper, the model group that maximizes this multimodal ELBO is collectively called multimodal
VAEs. We aim to optimize Eq. 1 to obtain a joint representation and generate modalities from it given
a modality subset XS . However, Eq. 1 only includes the inference given all modalities; therefore, it
does not learn to infer representations from subsets.

2.1 MIXTURE-BASED MULTIMODAL VAES

An inference from subsets is commonly expressed as a combination of unimodal posteri-
ors from each modality. Product of experts (PoE) (Hinton, 2002; Wu & Goodman, 2018)
qPoE
ϕ (z|XS) ≡ p(z)

∏
m:xm∈XS

qϕm
(z|xm)4 and mixture of experts (MoE) qMoE

ϕ (z|XS) ≡
2The term coordination is taken from coordination representations, a category of multimodal learning (Bal-

trušaitis et al., 2018), in which representations inferred from different modalities are learned close together.
3We denote a subset of the multimodal set X by XS respectively, where S represents a subset of {1, ..,M}.
4qϕm is the unimodal inference of modality xm.
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∑
m:xm∈XS

qϕm
(z|xm) are known as ways to aggregate inferences. Moreover, the following mixture

of products of experts (MoPoE) (Sutter et al., 2021) generalizes them:

qMoPoE
ϕ (z|X) ≡

∑
S:XS∈P(X)

ωS

 ∏
m:xm∈XS

p(z)qϕm(z|xm)

 =
∑

S:XS∈P(X)

ωSq
PoE
ϕS

(z|XS), (2)

where
∑

S:XS∈P(X) ωS = 1, ωS ∈ [0, 1], and P(X) is a powerset of X . This MoPoE aggregation is
equivalent to PoE when XS = X and MoE when |XS | = 1 for all XS ∈ P(X).

Substituting the MoPoE-aggregated joint posterior (Eq. 2) into Eq. 1, we obtain the following:

L(θ, ϕ) ≥ Epd(X)

 ∑
S:XS∈P(X)

ωS

[
EqPoE

ϕ
(z|XS)[log pθ(X|z)]−DKL(q

PoE
ϕ (z|XS)||p(z))

] ≡ LM (θ, ϕ).

(3)

Multimodal VAEs with Eq. 3 are called mixture-based multimodal VAEs (Daunhawer et al., 2021a).
MMVAE (Shi et al., 2019) and MoPoE-VAE (Sutter et al., 2021) are members of this family.

Comparing with Eq. 1, we can see that the reconstruction term (the first term in the expectation) of
Eq. 1 is designed to generate all modalities from the sub-sampled modality subset. In other words,
mixture-based multimodal VAEs encourage cross-generation during training, aiming at inferring a
consistent joint representation from subset modalities and generating modalities from it.

However, mixture-based VAEs have a severe issue in generating modalities, which is one of the
essential goals of multimodal VAEs. Daunhawer et al. (2021a) show that the following inequality
holds between Eq. 3 and the expected marginal log-likelihood:

Epd(X)[log pθ(X)] ≥ ∆(X) + LM (θ, ϕ;X), (4)

where ∆(X) ≡
∑

S:XS∈P(X) wSH(X{1,...,M}\S |XS)
5 is the discrepancy independent of the

learning parameters. This inequality means that multimodal ELBO of mixture-based VAEs cannot be
tighter than this discrepancy ∆(X) no matter how much it is maximized. Therefore, the quality of
their generating modalities always degrades compared to unimodal VAEs. Moreover, this discrepancy,
by definition, depends on how much different information one modality subset X{1,...,M}\S has
compared to the rest of them XS . Therefore, the more information specific to each modality, the
larger this quantity and the worse the generation quality.

This also leads to degrading cross-coherence (Shi et al., 2019), or the ability to generate the same
semantic meaning across modalities conditionally. Intuitively, mixture-based VAEs are required to
take sub-sampled subsets as inputs to generate the rest, but these inputs have insufficient information
for that, resulting in degraded cross-generation.

2.2 AVOIDING THE LIMITATION OF MULTIMODAL VAES

What brings about this irreducible discrepancy ∆(X)? According to the proof by Daunhawer
et al. (2021a) (see B.4 in Daunhawer et al. (2021a)), it is due to the inclusion in the objective of a
cross-generation term, i.e., a term that generates unobserved modalities from observed modalities.
Therefore, one promising way to avoid this limitation is to not include in the objective of the
multimodal VAE the cross-generation term6.

Note that MVAE (Wu & Goodman, 2018), which first uses PoE for the joint posterior, uses the sum
of ELBOs over all modality subsets as the objective, but does not include cross-generation and only
includes reconstruction of subsets7, thus enabling high-quality generation. However, MVAE cannot
perform cross-generation between different modalities because its objective does not include terms to
encourage it. Despite this significant drawback, determining how to work around the limitation of
mixture-based models leads to our proposed model described later.

5H(X{1,...,M}\S |XS) is the conditional entropy of X{1,...,M}\S given XS .
6Note that the reconstruction term Eq(z|XS)[log p(XS′ |z)] (where XS′ ∈ XS), i.e., all the modalities to be

generated are subsets of the input, is not included in the cross-generation term discussed here.
7Wu & Goodman (2018) state that MVAE utilizes a sub-sampling training paradigm, but this means “ELBOs

with sub-sampled modality sets as input”, i.e., each ELBO does not include cross-generation term.
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3 COORDINATION-BASED MULTIMODAL VAES

MVTCAE (Hwang et al., 2021) and MMJSD (Sutter et al., 2020) have been proposed to learn to infer
joint representation from subset modalities by bringing joint and unimodal posteriors closer together.
We find that they omit sub-sampling in the objective unless the posterior is a mixture distribution and
thus can learn the joint representation without being affected by the limitation of the mixture-based
VAEs. We first categorize them as a unified coordination-based multimodal VAEs8.

3.1 MVTCAE AND MMJSD

The objectives of MVTCAE and MMJSD are expressed as follows:

Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]−

∑M
m=0 πmDm

]
,Dm =

{
DKL(qϕ(z|X)||qϕm(z|xm)) (MVTCAE)

DKL(qϕm(z|xm)||fM(z|X)) (MMJSD),

(5)

(6)

where
∑

m πm = 1, πm ∈ [0, 1], and function fM defines the mixture of {qϕm
(z|xm)}Mm=0. For

simplicity of notation, we use qϕ0
(z|x0) ≡ p(z). We denote the entire objective of MVTCAE and

MMJSD as LC(θ, ϕ) and LC′
(θ, ϕ), respectively.

MVTCAE is derived as a lower bound for the total correlation9. When M = 2, this model is equal to
JMVAE (Suzuki et al., 2016). JMVAE uses a network for joint posterior separately from unimodal
posteriors, while MVTCAE represents joint posteriors by PoE-aggregating unimodal posteriors.

MMJSD is derived by replacing the KL divergence of the multimodal ELBO with the Jensen-Shannon
divergence. It is proved (in Lemma 2 in Sutter et al. (2020)) that LC′

(θ, ϕ) is a lower bound for
multimodal ELBO with fM(z|X) replaced by the dynamic prior: pf (z|X) = f({qϕm

(z|xm)}Mm=0),
where f is a function that encompasses each unimodal posterior, and Sutter et al. (2020) choose
the weighted PoE. This replacement can be thought of as introducing the prior knowledge that all
modalities have the same joint representation (Sutter et al., 2020).

Note that in Sutter et al. (2020), the posterior of MMJSD is assumed to be MoE, which is affected by
the limitation of mixture-based VAEs. Since we would like to focus on the properties of MMJSD
contributing to its coordination-based nature, we call MMJSD-PoE the model that replaces the
posterior in Eq. 6 with PoE. Compared to the objective of MVTCAE, the direction of KL divergence
in Eq. 6 is reversed: MVTCAE uses forward KL divergence, while MMJSD(-PoE) uses reverse KL
divergence. Hwang et al. (2021) show that MVTCAE performs better than MMJSD by experiment.

3.2 THE RELATION BETWEEN COORDINATION-BASED MULTIMODAL VAES

Because MVTCAE and MMJSD were proposed for different purposes, their relationship is unclear.
In particular, since MVTCAE was derived from the total correlation, it is unclear whether it belongs
to multimodal VAEs (i.e., valid ELBOs). We first show that MVTCAE is multimodal ELBO.

Lemma 1 The objective of MVTCAE LC(θ, ϕ) is equal to the multimodal ELBO in Eq. 1 with a
weighted PoE-based dynamic prior as its prior.

Proof 1 Following MMJSD, we introduce a weighted PoE-based dynamic prior for LC(θ, ϕ):

Epd(X)[Eqϕ(z|X)[log pθ(X|z)]−DKL(qϕ(z|X)||pf (z|X))]]

= Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]− Eqϕ(z|X)

[
M∑

m=0

πm log qϕ(z|X)− πm log qϕm(z|xm)

]]
= LC(θ, ϕ).□

Therefore, MVTCAE can be considered a member of multimodal VAEs. This indicates that the ob-
jective of JMVAE is also multimodal ELBO. Note that no assumption is made about the approximate
posterior in Lemma 1, and thus holds whether it is aggregated by PoE or MoE. Next, in special cases,
the objective of MVTCAE is an upper bound on the objective of MMJSD.

8The coordination-based VAEs limited to two modalities are not summarized here because they are not
scalable. See Section 5 for a description of them.

9We changed the coefficients and removed non-optimized terms from the original (Hwang et al., 2021).
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Lemma 2 If the posterior is MoE-aggregated, the objective of MVTCAE LC(θ, ϕ) is an upper bound
on that of MMJSD LC′

(θ, ϕ), i.e., the following inequality holds: LC(θ, ϕ) ≥ LC′
(θ, ϕ).

Proof 2 Lemma 1 shows that the objective of MVTCAE is equal to a multimodal ELBO with a
dynamic prior. In addition, Lemma 2 in Sutter et al. (2020) states that the objective of MMJSD is a
lower bound on multimodal ELBO with a dynamic prior and MoE-aggregated posterior. Therefore,
the objective of MMJSD is a lower bound on that of MVTCAE if the posterior is MoE-aggregated. □

Lemma 2 indicates that MVTCAE better approximates the true log-likelihood and thus promotes the
good generation, which provides one possible explanation as to why MVTCAE performs better than
MMJSD. Note that Lemma 2 comes from the fact that the joint posterior of the KL divergence in
MMJSD assumes MoE; therefore, it is still unclear whether this holds when the posterior is PoE.

Furthermore, we show why this direction of KL divergence for MVTCAE is good for multimodal
VAEs from a different perspective.

Lemma 3 The KL divergence for each m (Eq. 5) brings the average of the joint approximate posterior
qϕ(z|xm) =

∫
qϕ(z|X)pd(XC/m|xm)dXC/m closer to the unimodal posterior qϕm(z|xm).

Proof 3 Eq. 5 is transformed as follows10:
Epd(X)

[
DKL(qϕ(z|X)||qϕm (z|xm))

]
= Iϕ(XC/m; z|xm) + Epd(xm)

[
DKL[qϕ(z|xm)||qϕm (z|xm))]

]
, (7)

where Iϕ(XC/m; z|xm) is a conditional mutual information and holds greater than 0. Therefore,
maximizing the negative KL term (Eq. 5) leads to minimizing the second term in Eq. 7. □

Lemma 3 holds for any approximate posterior. Therefore, another possible reason MVTCAE is good
as multimodal VAEs is that maximizing Eq. 5 explicitly brings the unimodal posterior closer to the
joint posterior with the unimodal input.

If the joint inference is PoE-aggregation with Gaussian, the approximate posterior of any input can be
computed analytically. Therefore, the second term in Eq. 7 can be set to zero by using PoE-aggregate
posterior qϕ(z|xm) = p(z)qϕm(z|xm) instead of unimodal posterior qϕm(z|xm). From now on, we
use the PoE-aggregate posterior.

4 COORDINATED AND UNIMODAL RECONSTRUCTED MULTIMODAL VAE

If the inference can be properly learned, the inference from an arbitrary set of input XS can be com-
puted analytically as qϕ(z|XS) = p(z)

∏
m:xm∈XS

qϕm
(z|xm) due to the nature of PoE. However,

LC(θ, ϕ) only includes reconstruction from all modalities and does not include generation from
arbitrary modalities; thus, the performance of cross-modal generation might be degraded. On the
other hand, cross-generation in the objective conversely promotes generation degradation due to the
limitation of mixture-based models.
We propose to include the term for unimodal reconstruction in the objective to experience the gener-
ation from unimodal posterior during learning while avoiding these dilemmas. The reconstruction
term in Eq. 5 can be rewritten as

Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]

]
=

1

2
Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]

]
+

1

2

M∑
m=1

Epd(xm)

[
Eqϕ(z|xm)[log pθ(xm|z)]

]
,

(8)

where all inferences in Eq. 8 are made using PoE-aggregated posterior.

This rewritten objective can be converted to include all-modality and unimodal reconstruction, which
mitigates the shortcoming of coordination-based VAEs while avoiding the limitation of mixture-based
VAEs. We call this Coordinated and unimodal Reconstructed Multimodal VAE (CRMVAE).

The expected value for xm of the sum of the second term in Eq. 8 can also be transformed into a
reconstruction that includes another input as follows:

Epd(xm)

[
Eqϕ(z|xm)[log pθ(xm|z)]

]
= Epd(xm,xm′ )

[
Eqϕ(z|xm,xm′ )[log pθ(xm|z)]

]
. (9)

10This is an application of the derivation used for one or two modality inputs in (Hoffman & Johnson, 2016;
Vedantam et al., 2018) to multimodal inputs.
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Therefore, optimizing the unimodal reconstruction for each modality leads to the possibility of
reconstruction from any modality. This performance can be generalized beyond reconstruction to
improve the performance of cross-modal generation.

Note that theoretically, the same is true for the left-hand side of Eq. 8, i.e., from the nature of PoE, it
should be possible to learn inferences from any modality simply by optimizing the left-hand side of
Eq. 8. However, some inferences might be ignored in actual optimization. In other words, it is true
that if each inference is adequately learned, the joint inference will be adequate, but the converse is
not necessarily true. Our proposal is empirical and attempts to alleviate this problem of being ignored
by having each modality experience inference and generation. This simple method is effective for
cross-modal generation in a coordination-based setting, as we will show later in the results.

In the experiment, we set the coefficient in Eq. 8 from 1
2 to πm

11 to prevent the expected value term
from increasing when the modality increases and having too large an effect on the overall objective.

5 RELATED WORKS

There have been many studies of multimodal VAEs (Suzuki & Matsuo, 2022), and the early ones
before mixture-based required additional inference models. Suzuki et al. (2016) proposed to ap-
proximate the unimodal inference models to explicitly approach the joint posterior of VAEs, called
JMVAE. Vedantam et al. (2018) introduced TELBO, where the objective is composed of the sum
of ELBOs that take each set of modalities as input. M2VAE (Korthals et al., 2019) can be regarded
as a combination of JMVAE and TELBO, and VAEVAE (Wu & Goodman, 2019) excludes a KL
divergence term between the joint inference and prior from M2VAE. Except for TELBO, they can be
regarded as precursors to the coordination-based approach; however, the number of inference models
needed for these models grows exponentially with the number of modalities.

One important research direction in multimodal VAEs is the introduction of additional latent variables,
which includes hierarchical latent variables (Sutter & Vogt, 2021; Wolff et al., 2021; Vasco et al.,
2022) and modality-specific latent variables (Tsai et al., 2018; Hsu & Glass, 2018; Sutter et al., 2020;
Lee & Pavlovic, 2020; Daunhawer et al., 2021b; Palumbo et al., 2022). This paper aims to improve
the performance of multimodal VAEs in a different direction from them, i.e., whether limitations of
existing mixture-based models can be mitigated by changing the objective while maintaining the
same architecture. Note that our proposed model and the introduction of additional latent variables
are orthogonal concepts and can be easily incorporated into the proposed model.

6 EXPERIMENTS

We use the following five diverse datasets: MNIST-SVHN-Text (Sutter et al., 2020), PolyM-
NIST (Sutter et al., 2021), Translated-PolyMNIST (Daunhawer et al., 2021a), CUB Wah et al.
(2011), and Bimodal CelebA (Sutter et al., 2020). For a more description of the dataset, see the
appendix. These are commonly used in studies of multimodal VAEs, but to our knowledge, this is the
first study in that experiments have been conducted on all of these datasets. In particular, CUB and
Translated-PolyMNIST were noted to be challenging datasets that could not be successfully trained
in existing models (Daunhawer et al., 2021a). It also shows that Bimodal CelebA and CUB could
only be learned in models with additional latent variables (Sutter et al., 2020; Palumbo et al., 2022).

For models trained in all modalities, we evaluate both 1) cross-coherence and 2) generation quality
given arbitrary modalities. We measure each of them in terms of 1) the test accuracy of a pre-trained
classifier12 that predicts labels from cross-generated images and 2) the Fréchet inception distance
(FID) (Heusel et al., 2017) in cross-generated modalities. For MNIST-SVHN-Text, joint coherence
is also verified by generating random images in all modalities and evaluating whether all classes
predicted by them are consistent. Note that we evaluated the generated results of the text modality in
MNIST-SVHN-Text in terms of the Levenshtein distance from the true text (without space characters)
since we found that the pre-trained classifier from Sutter et al. (2021) did not correctly evaluate the
generated results (we discuss in the experimental results.) To assess the cross-coherence for CUB, we

11This leads to a change in the balance between the reconstruction and KL terms compared to other models as
the number of modalities increases. This will be examined in Appendix H.

12We used the pre-trained classifier in PolyMNIST and MNIST-SVHN-Text from Sutter et al. (2021).
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Table 1: Cross-coherence on MNIST-SVHN-Text. M, S, and T represent MNIST, SVHN, and Text.
The top row shows the modalities generated, and the second row shows modalities conditioned when
generating them. For example, the second column of the MVAE results (accuracy 0.30) represents
the cross-generation from S to M. A+B means that the modality in the row above is generated from
the modalities A and B. R represents the joint coherence of all modalities in a random generation.

M S T
MODEL R S T S+T M T M+T M S M+S
MVAE 0.04 0.30 0.11 0.30 0.36 0.29 0.67 0.13 0.20 0.22
MMVAE 0.12 0.81 0.99 0.91 0.39 0.44 0.41 0.48 0.40 0.44

Mixture MOPOE-VAE 0.12 0.82 0.99 0.94 0.35 0.37 0.36 0.49 0.42 0.51
MMJSD 0.09 0.81 0.99 0.90 0.39 0.41 0.40 0.44 0.37 0.40
MMJSD-POE 0.15 0.12 0.78 0.80 0.55 0.73 0.86 0.71 0.14 0.74

Coodination MVTCAE 0.09 0.23 0.86 0.90 0.59 0.78 0.80 0.76 0.27 0.79
CRMVAE 0.15 0.60 0.97 0.97 0.73 0.87 0.87 0.91 0.71 0.95

Table 2: FID scores for cross-
generation. Lower is better.

MODEL S→M M→S
MVAE 39.0 36.0
MMVAE 91.8 307.9
MOPOE-VAE 85.3 312.8
MMJSD 86.7 287.0
MMJSD-POE 70.0 141.4
MVTCAE 41.6 31.8
CRMVAE 24.1 37.3

SVHN SVHN

! Text! SVHN!MNIST

MNIST

MVAE

MoPoE

MVTCAE

CRMVAE

Figure 1: Visualization of cross-generation.

use the cosine similarity between the latent space of the two inferred modalities since there are no
labels. We also used this evaluation for Bimodal CelebA.

For the network architectures, we follow Sutter et al. (2020); Daunhawer et al. (2021a), with 64-
dimensional latent variables for Bimodal CelebA and CUB, 32 for MNIST-SVHN-Text, and 512 for
PolyMNIST and Translated-PolyMNIST. The distributions for image modalities are set to Laplace,
and text is set to categorical. We use Adam (Kingma & Ba, 2014) for optimization with a learning
rate of 0.0005 and a mini-batch size of 256. We set β (the coefficient of the KL divergence term in the
multimodal ELBO) to 1 for PolyMNIST and MNIST-SVHN-Text and 0.1 for Translated-PolyMNIST,
πm to 1

M+1 , and ωS to 1
2M

. We train 100 epochs for MNIST-SVHN-Text, 150 for CUB, 200 for
Bimodal CelebA, and 500 for PolyMNIST and Translated-PolyMNIST. All experimental results are
the average of three runs with different seeds. We implement them using PyTorch (Paszke et al.,
2019). Our experiments were performed using two machines with five NVIDIA Titan RTX GPUs.
We compare CRMVAE with MVAE, mixture-based VAEs (MMVAE, MoPoE, and MMJSD), and
coordination-based VAEs (MVTCAE and MMJSD-PoE), all with the same architecture settings.

6.1 MNIST-SVHN-TEXT

Table 1 shows the joint and cross-coherence results, and Table 2 shows the FID scores of images on
MNIST-SVHN-Text. First, we can confirm that MVAE has high generation quality but the lowest
cross-coherence since it learns only the modality reconstruction. We next find that mixture-based
models perform poorly in cross-generation of SVHN and Text13. According to the qualitative results
shown in Figure 1, the cross-generation of Text on MoPoE-VAE is unsuccessful. While Table 1
shows that cross-generation of MNIST appears to perform well, the qualitative results show that the
generated images are average with no variation. Table 2 indicates that FID scores of mixture-based
models on MNIST are significantly lower than these of MVAE, which corresponds to these results.

Existing coordination-based models mitigate this limitation and perform better on SVHN. Further-
more, FID scores show that the coordination-based models significantly outperform the mixture-
based models in terms of generating quality and are comparable to MVAE. Comparing MMJSD-PoE
and MVTCAE, MVTCAE performs better in terms of both cross-coherence and generation qual-

13Note that the results of Text differ significantly from the results of previous studies because the Levenshtein
distance is used for the generated results, not for the pre-trained classifiers. We find that the evaluation using the
Levenshtein distance is consistent with the qualitative results.
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Figure 2: Performance evaluation on PolyMNIST and Translated-PolyMNIST. The left panel for
each dataset shows the cross-coherence given subset of size corresponding to each number and the
right panel shows the FID score given subset (lower is better). The markers are the means of the three
runs, and the error bands are their standard deviations.

ity, confirming the effectiveness of MVTCAE experimentally. However, the performance of the
coordination-based is degraded, especially in cross-generation from SVHN.

CRMVAE mitigates coordination-based issues and significantly improves cross-coherence perfor-
mance. In particular, CRMVAE outperforms all existing methods, including mixture-based methods,
for cross-coherence of SVHN and Text. We also confirm that CRMVAE retains the advantage of the
coordination-based models, i.e., high-generation quality. In particular, we have confirmed the highest
quality of cross-generation on MNIST among all models that include MVAE. The visualization
results also confirm that CRMVAE achieves high coherence while maintaining high quality.

The performance of the joint coherence results with random images is poor compared to other studies,
which might be due in part to the different methods for evaluating text. The performance of the
coordination-based method is relatively high but not significant. The relationship between joint
coherence and coordination-based should be studied further.

6.2 POLYMNIST AND TRANSLATED-POLYMNIST

Figure 2 shows the results on PolyMNIST and Translated-PolyMNIST. Based on the above results, we
select MoPoE-VAE and MVTCAE as mixture-based and coordination-based models for comparison.
First the results of the existing models on PolyMNIST show the same trend as on MNIST-SVHN-Text,
i.e., there is a trade-off between cross-coherence and generation quality. CRMVAE mitigates these
limitations and achieves the highest cross-coherence while maintaining high generation quality. Note
that it might seem strange that both MVTCAE and CRMVAE produce lower quality when the number
of modalities increases. This is thought to be due to a decrease in the diversity of the generated data
distribution as the number of modalities increases.

Translated-PolyMNIST is a slightly modified PolyMNIST, but Daunhawer et al. (2021a) point out
that the generation quality and cross-coherence performance of mixed-based models is significantly
degraded on this dataset. Our experiments also confirm that most existing models fail to cross-generate
across modalities. CRMVAE, on the other hand, clearly improves cross-coherence, although not as
much as PolyMNIST. Next, CRMVAE has the highest generation quality, significantly outperforming
the mixture-based models. See Appendix I for visualization of the generated images.

6.3 CUB AND BIMODAL CELEBA

Figures 3 and 4 show the quantitative and qualitative results for CUB and Bimodal CelebA. We
examine the generation quality and cross-coherence performance as an ablation, when varying β.
First, the FID score indicates that MVAEs have high generation quality, while MoPoE-VAEs have
significantly lower quality. In most cases, the FID score does not change much or worsen when β
is increased, while the FID score for MoPoE-VAE improves slightly. This is thought to be because
increasing β in MoPoE-VAE corresponds to making the distribution closer to the standard Gaussian,
which diminishes the effect of generation from sub-sampling. Furthermore, the performance of the
coordination-based methods, including CRMVAE, is close to that of MVAE, indicating that they do
not have a generation quality issue on these challenging datasets.

8
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Figure 3: Left: Performance of the cosine similarity of the two modalities in latent space (higher is
better, left) and the FID score of the image generated from text (right) for varying β in the CUB dataset.
Right: Visualization of the CUB images generated by each model (β = 10, bottom) conditioned on
each text (top). The number in each column of each model represents the number of the text being
conditioned. Different rows correspond to different sample results.

Figure 4: Left: Performance of the cosine similarity (left), classification accuracy (center), and FID
score (right) for varying β in the Bimodal CelebA dataset. Right: Visualization of the Bimodal
CelebA images generated by each model (β = 5, bottom) conditioned on each text (top).

Next, the evaluation of cosine similarity shows that MVAE and MoPoE-VAE do not change that
much when β is increased, while the coordination-based models, including CRMVAE, improve when
β is increased. This is because, in the coordination-based models, the term adjusted by β corresponds
to the term that brings the inference of all modalities closer to that of each modality. Compared
to MVTCAE, CRMVAE performs better for Bimodal CelebA for all values of β and for CUB
when β is large. Furthermore, the cross-coherence with pre-trained classifiers in Bimodal CelebA
also shows that CRMVAE performs better than MVTCAE. Note that MoPoE-VAE has the highest
cross-coherence value, but as the qualitative results show, this only improves classification accuracy
at the expense of image quality, e.g., diversity (as is the case for MNIST in MNIST-SVHN-Text).

Qualitative results showed the following limitations: MVAE failed to produce images corresponding
to the text, and MoPoE-VAE produced only average or blurred images. Comparing MVTCAE and
CRMVAE, CRMVAE produces more appropriately conditioned images. For example, in Bimodal
CelebA, Text 3 contains a male attribute and CRMVAE produces a corresponding face image, while
MVTCAE produces some female face images.

7 CONCLUSION AND DISCUSSION

We focused on coordination-based multimodal VAEs to avoid the limitations of multimodal VAEs.
We first discuss the new relation among coordination-based multimodal VAEs, point out the issue
of unimodal inference not learning from reconstruction in them, and then introduce a new objective
involving unimodal reconstruction. Experiments show that the proposed model mitigates exist-
ing models’ limitations (both mixture-based and coordination-based) and shows overall superior
performance on diverse datasets for generation quality and cross-coherence.

One limitation of CRMVAE is that there still remains a trade-off between generation quality and
cross-coherence. For example, in the PolyMNIST experiment, CRMVAE performed best in cross-
coherence, but the FID score was worse than MVTCAE. The performance of joint coherence was
also confirmed to be limited. In addition, although we used several diverse datasets to evaluate
performance, these datasets are much smaller than the various multimodal information obtained from
the real world. Therefore, we should validate our model using such large multimodal information.
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A DATASET

MNIST-SVHN-Text (Sutter et al., 2020) is the MNIST-SVHN (Shi et al., 2019) with the addition
of the text modality, which represents the English name of each number as text and has diversity.
Different modalities of the same example have the same digits.

PolyMNIST (Sutter et al., 2021) consists of a set of five different MNIST images with different
backgrounds and handwriting styles, each of which is considered a different modality.

Translated-PolyMNIST (Daunhawer et al., 2021a) is composed of the same backgrounds as PolyM-
NIST with the numbers downscaled14 and randomly transformed into position in the images. This is
intended to allow for more significant variation among modalities than PolyMNIST.

Caltech Birds (CUB) Wah et al. (2011) is a dataset with bird images and their captions. We follow
Daunhawer et al. (2021a), i.e., we treat as 64× 64 real images without feature extraction.

Bimodal CelebA (Sutter et al., 2020) is a dataset of face images from the CelebA (Liu et al., 2015)
with additional text describing the corresponding attribute labels and changing the starting index to
give a diversity.

14In setting of this study, the handwritten numbers were downscaled to 70% of their original size.
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B DETAILED DERIVATION OF PROOF 1

Epd(X)[Eqϕ(z|X)[log pθ(X|z)]−DKL(qϕ(z|X)||pf (z|X))]]

= Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]− Eqϕ(z|X)[log qϕ(z|X)− log pf (z|X)]

]
= Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]− Eqϕ(z|X)[log qϕ(z|X)−

M∑
m=0

πm log qϕm
(z|xm)]

]
(
∵ pf (z|X) =

M∑
m=0

πm log qϕm(z|xm)

)

= Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]− Eqϕ(z|X)

[
M∑

m=0

πm log qϕ(z|X)−
M∑

m=0

πm log qϕm
(z|xm)

]]
(
∵ log qϕ(z|X) =

M∑
m=0

πm log qϕ(z|X) and
M∑

m=0

πm = 1

)

= Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]−

M∑
m=0

πmEqϕ(z|X) [log qϕ(z|X)− log qϕm
(z|xm)]

]

= Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]−

M∑
m=0

πmDKL (qϕ(z|X)||qϕm
(z|xm))

]
= LC(θ, ϕ)□

C DETAILED DERIVATION OF PROOF 3

Epd(X) [DKL(qϕ(z|X)||qϕm
(z|xm))]

=

∫
pd(xm)

∫ ∫
qϕ(z|X)pd(XC/m|xm) log

qϕ(z|X)

qϕm
(z|xm)

dXC/mdzdxm

=

∫
pd(xm)

∫ ∫
qϕ(z|X)pd(XC/m|xm) log

qϕ(z|X)pd(XC/m|xm)

qϕm
(z|xm)pd(XC/m|xm)

dXC/mdzdxm

=

∫
pd(xm)

∫ ∫
qϕ(z|X)pd(XC/m|xm) log

qϕ(z|X)pd(XC/m|xm)

qϕ(z|xm)pd(XC/m|xm)
dXC/mdzdxm

+

∫
pd(xm)

∫ ∫
qϕ(z|X)pd(XC/m|xm)dXC/m log

qϕ(z|xm)

qϕm
(z|xm)

dzdxm

=

∫
pd(xm)

∫ ∫
qϕ(z, XC/m|xm) log

qϕ(z, XC/m|xm)

qϕ(z|xm)pd(XC/m|xm)
dXC/mdzdxm

+

∫
pd(xm)

∫ ∫
qϕ(z|xm) log

qϕ(z|xm)

qϕm
(z|xm)

dzdxm

= Iϕ(XC/m; z|xm) + Epd(xm) [DKL[qϕ(z|xm)||qϕm(z|xm))]] .
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D DETAILED DERIVATION OF EQ. 7

Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]

]
= Epd(X)

[
1

2
Eqϕ(z|X)[log pθ(X|z)] + 1

2
Eqϕ(z|X)[log pθ(X|z)]

]
= Epd(X)

[
1

2
Eqϕ(z|X)[log pθ(X|z)] + 1

2
Eqϕ(z|X)

[
M∑

m=1

log pθ(xm|z)

]]

= Epd(X)

[
1

2
Eqϕ(z|X) [log pθ(X|z)]

]
+

1

2

∫ ∫
qϕ(z|X)pd(X)

M∑
m=1

log pθ(xm|z)dzdX

= Epd(X)

[
1

2
Eqϕ(z|X) [log pθ(X|z)]

]
+

1

2

M∑
m=1

∫ ∫
qϕ(z|X)pd(X) log pθ(xm|z)dzdX

= Epd(X)

[
1

2
Eqϕ(z|X) [log pθ(X|z)]

]
+

1

2

M∑
m=1

∫ ∫
qϕ(z|X)pd(XC/m|xm)pd(xm) log pθ(xm|z)dzdX

= Epd(X)

[
1

2
Eqϕ(z|X) [log pθ(X|z)]

]
+

1

2

M∑
m=1
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qϕ(z|X)pd(XC/m|xm)dXC/mpd(xm) log pθ(xm|z)dzdxm

= Epd(X)

[
1

2
Eqϕ(z|X) [log pθ(X|z)]

]
+

1

2

M∑
m=1

∫ ∫
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∵
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qϕ(z|X)pd(XC/m|xm)dXC/m = qϕ(z|xm)

)
=

1

2
Epd(X)

[
Eqϕ(z|X)[log pθ(X|z)]

]
+

1

2

M∑
m=1

Epd(xm)

[
Eqϕ(z|xm)[log pθ(xm|z)]

]
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E DETAILED DERIVATION OF EQ. 9

Epd(xm)

[
Eqϕ(z|xm)[log pθ(xm|z)]

]
=

∫ ∫
qϕ(z|X)pd(X) log pθ(xm|z)dzdX

=

∫ ∫
qϕ(z|X)pd(XC/m,m′ |xm,xm′)dXC/m,m′pd(xm,xm′) log pθ(xm|z)dzdxmdxm′

=

∫ ∫
qϕ(z|xm,xm′)pd(xm,xm′) log pθ(xm|z)dzdxmdxm′

= Epd(xm,xm′ )

[
Eqϕ(z|xm,xm′ )[log pθ(xm|z)]

]
.

F RESULTS ON MNIST-SVHN-TEXT WITH STANDARD DEVIATIONS

Table 3 and Table 4 are Table 1 and Table 2 with their standard deviations of three trials explicitly
added. The meaning of MVTCAE (rescale) is explained in Appendix H.

G PERFORMANCE ON THE LATENT REPRESENTATION

Table 5 shows that coordination-based performs better as input modality increases. This is a feature
of the coordination-based method, which learns to approximate the joint posterior, so the amount
of information to be inferred increases as the number of modalities increases. On the other hand,
the mixture-based method performs better given a single modality. The proposed method improves
unimodal inference the most among the coordination-based methods.
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Table 3: Cross-coherence on MNIST-SVHN-Text with standard deviations.

M S
MODEL R S T S+T M T M+T
MVAE 0.04± 0.01 0.29± 0.04 0.11± 0.00 0.30± 0.04 0.36± 0.08 0.29± 0.08 0.67± 0.05

MMVAE 0.12± 0.01 0.81± 0.00 0.99± 0.00 0.91± 0.00 0.39± 0.01 0.44± 0.02 0.41± 0.01

MOPOE-VAE 0.12± 0.01 0.82± 0.00 0.99± 0.00 0.94± 0.01 0.35± 0.02 0.37± 0.02 0.36± 0.02

MMJSD 0.09± 0.00 0.81± 0.01 0.99± 0.00 0.90± 0.00 0.39± 0.01 0.41± 0.01 0.40± 0.01

MMJSD-POE 0.15± 0.03 0.12± 0.01 0.78± 0.03 0.80± 0.03 0.56± 0.01 0.73± 0.03 0.86± 0.01

MVTCAE 0.09± 0.00 0.23± 0.01 0.87± 0.02 0.90± 0.01 0.59± 0.01 0.78± 0.00 0.80± 0.01

MVTCAE (RESCALE) 0.14± 0.00 0.29± 0.02 0.89± 0.01 0.92± 0.01 0.70± 0.01 0.79± 0.01 0.82± 0.01

CRMVAE 0.15± 0.01 0.60± 0.01 0.97± 0.01 0.97± 0.01 0.73± 0.01 0.87± 0.01 0.87± 0.01

T
MODEL M S M+S
MVAE 0.13± 0.01 0.20± 0.07 0.22± 0.08

MMVAE 0.48± 0.05 0.40± 0.04 0.44± 0.05

MOPOE-VAE 0.49± 0.04 0.42± 0.03 0.51± 0.04

MMJSD 0.44± 0.02 0.37± 0.01 0.40± 0.02

MMJSD-POE 0.71± 0.02 0.14± 0.02 0.74± 0.04

MVTCAE 0.76± 0.02 0.27± 0.02 0.79± 0.02

MVTCAE (RESCALE) 0.87± 0.01 0.34± 0.02 0.89± 0.02

CRMVAE 0.91± 0.02 0.71± 0.00 0.95± 0.01

Table 4: FID score of the generated SVHN images with standard deviations.
MODEL S→M M→S
MVAE 39.0± 4.73 36.0± 2.08

MMVAE 91.8± 1.46 307.9± 0.92

MOPOE-VAE 85.3± 2.51 312.8± 1.81

MMJSD 86.7± 1.94 287.0± 1.15

MMJSD-POE 70.0± 1.17 141.4± 3.20

MVTCAE 41.6± 1.63 31.8± 0.51

MVTCAE (RESCALE) 32.9± 0.11 35.2± 0.35

CRMVAE 24.1± 0.71 37.3± 0.52

The right panels of Figure 5 and Figure 6 show the inference performance of PolyMNIST and
Translated-PolyMNIST, respectively. It can be seen that the proposed method performs well when
the number of modalities is small, while other models perform better when the number of modalities
increases. There are various possible reasons for this, but the scaling of the reconstruction error term,
which will be discussed in the Appendix H, might be the cause.

Table 5: Performance on the latent representation in MNIST-SVHN-Text.

MODEL M S T M+S M+T S+T M+S+T
MVAE 0.73± 0.08 0.44± 0.02 0.30± 0.04 0.84± 0.07 0.97± 0.00 0.58± 0.08 0.97± 0.08

MMVAE 0.97± 0.01 0.82± 0.05 0.99± 0.00 0.89± 0.04 0.98± 0.00 0.91± 0.01 0.93± 0.05

MOPOE-VAE 0.95± 0.02 0.81± 0.04 0.99± 0.00 0.96± 0.03 0.98± 0.00 0.93± 0.02 0.98± 0.04

MMJSD 0.97± 0.01 0.82± 0.02 0.99± 0.00 0.89± 0.01 0.98± 0.00 0.91± 0.01 0.93± 0.01

MMJSD-POE 0.75± 0.01 0.14± 0.02 0.94± 0.01 0.77± 0.02 0.99± 0.03 0.95± 0.03 0.99± 0.03

MVTCAE 0.91± 0.01 0.31± 0.02 0.99± 0.01 0.93± 0.02 0.99± 0.02 0.99± 0.00 0.99± 0.02

MVTCAE (RESCALE) 0.88± 0.01 0.35± 0.01 0.95± 0.02 0.90± 0.02 0.96± 0.01 0.96± 0.01 0.96± 0.02

CRMVAE 0.95± 0.01 0.74± 0.02 0.99± 0.01 0.97± 0.00 0.99± 0.01 0.99± 0.01 0.99± 0.01
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Figure 5: Performance evaluation on PolyMNIST. The left panel shows the performance of cross-
coherence. The right is the performance of linear classification on the latent space given an arbitrary
modality set.
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Figure 6: Performance evaluation on Translated-PolyMNIST.

H CONSIDERATION OF THE COEFFICIENTS OF THE RECONSTRUCTION TERM

We chose π instead of 1
2 as the coefficient in Eq. 8. However, this makes the reconstruction error

term smaller than the other models by a factor of π
2 . To check this effect, we scaled the MVTCAE

reconstruction error term by multiplying it by π
2 . Since this effect is large when the modality is three

or more, we experimented with MNIST-SVHN-Text, PolyMNIST, and Translated-PolyMNIST.

The results denoted as “MVTCAE (rescale)” are the MVTCAE results aligned in scale with the
reconstruction error term in CRMVAE. First, for MNIST-SVHN-Text, the performances of cross-
coherence and FID are slightly better with scale, but CRMVAE is still better. The joint coherence
was comparable to that of CRMVAE. However, the performance of the inferred representation is
lower with scaling. This is because the coordination-based learns inference by reconstruction, and
when this term is small in the overall expression, it fails to learn inference. Next, PolyMNIST and
Translated-PolyMNIST improve cross-coherence performance, but as with MNIST-SVHN-Text,
inference performance is poor. Compared to MVTCAE with rescaling, the performance of CRMVAE
is better, and this comparison, in which the reconstruction error terms are scaled to each other, might
better evaluate the effect of unimodal reconstruction included in CRMVAE.

These results show that adjusting for scale does not change the superiority of CRMVAE. In other
words, the higher performance of CRMVAE is not due to scaling alone.
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Figure 7: Cross-generation of PolyMNIST. The top panel shows examples of modalities M0 to M4
(we refer to the five different modalities as M0 to M4), and the bottom panels show the generation of
a modality conditioned on remaining modalities by each model.

I CONDITIONAL GENERATION ON POLYMNIST AND
TRANSLATED-POLYMNIST

Figure 7 and Figure 8 visualize the conditionally generated images on the PolyMNIST and Translated-
PolyMNIST datasets.
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Figure 8: Cross-generation of Translated-PolyMNIST.
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