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Abstract

While neural networks have shown remarkable
success on classification tasks in terms of
average-case performance, they often fail to
perform well on certain groups of the data,
for instance when spurious correlations are
present. Unfortunately, group information may
be expensive to obtain; thus, recent works in
robustness and fairness have proposed ways to
improve worst-group performance even when
group labels are unavailable. However, these
methods generally underperform methods that
utilize group information at training time. In this
work, we assume access to a small number of
group labels alongside a larger dataset without
group labels. We propose BARACK, a simple
two-step framework to utilize this partial group
information to improve worst-group performance:
train a model to predict the missing group labels
for the training data, and then use these predicted
group labels in a robust optimization objective.
Theoretically, we provide generalization bounds
for our approach in terms of the worst-group
performance, which scale with respect to both the
total number of training points and the number
of training points with group labels. Empirically,
across four spurious correlation and robustness
benchmark tasks, our method outperforms the
baselines that do not use group information, even
when only 1-33% of points have group labels.

1. Introduction
On classification tasks, deep neural networks can often un-
derperform on certain groups of the data. For example,
on datasets with spurious correlations, standard neural net-
works have been shown to achieve high average accuracy,
yet drastically lower accuracy on groups that violate the
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spurious correlation (Sagawa et al., 2019). Similarly, when
certain groups are underrepresented in the training data,
models tend to perform poorly on these rare groups (Sohoni
et al., 2020). In many settings, such as applications where
fairness or safety are important, this behavior is undesirable;
for example, gender classification systems have been shown
to underperform for non-white faces (Buolamwini & Gebru,
2018), and medical triage systems have been shown to miss
certain abnormality subtypes (Oakden-Rayner et al., 2020).
To avoid this, we want to ensure group robustness, i.e., high
accuracy on the worst-performing group.

Unfortunately, group annotations are often unavailable.
Many datasets only have labels for the task, not groups.
Group labels may also be expensive to obtain; for instance,
in the common case where the group labels are finer-grained
than the class labels, it may require higher annotation cost
to obtain group labels than class labels (Gebru et al., 2017).
This makes ensuring group robustness more challenging.

Existing works to address the issue of group robustness
fall into two main categories: those that assume access to
the group labels for all of the training data, and those that
assume no access to the group labels for the training data.
For instance, in the first category, Sagawa et al. (2019) pro-
pose group distributionally robust optimization (GDRO),
an efficient algorithm for minimizing the worst-group loss
when the groups are known. More recently, several ap-
proaches have been proposed to improve group robustness
when group labels are unavailable. A common approach is
to first estimate the group labels, then train a robust classi-
fier using these estimated group labels (Sohoni et al., 2020;
Liu et al., 2021). However, in terms of worst-group perfor-
mance, the methods that require group labels unsurprisingly
(and often substantially) outperform those that do not.

A fundamental question is: can we close this gap if we
have partial group information? Specifically, we seek to
understand the intermediate regime in which group labels
are available for a (small) subset of the training data, while
the remainder has class labels only. The distinction between
this setting and the aforementioned prior work is akin to the
difference between semi-supervised learning vs. supervised
or unsupervised learning. From an application standpoint,
when the identities of the groups are known, it is often
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feasible to obtain group labels for a small subset of the data.
From a theoretical standpoint, the relative value of class vs.
group labels for ensuring group robustness is still unknown.

To address this question, we propose BARACK,1 a simple
two-stage approach to improve group robustness for the
setting wherein group labels are only known for a subset
of datapoints. In the first stage of BARACK, we use the
available group labels to train a model to predict the group
labels on the data without group annotations. In the second
stage, we use these predicted group labels in the GDRO
objective (Sagawa et al., 2019) to train a robust model.

Theoretically, we show how worst-group performance scales
with the number of total points and the number of points
with group labels. Empirically, we show that even if only a
small fraction (1-33%) of points have group labels, BARACK
improves over approaches that do not use group labels.

Contributions. In summary, our main contributions are:
- We propose a simple framework, BARACK, that can im-
prove group robustness with only a small number of group
labels: we train a model to predict the missing group labels,
then use these group labels in a robust training objective.
- On four benchmark tasks, we show that with only 1-33%
of data having group labels, our method empirically outper-
forms baselines that do not use group information, approach-
ing the performance of GDRO trained on the full dataset.
- We prove a generalization bound on the worst-group per-
formance of our method, showing that it scales with the
inverse square root of the total number of points with group
labels in the smallest group. (In Appendix C, we show how
to tighten our bound under additional assumptions.)
- We conduct ablation studies to better understand the im-
portance of the different components of BARACK.

2. Background
2.1. Problem Setup

We consider a similar setting to Sagawa et al. (2019): we
have n training points sampled IID from a distribution P:
{(xi, yi, zi)}ni=1 ∈ X ×Y×G. xi denotes a datapoint, yi its
class label, and zi its group label. However, unlike Sagawa
et al. (2019), we do not assume we know all the zi’s; we
only assume knowledge of z1, . . . , zm, where m < n. We
denote the group-labeled subset as D1 := {(xi, yi, zi)}mi=1,
and D2 := {(xi, yi)}ni=m+1 as the group-unlabeled subset.
Note that we assume D1 and D2 are samples from the same
distribution P; but the zi’s are unobserved on D2.2

Our end goal is to maximize the worst-group accuracy on the
task of predicting the correct class label for each datapoint.

1Name inspired by GEORGE (Sohoni et al., 2020), a baseline
for the setting where no group labels are known.

2In other words, we assume group labels are missing at random.

In other words, given a function class of classifiersF (where
each f ∈ F is a function X → ∆|Y|, i.e., a function that
outputs probabilities for each class), we wish to find f ∈ F
that maximizes min

g∈G
E(x,y)|z=g[1(argmax{f(x)} = y)].

In practice, we instead seek the f ∈ F that minimizes the
worst-group loss over the training data:

max
g∈G

E(xi,yi)|zi=g[ℓ(f(xi), yi)]. (1)

When the zi’s are known, the latter problem can be solved
with group DRO (GDRO) (Sagawa et al., 2019). GDRO is a
stochastic optimization method designed for minimax prob-
lems of exactly the form of Eq. 1. However, in our setting,
solving this problem is challenging because we only know
a subset of the zi’s, so we cannot compute Eq. 1 directly.

3. Method
To address the problem of improving group robustness when
only some group labels are available, we propose BARACK,
a two-stage framework which leverages the group-labeled
examples to generate group “pseudolabels” for the remain-
ing datapoints, and then uses these pseudolabels to train a
robust model on the target task. This two-stage approach is
inspired by prior works such as JTT and GEORGE (Liu et al.,
2021; Sohoni et al., 2020). However, unlike these methods
which assume all group labels are unknown, BARACK is
capable of exploiting the additional information in the group
labels that are known for some datapoints. Pseudocode for
BARACK’s overall workflow is given in Alg. 1 (App. B).

Stage 1: Predicting group labels (via a “class-conditional”
classifier). First, we train a model fgroup ∈ F1 to predict
the group labels for the training and validation datapoints
that do not have provided group labels. To do so, we train
a supervised classifier on the training points with known
group labels. Despite the small number of these points, we
show that this simple approach can perform surprisingly
well with a key modification: we use the class label (as-
sumed known for all train data) as an input to the group
classifier, as the probabilities of each group can vary condi-
tional on the class. Specifically, we compute the empirical
probabilities and corresponding logits of each group con-
ditioned on the class. For each example fed into the group
classifier, these logits for its class are summed with the
output of the last layer of the network. In the datasets we
evaluate on, the groups are subsets of the classes, so this
means that we take the softmax over the logits output by
the network over all groups belonging to the known class to
get the predicted per-group probabilities (assigning 0 proba-
bility to groups in different classes).3 In this way, the class
information helps the model learn to distinguish the groups,
offsetting the dearth of data. We train fgroup with GDRO to

3This can be interpreted as a form of multi-task learning (MTL)
with hard weight sharing, where each class corresponds to a task.
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encourage good performance at predicting each group.

To select the best group classifier model over the course
of training, we use a group-labeled subset of the validation
set with the same size as the group-labeled training set
(ensuring that the total number of group labels required is
small across both training and validation splits). This group
classifier is then used to generate “pseudo-group-labels” for
all training datapoints without a known group label. We
term this approach (together with Stage 2) BARACK-Base;
where unspecified, BARACK refers to BARACK-Base.

We find that this simple approach works well, and thus focus
on it for the main paper. A more complex method can also be
used in Stage 1: for instance, one could use semi-supervised
learning to leverage the group-unlabeled points to train an
improved group classifier. We term this BARACK-SSL;
our preliminary experiments in Appendix D.4 and analysis
in Appendix C show that this can indeed further improve
performance, at the cost of added complexity and runtime.
Stage 2: Training a robust model. Intuitively, if the pre-
dicted group labels ẑi from Stage 1 align well with the
(unobserved) true group labels zi, then training a model to
be robust with respect to the predicted groups should also in-
duce good robustness with respect to the true groups. Thus,
we train a model frobust ∈ F2 on the original task using
GDRO (Sagawa et al., 2019), with the groups defined by the
predicted group labels from Stage 1 (except for datapoints
with known ground-truth group labels, for which we use
this ground-truth). The same small group-labeled validation
subset as in Stage 1 is used to validate this model.

4. Analysis
We now analyze the theoretical worst-group performance
of BARACK. For brevity, much of the theory is deferred to
Appendix C.

For notation, we use F1,F2 to denote the spaces of possible
classifiers used in Stage 1 and 2 respectively. We assume
F2 is parametrized by θ ∈ Rd, so the BARACK model
f̂robust has parameters θ̂robust. We define Lrobust(θ) :=
max
g∈G

E(x,y)|z=g[ℓ(f(x; θ), y)] (the worst-group loss), and

L∗
robust := min

θ∈Rd
Lrobust(θ). Finally, q is the population

proportion of the rarest group. We assume ℓ is either the
squared loss between probabilities, or the truncated cross-
entropy loss, so that ℓ is bounded and Lipschitz.

First, we relate the performance of the group classifier in the
first stage to the excess worst-group risk of the end model.
Theorem 4.1. Suppose that on each group, the error rate of
the group classifier from “Stage 1” is ≤ r. Then with high
probability, Lrobust(θ̂robust) ≤ L∗

robust + Õ
(

r
q + 1√

qn

)
.

Theorem 4.1 says that the excess worst-group risk scales

linearly in the error rate of the group classifier, plus an
additional O( 1√

qn ) term which is small if the total num-
ber of datapoints is large. In particular, if we use standard
learning-theoretic results to bound the error rate of the group
classifier, then under the assumption that the group clas-
sification problem is realizable, we obtain the following
corollary. (Realizability means there exists f∗ ∈ F1 such
E(x,y,z)∼P [ℓ(f(x, y), z)] = 0.4) We show how to relax the
realizability assumption in Theorem C.8 (Appendix C).

Corollary 4.2. With high probability, for BARACK-Base
we have Lrobust(θ̂robust) ≤ L∗

robust + Õ
(

1
q
√
m

)
.

A strength of Theorem 4.1 and Corollary 4.2 are that they do
not require assumptions on the data (unlike prior work such
as (Sohoni et al., 2020) which requires specific distributional
assumptions to obtain generalization bounds). We discuss
how to further improve our bounds in Appendix C.

5. Experiments
We empirically validate that BARACK improves group ro-
bustness on four different image classification tasks. In
Section 5.2, we study how the worst-group performance of
BARACK scales with the number of group labels, and com-
pare it with several baselines. We show that with as few as
1-33% of points having group labels, BARACK attains bet-
ter worst-group performance than the baselines that do not
use this group information, and approaches the worst-group
performance of GDRO on the full dataset as the number of
group labels increases. We also show that BARACK outper-
forms GDRO trained on only the subset of points with group
labels. In Section 5.3, we confirm that the worst-group accu-
racy of the final model increases with the accuracy of stage
1 of BARACK. In Appendix D, we present extensive abla-
tions to better understand the impact of BARACK’s design
choices.

In our experiments, we study how performance varies as we
increase the number of group-labeled examples per group.
In other words, we pick a fixed budget of (training and vali-
dation) examples to label for each group, sampled randomly
from the appropriate groups in the original dataset.

5.1. Datasets / Tasks

We evaluate on four image classification tasks: two spurious
correlation tasks, Waterbirds and CelebA (Sagawa et al.,
2019), and two tasks with a rare group, U-MNIST (Sohoni
et al., 2020) and U-CIFAR10. Further dataset details are in
Appendix D.1.
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Waterbirds results: Worst-group accuracy

GDRO
ERM
JTT
GEORGE
EIIL
BARACK-base

8 16 32 64
# group-labeled examples per group

40

50

60

70

80

90

W
or

st
-g

ro
up

 a
cc

. (
%

)

CelebA results: Worst-group accuracy
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Figure 1. Main results: worst-group accuracy as a function of number of group-labeled examples. x-axis denotes the number of train
examples with group labels per group (which equals the # of validation group-labeled examples per group). More results in Appendix D.

Table 1. Main results. Baselines that use no group labels for training: ERM, EIIL, GEORGE, JTT. We compare to our method (BARACK),
and to GDRO run on only points with known group labels (Subset-GDRO), when there are 32 group-labeled examples from each group
(in both train and validation sets). We also compare to GDRO run on the full dataset (Full-GDRO), which can be roughly interpreted as an
“upper bound” on expected performance since it requires all group labels to be known. Additional results in Table 4 (Appendix D).
Method U-MNIST Waterbirds CelebA U-CIFAR10
Accuracy (%) Worst-group Avg. Worst-group Avg. Worst-group Avg. Worst-group Avg.

ERM 93.4± 0.5 99.2± 0.0 60.6± 3.3 97.3± 0.1 39.7± 3.0 95.7± 0.1 88.4± 1.4 99.5± 0.1
EIIL 97.2 ± 0.5 98.9± 0.2 87.3± 4.2 93.1± 0.6 81.3± 1.4 89.5± 0.4 85.3± 1.4 99.4± 0.1
GEORGE 95.7± 0.6 97.9± 0.2 76.2± 2.0 95.7± 0.5 53.7± 1.3 94.6± 0.2 93.4± 5.8 98.9± 0.3
JTT 96.2± 0.7 98.4± 0.4 88.0± 0.7 91.7± 0.8 77.8± 2.0 87.2± 1.2 89.0± 4.7 94.6± 1.3
Subset-GDRO 85.4± 1.4 92.4± 0.4 86.9± 1.0 88.6± 0.5 76.6± 4.4 85.5± 1.8 88.6± 2.4 95.2± 0.9
BARACK-base (ours) 96.9± 0.9 99.1± 0.3 89.6 ± 0.9 94.3± 1.3 83.8 ± 2.7 92.8± 0.6 94.5 ± 1.1 98.9± 0.3

Full-GDRO 98.6± 0.2 99.1± 0.1 90.9± 0.2 92.8± 0.2 89.3± 0.9 92.8± 0.1 97.0± 0.3 99.2± 0.3

5.2. Results: Worst-Group Performance

Across the four tasks in Section 5.1, BARACK matches or
improves worst-group accuracy compared to baselines that
don’t use group information; results are in Table 1 & Figure
1. The baselines we study are ERM, GEORGE (Sohoni
et al., 2020) (which use no group information), and EIIL
(Creager et al., 2021) and JTT (Liu et al., 2021) (which use
group information on the val. set). Additional results are in
Appendix D.

With as few as 1%-33% of training datapoints having group
labels, BARACK improves over these baselines (Figure 1).
For instance, CelebA has 1387 training points in the smallest
group, and BARACK outperforms the baselines on CelebA
with 16 group-labeled training examples per group. As the
number of group-labeled points increases, the worst-group
performance of BARACK approaches that of full GDRO.

4For standard losses such as (truncated) cross-entropy or
squared loss, this implies argmax{f(x, y)} = z w.p. 1.

In terms of average accuracy, BARACK and full-dataset
GDRO are typically similar, while ERM is usually higher.
This is expected, since on these tasks there is a trade-
off between optimizing for average-case and worst-case
performance, as observed in the literature (Sagawa et al.,
2019). BARACK also substantially outperforms Subset-
GDRO (GDRO trained only on the subset of group-labeled
points) on both metrics. Subset-GDRO fails to generalize
well due to the limited amount of training data it uses.

5.3. Results: Group Prediction Accuracy

In this section, we study the performance of Stage 1 of
BARACK (accuracy at predicting group labels), in order to
better understand the performance of Stage 2 (worst-group
accuracy on the target classification task). In Table 2, we
report the Stage 1 group prediction accuracies per dataset.

Table 2 shows that the group prediction models are far from
perfect. Indeed, on U-CIFAR10 the accuracy at predicting
the ‘airplane’ group is below 70%, and the average accuracy
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Table 2. Group prediction accuracies for stage 1 of BARACK, for the same settings as in Table 1. Additional results in Appendix D.
Method U-MNIST Waterbirds CelebA U-CIFAR10

Worst-group Avg. Worst-group Avg. Worst-group Avg. Worst-group Avg.

Accuracy (%) 87.7± 5.4 94.6± 1.2 91.5± 1.1 93.1± 0.8 85.9± 0.3 89.4± 0.6 67.9± 2.6 83.5± 0.6

over all groups is only ≈ 84%. Nevertheless, this only
causes a modest drop in performance for the final robust
model, as seen in Table 1.
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A. Related Work
Beyond average performance. Our work primarily builds on prior work in the area of group robustness. This line of
work has a long history in the literature; for example, see (Mohri et al., 2019; Zhang et al., 2021) and references therein.
Several methods have been proposed to improve group robustness when the group labels are known at train time. In our
algorithms, we focus on GDRO (Sagawa et al., 2019), a stochastic algorithm for minimizing the worst-group loss, which
has been shown to substantially improve worst-group performance on tasks with spurious correlations. We use GDRO as a
component of our method. While we mainly focus on worst-group accuracy, average and worst-group accuracy are not the
only measures of performance of interest to ML practitioners. Several other works have used different approaches to strike
a balance between important performance measures, for example through the lenses of distributional robustness (Duchi
et al., 2019; Wang et al., 2020; Zhang et al., 2021; Ben-Tal et al., 2013), fairness (Hardt et al., 2016; Agarwal et al., 2018; Li
et al., 2019; 2020), or outlier/noisy sample detection (Huber, 1992; Bhatia et al., 2015; Menon et al., 2019; Li et al., 2020).
Balashankar et al. (2019) and Martinez et al. (2020) propose different methods for ensuring group Pareto fairness, which
seeks to find Pareto-efficient solutions in terms of the accuracies on each group.

Group robustness without group labels. When the group labels are not known, alternative methods exist that still attempt
to improve group robustness and robustness to spurious correlations. Several of these works aim to first estimate the group
labels, then train a robust classifier using these estimated group labels (Sohoni et al., 2020; Nam et al., 2020; Liu et al.,
2021; Zhang et al., 2022; Ahmed et al., 2021). Others make no assumptions on the structure of the groups, and simply
try to perform well on “all possible” data subsets above a specified size (Levy et al., 2020; Martinez et al., 2021). Other
categories of methods to improve group robustness without group labels include methods that aim to learn representations
invariant to spurious features (similar to the ideas behind Invariant Risk Minimization (Arjovsky et al., 2019), but without
having pre-provided environment labels), such as (Creager et al., 2021; Goldstein et al., 2022; Ahmed et al., 2021); and
Pareto-fairness inspired methods, such as (Lahoti et al., 2020; Martinez et al., 2021). Unsurprisingly, all of these approaches
typically underperform methods that do utilize ground-truth group labels.

Our method, BARACK, involves training two models sequentially. This is commonly used in different ways as an approach
to increasing model robustness in the literature (Yaghoobzadeh et al., 2021; Utama et al., 2021). Among these works, (Liu
et al., 2021; Goel et al., 2020; Creager et al., 2021; Nam et al., 2020; Sohoni et al., 2020; Zhang et al., 2022) are most
relevant to our work, where a model is trained first and then the outputs of this model are used in some manner (for example,
in the GDRO objective as done in (Sohoni et al., 2020)) to train the second model to be robust. Our key point of difference
is that none of these works are designed to actually utilize possible group labels when they are known for some samples.
BARACK can yield superior performance to these methods by utilizing such additional group information, even if it is
limited.

Semi-supervised learning. Semi-supervised learning (SSL) is a rich field with several recent developments. In the
appendix, we explore the use of FixMatch (Sohn et al., 2020), a recent state-of-the-art method for SSL, for group classification.
Other recent successful approaches to semi-supervised learning involve learning self-supervised representations (without
using labels), and then using the labeled examples for fine-tuning; examples include (Xie et al., 2020a; Chen et al., 2020;
Caron et al., 2020).

Our work also has connections to self-training. In standard self-training, a labeled dataset is used to train a model to
generate pseudolabels for a separate unlabeled dataset; the labeled and pseudolabeled data are then used together to train a
downstream model (Zoph et al., 2020; Xie et al., 2020b; Lee et al., 2013; Rosenberg et al., 2005). In our work, we instead
generate pseudolabels for the task of classifying the groups, which are then used to train a robust model for the original task.

Concurrent work. We would also like to acknowledge the following important concurrent work: Spread Spurious
Attribute (SSA) (Nam et al., 2021), which considers a very similar problem to ours: specifically, they consider the problem of
group robustness when there are spurious attributes that are known for a subset of the training data. Their proposed algorithm
can be viewed as a special case of our general two-step framework (BARACK), in which they use semi-supervised learning
techniques for the group prediction stage. Compared to (Nam et al., 2021), our work is more focused on understanding and
analyzing the effectiveness of BARACK through theoretical and ablation analyses. We believe that these analyses provide
valuable insight regardless of the precise method used to estimate group labels. As we show in our experiments and analysis,
while the basic version of BARACK performs quite well, better training methods for the first (group classification) stage,
such as with SSL, can translate to better results (possibly at the cost of increased computational complexity).
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(Lokhande et al., 2022) also address a similar version of our partial group robustness problem, using a different approach
based on minimizing an upper bound to the GDRO loss. However, unlike our work (and that of (Nam et al., 2021)), they
avoid any estimation of missing group labels due to privacy considerations, which unfortunately results in substantially
lower worst-group performance (albeit still better than ERM) due to their upper bound function possibly being quite loose.

B. Algorithm Pseudocodes
On the following pages, we include algorithm boxes for BARACK, as well as the subroutines used therein. We also provide a
schematic illustrating BARACK (Figure 7) for explanatory purposes.

Additionally, to demonstrate the flexibility of our BARACK framework, we present Algorithm 5 (BARACK-SSL), an
instantiation of the general BARACK framework (Algorithm 1) which uses semi-supervised learning to train the group
classifier. Our preliminary empirical results on BARACK-SSL (Appendix D.4) and theoretical analysis of BARACK-SSL
(Appendix C.10) suggest that BARACK-SSL is a promising approach to further improve performance in our setting.

Algorithm 1 BARACK (General)
Require: Group-labeled data D1 = {(xi, yi, zi)}mi=1, group-unlabeled data D2 = {(xi, yi)}ni=m+1.

1: f̂group ← TRAIN(D1,D2)

2: (ẑm+1, . . . , ẑn)← PREDICT(f̂group,D2)
3: (ẑ1, . . . , ẑm)← (z1, . . . , zm)

4: f̂robust ← TRAIN ROBUST({(xi, yi, ẑi)}ni=1)

output : Final model f̂robust.

Figure 2. General overview of BARACK, our algorithmic framework. BARACK can be instantiated with specific choices of methods to
train the initial group classifier and the final robust model (for example, see BARACK-Base, Algorithm 2).

Algorithm 2 BARACK-Base
Require: Group-labeled data D1 = {(xi, yi, zi)}mi=1, group-unlabeled data D2 = {(xi, yi)}ni=m+1.

1: f̂group ← TRAIN SUPERVISED(D1)

2: (ẑm+1, . . . , ẑn)← PREDICT(f̂group,D2)
3: (ẑ1, . . . , ẑm)← (z1, . . . , zm)

4: f̂robust ← GDRO({(xi, yi, ẑi)}ni=1)

output : Final model f̂robust.

Figure 3. The base version of BARACK, used in most experiments. A supervised classifier is trained on the group-labeled examples and
generates pseudolabels for the remaining training data. The pseudolabels are used to train a more robust model with GDRO. Pseudocode
for subroutines is below.
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Algorithm 3 TRAIN SUPERVISED

Require: Group-labeled data D1 = {(xi, yi, zi)}mi=1, group-labeled validation data Dval

1: Initialize model fθ ∈ F1

2: Initialize acc best = 0
3: for epoch in 1, . . . , T do
4: for i in 1, . . . ,m do
5: θ ← GDRO Update(ℓ, fθ(xi, yi), zi)
6: end for
7: if ValidationSubsetWorstGroupAcc(fθ) > acc best then
8: f̂group ← fθ
9: acc best← ValidationSubsetWorstGroupAcc(fθ)

10: end if
11: end for
output : Group prediction model f̂group.

Figure 4. Details for training the supervised group classifier. In our experiments, it is typically initialized from a pretrained ResNet-50
model, except for MNIST where it is a randomly initialized LeNet-5. We minimize the GDRO training loss (in our experiments, ℓ is the
cross-entropy loss), and select the model that does best on the validation subset with group labels, in terms of the worst-group accuracy on
that subset. The group classifier takes both the features x and class label y as input. (For the specific GDRO update equation, see (Sagawa
et al., 2019). In practice, we do a minibatched version of the above.)

Algorithm 4 PREDICT

Require: Group prediction model f̂group, group-unlabeled training data D2 = {(xi, yi)}ni=m+1.
1: for i = 1, . . . ,m do
2: ẑi ← argmaxg∈G f̂group(xi, yi)
3: end for

output : {ẑi}mi=1

Figure 5. Details for extracting group predictions from the trained group prediction model.

Algorithm 5 BARACK-SSL
Require: Group-labeled data D1 = {(xi, yi, zi)}mi=1, group-unlabeled data D2 = {(xi, yi)}ni=m+1.

1: f̂group ← TRAIN FIXMATCH(D1,D2)

2: (ẑm+1, . . . , ẑn)← PREDICT(f̂group,D2)
3: (ẑ1, . . . , ẑm)← (z1, . . . , zm)

4: f̂robust ← GDRO({(xi, yi, ẑi)}ni=1)

output : Final model f̂robust.

Figure 6. BARACK-SSL. A semi-supervised model is trained on both the group-labeled training examples and the training examples with
only class labels, and generates group pseudolabels for the training data without group labels. These pseudolabels are used to train a more
robust model using GDRO (Sagawa et al., 2019). For FixMatch training, we use the standard FixMatch algorithm (Sohn et al., 2020)
except we modify it to take the class label y as input as well, similar to how we train BARACK-BASE.
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Figure 7. Schematic of BARACK-Base. Inputs are images & class labels; some images also have known group labels (darker examples).
We first train a model to classify groups using the images with known group labels (left). Then, we use this model to compute “group
pseudolabels” for the remaining training images (middle). Finally, we use these pseudolabels in GDRO to train a robust model (right).
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C. Theoretical Analysis and Proofs
C.1. Overview

First, we state an upper bound on the worst-group loss of GDRO, and a lower bound on that of ERM. Next, we restate a
generalization bound on the worst-group loss of BARACK (Theorem 4.1), and discuss how this result relates to the GDRO
and ERM bounds. Proofs are provided in the following subsections.

First, we show that if GDRO is trained on the dataset of the m group-labeled points, the excess worst-group risk of the
resulting model (compared to the worst-group-optimal model, i.e. the model in F2 with the lowest population worst-group
performance on the task) scales as Õ(1/

√
qm).

Lemma C.1. Let f̂gdro,labeled ∈ F2 (with associated parameters θ̂gdro,labeled) denote the GDRO classifier trained on D1

only. Then with high probability,
Lrobust(θ̂gdro,labeled) ≤ L∗

robust + Õ( 1√
qm ).

By contrast, ERM (even trained on the full dataset) can result in a worst-group risk multiple times higher than that of the
optimal worst-group model:

Lemma C.2. Let f̂erm,full ∈ F2 (with associated parameters θ̂erm,full) denote the ERM classifier trained on the full
dataset. There exists a distribution P such that with high probability, Lrobust(θ̂erm,full) ≥ log(1/q)

log(|Y|)L
∗
robust − Õ(1/

√
n).

For comparison, recall our bound (Theorem 4.1) on the generalization risk of BARACK based on the group classifier accuracy,
and the resulting Corollary 4.2 under the assumption of realizability of the group classification problem:

Theorem 4.1. Suppose that on each group, the error rate of the group classifier from “Stage 1” is ≤ r. Then with high
probability, Lrobust(θ̂robust) ≤ L∗

robust + Õ
(

r
q + 1√

qn

)
.

Corollary C.3. With high probability, for BARACK-Base we have Lrobust(θ̂robust) ≤ L∗
robust + Õ

(
1

q
√
m

)
.

(Note: Realizability of the group classifier is not a fundamentally necessary assumption, and can be relaxed; in Appendix
C.6 we provide Theorem C.8, an analogue to Theorem 4.1 with an improved bound in the non-realizable case. For ease of
exposition, we defer further description of Theorem C.8 to Appendix C.6.)

As mentioned, Theorem 4.1 and Corollary 4.2 do not require data distribution assumptions. However, the downside of
Theorem 4.1 is that the bound is relatively weak unless the group classifier is known to perform near-optimally; indeed,
Corollary 4.2 yields a slightly weaker asymptotic bound than GDRO on the labeled data alone. This result can be improved
when further assumptions are made to guarantee a stronger bound on the group classification error.

For instance, in Corollary C.13 (Appendix C.10), we show that the excess worst-group generalization error rate bound can
be improved to O(1/

√
n) when semi-supervised learning is used to train the group classifier. With an appropriate choice of

semi-supervised learning method (such as FixMatch (Sohn et al., 2020)), if m = Ω(
√
n), then under appropriate conditions,

the worst-group generalization error rate bound of BARACK-SSL is O(1/
√
n). This result is based on the PAC-learning

based results of (Balcan & Blum, 2009), and requires the assumptions therein as well as realizability (the exact conditions
are somewhat technical, and are deferred to the discussion in Appendix C.10). This translates to an excess robust risk of
O(1/

√
n) for the final model, as stated in Corollary C.13.

Next, another natural question is how the performance of BARACK-Base compares to that of ERM. We study this in
Corollary C.4.

Corollary C.4. In addition to the assumptions of Theorem 4.1, suppose that for all f ∈ F2, ℓ(f(x), y) ⊥
argmax{f̂group(x, y)}

∣∣ z. Let θ∗avg be the minimizer of the population average loss E(x,y)∼P [ℓ(x, y; θ)]. Then for BARACK-

Base we have Lrobust(θ̂robust) ≤ min
(
L∗
robust + Õ( 1

q
√
m
),Lrobust(θ

∗
avg) + Õ( 1√

qn )
)

w.h.p.

For comparison, the robust loss of the ERM model is upper bounded by Lrobust(θ
∗
avg) + Õ( 1√

qn ) with high probability.

Corollary C.4 says that if we can assume that the errors made by fgroup are “random” conditioned on the true group
identity—i.e., they do not affect the distribution of the loss on the target task—then in addition to the bound of Theorem 4.1,
we can also guarantee that the worst-group loss is at least as good as that of the ERM model (plus small Õ(1/

√
qn) noise).
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Of course, this “random error” assumption is very strong; nevertheless, in Appendix D.3.1 we compare the performance of
BARACK-Base and simulated “group predictions” with the same confusion matrix as those of BARACK-Base but random
errors, and find that the BARACK predictions do not substantially degrade performance compared to these randomized
predictions. Thus, we hypothesize that the errors made by BARACK-Base are “sufficiently random” to make the conditions
of Corollary C.4 hold approximately.

We now proceed to prove the results stated in this section.

C.2. Notation

The notation “i ∈ [b]” means i ∈ {1, 2, . . . , b}. log denotes the natural logarithm. Where unspecified, ∥·∥ denotes the
Euclidean norm ∥·∥2. ∆d denotes the d-coordinate (d− 1 dimensional) simplex.

We have a training dataset {(xi, yi, zi)}ni=1 ∈ X × Y × G. Here xi is a datapoint, yi is a discrete class label, and zi is a
discrete group label. Let F1 be a function class {fθ : X × Y → ∆|G|}, where each fθ is a member of F1 parameterized
by the vector θ ∈ Rd. (The inputs to fθ are the features x and class label y, and the output is a vector of predicted
probabilities for each group.) Define FR

1 := {fθ ∈ F1 : ∥θ∥2 ≤ R}. Similarly let F2 be a function class {fθ : X → ∆|Y|}
and FR

2 := {fθ ∈ F2 : ∥θ∥2 ≤ R}. Let ℓ(·, ·) be a nonnegative loss function globally bounded by B; ℓ is either in
R|Y| × Y → R or R|G| × G → R depending on whether it is for the group classification task or target classification task,
and will be clear from context. We will use the notations ℓ(fθ(x), y) and ℓ(x, y; θ) interchangeably (or even ℓ(f(x), y) or
ℓ(x, y) when clear from context).

We assume that the datapoints are IID samples from a distribution P , i.e., (xi, yi, zi) ∼ P . We can write P as a mixture
of distributions p1, . . . , p|G|, where pg is the distribution conditioned on the group label being equal to g. By overloading
notation, we will also write E(x,y)∼pg

to denote the expectation of a quantity conditioned on the group label being g (i.e.,
we will not write (x, y, z) ∼ pg because z = g always for points sampled from pg). Let q1, . . . , q|G| be the corresponding
mixture weights, i.e., qg = P (z = g), and let q := min

g∈G
qg .

Recall that we denote D1 := {(xi, yi, zi)}mi=1 to be the group-labeled dataset of m points, and D2 := {(xi, yi)}ni=m+1 to
be the dataset of n−m group-unlabeled points. We are interested in the regime where m is small compared to n, so we
shall implicitly assume that n−m is Ω(n). In our theoretical results we assume for simplicity that D1 and D2 are samples
from the same distribution (although the zi’s are unobserved on D2). However, our analysis easily extends to the case where
D1,D2 are sampled from distributions on which the group proportions q1, . . . , q|G| differ, but the per-group distributions
pg = P (x, y|z = g) are the same. (This only complicates notation, as we need to distinguish the different q = ming∈G qg
between D1 and D2.)

We will use the notation Lrobust(θ) to denote either maxg∈G E[ℓ((x, y), z; θ)|z = g] (worst-group population loss for the
task of classifying the groups) or
maxg∈G E[ℓ(x, y; θ)|z = g] (worst-group population loss for the task of classifying the classes), which will be clear in
context. We will also use L∗

robust as shorthand for min
θ
Lrobust(θ).

C.3. “Helper” Results

We will use the following standard result from learning theory (Liang & Ma, 2019):
Theorem C.5. Suppose ℓ(x, y; θ) is nonnegative, globally bounded by B and L-
Lipschitz continuous. Define L(θ) := E(x,y)∼P [ℓ(x, y; θ)] and L̂(θ) :=

1

n

n∑
i=1

ℓ(xi, yi; θ), where {(xi, yi)}ni=1 are sampled IID from distribution P . Let p > 0. Then, with probability

≥ 1−O(e−p), for all θ such that ∥θ∥2 ≤ R we have |L̂(θ)− L(θ)| ≤ O

(
B

√
pmax(log(LRn), 1)

n

)
.

We will also use the following simple lemma relating the minimizer of a “perturbed” GDRO-style objective to the minimizer
of the unperturbed version.
Lemma C.6. Define f(θ) = max

k∈[G]
fk(θ) and f̃(θ) = max

k∈[G]
(fk(θ) + ϵk) where |ϵk| ≤ ϵ. Let the minimizers of f, f̃ be

θ∗, θ̃∗ respectively. Then f(θ̃∗)− f(θ∗) ≤ 2ϵ.
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Proof. Note that f̃(θ∗) ≤ f(θ∗) + ϵ. Similarly f(θ̃∗) ≤ f̃(θ̃∗) + ϵ. So f(θ̃∗) ≤ f̃(θ̃∗) + ϵ ≤ f̃(θ∗) + ϵ ≤ f(θ∗) + 2ϵ.

C.4. Warm-up: Proof of Group DRO Generalization Bound (Lemma C.1)

We restate Lemma C.1 below:

Lemma C.7. Let f̂gdro,labeled ∈ F2 (with associated parameters θ̂gdro,labeled) denote the GDRO classifier trained on D1

only. Then with high probability,
Lrobust(θ̂gdro,labeled) ≤ L∗

robust + Õ( 1√
qm ).

Proof. The population group DRO loss is Lrobust(θ) := max
g∈G

(
E(x,y)∼pg

[ℓ(x, y; θ)]
)
, i.e. the maximum of the average

per-group losses. Here pg denotes the conditional distribution P (x, y|z = g). For g ∈ G, denote Sg to be the subset of points
on D1 such that the group label is g. The empirical GDRO loss on D1 is Lrobust,D1(θ) := max

g∈[G]

(
E(x,y)∼Sg

[ℓ(x, y; θ)]
)
.

Note that each of the per-group losses is simply the empirical estimate of the corresponding population per-group loss, over
the set Sg .

We can apply Theorem C.5 to each of the groups individually, since each set Sg is an IID sample from pg . Thus, we obtain that

for a given group g,
∣∣E(x,y)∼Sg

[ℓ(x, y; θ)]− E(x,y)∼pg
[ℓ(x, y; θ)]

∣∣ ≤ O(
√

p log |Sg|
|Sg| ) for all θ such that ∥θ∥2 ≤ R, with prob-

ability≥ 1−O(e−p). (|Sg| is the size of set Sg .) Thus by union bound, max
g∈G

∣∣E(x,y)∼Sg
[ℓ(x, y; θ)]−E(x,y)∼pg

[ℓ(x, y; θ)]
∣∣ ≤

O

(
max
Sg

√
p log |Sg|

|Sg|

)
w.p. ≥ 1−O(|G|e−p). (Here and henceforth we omit the constants B,L,R from the notation.)

Let qg := P (z = g), i.e., the population fraction of group g. By Hoeffding’s inequality, for a given group g we have
|Sg − qgm| ≤

√
m logm with probability ≥ 1− 2/m2. Thus by union bound and the fact that qg ≥ q, we have

min
g∈G
|Sg| ≥ qm−

√
m logm = (1− logm

q
√
m
)qm

with probability greater than 1−2|G|/m2. Thus max
g∈G

log |Sg|
|Sg| ≤

logm

qm
· 1

1− logm
q
√
m

with probability greater than 1−2|G|/m2.

As 1
1−x ≤ 1 + 2x for all x ∈ [0, 1/2], we thus have

max
g∈G

log |Sg|
|Sg|

≤ min

{
1,

logm

qm
+ 2

logm

qm
· logm
q
√
m

}
for sufficiently large m (relative to q). Thus

max
g

√
p log |Sg|

|Sg| = O

(√
logm
qm

)

with probability greater than 1− 2|G|/m2.

To recap, the training loss is maxg∈G E(x,y)∼Sg
E[ℓ(x, y; θ)] and we showed that

|E(x,y)∼Sg
E[ℓ(x, y; θ)]− E(x,y)∼pg

E[ℓ(x, y; θ)]| ≤ O

(√
logm
qm

)

for all g ∈ G and all θ with ∥θ∥2 ≤ R with high probability, so applying Lemma C.6 and union bound, we have that

Lrobust(θ̂)− L∗
robust = |Lrobust(θ̂)− L∗

robust| ≤ O

(√
logm
qm

)
= Õ( 1√

qm )

with high probability, as desired. Note that as long as we optimize over a bounded domain that is sufficiently large to contain
θ∗, there exists a valid norm constraint R such that all θ under consideration have ∥θ∥2 ≤ R.
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C.4.1. RELATING LOSS TO CLASSIFICATION ERROR

For example, we could let ℓ be the truncated cross-entropy loss (i.e., the cross-entropy loss clipped to remain in [0, B]
for some large constant B in order to ensure boundedness). Observe that the classification error is upper bounded by the
cross-entropy loss divided by log(|Y|), where |Y| is the number of classes: as the class prediction is the class with highest
predicted probability, if the model makes an error then the predicted probability of the correct class is at most 1/|Y|, which
means that the cross-entropy loss for that example is ≥ − log(1/Y) = log |Y|. In other words, if argmax{f(x)} ̸= y then
ℓ(f(x), y) ≥ log |Y|. Thus 1(argmax{f(x)} ̸= y) ≤ ℓ(f(x),y)

log |Y| , and so E[1(argmax{f(x)} ̸= y)] ≤ 1
log |Y|E[ℓ(f(x), y)].

(Thus, the clipping constant B just needs to be ≥ log |Y|.)

We could also let ℓ be the squared loss (the square of 1 minus the predicted probability of the correct class), which is
2-Lipschitz and bounded by 1. The classification error is upper bounded by |Y|

|Y|−1 times the squared loss (since when the

model makes an error, the loss on that example must be at least (1−1/|Y|)2+(|Y|−1)/|Y|2 = 1−2/|Y|+1/|Y| = |Y|−1
|Y| ).

C.5. Proof of Theorem 4.1

We restate Theorem 4.1 below, and prove it in the following two subsubsections.

Theorem 4.1. Suppose that on each group, the error rate of the group classifier from “Stage 1” is ≤ r. Then with high
probability, Lrobust(θ̂robust) ≤ L∗

robust + Õ
(

r
q + 1√

qn

)
.

C.5.1. PER-GROUP POPULATION LOSS VS. PER-ESTIMATED-GROUP POPULATION LOSS.

Let z̃ denote the prediction of the Stage 1 group classifier, i.e.
z̃ = argmax{f̂group(x, y)}. The assumption on the error rate on each group is equiv-
alent to assuming P (z̃ ̸= z|z = g) ≤ r for each g ∈ G. Notice that
P (z ̸= z̃|z̃ = g) =

∑
g′∈|G|,g′ ̸=g P (z = g′|z̃ = g) =∑

g′∈|G|,g′ ̸=g

P (z̃ = g|z = g′)P (z = g′)

P (z̃ = g)
.

Now, P (z̃ = g) ≥ P (z̃ = g|z = g)P (z = g) ≥ (1 − r)q, and P (z̃ = g|z = g′) ≤ r for g ̸= g′, and
∑

g′ ̸=g P (z =

g′) ≤ 1 − q, so P (z ̸= z̃|z̃ = g) ≤ (1− q)r

(1− r)q
≤ r

(1− r)q
. Also, of course P (z ̸= z̃|z̃ = g) ≤ 1 as well, so

P (z ̸= z̃|z̃ = g) ≤ min{ r
q(1−r) , 1}.

|E[ℓ(x, y)|z̃ = g]− E[ℓ(x, y)|z = g]| =
|E[ℓ(x, y)|z̃ = g, z = g]P (z = g|z̃ = g)+

E[ℓ(x, y)|z̃ = g, z ̸= g]P (z ̸= g|z̃ = g)− E[ℓ(x, y)|z = g]| ≤
|E[ℓ(x, y)|z̃ = g, z = g]P (z = g|z̃ = g)− E[ℓ(x, y)|z = g]|+
E[ℓ(x, y)|z̃ = g, z ̸= g]P (z ̸= g|z̃ = g) ≤
|E[ℓ(x, y)|z̃ = g, z = g]P (z = g|z̃ = g)− E[ℓ(x, y)|z = g]|+Bmin{ r

q(1−r) , 1}.

Similarly, E[ℓ(x, y)|z = g] =
(
E[ℓ(x, y)|z̃ = g, z = g]P (z̃ = g|z = g) +

E[ℓ(x, y)|z̃ ̸= g, z = g]P (z̃ ̸= g|z = g)
)

, so
|E[ℓ(x, y)|z̃ = g, z = g]P (z = g|z̃ = g)− E[ℓ(x, y)|z = g]| =(
|E[ℓ(x, y)|z̃ = g, z = g]P (z = g|z̃ = g)− E[ℓ(x, y)|z̃ = g, z = g]P (z̃ = g|z = g)−

E[ℓ(x, y)|z ̸= g, z = g]P (z̃ ̸= g|z = g)|
)
≤

E[ℓ(x, y)|z̃ = g, z = g]|P (z = g|z̃ = g)− P (z̃ = g|z = g)|+Br.

Finally, we have 1 ≥ P (z = g|z̃ = g) = 1 − P (z ̸= z̃|z̃ = g) ≥
max{1− r

q(1−r) , 0}, and 1 ≥ P (z̃ = g|z = g) ≥ 1− r, so
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|P (z = g|z̃ = g)− P (z̃ = g|z = g)| ≤ min{ r
q(1−r) , 1}. Thus, altogether we have

|E[ℓ(x, y)|z̃ = g] − E[ℓ(x, y)|z = g]| ≤ Bmin{ r
q(1−r) , 1} + Bmin{ r

q(1−r) , 1} + Br ≤
3Bmin{ r

q(1−r) , 1}, which is O(r/q) in terms of r and q.

C.5.2. PER-ESTIMATED-GROUP POPULATION LOSS VS. TRAINING LOSS

Let S̃g denote the set of training points with predicted group label g. The datapoints in S̃g are independent samples
from P (x, y|z̃ = g). So by Theorem C.5, for a given g we have that the difference between the per-group training and

population losses on the Stage 2 classification task is |E(x,y)∼S̃g
[ℓ(x, y; θ)]− E[ℓ(x, y; θ)|z̃ = g]| ≤ O

(√
log |S̃g|
|S̃g|

)
with

high probability.

By Hoeffding’s inequality we have O

(√
log |S̃g|
|S̃g|

)
≤ O

(√
logn

q(1−r)n

)
= O

(√
logn
qn

)
. Thus by triangle inequality and

union bound, we have |E(x,y)∼S̃g
[ℓ(x, y; θ)] − E[ℓ(x, y; θ)|z = g]| ≤ O(r/q) + O

(√
logn
qn

)
= Õ

(
r
q + 1√

qn

)
for all

g ∈ G and all θ with ∥θ∥2 ≤ R with high probability. Finally, applying Lemma C.6 yields the desired result, as the training
loss is max

g∈G
E(x,y)∼S̃g

[ℓ(x, y; θ)]. □

C.6. Extension of Theorem 4.1: Non-realizable case

In this section, we show that if the group classifier makes randomized predictions according to the predicted probabilities
(rather than classifying groups by picking the group with maximum predicted probability), we can yield a more general
bound than Theorem 4.1 that is better in the non-realizable case (i.e., when there does not exist a perfect group classifier).
We relax the realizability requirement stated in Section 4 to the requirement that there must exist some f∗ ∈ F1 such that
f(x, y) is the vector of true probabilities P (z|x, y). This theorem is stated below.

Theorem C.8. Suppose there exists f∗ ∈ F1 such that f(x, y) is the vector of true probabilities P (z|x, y). Let P̂ (z|x, y)
denote the probabilities output by the group classifier from ”Stage 1,” and suppose for each datapoint (x, y) the predicted
group label z̃ is sampled from P̂ (z|x, y). Suppose that the total variation between P̂ (z|x, y) and P (z|x, y) is bounded by r,

for all x, y in the support of P . Then with high probability, Lrobust(θ̂robust) ≤ L∗
robust + Õ

(
r
q + 1√

qn

)
.

Theorem C.8 shows that even if it is impossible to perfectly distinguish the groups, this is not necessarily an obstacle to the
downstream robust performance. To prove Theorem C.8, we first prove the following lemma.

Lemma C.9. Suppose P (z̃|x, y) = P (z|x, y). Then E[ℓ(x, y; θ)|z = g] =
E[ℓ(x, y; θ)|z̃ = g], for all g ∈ G.

Proof. By Bayes’ rule P (x, y|z̃ = g) = P (z̃ = g|x, y)P (x, y)/P (z̃ = g). By assumption, for any (x, y), P (z̃ = g|x, y) =
P (z = g|x, y). Therefore P (x, y|z̃ = g) = P (z̃ = g|x, y)P (x, y)/P (z̃ = g) = P (z = g|x, y)P (x, y)/P (z = g) =
P (x, y|z = g) by applying Bayes’ rule again. The claim follows.

Lemma C.9 implies that if we use the predicted group labels z̃ rather than the “true” group labels z, there is essentially
no difference since z̃ and z have the same distribution conditioned on x, y. Thus, samples from (x, y, z̃) and (x, y, z) are

equivalent for our purposes, and applying Lemma C.1 shows that the minimizer of ˆ̃θ of max
g

E[ℓ(x, y; θ)|z̃ = g] satisfies

Lrobust(
ˆ̃
θ) ≤ L∗

robust + Õ( 1√
qn ) with high probability (since in this case we have n total datapoints).

Proof of Theorem C.8. Note that if r = 1 the statement follows trivially from boundedness. Similarly if r = 0 the statement
follows from the argument above. So assume 0 < r < 1.

Given x, y, suppose we sample z′, z̃′ in the following “coupled” fashion. Flip
a biased coin with probability of heads being

∑
g∈G min

{
P̂ (z = g|x, y),

P (z̃ = g|x, y)
}

.
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If the coin is heads, then sample z′′ from the distribution where

P (z′′ = g) =
min{P̂ (z = g|x, y), P (z̃ = g|x, y)}∑
g∈G min{P̂ (z = g|x, y), P (z̃ = g|x, y)}

.

and set z′ = z̃′ = z′′. Note that by the assumption r < 1, the denominator is nonzero.

If the coin is tails, then sample z′ from the distribution where

P (z′ = g) =
P (z = g|x, y)−min{P̂ (z = g|x, y), P (z = g|x, y)}

1−
∑

g∈G min{P̂ (z = g|x, y), P (z̃ = g|x, y)}
,

and independently sample z̃′ from the distribution where

P (z̃′ = g) =
P (z̃ = g|x, y)−min{P̂ (z = g|x, y), P (z̃ = g|x, y)}

1−
∑

g∈G min{P̂ (z = g|x, y), P (z̃ = g|x, y)}
.

Also note that by the assumption r > 0, the denominator is nonzero.

Notice that using this sampling procedure, P (z̃′|x, y) = P (z|x, y). Similarly, P (z′|x, y) = P̂ (z′|x, y). Thus by Lemma C.9,
E[ℓ(x, y; θ)|z′ = g] = E[ℓ(x, y; θ)|z = g] = Lrobust(θ), and E[ℓ(x, y; θ)|z̃′ = g] = E[ℓ(x, y; θ)|z̃ = g]. Also observe
that the probability that z′ ̸= z̃′ is ≤ 1−

∑
g∈G min{P̂ (z = g|x, y), P (z̃ = g|x, y)} which is precisely the total variation

between P̂ (z = g|x, y) and P (z̃ = g|x, y). From here, the remainder of the proof is essentially identical to the proof of
Theorem 4.1, as the sampled group labels z′ from the true conditional distribution are “equivalent” to “correct” group labels,
and the disagreement rate between z′ and the estimated group labels z̃′ is ≤ r by the total variation assumption.

C.7. Proof of Corollary 4.2

Corollary C.10. With high probability, for BARACK-Base we have Lrobust(θ̂robust) ≤ L∗
robust + Õ

(
1

q
√
m

)
.

Proof. First, by Lemma C.1, we have that if we train a classifier with group DRO on D1 to classify the group labels, the
worst-group population loss is Õ(1/

√
qm) with high probability (since in the realizable case, there exists a group classifier

with 0 population loss). As discussed in Appendix C.4.1, for both the cross-entropy and the squared loss this translates to a
(population) worst-group misclassification error of Õ(1/

√
qm) as well (when the classifier prediction is the group with

maximum predicted probability).

In fact, by inspecting the proof of Lemma C.1, we can make the slightly stronger statement that the population classification
error on group g is Õ(1/

√
qgm) with high probability.

So, P (z ̸= g|z̃ = g) =
∑

g′∈|G|,g′ ̸=g

P (z̃ = g|z = g′)P (z = g′)

P (z̃ = g)
=

∑
g′∈|G|,g′ ̸=g

Õ(1/
√
qg′m) · qg′

P (z̃ = g)
≤ O

(
1

(1− Õ(1/
√
qgm))qg

√
m

∑√
qg′

)
= Õ( 1

q
√
m
) since P (z̃ = g) ≥ P (z̃ = g|z =

g)P (z = g) ≥ (1− Õ(1/
√
qgm))qg with high probability and

∑√
q′g ≤

∑
1/
√
|G| =

√
|G|. Thus by a similar argument

to the proof of Theorem 4.1, we have |E[ℓ(x, y)|z̃ = g]− E[ℓ(x, y)|z = g]| ≤ Õ( 1
q
√
m
), and in turn can obtain the desired

result (by an analogous argument as Appendix C.5.2).

C.8. Proof of Corollary C.4

Corollary C.4 is restated below.

Corollary C.11. In addition to the assumptions of Theorem 4.1, suppose that for all f ∈ F2, ℓ(f(x), y) ⊥
argmax{f̂group(x, y)}

∣∣ z. Let θ∗avg be the minimizer of the population average loss E(x,y)∼P [ℓ(x, y; θ)]. Then for BARACK-

Base we have Lrobust(θ̂robust) ≤ min
(
L∗
robust + Õ( 1

q
√
m
),Lrobust(θ

∗
avg) + Õ( 1√

qn )
)

w.h.p.
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Proof. In words, the assumption that ℓ(f(x), y) ⊥ argmax{f̂group(x, y)}
∣∣ z for all f ∈ F2 says that for all classifiers in

F2, the loss on the target task (of classifying the class labels) is independent of the prediction of the group classifier, when
conditioned on the actual group label.

Using this assumption, we have that E(x,y)[ℓ(x, y; θ)|z̃ = g] =
E(x,y)[ℓ(x, y; θ)|z̃ = g, z = g]P (z = g|z̃ = g) + E(x,y)[ℓ(x, y; θ)|z̃ = g, z ̸= g] · P (z ̸= g|z̃ = g) =
E(x,y)[ℓ(x, y; θ)|z = g]P (z = g|z̃ = g) + E(x,y)[ℓ(x, y; θ)|z ̸= g]P (z ̸= g|z̃ = g).

Denote Lavg(θ) = E(x,y)[ℓ(x, y; θ)]. Note that E(x,y)[ℓ(x, y; θ)|z ̸= g]P (z ̸= g) + E(x,y)[ℓ(x, y; θ)|z = g]P (z = g) =
Lavg(θ). Thus,

E(x,y)[ℓ(x, y; θ)|z ̸= g]P (z ̸= g|z̃ = g) =

P (z ̸= g|z̃ = g)

P (z ̸= g)

(
Lavg(θ)− E(x,y)[ℓ(x, y; θ)|z = g]P (z = g)

)
.

As a result,

E(x,y)[ℓ(x, y; θ)|z̃ = g] = (1− a)E(x,y)[ℓ(x, y; θ)|z = g] + aLavg(θ),

where a =
P (z ̸= g|z̃ = g)

P (z ̸= g)
≤ Õ( 1√

qm ) with high probability (as shown in previous sections).

Let θ̃pop denote the minimizer of E(x,y)[ℓ(x, y; θ)|z̃ = g]. Suppose for contradiction that Lrobust(θ̃pop) > Lrobust(θ
∗
avg).

Let

kmax ∈ argmax
k∈G

(
(1− a) · E(x,y)∼pk

[ℓ(x, y; θ)] + a · E(x,y)∼P [ℓ(x, y; θ)]
)
.

Then we have
(
(1− a) · E(x,y)∼pkmax

[ℓ(x, y; θ)] + a · E(x,y)∼P [ℓ(x, y; θ)]
)

>
E(x,y)∼pkmax

[ℓ(x, y; θ)], i.e. that E(x,y)∼P [ℓ(x, y; θ)] > E(x,y)∼pkmax
[ℓ(x, y; θ)]

and thus that
(
(1 − a) · E(x,y)∼pkmax

[ℓ(x, y; θ)] + a · E(x,y)∼P [ℓ(x, y; θ)]
)

<

E(x,y)∼P [ℓ(x, y; θ)]. But there must be some k ∈ [G] such that(
(1− a) · E(x,y)∼pkmax

[ℓ(x, y; θ)] + a · E(x,y)∼P [ℓ(x, y; θ)]
)
≥ E(x,y)∼P [ℓ(x, y; θ)], which contradicts the defini-

tion of kmax. Thus, Lrobust(θ̃pop) ≤ Lrobust(θ
∗
avg).

Using the fact that the datapoints in S̃g are independent samples from P (x, y|z̃ = g), we have for all g that

|E(x,y)∼S̃g
[ℓ(x, y; θ)] − E[ℓ(x, y; θ)|z̃ = g]| ≤ O

(√
log |S̃g|
|S̃g|

)
with high probability (as argued in Appendix C.5.2).

By combining this with the result of Corollary 4.2, we obtain the desired result. □

C.9. Proof of Lemma C.2

Lemma C.12. Let f̂erm,full ∈ F2 (with associated parameters θ̂erm,full) denote the ERM classifier trained on the full
dataset. There exists a distribution P such that with high probability, Lrobust(θ̂erm,full) ≥ log(1/q)

log(|Y|)L
∗
robust − Õ(1/

√
n).

Proof. Consider the following simple distribution. Suppose that the distribution of x is a point mass on a single point.
Suppose that there are k classes and the classes are identical to the groups (that is, y = z always). If cross-entropy loss is
used, then clearly to minimize worst-group loss one should predict a uniform distribution over each class (since the point x
gives no information about the class or group). Thus, the loss on each point would be log k, so L∗

robust = log k in this case.

Recall that the cross-entropy loss has the property that the average population cross-entropy loss is minimized when the
predicted probability of each class is simply the true probability of that class conditioned on the features x. In our case,
the latter is simply the probability of the class. Thus, for the minimizer of the population average cross entropy loss, the
predicted class probabilities for any point are the true class probabilities P (c), and so the loss given that the true class is c is
− logP (c) by definition. So the worst-group loss is maxc− logP (c) = − logminc P (c) = log(1/q) [note that 1/q ≥ k].
The lemma now follows by a simple application of Hoeffding’s inequality, since the training dataset has n points.
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C.10. Theoretical Analysis of BARACK-SSL

In Corollary C.13 (below), we analyze BARACK-SSL (Algorithm 5), which uses semi-supervised learning to train the group
classifier and is described further in Appendix B. For this corollary, we assume that the group classification problem is
realizable (i.e., there exists a classifier with 0 training loss on the group classification task) and that m = Ω(

√
n).

Corollary C.13. Under appropriate conditions, for BARACK-SSL we have
Lrobust(θ̂robust) ≤ L∗

robust + Õ
(

1
q
√
n
+ 1

qm

)
with high probability.

In BARACK-SSL, semi-supervised learning is used to train the group classifier, leveraging the group-unlabeled points. With
an appropriate choice of semi-supervised learning method (such as FixMatch (Sohn et al., 2020)), if m = Ω(

√
n), then

under appropriate conditions, the worst-group generalization error rate bound of BARACK-SSL is O(1/
√
n). This result

is based on the PAC-learning based results of (Balcan & Blum, 2009), and requires the assumptions therein as well as
realizability (the exact conditions are somewhat technical, and are deferred to the discussion in Appendix C). This translates
to an excess robust risk of O(1/

√
n) for the final model, as stated in Corollary C.13.

To prove Corollary C.13, we make use of the following theorem (see Theorem C.14 below, a restated version of Theorem 21.8
from (Balcan & Blum, 2009)). First, we need some additional notation: let χ : F1 ×X → {0, 1} be a function and define
the overloaded notation χ(f, P ) = Ex∼P [χ(f, x)]. Let V C(C) denote the VC-dimension of a function class C. For function
classes that output probabilities rather than labels directly, we overload notation so that V C(F) = V C({argmax{f} | f ∈
F}). Recall that D2 denotes the training set of group-unlabeled points.

Theorem C.14. Given δ ∈ (0, 1), if n = Ω
(

1
ϵ2

(
V C(χ(F1)) log

1
ϵ + log 1

δ

))
and m ≥ 2

ϵ

(
log(2s(2m, t+ 2ϵ)) + log 2

δ

)
,

then with probability ≥ 1− δ it holds that all f ∈ F1 with zero training error and 1− χ(f,D2) ≤ t+ ϵ have population
error ≤ ϵ. Here, s(2m, t+ 2ϵ) denotes the expected number of splits when 2m points are drawn IID from P with concepts
f ∈ F1 having χ(f,P) ≤ t+ 2ϵ.

FixMatch (Sohn et al., 2020) (which we use for Stage 1 of BARACK-SSL, as described in 5) minimizes a weighted
sum of the supervised loss (computed on the training points with group labels) and an unsupervised loss (consistency
of predictions between examples and augmented versions of the same example, computed on all training points). Con-
cretely, in our case the FixMatch loss for a group classifier f ∈ F1 is Lfixmatch = λLsup + (1 − λ)Lconsistency,
where λ ∈ [0, 1], Lsup = E(x,y,z)∼D1

[ℓ(f(x, y), z)], and Lconsistency = E(x,y)∼D2
[1(max{f(x, y)} ≥ τ) ·

ℓ(f(aug(x), y), f(x, y))], where τ ∈ [0, 1] is a predefined constant.

Here, aug(·) denotes the augmentation function; for simplicity assume it is a fixed (non-random) function. Let χ(f, x) be 0
if max{f(x)}≥τ and argmax{f(x)}
̸= argmax{f(aug(x))}, and 1 otherwise (in other words, χ(f, x) is 1 unless f makes a confident prediction on x but
makes a different prediction on the augmented version of x). By the realizability assumption, there exists f ∈ F1 with
zero loss (and therefore zero training loss) on the supervised task of classifying the groups. Note that if aug is the identity
function, then f also attains zero consistency loss; more generally, given ξ ≥ 0 we can choose aug to be a “weak enough”
augmentation such that there exists f ∈ F1 such that Lconsistency ≤ ξ. If we choose ξ to be sufficiently small, we can
guarantee that Lconsistency ≤ δ implies χ(f,D2) ≤ t+ ϵ, since t, ϵ ≥ 0.

Because there exists f ∈ F1 with zero loss, this implies that if we set the weight λ on the supervised part of the loss to
be large enough, the function F1 we learn (corresponding to the minimizer of Lfixmatch) will have zero training error.
(If we find a function with nonzero training error, we can increase the weight of the supervised loss and rerun.) Then,
invoking Theorem C.14, we get that the population error of the returned group classification model will be ≤ O(ϵ) with
high probability as long as m,n satisfy m = Ω(1/ϵ2) and n = Ω(1/ϵ). The value of the term t in Theorem C.14 depends
on the consistency error χ(f,D2) on the training data, which in turn will depend on the augmentation chosen, the threshold
τ , and the weight 1− λ (smaller λ will encourage lower consistency loss). Similarly, the constants in the preceding Ω(·)
terms depend on the choice of augmentation function aug(·); intuitively, we would like to choose an augmentation function
that is as strong as possible while still being label-preserving (so as not to make the consistency loss large).

In summary, given the required conditions, if m = Ω(1/ϵ2) and n = Ω(1/ϵ) then the population error of the returned group
classification model is ≤ O(ϵ) with high probability. The population error of the group classifier on each group g will
then be ≤ O(ϵ/qg) with high probability. Equivalently, with high probability, for all groups g the population error of the
group classifier on that group will be O( 1

qgm
+ 1

qg
√
n
) [as long as m = Ω(

√
n)]. Finally, the desired result now follows by

invoking Theorem 4.1.



BARACK: Partially Supervised Group Robustness With Guarantees

D. Experimental Details and Additional Results
We first describe the datasets, baselines, and experimental details more thoroughly. We then present extensive ablation
experiments in Appendix D.3 and results for BARACK-SSL in Appendix D.4 to support the robustness and extensibility of
our BARACK framework.

D.1. Dataset Details

D.1.1. DATASETS

Waterbirds. Waterbirds (Sagawa et al., 2019), is a popular robustness benchmark that consists of images from ‘landbird’
and ‘waterbird’ species on either land or water backgrounds. The task is to classify images as ‘landbird’ vs. ‘waterbird’,
and the groups are defined by background.5 95% of landbirds are on land backgrounds and similarly for waterbirds; this
spurious correlation makes landbirds on water and waterbirds on land harder to classify.

CelebA. CelebA (Liu et al., 2015a) is a popular face classification dataset which is also often used to evaluate robustness to
spurious correlations. The task is to classify faces as ‘blond’ or ‘not blond’, and the groups are defined by gender. Blondness
is spuriously correlated with gender: the female faces are disproportionately blond and the male faces disproportionately
non-blond. For instance, only 6% of blond examples are male, leading to poor performance on this group.

U-MNIST. U-MNIST (Sohoni et al., 2020) is a modified version of MNIST (LeCun et al., 2010), where the task is to
classify digits as ‘< 5’ or ‘≥ 5’, the groups are the individual digits, and only 5% of images in the ‘8’ group are retained
from the individual dataset. This rarity makes ‘8’ images more difficult to classify.

U-CIFAR10. We introduce U-CIFAR10 as a modification of the CIFAR-10 dataset (Krizhevsky, 2009), where the task is
to classify the image as ‘animal’ or ‘vehicle’, the groups are the 10 original CIFAR-10 classes, and we undersample the
‘airplane’ class to 5%. Though similar to U-MNIST, this task is much more challenging.

D.1.2. DATASET SETUP

Recall that for our experiments, we pick a fixed budget of (training and validation) examples to label for each group, which
are randomly sampled from the appropriate group in the original dataset, and evaluate how our approach fares as this budget
is increased. We use the same group label budget for both the training and validation sets. Note that it is not fundamentally
necessary for the group-labeled training and validation subsets to be the same size; this is merely a simple heuristic to trade
off the amount of data for training the group classifier, and the amount of data for model selection.

Note that in reality, a group-labeled dataset may not have the same number of labeled points for each group, but rather
reflect the training/population distribution, i.e. have the same group proportions as the population. In this case, however, we
can still convert our group-labeled dataset to one with balanced numbers of points per group, by simply subsampling the
group-labeled points by group to get a (smaller) balanced dataset; the performance we achieve after this subsampling can be
interpreted as a rough lower bound on the performance without such subsampling, since it simply throws away data. In fact,
we empirically observed that this subsampling does not meaningfully degrade the final performance, compared to using the
un-subsampled version (containing more group-labeled points for the larger groups).

5Concretely, for our purposes we have four groups: landbird on land, landbird on water, waterbird on land, and waterbird on water, as
in (Sagawa et al., 2019).
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D.2. Training Details

For all datasets and methods, we use a fixed training/validation/test split. Models are trained on the training set, and the
validation set is used for model selection (both selecting the best model during training, and for hyperparameter selection).
All results reported in plots and tables are on the test set; the test set is not used for any model selection or tuning purposes.
For consistency and direct comparability with prior works, we do not use data augmentation for any of the baselines or while
training the “Stage 2” robust models, except when explicitly specified otherwise. For all experimental settings, reported
means and standard deviations are over 5 trials with different random seeds. (We also average over 5 trials for all ablation
experiments in Appendix D.3.)

U-MNIST. This task is based on the MNIST dataset (LeCun et al., 2010) (available under the Creative Commons
Attribution-Share Alike 3.0 license). The U-MNIST task is to classify digits between ≤ 4 and ≥ 5; the groups are the
individual digits. We use a fixed training-validation split for all methods, to set aside 20% of the original MNIST training
set (12,000 points) for validation. On the training set, the ‘8’ digits are subsampled such that only 5% of them are kept.
The total number of points with each digit label in the training set are 0 : 4769, 1 : 5382, 2 : 4845, 3 : 4950, 4 : 4662, 5 :
4300, 6 : 4728, 7 : 4980, 8 : 234, 9 : 4720. The validation set is approximately balanced. Without modification, this can
actually help methods that do not require group labels on the full validation set (such as ERM, BARACK, GEORGE) to more
easily select models with good worst-group performance, because the rare ‘8’ group is overrepresented in the validation
set compared to the training set, so it is easier to detect poor performance on that group even when looking at overall
performance or performance using noisy group labels. Thus, when computing an average metric (loss or accuracy) on a
subset of the validation data, we compute a weighted average which is the sum over each group g of: the average of that
metric for all points in the subset whose true group label is g, times the proportion of group g in the training dataset. This
reweighting procedure is the same as what is done in (Sagawa et al., 2019; Sohoni et al., 2020).

We use a 4 layer LeNet (LeCun et al., 1998) and the Adam optimizer for all methods. For U-MNIST, for training the
robust model we train for 100 epochs with a batch size of 128, the Adam optimizer (Kingma & Ba, 2015), and decay the
learning rate by a factor of 0.1 at epochs 50 and 75. These hyperparameters were taken from (Sohoni et al., 2020). We
tune all methods over the cross product of learning rates [2e-3, 2e-4] and weight decays [1e-4, 3e-4, 1e-5]. For methods
using GDRO for the second stage, we also tune the GDRO group adjustment parameter in the set {0, 3}, and use uniform
per-group sampling, as described in (Sagawa et al., 2019).

U-CIFAR10. This task is based on the publicly available CIFAR-10 dataset (Krizhevsky, 2009) (license unknown). The
U-CIFAR10 task is to classify images as “vehicle” or “animal”; the groups are the original CIFAR-10 classes. We use
a fixed training-validation split for all methods, to set aside 20% of the original MNIST training set (10,000 points) for
validation. On the training set, the ‘airplane’ images are subsampled such that only 5% of them are kept. The total number
of points with each group label in the training set are airplane: 204, automobile: 4004, bird: 3976, cat: 4017, deer: 3997,
dog: 3999, frog: 4000, horse: 3976, ship: 3957, truck: 4003. The validation set is approximately balanced, so as described
for U-MNIST we compute reweighted metrics where appropriate.

We use a ResNet-50 (He et al., 2016) model and train for 200 epochs with a batch size of 128, SGD with momentum 0.9, and
a cosine learning rate schedule. These hyperparameters were taken from the implementation at https://github.com/
kuangliu/pytorch-cifar. We tune all methods over the cross product of learning rates [1e-2, 1e-3] and weight
decays [1e-3, 3e-3, 1e-2, 3e-2, 1e-1]. For methods using GDRO for the second stage, we also tune the GDRO group
adjustment parameter in the set {0, 3}, and use uniform per-group sampling, as described in (Sagawa et al., 2019).

Waterbirds. The Waterbirds dataset was created by (Sagawa et al., 2019) as a modification of the CUB dataset (Wah et al.,
2011) (license unknown). It consists of different bird species (with class labels either “waterbird” or “landbird”) on either a
land or water background. There are 3498 training images of landbirds on land, 184 of landbirds on water, 56 of waterbirds
on land, and 1057 of landbirds on land (these are the four groups). The validation set is more balanced, so as described for
U-MNIST we compute reweighted metrics where appropriate.

We use a ResNet-50 (He et al., 2016) model and train for 300 epochs with a batch size of 128 and SGD with momentum
0.9. These hyperparameters were taken from (Sagawa et al., 2019). We tune all methods over the (learning rate, weight
decay) pairs (1e-4, 1e-1), (1e-3, 1e-4), and (1e-5, 1.0), as done in (Sagawa et al., 2019; Liu et al., 2021). For methods using
GDRO for the second stage, we set the GDRO group adjustment parameter to 2 as in (Sagawa et al., 2019), and use uniform
per-group sampling.

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
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CelebA. The CelebA dataset (Liu et al., 2015b) (license unknown) is a dataset of celebrity faces annotated with several
descriptors (such as gender, hair color, wearing glasses). It is often used as a benchmark for robustness to spurious
correlations. The task we consider is classifying the hair color of the person in the image as blond or non-blond, as in
prior works such as (Sagawa et al., 2019; Sohoni et al., 2020; Liu et al., 2021). In this dataset, hair color is spuriously
correlated with gender: there are 71629 images in the “female, non-blond” group, 66874 in the “female, blond”, 22880
“male, non-blond”, and just 1387 “male, blond”.

We use a ResNet-50 (He et al., 2016) model and train for 50 epochs with a batch size of 128 and SGD with momentum
0.9. These hyperparameters were taken from (Sagawa et al., 2019). We tune all methods over the (learning rate, weight
decay) pairs (1e-4, 1e-2), (1e-4, 1e-4), and (1e-5, 0.1), as done in (Sagawa et al., 2019; Liu et al., 2021). For methods using
GDRO for the second stage, we set the GDRO group adjustment parameter to 3 as in (Sagawa et al., 2019), and use uniform
per-group sampling.

D.2.1. BASELINE DETAILS

We reimplemented ERM and GDRO (and subset-GDRO) ourselves, along with BARACK. For the other baseline methods
(George (Sohoni et al., 2020), JTT (Liu et al., 2021), and EIIL (Creager et al., 2021)), we use the authors’ publicly available
repositories, adapting the code (such as to plug in our dataloaders) where necessary.

All three methods require first training an ERM model. For GEORGE, this model is either a standard ERM model or one
trained with high regularization, and is selected based on the Silhouette score of the clustered activations. For U-CIFAR10
(the only dataset which George did not evaluate on originally), we used a learning rate of 1e-3 for this model and tuned
the weight decay in [1e-3, 1e-1] based on this Silhouette score criterion. For JTT and EIIL, the model is an ERM model
trained with high regularization for a shorter number of epochs. For U-MNIST and U-CIFAR10 (which the JTT paper did
not evaluate on originally) we used a learning rate of 2e-3 and tuned the weight decay in [1e-1, 1e-3] for this ERM model,
and tuned the number of training epochs in {1, 50} (the tuning criterion in this case was the validation worst-group accuracy
of the final robust model), for both EIIL and JTT. EIIL also did not evaluate on CelebA, so we use the same ERM model as
in JTT.

For JTT and EIIL, we assume the group labels on the entire validation set are known, and use these for model selection (as
done in the respective papers). This gives them a slight advantage for model selection compared to BARACK, in which we
only use a small number of group-labeled validation examples (the same number as we use for training). On the other hand,
George does not assume validation set group labels, but rather estimates them the same way the training group labels are
estiated (via clustering the activations of the last layer).

D.2.2. BARACK DETAILS

For BARACK-base, we train a supervised group classifier model (with GDRO) to predict group pseudolabels, as described in
Section 3. This is challenging due to the low number of points with known group labels: for instance, with 8 group-labeled
points per group on Waterbirds or CelebA, the entire training dataset for this stage is 32 examples. Thus, we generally need
to train for more epochs to obtain reasonable results. We also use mild data augmentation (random crops and flips) for
the Stage 1 group classifier only to help deal with this lack of data (although, similarly to prior works, we do not use data
augmentation in Stage 2, except for the experiment with RotNet with data augmentation).

For the learning rate and weight decay for the group classifier, we tune over the same pairs of hyperparameters as described
above. For the number of epochs, we train for 500/(nlab/64) epochs, where nlab is the number of group-labeled examples
in the smallest group (in our experiments, we evaluate the settings nlab ∈ {8, 16, 32, 64}). (We evaluate the validation
accuracy every nlab/64 epochs to keep a constant number of validation evaluations.) We set the batch size for training the
group classifier to be the minimum of 128 or the total number of group-labeled examples.

We note that the group classifier and end model need not have the same architecture. For instance, one could potentially
select a smaller model for the group classifier since it is trained with a small amount of data. In our preliminary experiments,
however, we found that using the larger ResNet-50 model (the same architecture as the Stage 2 model) performed better
than using a smaller ResNet-18 (by 5-10% group classification accuracy on average across all datasets).

For BARACK (and Subset-GDRO), the points for which we know the group label are selected randomly from the training
and validation datasets. We select different sets of these points depending on the random seed (but for a fixed seed, these sets
are the same, to facilitate direct comparisons). We do this to avoid over-indexing interpretation of results to a particularly
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Figure 8. Worst-group accuracy for random flipping experiment (orange line) and no-class experiment ( green line).

“easy” or “difficult” set chosen by happenstance. In the real world, of course, the points for which the group labels are known
would generally be a fixed set. We note that hyperparameters should not be tuned by looking at averaged metrics over the
different seed results, because in a way this “shares information” between different trials with different group-labeled points,
so in some sense is using more group label information than it should. Thus, we indeed select the best hyperparameters
separately for each seed (based on the appropriate validation metric for that seed). For consistency, we do this for all
methods (e.g., tune hyperparameters on a per-seed basis based on the validation metric).

D.2.3. INITIALIZATION

For training both the group classifier and the robust model, we typically start from a pretrained
model: ResNet-50 pretrained on ImageNet. The exception is that for U-MNIST, we use a LeNet-5.
In Appendix D.3.3, we evaluate the impact of using different pretrained models (for the tasks other than U-MNIST).

D.3. Ablation Experiments

In this section, we present ablation experiments to study the reasons behind the worst-group accuracy gains offered by
BARACK. First, we run a synthetic experiment in which we run GDRO with randomly generated noisy group labels at
different noise levels, to better understand how group prediction errors affect the final robust performance. Next, we ablate
the importance of using the class label as an input to the group prediction model (as described in Section 3). Finally, we
explore using models that are pretrained on ImageNet in a self-supervised manner (instead of supervised) as the starting
model for BARACK (and all the baselines), to understand how the worst-group accuracy trends from Section 5.2 generalize
when different pretrained models are used.

D.3.1. RANDOM FLIPPING.

To better understand why BARACK can achieve worst-group accuracy close to that of GDRO even with fairly inaccurate
predicted group labels, we run a synthetic experiment: we run GDRO with a varying fraction of the group labels randomly
flipped, and compare the performance of this to that of BARACK at an equivalent group prediction error rate. Results are in
Figure 8; GDRO with the randomly perturbed group labels performs similarly to BARACK.

Specifically, we take the ground-truth group labels, randomly flip them to get the same error rate and confusion matrix as the
predicted group labels from BARACK’s group prediction model, and then use these “noisy group labels” as the groups for
GDRO. For most settings, the final worst-group error is quite similar to that of BARACK, which suggests that the errors
made by our group prediction model are indeed “sufficiently random” to not adversely affect the downstream worst-group
accuracy too much. However, on U-MNIST, BARACK underperforms the random flipping version with a small number of
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Table 3. Results with self-supervised pretrained model (RotNet), for 32 group-labeled examples per group as in Table 1. Worst-group
accuracies are shown with and without the use of data augmentation.

Method Waterbirds CelebA U-CIFAR10
Worst-group Acc. (%) No aug. Aug. No aug. Aug. No aug. Aug.

ERM 38.4± 2.2 56.0± 3.8 39.3± 1.0 39.3± 2.1 79.3± 1.2 82.3± 2.3
BARACK-base 73.3± 0.6 83.0± 1.1 84.4± 1.5 84.6± 1.3 88.9± 1.5 89.7± 0.6
GDRO (full dataset) 79.6± 2.5 85.1± 0.8 82.6± 1.5 89.8± 0.5 93.6± 0.9 96.4± 0.4

group-labeled points, although this difference decreases as the number of group-labeled points increases.

Additional Details. As described above, for this experiment we created random “synthetic group pseudolabels” to have
the same confusion matrix with respect to the true group labels as the confusion matrix of the BARACK group pseudolabels
with respect to the true group labels. Specifically, for each setting (dataset, seed, and number of known group labels)
we computed the confusion matrix of the group predictions output by the corresponding BARACK model (i.e., the one
selected as the “best model” based on the criteria described in Appendix D.2), and then created the “synthetic pseudolabels”
by taking the true group labels and flipping randomly chosen ones to match the confusion matrix. We then used these
synthetic pseudolabels in the GDRO objective, with the same hyperparameters as those of the BARACK model. (Thus, one
possible explanation for the fact that the BARACK models generally slightly outperform the “randomly flipped” models with
equivalent error rates is the fact that we did not perform a separate hyperparameter search for the “randomly flipped” model,
instead using the same ones as those of the BARACK model with the same confusion matrix.)

D.3.2. CLASS LABEL INPUT.

To evaluate the importance of using the class label as input in the first stage of BARACK, we run the standard BARACK
procedure except without using the class label as input. This substantially decreases the final worst-group accuracy on
all datasets (often by 10% or more, see Figure 8), showing that usage of the class label is indeed an important part of
BARACK procedure. On most datasets, this drop can largely be explained by the reduced group prediction accuracy when
the class feature is not used (the worst-group accuracy of the group classifier is up to 20 points worse when the class is not
used). Interestingly, on U-CIFAR10, the group classifier’s worst-group accuracy drops only 1-5% when it does not use the
class label, but this still results in a drop of 8-11% in the worst-group accuracy of the final BARACK model.

Note that for all datasets considered, the classes are disjoint unions of the groups, meaning that knowing the class narrows
down the possibilities for the group label. Thus, it is unsurprising that using the class label in the group prediction model
significantly improves the worst-group accuracy of both the group prediction model and the final model. We hypothesize
that the class label is more essential for group prediction in the spurious correlation setting (as suggested by the results in
Fig. 8), because it enables the group prediction model to disambiguate between examples with the same spurious attribute
but different classes, allowing it to focus on identifying the spurious attribute itself. By contrast, there is no clear “spurious
attribute” on U-MNIST and U-CIFAR10; knowing the class label only reduces the number of candidate group labels for
each example from 10 to 5.

D.3.3. PRETRAINED MODEL CHOICE.

As described in Section 3, on all tasks except U-MNIST, in our default experiments we start from a pretrained model trained
on the supervised ImageNet task for all methods (and for both the group classifier and final model in BARACK). This is
the standard approach when training on Waterbirds and CelebA, as in previous works (Sagawa et al., 2019; Sohoni et al.,
2020; Levy et al., 2020; Liu et al., 2021). In this subsection, we investigate how the choice of pretrained model affects
performance (Table 3). One motivation for this experiment is the potential for overlap or “leakage” between ImageNet and
other image classification datasets (Kolesnikov et al., 2020). Moreover, we seek to confirm that the observations in previous
sections regarding the performance of BARACK, compared to the baselines, are robust to the choice of pretrained model
initialization. Thus, in this section we use pretrained models that were trained only with self-supervision (i.e., not using any
labels). To be specific, in this section we use RotNet (Gidaris et al., 2018) from the VISSL library (Goyal et al., 2021) as
opposed to the ResNet-50 pretrained on supervised ImageNet (from PyTorch) used in previous sections and previous works.
Results are reported in Table 3 and plotted in Figure 9.
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Figure 9. Worst-group accuracy using different initial pretrained models.

Overall, we observe that using the RotNet model achieves somewhat worse accuracies (both worst-group and average) for
all methods, although this gap can be reduced or eliminated by using data augmentation. This unsurprisingly aligns with the
findings of the original RotNet paper (Gidaris et al., 2018) that RotNet has somewhat worse transfer performance compared
to supervised pretrained models. Despite the gap, the key takeaway is that BARACK still outperforms the baselines and
remains competitive with full-dataset GDRO with the same initialization.

We additionally find that using data augmentation for the RotNet-based model can boost its performance closer to that of
the supervised pretrained model. We observe that data augmentation does not seem to benefit the RotNet model much on
U-CIFAR10, but it does on the other tasks (on CelebA, augmentation even boosts the performance using RotNet past the
performance using the supervised ImageNet model, although of course the performance of the latter could likely also be
boosted by using data augmentation). For the RotNet training with augmentation, the augmentations used in both Stage 1
and Stage 2 of BARACK are random crops, random flips, and random rotations (of up to 15 degrees). The reason we added
the random rotations is because rotation is a key part of pretraining the RotNet model itself.

D.4. BARACK-SSL: Semi-Supervised Learning for Group Prediction

As an extension, we investigate the use of semi-supervised learning (SSL) using FixMatch (Sohn et al., 2020), for Stage
1 of BARACK. (We still use GDRO for Stage 2.) We refer to this procedure as BARACK-SSL. On the U-CIFAR10 task,
BARACK-SSL can improve group prediction accuracy and, correspondingly, final robust performance. For example, with
only 8 group-labeled examples per group, the worst-group accuracy of the final BARACK-SSL model is 94.0%, compared to
90.4% for BARACK-Base. Correspondingly, the worst-group prediction accuracy of the group classifier is 83.7% when
trained using FixMatch, while it is substantially lower at 42.9% when trained using simple supervised learning as in
BARACK-Base, which helps explain these results. Thus, while BARACK-Base is simple and attains good worst-group
accuracy, these results highlight the exciting potential of using more advanced SSL techniques to further boost worst-group
performance of BARACK at the cost of more complexity. (Note: When training the group classifier using FixMatch, we use
the class label as an input to the prediction head, just as in BARACK-Base.)

Additional Details. For BARACK-SSL, we use FixMatch (Sohn et al., 2020) to train the semi-supervised group classifier.
We adapt the PyTorch implementation at https://github.com/kekmodel/FixMatch-pytorch, modifying it
to use the class label the same way as described in Section 3 in order to assign zero probability to the groups that do not
belong to the given class. Other than that, we use the default FixMatch hyperparameters. The group classifier used is simply
the model at the end of FixMatch training (so we do not use the validation set at all for Stage 1). For the Stage 2 GDRO
model, we used the same hyperparameter search and model selection approach as described in Appendix D.2.

https://github.com/kekmodel/FixMatch-pytorch
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Table 4. Extended version of Table 1, with additional baseline results (EIIL (Creager et al., 2021), Subset-GDRO) and results for
BARACK when there are 8, 16, 32, and 64 group-labeled examples provided from each group (in each of the training and validation sets).
As Waterbirds only has 56 training points in the smallest group, the last setting (64) does not apply to it.
Method U-MNIST Waterbirds CelebA U-CIFAR10
Accuracy (%) Worst-group Avg. Worst-group Avg. Worst-group Avg. Worst-group Avg.

ERM 93.4± 0.5 99.2± 0.0 60.6± 3.3 97.3± 0.1 39.7± 3.0 95.7± 0.1 88.4± 1.4 99.5± 0.1
EIIL 97.2± 0.5 98.9± 0.2 87.3± 4.2 93.1± 0.6 81.3± 1.4 89.5± 0.4 85.3± 1.4 99.4± 0.1
GEORGE 95.7± 0.6 97.9± 0.2 76.2± 2.0 95.7± 0.5 53.7± 1.3 94.6± 0.2 93.4± 5.8 98.9± 0.3
JTT 96.2± 0.7 98.4± 0.4 88.0± 0.7 91.7± 0.8 77.8± 2.0 87.2± 1.2 89.0± 4.7 94.6± 1.3

Subset-GDRO (8) 66.9± 5.3 84.0± 1.8 76.4± 3.6 81.0± 4.9 56.9± 13.1 74.2± 5.3 83.4± 3.9 93.5± 0.6
Subset-GDRO (16) 77.4± 2.5 89.2± 1.1 83.9± 1.4 86.1± 1.7 75.5± 5.9 81.9± 1.4 86.0± 2.2 93.3± 1.8
Subset-GDRO (32) 85.4± 1.4 92.4± 0.4 86.9± 1.0 88.6± 0.5 76.6± 4.4 85.5± 1.8 88.6± 2.4 95.2± 0.9
Subset-GDRO (64) 89.6± 1.8 94.7± 0.7 - - 79.0± 4.4 87.3± 1.2 91.7± 1.5 96.6± 0.4
Subset-GDRO (128) 92.8± 1.3 95.9± 0.3 - - 81.4± 2.0 89.4± 0.4 94.6± 0.6 97.9± 0.1

BARACK-base (8) 96.2± 0.8 99.2± 0.1 83.0± 5.9 94.4± 2.8 81.1± 3.2 92.9± 0.3 90.4± 1.9 99.2± 0.2
BARACK-base (16) 96.4± 1.0 99.1± 0.2 86.9± 2.3 94.4± 2.9 83.0± 4.1 92.9± 0.8 90.5± 3.3 99.1± 0.4
BARACK-base (32) 96.9± 0.9 99.1± 0.3 89.6± 0.9 94.3± 1.3 83.8± 2.7 92.8± 0.6 94.5± 1.1 98.9± 0.3
BARACK-base (64) 97.4± 0.8 99.0± 0.3 - - 84.3± 2.0 92.8± 0.5 95.2± 0.8 98.9± 0.4
BARACK-base (128) 97.5± 0.4 99.0± 0.2 - - 87.0± 1.5 92.7± 0.4 96.5± 0.4 99.1± 0.2

Full-GDRO 98.6± 0.2 99.1± 0.1 90.9± 0.2 92.8± 0.2 89.3± 0.9 92.8± 0.1 97.0± 0.3 99.2± 0.3

D.5. Additional Results

D.5.1. WORST-GROUP PERFORMANCE.

In Table 4, we provide a more complete version of Table 1.

In this table, all results are rerun by us except for GEORGE on U-MNIST, CelebA and Waterbirds (since the original
GEORGE paper already reports results over 5 seeds on those datasets). We ran 5 seeds for all methods except 10 seeds for
BARACK, due to the increased variability from selecting different subsets of points with known group labels. We note that
our averaged results were somewhat better on Waterbirds and worse on CelebA than those reported in the JTT paper (which
reports results from one trial). Similarly, our results for EIIL on Waterbirds are also somewhat better than those reported in
the EIIL paper (Creager et al., 2021).

Separately, the recent work (Zhang et al., 2022) proposes a method (CnC) based on contrastive learning for improving
robustness to spurious correlations. This method does very well on the spurious correlation datasets (Waterbirds and
CelebA), even exceeding the performance of BARACK on CelebA. However, we found that CnC did not work well on
U-MNIST and U-CIFAR10 (attaining worst-group accuracies lower than those of ERM), which are tasks without explicit
spurious correlations (even though CnC can in principle be applied to such tasks).

D.5.2. GROUP PREDICTION ACCURACY.

In Figure 10 we provide more results on the performance of the “Stage 1” group classification model. We plot both
worst-group and average accuracies for the group classifier, corresponding to the same settings as in Table 4.

E. Conclusion
In this paper, our focus is to gain understanding into the practically important, yet so far understudied, version of the popular
group robustness problem in which only a few group labels are known. We show simple techniques can be highly effective
for this novel setting, and support our work with theoretical results and extensive ablations. Specifically, to address this
problem, we present BARACK, a two-stage approach to improve group robustness in the setting when only a small number
of group labels are known. We empirically validate that BARACK outperforms methods that do not use training group
labels, even with just a small number of group-labeled examples. We theoretically provide generalization bounds on the
worst-group performance of BARACK. Our results indicate that even a small number of group labels can be helpful for
substantially improving worst-group performance.
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Figure 10. Worst-group and average accuracy of the group classifier.


