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Abstract

We demonstrate that vision language models (VLMs) are capable of recognizing the
content in audio recordings when given corresponding spectrogram images. Specif-
ically, we instruct VLMs to perform audio classification tasks in a few-shot setting
by prompting them to classify a spectrogram image given example spectrogram
images of each class. By carefully designing the spectrogram image representation
and selecting good few-shot examples, we show that GPT-4o can achieve 59.00%
cross-validated accuracy on the ESC-10 environmental sound classification dataset.
Moreover, we demonstrate that VLMs currently outperform the only available
commercial audio language model with audio understanding capabilities (Gemini-
1.5) on the equivalent audio classification task (59.00% vs. 49.62%), and even
perform slightly better than human experts on visual spectrogram classification
(73.75% vs. 72.50% on first fold). We envision two potential use cases for these
findings: (1) combining the spectrogram and language understanding capabili-
ties of VLMs for audio caption augmentation, and (2) posing visual spectrogram
classification as a challenge task for VLMs.

1 Introduction

Vision-language models (VLMs) have emerged as a powerful paradigm for multimodal artificial
intelligence, capable of jointly processing and reasoning over visual and textual information [8, 3]. By
integrating computer vision and natural language processing capabilities, VLMs have demonstrated
remarkable capabilities across a wide range of tasks, from image captioning and visual question
answering to object detection and scene understanding [20, 13]. The success of VLMs in these
domains suggests that their generalized visual reasoning abilities could be leveraged for tasks in other
modalities, supposing those modalities can be reasonably represented as images.

Here we investigate whether VLMs might be able to perform audio classification when presented
with audio in the form of spectrograms. Spectrograms, which visually represent the frequency
content of audio signals over time, have long been used as input for audio classification tasks
[15, 4, 12, 16, 11]. These time-frequency representations capture essential acoustic features that are
often more informative than raw waveforms for many audio analysis tasks. Recent commercial VLMs,
such as GPT-4o [1], Claude-3.5 Sonnet [2] and Gemini-1.5 [18], have demonstrated impressive zero-
shot and few-shot capabilities across various visual tasks [19]. These models are trained on image-text
data and accordingly have seen spectrograms and associated text during pre-training. However, their
potential for processing spectrograms and classifying audio content remains unexplored to the best of
our knowledge.

We propose a novel task called visual spectrogram classification (VSC) which tasks models with
recognizing the content in audio recordings from their equivalent visual spectrograms. We benchmark
VLMs and attempt to measure human expert performance on this task. Our approach involves
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carefully designing the spectrogram image representation and the few-shot prompting strategy to
enable the VLM to reason about audio content from visual patterns.

We conduct comprehensive experiments to evaluate the zero-shot and few-shot performance of
various commercial VLMs on this task. We conduct ablation studies to optimize spectrogram
hyperparameters, exploring variations in amplitude scale, frequency axis, colormap, and spectrogram
style transformations. We also experiment with different numbers and types of examples for few-shot
learning. Finally, we compare the few-shot performance of VLMs with the performance of human
experts on VSC and commercial audio language models on audio classification (AC).

Demonstrating that VLMs can comprehend sounds through spectrograms opens up a range of potential
applications. One of our aims, for instance, is to improve the quality of captions in audio captioning
datasets which often contain vague or inaccurate descriptions [7]. While large language models
(LLMs) are capable of generating captions, they are prone to hallucination. Incorporating audio
information would help the multimodal LLM to ground the captions but it is not immediately clear
how to do so. Current audio language models (ALMs) like Pengi [5], SALMONN [17] and GAMA
[10] allow audio as input but lag behind commercial VLMs in terms of language understanding
abilities, as evidenced by the size of their underlying LLMs (Pengi uses GPT-2 as the language
model component with 124M parameters compared to the hundreds of billions now common in
state-of-the-art models [9]). If we could provide both the vague caption and the audio information to
the VLM as a spectrogram, we may be able to get captions that are both grounded in audio as well as
sufficiently descriptive.

Our research contributes to cross-modal learning and VLM adaptability to novel tasks. By demon-
strating the effectiveness of VLMs in processing spectrograms for audio classification, we highlight
the potential for these models to bridge the gap between visual and auditory domains. VSC serves as
a new benchmark task for VLMs as a test of their audio spectrogram understanding capabilities.

The primary contributions of this work are:

• Proposing a novel task, Visual Spectrogram Classification (VSC), which demonstrates
VLMs’ capability to classify audio content using spectrogram images.

• Conducting ablation studies to find optimal spectrogram hyperparameters for VSC.
• Comparing the performance of latest models from the GPT-4, Claude and Gemini series on

the VSC task in zero-shot and few-shot settings.
• Comparing VLM performance with human experts on the VSC task and commercial audio

language models on the audio classification task.

2 Tasks & Methods

2.1 Task definition for visual spectrogram classification (VSC)

Visual spectrogram classification (VSC) is a novel task that involves classifying audio content based
on the spectrogram representations. In zero-shot settings, the model analyzes the spectrogram and
selects the most likely audio class. For few-shot settings, the model is provided with example
spectrograms for each sound class to guide the classification process.

2.2 Default spectrogram extraction hyperparameters

We establish default parameters for spectrogram extraction to ensure consistency. Audio files are
resampled to 22,050 Hz, with Short-time Fourier transform (STFT) computed using a 2,048-sample
window size and 512-sample hop length. Both frequency and amplitude scales are logarithmic (as is
common in audio research), using the ’viridis’ colormap. To improve clarity, we added axis labels
and removed the colormap scale from the spectrogram images.

2.3 Prompting VLMs to perform VSC

For zero-shot experiments, we input the spectrogram and a text prompt listing all classes, instructing
the model to select the most likely class. Few-shot experiments employ in-context learning [6],
providing one example spectrogram per class alongside the test spectrogram.
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Figure 1: Experimental setup of the visual spectrogram classification task in the few-shot setting

3 Experiments & Results

3.1 Dataset and Models

Dataset: We utilize the ESC-10 dataset, a subset of ESC-50 [14], comprising 400 5-second environ-
mental sound recordings across 10 classes. The dataset is divided into five folds, each containing 80
audio clips (8 per class). Figure 2 illustrates example spectrograms for each class.

Models: Our experiments employ six state-of-the-art VLMs:

• GPT-4: GPT-4o (most powerful) and GPT-4o-mini (lightweight)
• Claude: Claude-3.5 Sonnet (latest) and Claude-3 Opus (computation-intensive)
• Gemini: Gemini-1.5 Pro (most powerful) and Gemini-1.5 Flash (lightweight)

All models were accessed via API endpoints using the latest versions as of September 2024

3.2 Comparing zero-shot performance of VLMs on the visual spectrogram classification task

We evaluated the zero-shot VSC performance of all the VLMs on the first fold of ESC-10 using
the default spectrogram hyperparameters. The first column in Table 1 shows the zero-shot VSC
performance. GPT-4o outperformed other state-of-the-art models in the zero-shot setting.

Figure 2: Example audio spectrograms for each class in the ESC-10 dataset
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Table 1: Zero-shot and few-shot performance of VLMs (on VSC) and ALMs (on AC) on the first fold
of the ESC-10 dataset. Zero-shot performance with tuned parameters (see appendix) is also shown. *
indicates that the hyperparameters were tuned on GPT-4o, so it has an advantage over other models.

Modality Model Zero-shot (default
parameters) (%)

Zero-shot (tuned
parameters) (%)

Few-shot
(%)

Vision GPT-4o 27.50 35.00* 70.00*
GPT-4o mini 21.50 22.50 38.75
Claude-3.5 Sonnet 21.50 22.50 56.25
Claude-3 Opus 11.25 12.50 15.00
Gemini-1.5 Flash 16.25 17.50 10.81
Gemini-1.5 Pro 18.75 18.42 20.31

Audio Gemini-1.5 Flash (Audio) 27.50 27.50 40.26
Gemini-1.5 Pro (Audio) 38.36 38.36 44.78

3.3 Few-shot performance of VLMs on the visual spectrogram classification task

We investigated GPT-4o’s few-shot learning capabilities on the first fold of ESC-10. Initial exper-
iments used randomly selected examples for each class. We then optimized example quality by
applying K-means clustering to mel spectrograms from the remaining folds, selecting spectrograms
closest to cluster centroids for 10-shot, 20-shot, and 30-shot tasks. We also explored clustering on
amplitude spectrograms and manual example selection.

Table 1 (third column) shows few-shot performance with randomly chosen examples. All models
demonstrated significant accuracy improvements with examples provided. GPT-4o’s 10-shot accuracy
increased to 70% from 35% in zero-shot. Table 2 illustrates the impact of example selection
methods on GPT-4o VSC performance. Cluster-based and handpicked examples improved 10-shot
performance. Optimal performance (76.25%) was achieved with 2 examples per class using K-means
clustering on Mel spectrograms. Interestingly, 3 examples per class slightly decreased accuracy.

Table 2: Few-shot VSC performance of GPT-4o on ESC-10
(first fold) with different example selection methods

# per class Selection method Feature Accuracy (%)

1 Random Mel 70.00
1 Hand-picked Mel 75.00
1 K-means (k=3) Mel 73.75
1 K-means (k=3) Amp 60.00
2 K-means (k=3) Mel 76.25
3 K-means (k=3) Mel 70.00

Table 3: Few-shot VSC per-
formance of human experts on
the ESC-10 dataset (first fold)

Expert Accuracy (%)

Expert 1 67.5
Expert 2 57.5
Expert 3 71.25

Ensembled 72.5

3.4 Human expert evaluations

To benchmark human performance on the VSC task, we conducted evaluations with three experts
(professors and graduate students from audio or speech research labs). Each expert classified 80
spectrograms from the first fold of ESC-10, using the same 10-shot mel spectrogram examples
provided to the VLM 10-shot mel spectrogram clustering scenario for consistency.

The accuracies of the experts on the 10-shot VSC task on the first fold of ESC-10 are shown in
table 3. The mean inter-annotator agreement (Cohen’s Kappa Score) is 0.53. Notably, GPT-4o in
the same scenario achieved a slightly higher accuracy (73.75%) than the ensembled human expert
performance (72.5%), demonstrating the model’s potential to match and even exceed human expert
level performance on this task. The confusion matrices for GPT-4o and ensembled human expert
predictions, shown in Figure 3, reveal that both approaches struggled more with distinguishing similar
spectrograms such as ‘dog’ and ‘sneezing’ or ‘helicopter’, ‘rain’ and ‘sea waves’.
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Figure 3: Confusion matrices for GPT-4o (left) and the ensembled human expert predictions (right)

3.5 Cross-validated task performance

To assess the robustness of our approach, we conduct cross-validated VSC performance of GPT-4o
and AC performance evaluations of Gemini-1.5 pro on the full ESC-10 dataset. To evaluate GPT-4o
on a more challenging task, we use a custom subset of the ESC-50 dataset. ESC-50 is a more
comprehensive dataset with 2000 audio files across 50 classes. We create a subset of 100 randomly
selected audio files (2 audio files per class) from the first of the five folds for VSC evaluation.

The accuracies of the GPT-4o and Gemini-1.5 pro models on the ESC-10 dataset are 59.00% and
49.62% respectively. This highlights the competitive performance of GPT-4o on VSC, even when
compared to commercial audio language models. The 50-shot VSC accuracy of GPT-4o on the
customized subset of the ESC-50 dataset is 14% which shows its poor generalization capability when
the number of classes increases.

4 Limitations

Firstly, current VLMs do not yet match the performance of traditional audio classification methods.
This performance gap is likely because VLMs are primarily trained on natural images and text, not
spectrograms. Moreover, this task is difficult even for human experts.

Secondly, our experiments reveal a significant drop in classification accuracy as the number of audio
classes increases (59% accuracy on the ESC-10 dataset (10 classes) to 14% accuracy on the ESC-50
dataset (50 classes)). This decline suggests that VLMs struggle to differentiate between a large
number of audio classes; the visual patterns in spectrograms may become less distinctive or more
confusing to the model as the number of classes or the similarities between them grows.

It is important to note, however, that as VLMs continue to evolve and become larger in size and
potentially encounter more spectrograms in their training data, we anticipate improvements in their
visual spectrogram classification capabilities.

5 Conclusion

In this study, we propose the visual spectrogram classification (VSC) task and evaluate vision
language models such as GPT-4o in zero-shot and few-shot settings. Our experiments demonstrate
that VLMs can interpret the ability to classify audio spectrograms, with few-shot learning greatly
enhancing performance. We show that GPT-4o performs better than commercial multimodal models
with audio understanding, and can even outperform human experts on this task. As VLMs continue
to evolve, we envision expanded applications in audio classification and understanding.
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Appendix A: Spectrogram hyperparameters ablation study

We varied key parameters to generate diverse spectrograms from the same audio files:

• Amplitude scale: logarithmic or linear
• Colorscale: viridis or magma
• Frequency scale: logarithmic or linear
• Spectrogram style: raw amplitude magnitude, mel spectrogram, or mel-frequency cepstral

coefficients (MFCCs)
• Visual elements: presence or absence of colorbar and labels
• Image resolution: standard or low (adjusted via GPT-4o’s ’detail’ parameter)

Some variations (e.g., amplitude and frequency scales) are common in spectrogram-based classifiers,
while others (e.g., colorscale, text labels) are more specific to VLMs. The aim was to assess how
these variations in the spectrogram representation affected the model’s ability to classify audio
signals. Table 4 presents the results of these experiments, showing the zero-shot VSC performance
of GPT-4o on the ESC-10 dataset (first-fold) with different spectrogram hyperparameters. Notably,
amplitude spectrograms with a linear frequency axis yielded the highest classification accuracy (35%),
suggesting that these settings better capture relevant audio features. The zero-shot performance on
tuned parameters of all models is shown in the second column of the Table 1.

Table 4: Zero-shot VSC performance of GPT-4o on ESC-10 (first fold) with various hyperparameters

Parameter Accuracy (%)

Default parameters 27.50
Linear frequency axis 35.00
Linear amplitude scale 30.00
Remove labels 26.25
Show colorbar 23.75
Magma colormap 25.00
Mel spectrogram 25.00
MFCCs 13.75
Low resolution 20.00

Figure 4: Example spectrograms for the same audio using different configurations described in the
hyperparameter ablations section
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Appendix B: Prompts for VSC in zero-shot and few-shot settings

Figures 5 and 6 show the zero-shot and few-shot prompt templates for the visual spectrogram
classification task.

1 ZERO_SHOT_PROMPT = """
2 {
3 "role": "system",
4 "content ": "You are a helpful assistant with expertise in

recognizing patterns and identifying classes based on
visual representations of audio data."

5 },
6 {
7 "role": "user",
8 "content ": [
9 {

10 "type": "text",
11 "text": "Your task is to analyze a spectrogram ,

which is a visual representation of the
frequency spectrum of sound over time , and
determine the most likely sound class from a
given list of possibilities. Analyze the
spectrogram image , considering factors such as
frequency patterns , intensity , and time
variations. Focus solely on the patterns
presented in the spectrogram. Do not let any
assumptions about common sounds or
environmental settings influence your decision.
Here are the classes: [’dog ’, ’chainsaw ’, ’

crackling_fire ’, ’helicopter ’, ’rain ’, ’
crying_baby ’, ’clock_tick ’, ’sneezing ’, ’
rooster ’, ’sea_waves ’]. Your response must
always contain the exact name of the class only
. For example , if you believe the spectrogram
matches best with rain , your response would be
rain. Here is the spectrogram :"

12 },
13 {
14 "type": "image_url",
15 "image_url ": {
16 "url": "data:image/png;base64 ,{image }"
17 }
18 }
19 ]
20 }
21 """

Figure 5: The template for prompting the VLM for zero-shot VSC. {image} is replaced by the
spectrogram image to be classified.
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1 FEW_SHOT_PROMPT = """
2 {
3 "role": "system",
4 "content ": "You are a helpful assistant with expertise in

recognizing patterns and identifying classes based on
visual representations of audio data."

5 },
6 {
7 "role": "user",
8 "content ": [
9 {

10 "type": "text",
11 "text": "Your task is to analyze spectrograms ,

which are visual representations of the
frequency spectrum of sound over time , and
determine the most likely sound class for a
given spectrogram .\nHere are examples of
spectrograms for different sound classes :"

12 },
13 {
14 "type": "examples",
15 "content ": [
16 {
17 "type": "text",
18 "text": "Spectrogram for {category -i}:"
19 },
20 {
21 "type": "image_url",
22 "image_url ": {"url" "data:image/png;base64

,{example -image -i}"}
23 }
24 ]
25 },
26 {
27 "type": "text",
28 "text": "\nNow , given a new spectrogram , analyze it

considering factors such as frequency patterns
, intensity , and time variations. Focus solely
on the patterns presented in the spectrogram.
Do not let any assumptions about common sounds
or environmental settings influence your
decision .\ nYour task is to determine which of
the example classes the new spectrogram most
closely resembles. Your response must contain
only the exact name of the class.\nHere is the
new spectrogram to classify :"

29 },
30 {
31 "type": "image_url",
32 "image_url ": {
33 "url": "data:image/png;base64 ,{image }"
34 }
35 }
36 ]
37 }
38 """

Figure 6: The template for prompting the VLM for few-shot VSC. {category-i} and {example-image-
i} are replaced by the name and example spectrogram for the i-th class where i will take values from
1 to n for n-shot classification and {image} is replaced by the spectrogram image to be classified.
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