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ABSTRACT

Masked language modeling has proven to be an effective paradigm for learning
representations of language. However, when multiple tokens are masked out,
the masked language model’s (MLM) distribution over the masked positions as-
sumes that the masked tokens are conditionally independent given the unmasked
tokens—an assumption that does not hold in practice. Existing work addresses
this limitation by interpreting the sum of unary scores (i.e., the logits or the log
probabilities of single tokens when conditioned on all others) as the log potential a
Markov random field (MRF). While this new model no longer makes any indepen-
dence assumptions, it remains unclear whether this approach (i) results in a good
probabilistic model of language and further (ii) derives a model that is faithful
(i.e., has matching unary distributions) to the original model. This paper studies
MRFs derived this way in a controlled setting where only two tokens are masked
out at a time, which makes it possible to compute exact distributional properties.
We find that such pairwise MRFs are often worse probabilistic models of language
from a perplexity standpoint, and moreover have unary distributions that do not
match the unary distributions of the original MLM. We then study a statistically-
motivated iterative optimization algorithm for deriving joint pairwise distributions
that are more compatible with the original unary distributions. While this iterative
approach outperforms the MRF approach, the algorithm itself is too expensive to
be practical. We thus amortize this optimization process through a parameterized
feed-forward layer that learns to modify the original MLM’s pairwise distributions
to be both non-independent and faithful, and find that this approach outperforms
the MLM for scoring pairwise tokens.

1 INTRODUCTION

Masked language modeling has proven to be an effective paradigm for learning generalizable rep-
resentations of language (Devlin et al., 2019; Liu et al., 2019; He et al., 2021) and other structured
domains (Rives et al., 2021; Mahmood et al., 2021; He et al., 2022). From a probabilistic per-
spective, masked language models (MLM) make strong independence assumptions. When multiple
tokens are masked out, MLMs assume that the distributions over the masked tokens are condition-
ally independent given the unmasked tokens—an assumption that clearly does not hold for language.
For example, consider the sentence: “The [MASK]1 [MASK]2 pleasantly surprised by an analysis
paper.” MLM’s assume that the distribution over the two tokens are independent and thus cannot
systematically assign higher probability to grammatical subject-verb agreements (“reviewer was”
and “reviewers were”) than ungrammatical ones (∗“reviewer were” and ∗“reviewers was”). These
types of statistical dependencies can occur for words that are far apart,

The [MASK]1, tired from reading so many papers that focused on performance
gains, [MASK]2 pleasantly surprised by an analysis paper.

Indeed, such long-range dependencies animate much work on hierarchical approaches to language
which posit (usually tree-like) structures in which words that are “close” in structure space (but
potentially far apart in surface form) have high dependency with one another.

From purely a representation learning perspective, such model misspecifications arising from incor-
rect statistical assumptions may not be catastrophic. These assumptions can enable scalable training
and even aid in learning better representations by serving as a statistical bottleneck that forces more
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information to be captured by the hidden states.1 However, we observe that MLMs are increasingly
being employed as probabilistic models of language, for example for scoring (Salazar et al., 2020;
Xu et al., 2022) and sampling/decoding (Wang & Cho, 2019; Ghazvininejad et al., 2019; Ng et al.,
2020; Yamakoshi et al., 2022) sentences. Under such probabilistic uses of MLMs, it becomes critical
to ensure that the underlying statistical assumptions are plausibly grounded in reality.

Existing work has approached this problem by using the conditionals of an MLM to define an alter-
native probabilistic model of language that does not make said conditional independence assump-
tions. Noting that the unary conditional distributions of an MLM (i.e., the conditional distributions
output by the MLM when a single token is masked out) do not make any independence assumptions,
Goyal et al. (2022) define a fully connected Markov random field (MRF) language model whose log
potential of a sentence is defined to the sum of these unary log probabilities (or logits). This ap-
proach, while sensible, raises two questions: (i) is this new model a good probabilistic model of
language, and (ii) are the conditionals of the derived model faithful to the original MLM, i.e., are
the unary conditionals of the new model the same as (or similar to) the unary conditionals of the
MLM?2 The latter faithfulness question is important because due to the scale at which these models
are trained, it is not completely outrageous to posit that the unary conditionals learned by the MLM
are close enough the true unary distributions of language.3

This paper investigates both questions in a controlled pairwise conditional setting where only two
tokens are masked out at a time, which makes it possible to compute the MRF’s pairwise distribution
exactly. Surprisingly, we find that such pairwise MRFs are often a worse probabilistic model of
language than even the original MLM that assumes independence between the two masked tokens.
We moreover find that the MRF’s unary distributions do not match the MLM’s unary distributions.
In light of this result, we study two alternative approaches to deriving non-independent pairwise
distributions from the MLM’s unary distributions. The first approach exploits the Hammersley–
Clifford–Besag theorem (Besag, 1974), which allows one to write down a joint distribution in terms
of unary conditionals. The second approach uses an iterative algorithm that finds a joint distribution
over two masked positions whose unary conditionals are closest, in the KL sense, to the unary
conditionals of the MLM (Arnold & Gokhale, 1998). We find that joint pairwise distributions from
the iterative approach have better perplexity than both the MRF and the MLM, and also have unary
conditionals that are closer to those of the original MLM’s. While effective, the iterative algorithm
is too expensive to be practical. We thus propose an amortized variant of the iterative approach
that can compute non-independent pairwise conditionals using only a single forward pass of the
MLM followed by an efficient feed-forward layer, and find that this amortized approach outperforms
original MLM when scoring adjacent pairwise tokens. Our code will be made publicly available.

2 BACKGROUND

We begin by introducing notation. Let V be a vocabulary of tokens, and T be the text length, and
w ∈ VT be an input sentence/paragraph. We are particularly interested in the case when a subset
S ⊆ [T ] ≜ {1, . . . , T} of the input w is replaced with the special [MASK] tokens; in this case we
will use the notation qt|S(· | wS) to denote the output distribution of the MLM at position t ∈ S,
where wS is derived from w by masking out wt for all t ∈ S. MLMs are trained to maximize
the log-likelihood of a set of masked words S in a sentence. More formally, consider an MLM
parameterized by a vector θ ∈ Θ and some distribution µ(·) over subsets of positions to mask
S ⊆ [T ]. The MLM learning objective can then be written as:

argmax
θ

E
w∼p(·)

E
S∼µ(·)

[
1

|S|
∑
t∈S

log qt|S(wt | wS ;θ)

]
,

where p(·) denotes the true data distribution. Let pS|S(· | wS) analogously be the conditionals of
the data distribution and further let qS|S(wS | wS) ≜

∏
i∈S qi|S(wi | wS) be the joint distribution

1Indeed, prior work has found that masking out contiguous words (which on average have higher depen-
dency than non-contiguous words; Joshi et al., 2020) or employing more aggressive masking rates (Wettig et al.,
2022) can improve representation learning.

2Of course, it is possible that the set of unary conditional distributions themselves may be incompatible
(Arnold & Press, 1989), i.e., there is no joint distribution whose unary conditionals exactly equal those of the
MLM’s. In our empirical study we show that this is indeed the case.

3As noted by https://machinethoughts.wordpress.com/2019/07/14/a-consistency-theorem-for-bert/.
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over the masked tokens wS . Then the above can be rewritten as:

argmin
θ

E
S∼µ(·)

[
1

|S|
DKL(pS|S(· | wS) || qS|S(· | wS ;θ))

]
.

Thus, we can interpret MLMs learning a family of conditionals distributions {qS|S}S⊆[T ] that as-
sume that the masked words are conditionally independent given the unmasked words.

3 CONDITIONALLY DEPENDENT MASKED LANGUAGE MODELS

While the conditional independence assumption that underpins MLMs enables scalable training
while conditioning on bidirectional context,4 as noted in the introduction this assumption is clearly
invalid for language, i.e., the MLM is misspecified. Note that all conditional distributions where
we mask two or more words, i.e., when |S| ≥ 2, are affected by this. For this reason, we will
be particularly interested in the unary conditionals of the MLM, which arise when |S| = 1. If
we let S = {t} for some t ∈ [T ], we will slightly abuse notation and refer to qt|t ≜ q{t}|{t}
as the unary conditional of the MLM at position t. Since (i) unary conditionals do not make any
independence assumptions and (ii) the scale at which modern MLMs are trained is such that we
might reasonably expect DKL(pt|t || qt|t) to be small, they become natural objects of study when
trying to build conditionally dependent models from MLMs.

3.1 MARKOV RANDOM FIELDS DERIVED FROM MLMS

To address the conditional independence limitation of MLMs, recent work has proposed using the
unary conditionals of the MLM to define a new probabilistic model over larger units of language
such as phrases and sentences (Wang & Cho, 2019; Goyal et al., 2022). The idea is to define:

qMRF(w) ∝
∏
t∈[T ]

qt|t(wt | wt), (1)

which can be interpreted as a fully connected MRF, whose log potential is given by the sum of the
unary log probabilities. One can similarly define a variant of this where the log potentials are logits
of the unary conditionals of the MLM, i.e., qMRFL(w) ∝

∏
t∈[T ] st|t(wt | wt) where st|t(wt | wt)

is the logit of wt conditioned on wt. These two models correspond to an MRF with a single fully
connected clique, and thus they do not make any conditional independence assumptions.

This construction addresses the conditional independence limitation of the original MLMs, but re-
sults in a different probabilistic model, which raises two questions. First, it is not immediately clear
if this probabilistic model is actually a good probabilistic model of language, since while we can
approximately sample from this MRF with (for example) MCMC (Goyal et al., 2022), computing
perplexity is completely intractable.5 Second, despite being defined in terms of the unary condi-
tionals, it is not clear to what extent this model is faithful to the original MLM, i.e., it is not clear
whether the unary conditionals of the MRF are the same as (or close to) the unary conditionals of the
parent MLM. This is again important because due to the scale at which these models are trained, the
conditionals learned by the MLM may be close enough to the true unary distributions of language.
Thus, an ideal MRF should have unary distributions that are faithful to the MLM’s.

Theoretically, it is not hard to show that an MRF defined this way can have nonzero KL to the
original unary distribution even in the simple two variable case where we assume that the MRF is
constructed from true unary distributions, as given by the following preposition.
Proposition 3.1. Let w1, w2 ∈ V and further let p1|2(· | w2), p2|1(· | w1) be the true (i.e., popula-
tion) unary conditional distributions. Define an MRF as

q1,2(w1, w2) ∝ p1|2(w1 | w2) p2|1(w2 | w1),

and let q1|2(· | w2), q2|1(· | w1) be the conditionals derived from the MRF. Then there exists
p1|2, p2|1 such that

DKL(p1|2(· | w2) || q1|2(· | w2)) > 0.

4Though see Yang et al. (2019) for an alternative approach.
5The partition function of the MRF would require T |V|T−1 forward passes through the MLM. We also tried

estimating the partition through importance sampling with GPT-2 (Radford et al., 2019), but found the estimate
to be quite poor.
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See App. A for a proof. This indicates that even in a simple setting with two variables, MRF-derived
distributions may not be faithful. This motivates our pairwise setting below.

3.1.1 PAIRWISE MRFS

Since the partition function of the MRF is intractable, we cannot compute the unary conditionals of
the MRF. We can, however, analyze the case where we use the same approach to define a pairwise
MRF over a pair of positions. Given two positions S = {a, b} ⊂ [T ], and a context wS (i.e., a
setting of all the other positions), we define a pairwise MRF over those two positions via:

qMRF
a,b|S(wa, wb | wS) ∝ qa|S(wa | wS) qb|S(wb | wS)

The definition of qMRF-L
a,b|S (· | wS), which uses the unary conditional logits, is analogous. Doing so

requires 2|V| forward passes through the MLM for each conditional, which is expensive but tractable
on modern GPUs with large batches. Given this pairwise MRF, we can now compute the perplexities
and faithfulness metrics on a dataset D = {(w(n)

a , w
(n)
b ,w

(n)

S
)}Nn=1 of English sentences where the

tokens at positions a and b (i.e., tokens wa and wb) have been masked.

Language model performance. To evaluate the pairwise MRF as a language model, we compute
two measures: unary perplexity and pairwise perplexity. The unary perplexity (U-PPL) over single
tokens is given by,

exp

(
− 1

2N

N∑
n=1

log qMRF
a|b,S(w

(n)
a | w(n)

b ,w
(n)

S
) + log qMRF

b|a,S(w
(n)
b | w(n)

a ,w
(n)

S
)

)
.

An ideal model would obtain unary perplexity that is similar to the MLM’s (which uses q instead of
qMRF in the above expression). The pairwise perplexity (P-PPL) over two tokens is given by,

exp

(
− 1

2N

N∑
n=1

log qMRF
a,b|S(w

(n)
a , w

(n)
b | w(n)

S
)

)
.

We would expect a good model of language to obtain a lower pairwise perplexity than the original
MLM which (wrongly) assumes conditional independence.

Faithfulness. We also use the derived unary conditionals to assess faithfulness to the MLM’s
unary conditionals by calculating the average conditional KL divergence (A-KL) between the unary
conditionals,

1

N |V|

N∑
n=1

∑
wb∈V

DKL(qa|b,S(· | wb,w
(n)

S
) || qMRF

a|b,S(· | wb,w
(n)

S
)).

If the MRF is completely faithful to the MLM, this number should be zero. The above metric aver-
ages the KL across the entire vocabulary V , but in practice we may only be interested in assessing
closeness only when conditioned on the gold tokens. We thus compute a variant of the above metric
where we only average over the conditionals for the gold token (G-KL):

1

N

N∑
n=1

DKL(qa|b,S(· | w
(n)
b ,w

(n)

S
) || qMRF

a|b,S(· | w
(n)
b ,w

(n)

S
)).

This metric penalizes unfaithfulness in common contexts more than in uncommon contexts. Again,
this should be zero if the models are faithful.

Experimental setup. We calculate the above metrics on 1000 examples from a natural language
inference dataset (SNLI, Bowman et al., 2015) and a summarization dataset (XSUM, Narayan et al.,
2018). Since dependencies are more likely to emerge when the tokens being masked are next to each
other, we consider two schemes for selecting the two tokens to be masked for each sentence: masks
over two tokens chosen uniformly at random (Random pairs), and also over random contiguous
tokens (chosen uniformly at random) in a sentence (Contiguous pairs). For exact comparison we
make sure the masking is the same for all models. In addition, we consider both BERTBASE and
BERTLARGE (cased) as the MLMs from which to obtain the unary conditionals.6

6We use the Huggingface (Wolf et al., 2020) implementations of these models.
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Random pairs Contiguous pairs
Dataset Scheme U-PPL P-PPL A-KL G-KL U-PPL P-PPL A-KL G-KL

B

SNLI

MLM 11.22 19.01 1.080 0.547 13.78 74.68 4.014 1.876
MRFL 13.39 71.44 0.433 0.267 23.45 13568.17 1.543 0.607
MRF 12.30 21.65 0.658 0.179 18.35 126.05 1.967 0.366
HCB 12.51 22.62 0.593 0.168 17.71 589.02 2.099 0.416
AG 10.76 12.68 0.007 0.085 13.26 21.59 0.018 0.181

XSUM

MLM 4.88 6.12 0.404 0.227 4.910 39.33 4.381 2.128
MRFL 5.17 9.12 0.148 0.085 6.55 2209.94 1.561 0.383
MRF 5.00 6.23 0.262 0.049 5.53 47.62 2.242 0.185
HCB 5.08 6.21 0.256 0.052 6.46 174.32 2.681 0.328
AG 5.00 5.29 0.003 0.044 5.27 8.42 0.016 0.143

L

SNLI

MLM 9.50 18.57 1.374 0.787 10.42 104.12 4.582 2.463
MRFL 11.52 76.23 0.449 0.276 15.43 8536.92 1.470 0.543
MRF 10.57 19.54 0.723 0.193 13.07 93.33 1.992 0.359
HCB 10.71 20.70 0.797 0.215 14.43 458.25 2.563 0.552
AG 8.57 10.11 0.007 0.097 9.64 15.64 0.019 0.173

XSUM

MLM 3.80 5.67 0.530 0.413 3.91 103.86 5.046 3.276
MRFL 3.94 7.06 0.156 0.068 4.62 1328.20 1.441 0.290
MRF 3.87 4.94 0.322 0.036 4.16 36.66 2.258 0.145
HCB 3.91 5.14 0.346 0.059 5.67 164.15 2.954 0.400
AG 3.88 4.13 0.003 0.042 4.21 6.62 0.016 0.126

Table 1: Comparison of MRF, HCB and AG constructions on randomly sampled SNLI (Bowman et al., 2015)
sentences and XSUM (Narayan et al., 2018) summaries. We apply the constructions to two MLMs: BERTBASE

( B ) and BERTLARGE ( L ). We consider both masking tokens uniformly at random (Random pairs) and masking
adjacent tokens uniformly at random (Contiguous pairs). PPL metrics measure the quality of the models and
KL metrics measure their faithfulness to the MLM’s unary conditionals. For all metrics, lower is better.

Results. The results are shown in Tab. 1. Comparing the MRF and MRFL (i.e., the MRF using
logits), the former consistently outperforms the latter, indicating that using the raw logits generally
results in a worse language model.7 Comparing the MRFs to MLM, we see that the unary perplexity
(U-PPL) of the MLM is lower than those of the MRFs, and that the difference is most pronounced
in the contiguous masking case. More surprisingly, we see that the pairwise perplexity (P-PPL) is
often (much) higher than the MLM’s, even though the MLM makes unrealistic conditional indepen-
dence assumptions. These results indicate that the derived MRFs are in general worse probabilistic
models of language for unary/pairwise tokens (except with an MRF derived from BERTLARGE in the
contiguous pair setting). Finally, we also find that the MRFs’ unary conditionals are not faithful to
those of the MRFs based on the KL measures (A-KL, G-KL).

This example from SNLI qualitatively illustrates a case where both the unary and pairwise perplex-
ities from the MRF underperforms the MLM: “The [MASK]1 [MASK]2 at the casino”, where the
tokens “man is” are masked. In this case, both MRFs assign virtually zero probability mass to the
correct tokens, while the MLM assigns orders of magnitude more (around 0.2% of the mass of the
joint). Upon inspection, this arises because q2|1,S(is | man) ≈ 0.02 and q1|2,S(man | is) ≈ 2×10−5,
which makes the numerator of qMRF

1,2|S(man, is) be ≈ 0. The MRF could still assign high probability
to this pair if the denominator is also ≈ 0, but in this case we have q2|1,S(was | man) ≈ 0.33 and
q1|2,S(man | was) ≈ 0.03, which makes the denominator well above 0. This causes the completion
“man is” to have disproportionately little mass in the joint compared other to combinations (“man
was”) that were ascribed more mass by BERT’s unary conditionals.

3.2 TOWARDS FAITHFUL PAIRWISE DISTRIBUTIONS

While the MRF probabilistic model surmounts the conditional independence limitation of MLMs,
based on the above results, this comes at the expense of a typically worse probabilistic model overall.
Since we ultimately wish to address the conditional independence limitation in order to obtain a bet-
ter probabilistic model, this raises the question: Are there other ways of using the unary distributions
(which perform well) to construct a pairwise distribution that does not make a conditional indepen-

7This gives additional support to the findings of Goyal et al. (2022), who found that MCMC sampling from
MRF resulted in sentences with better perplexity than sentences sampled from the MRFL as measured by GPT2.
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dence assumption and leads to a better probabilistic model of language? We study two alternative
approaches for constructing joint distributions from the unary conditionals of an MLM.

Hammersley–Clifford–Besag construction. The Hammersley–Clifford–Besag theorem (HCB;
Besag, 1974) provides a way of reconstructing a joint distribution p(·) from its unary conditionals.
It states that given a pivot point w′ = (w′

1, . . . , w
′
T ) ∈ VT , the probability of some w ∈ VT under

the joint distribution p(·) is given by:

p(w) ∝
∏
t∈[T ]

pt|t(wt | w>t,w
′
<t)

pt|t(w
′
t | w>t,w′

<t)
(2)

where w<t ≜ (w1, . . . , wt−1), and similarly w>t ≜ (wt+1, . . . , wT ). Importantly, unlike the MRF
approach, if the unary conditionals of the MLM are compatible (i.e., they are the unary conditionals
of some strictly positive joint), then HCB will recover that joint, irrespective of the choice of pivot.

As with the MRF, computing the HCB-implied joint for an MLM would require O((T − 1)|V|T−1)
forward passes through the MLM. That said, if we restrict our attention to only two position S =
{a, b} ⊂ [T ] as before, we can use eq. (2) to construct a distribution over those two positions in
|V|+ 1 forward passes:

qHCB
a,b|S(wa, wb | wS) ∝

qa|b,S(wa | wb,wS)

qa|b,S(w
′
a | wb,wS)

qb|a,S(wb | w′
a,wS)

where (w′
a, w

′
b) ∈ V2 is some pivot and wS is a context.

Arnold–Gohkale construction. One way to frame the faithfulness objective is to find a joint
distribution whose unary conditionals have smallest KL to the unary conditionals of the MLM.
Since this is intractable for arbitrary joint constructions, we focus on the case of pairwise joints, just
as in the MRF and HCB cases. For any pair positions S = {a, b} and a context wS , we directly
optimize for a joint distribution whose unary conditional distributions are faithful:

qAG = argmin
µ

∑
wa∈V

DKL(qb|a,S(· | wa,wS) ||µb|a,S(· | wa,wS))

+
∑
wb∈V

DKL(qa|b,S(· | wb,wS) ||µa|b,S(· | wb,wS)).

Arnold & Gokhale (AG; 1998) study this minimization problem, and provide an effective iterative
algorithm for it. The algorithm initializes the starting pairwise distribution qAG(1)

a,b|S (·, · | wS) to be
uniform, and makes the following updates until convergence,

qAG(t+1)
a,b|S (wa, wb | wS) ∝

qa|b,S(wa | wb,wS) + qb|a,S(wb | wa,wS)(
qAG(t)
a|S (wa | wS)

)−1

+
(
qAG(t)
b|S (wb | wS)

)−1 . (3)

Obtaining the MLM unary conditionals to be able to run this algorithm requires 2|V| forward passes
through the MLM, as in the MRF case.

Remark. The HCB construction implicitly assumes compatibility of unary distributions when de-
riving the joint distribution. On the other hand, the AG construction assumes that the unary distribu-
tions themselves are incompatible with one another (i.e., there is no joint distribution whose set of
unary distributions is exactly equal to those of the MLM’s; Arnold & Press, 1989), and instead finds
a joint distribution that is near faithful. Of course, the exact compatibility of learned unary condi-
tionals is unlikely to occur in practice. However, we might again appeal to the rich parameterization
of contemporary MLMs to argue that large-scale training results in learned unary conditionals that
are close enough to the true unary conditionals (which are by definition compatible). Since both
HCB and AG should yield the same exact joint if the unary distributions are compatible, these ex-
periments can assess the extent to which MLMs actually learn compatible unary distributions.

Experimental setup. We evaluate the quality of the HCB and AG constructions using the same
experimental setup as in the MRF experiments (i.e., same sentences/masks). For the AG joint, we
run t = 50 steps of the iterative process in eq. (3), which was enough for convergence. For the HCB
joint, we pick a pivot using the mode of the pairwise joint of the MLM. (We did not find HCB to be
too sensitive to the pivot in preliminary experiments.)
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Results. The results are shown in Tab. 2. HCB obtains roughly comparable performance to MRF
in the random pair masking case. In the contiguous pair case, it exhibits similar failure modes as the
MRF in producing extremely high pairwise perplexity (P-PPL) values. The faithfulness metrics are
similar to the MRF’s. The AG approach, on the other hand, outperforms the MRFL, MRF and HCB
approaches for all metrics. This is most evident in the contiguous masking case, where AG attains
lower pairwise perplexity than all models, including the MLM itself. In some cases, we find that
the AG model even outperforms the MLM in terms of unary perplexity, which suggests its unary
conditionals are better than the MLM’s unary conditionals. This is remarkable since the unary con-
ditionals of the MLM were trained to approximate the unary conditionals of language, and they do
not make any conditional independence assumptions. This suggests that the procedure to construct
AG may have a regularizing effect that occasionally leads to a slightly improved probabilistic model
of language. The AG’s KL measures is substantially lower than the other models, though this is not
surprising since AG is trained to optimize that objective. More interestingly, we see that AG’s gold
KL (G-KL) tends to be on par with the other models, which suggests that it is still not faithful to
the MLM in the contexts that are most likely to arise, and moreover confirms that the MLM’s unary
conditionals themselves are incompatible (Arnold & Press, 1989).

4 LEARNING TO BE FAITHFUL VIA INTERACTION LAYERS

The effectiveness of the AG approach suggests that modeling the dependencies between masked
tokens in a sentence should yield an improved probabilistic model of language. However, the above
approaches are expensive to run, requiring O(|V|) forward passes of the MLM. The MLM, on the
other hand, only requires a single forward pass but makes a conditional independence assumption.
Can we derive an efficient approach that models pairwise dependencies but only requires a single
MLM pass? In this section we study an approach for learning an efficient feed-forward neural
network f , which we call an interaction layer, that learns to adjust the output of the MLM such
that the derived model is faithful to the MLM’s unary conditionals.

Concretely, suppose we want to build a pairwise (near) faithful model over two positions S = {a, b}
given a fixed context wS . We define a new model that does not make any independence assumptions
between the two masked tokens:

qINT
a,b|S(wa, wb | wS ;θ) ∝ qa|S(wa | wS) qb|S(wb | wS) fθ(wa, wb, a, b,wS).

This approach allows the new model to exploit the rich linguistic information encoded by the
pairwise conditionals of the MLM, without inheriting their conditional independence assumption.
Specifically, our function f computes the adjustment factor as:

fθ(wa, wb, a, b,wS) ≜ exp
(
s×

(
gθ(a,wb, b,wS)

⊤emb(wa) + gθ(b, wa, a,wS)
⊤emb(wb)

))
gθ(a,wb, b,wS) ≜ Zσ(Urepr(a;wS) +Vemb(wb) +Wpos(b) + y) + z

where σ is a PReLU (He et al., 2015) activation function, emb(w) returns the MLM’s (word)
embedding of a token w, pos(x) returns the positional embedding of the MLM for position x,
repr(x;wS) is the MLMs contextualized (i.e, final-layer) representation at position x we input the
sequence wS , and θ = {U,V,W,Z,y, z, s} are learnable parameters. The intuition behind this
design is that the function g(·) takes as input the MLM’s contextualized representation at the current
position (e.g., a) and adjusts it according to what would happen if we knew what the token at the
other position (e.g., b) would be; using these adjusted representations, we then compute an exponen-
tiated dot product with the word embeddings, much like how the final-layer softmax of the MLM is
an exponentiated dot product between contextualized representations and the word embeddings.

While the above requires only a single pass of the MLM, O(|V|2) passes of f are needed to evaluate
every element of the joint. However, by the Zipfian nature of language, we know this joint should
be sparse. For this reason, we propose a training scheme wherein we use f to obtain a restricted
joint distribution over K2 elements, treating all elements that fall outside that set as having zero
probability. In practice, we construct this set of K2 elements by doing a forward pass through the
original MLM, obtaining the top-K most likely tokens at each of the two positions, and then taking
their Cartesian product.

To train the interaction layer, we minimize the KL divergence between the pairwise conditional
implied by AG and the pairwise conditional implied by the interaction layer. Formally, given a
dataset of masked sentences D = {(w(n)

a , w
(n)
b ,w

(n)

S
)}Nn=1, we optimize the following objective

7



Under review as a conference paper at ICLR 2023

(the MLM’s parameters remain fixed):

argmin
θ

N∑
n=1

DKL(q
AG
a,b|S(·, · | w

(n)

S
) || qINT

a,b|S(·, · | w
(n)

S
;θ)).

Since we do not normalize over the full vocabulary, we can no longer obtain perplexities. Thus
for these experiments we instead resort to standard ranking-based measures. Recall at k (R@k)
computes how often our interaction layer placed original tokens in the sentence (i.e., the ones that
were masked) among the top k elements of the joint, viz.,

1

N

N∑
n=1

1{rank(w(n)
a , w

(n)
b ; qa,b|S(· | w

(n)

S
) ≥ k}.

We compute this for k ∈ {1, 5, 10}, where rank(x, y;µ) returns the rank of (x, y) in the joint µ.
We also compute mean reciprocal rank (MRR):

1

N

N∑
n=1

(
rank(w(n)

a , w
(n)
b ; qa,b|S(· | w

(n)

S
))
)−1

.

Note that if the correct tokens (w
(n)
a , w

(n)
b ) are not in the restricted joint (i.e., they were assigned

zero probability mass), then we take its reciprocal rank to be zero.

Experimental setup. We evaluate on the same datasets as before. For our training dataset, we
use examples from Wikipedia. We train the interaction layers for 50K steps using the Adam op-
timizer (Kingma & Ba, 2015), with a learning rate of 0.001 and a batch size of 64. We initialize
the learnable scalar s ≈ 0, so that, initially, the joint is only adjusted in a minor way. In prelim-
inary experiments, we found that using the pairwise (unnormalized) logits of the MLM instead of
the (normalized) pairwise conditionals worked better. We also lightly explored other variants of the
architecture described above (e.g., different ways of combining the embeddings), but found that the
design given above worked well enough while being efficient. Finally, since previous experiments
indicated that the potential for performance gains over the pairwise conditionals of MLM was mod-
est when masking tokens uniformly at random, we opted to focus solely on the case of masking
adjacent tokens (i.e., the contiguous pairs setting).

Results. The results shown in Tab. 2 suggest that the interaction layer (INT) tends to outperform
the MLM, but underperform other constructions. That said, considering that the joint induced by
the interaction layer is much cheaper to compute (i.e., O(1) MLM forward passes instead of O(K2)
passes), this positions the interaction layer as a viable alternative to using the MLM’s pairwise
conditionals. Figure 1 shows that optimizing towards the AG joint (top) improves MRR (bottom).

5 DISCUSSION

Our study illuminates the deficiencies of the MRF approach and applies statistically-motivated ap-
proaches to craft more performant probabilistic models. However, it is admittedly not clear how
these insights can immediately be applied to improve downstream NLP tasks. We focused on mod-
els over pairwise tokens in order to avoid sampling and work with exact distributions for the various
approaches (MRF, HCB, AG). However this limits the generality of our approach (e.g., we cannot
score full sentences). We nonetheless believe that our empirical study is interesting on its own and
further suggests new paths for developing efficient, conditionally dependent, and faithful MLMs.
For example, one could also use the interaction layer to train against the target gold tokens in-
stead of just conditioning on gold tokens to obtain the unary conditionals with, for example, noise
contrastive estimation (Gutmann & Hyvärinen, 2010). Such MLMs trained at scale could provide
an alternative to autoregressive language models and provide new functionalities (e.g., controllable
editing of sentences).

6 RELATED WORK

Probabilistic interpretations of MLMs. In one of the earliest works about sampling from MLMs,
Wang & Cho (2019) propose to use unary conditionals to sample sentences. Recently Yamakoshi
et al. (2022) highlight that, while Wang & Cho’s (2019) approach only constitutes a pseudo-Gibbs
sampler, the act of re-sampling positions uniformly at random guarantees that the resulting Markov

8
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Contiguous pairs
Dataset Scheme R@1 R@5 R@10 MRR

B

SNLI

MLM 0.117 0.260 0.305 0.184
MRFL 0.175 0.379 0.458 0.271
MRF 0.140 0.333 0.424 0.235
HCB 0.167 0.364 0.451 0.264
AG 0.219 0.416 0.473 0.311
INT 0.145 0.299 0.363 0.216

XSUM

MLM 0.183 0.342 0.401 0.259
MRFL 0.339 0.579 0.660 0.446
MRF 0.304 0.523 0.615 0.407
HCB 0.317 0.550 0.625 0.425
AG 0.379 0.593 0.670 0.479
INT 0.233 0.400 0.465 0.316

L

SNLI

MLM 0.110 0.235 0.288 0.172
MRFL 0.231 0.419 0.518 0.324
MRF 0.170 0.374 0.474 0.270
HCB 0.204 0.396 0.484 0.298
AG 0.234 0.442 0.530 0.334
INT 0.127 0.265 0.328 0.196

XSUM

MLM 0.151 0.288 0.343 0.215
MRFL 0.399 0.639 0.721 0.508
MRF 0.352 0.592 0.689 0.462
HCB 0.360 0.568 0.659 0.459
AG 0.414 0.647 0.723 0.518
INT 0.162 0.324 0.402 0.242

Table 2: Comparison of interaction layer (INT), when
applied to both BERTBASE ( B ) and BERTLARGE ( L ), to
previous joint constructions.
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Figure 1: Validation loss for optimizing towards AG
joint (top) and mean reciprocal rank (bottom) for
BERTBASE interaction layer during training.

chain has a unique, stationary distribution (Bengio et al., 2013; 2014). In contrast to sampling
directly from BERT, Goyal et al. (2022) propose deriving an MRF from the unary conditionals
learned by BERT, and sample from this via Metropolis-Hastings. Ghazvininejad et al. (2019) and
Savinov et al. (2022) use conditional MLMs for fast decoding of translation models. Our interaction
layer is related to residual energy networks (Deng et al., 2020), which also learn to modify the output
from an existing model.

Compatible distributions. The statistics community has long studied the problem of assessing
the compatibility of a set of conditionals (Arnold & Press, 1989; Gelman & Speed, 1993; Wang &
Kuo, 2010; Song et al., 2010). Arnold & Gokhale (1998) and Arnold et al. (2002) explore algorithms
for reconstructing near-compatible joints from incompatible conditionals, which we leverage in our
work. Besag (1974) also explores this problem, and defines a procedure (viz., eq. (2)) for doing
so when the joint distribution is strictly positive and the conditionals are compatible. Lowd (2012)
apply a version of HCB to derive Markov networks from incompatible dependency networks (Heck-
erman et al., 2000). Pseudo-gibbs sampling, which refers to sampling from incompatible (or near
compatible) conditionals, has also been studied from both empirical and theoretical perspectives
(Chen et al., 2011; Chen & Ip, 2015; Kuo & Wang, 2019).

7 CONCLUSION

In this paper we studied pairwise MRFs derived from unary conditionals of MLMs and empirically
observed them to not only be worse language models but also have unary distribution that do not
match the original MLM’s. We then studied two statistically motivated approaches for deriving
more faithful MRFs, and found that the iterative optimization approach, which identifies a joint
that is more faithful to the unary conditionals of the original MLM, performs well. Finally, we
experimented with amortizing the optimization algorithm via a learned feed-forward layer to derive
a conditionally dependent language model.
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A UNFAITHFUL MRFS

Here we show that even if the unary conditionals used in the MRF construction are compati-
ble (Arnold & Press, 1989), the unary conditionals of the probabilistic model implied by the MRF
construction can deviate (in the KL sense) from the true conditionals. This is important because (i) it
suggests that we might do better (at least in terms unary PPL) by simply sticking to the conditionals
learned by MLM, and (ii) this is not the case for either the HCB or the AG models, i.e., if we started
with the correct conditionals, HCB and AG’s joint would be compatible with the MLM.

To see this, suppose we defined our MRF using the unary conditionals of the true data distribution,
p. Further, for simplicity, suppose T = 2. Hence, our MRF has the form:

q1,2(w1, w2) ∝ p1|2(w1 | w2) p2|1(w2 | w1)

Then for some w2 ∈ V , we have:

q1|2(w1 | w2) =
p1|2(w1 | w2) p2|1(w2 | w1)∑

w′∈V p1|2(w′ | w2) p2|1(w2 | w′)
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Now, consider the KL between the true unary conditionals and the MRF unary conditionals:

DKL(p1|2(· | w2) || q1|2(· | w2)) =
∑
w∈V

p1|2(w | w2) log
p1|2(w | w2)

q1|2(w | w2)

=
∑
w∈V

p1|2(w | w2) log

∑
w′∈V p1|2(w

′ | w2) p2|1(w2 | w′)

p2|1(w2 | w)

= logEw∼p1|2(·|w2)[p2|1(w2 | w)]− Ew∼p1|2(·|w2)[log p2|1(w2 | w)]
This term is the Jensen gap, and in general it can be non-zero. To see this, suppose V = {a, b} and
consider the joint

p1,2(w1, w2) =

{
97
100 w1, w2 = a
1

100 otherwise

with corresponding conditionals p2|1(x | b) = p1|2(x | b) = 1
2 for all x ∈ V and

p2|1(x | a) = p1|2(x | a) =
{

97
98 x = a
1
98 x = b

Now, take w2 = b. We then have
DKL(p1|2(· | b) || q1|2(· | b))

= logEw∼p1|2(·|b)[p2|1(b | w)]− Ew∼p1|2(·|b)[log p2|1(b | w)]

= log

(
1

2

(
1

98
+

1

2

))
− 1

2

(
log

1

98
+ log

1

2

)
= log

(
1

196
+

1

4

)
− 1

2

(
log

1

196

)
≈ 1.27

which demonstrates that the KL can be non-zero.
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