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ABSTRACT

High-resolution tactile sensors have become critical for embodied perception and
robotic manipulation. However, a key challenge in the field is the lack of transfer-
ability between sensors due to design and manufacturing variations, which result
in significant differences in tactile signals. This limitation hinders the ability to
transfer models or knowledge learned from one sensor to another. To address this,
we introduce a novel method to extract Sensor-Invariant Tactile Representations
(SITR), enabling zero-shot transfer across optical tactile sensors. Our approach
utilizes a transformer-based architecture trained on a diverse dataset of simulated
sensor designs, allowing generalizability to new sensors in the real world with
minimal calibration. Experimental results demonstrate our method’s effectiveness
across various tactile sensing applications, facilitating data and model transfer-
ability for future advancements in the field.

Figure 1: Vision-based tactile sensors vary in both optical design and physical properties. Even with
the same contact object, a screw, the tactile images produced by each sensor differ significantly.
These variations highlight the challenge of transferring models from one sensor to another.

1 INTRODUCTION

Tactile sensing is a crucial modality for intelligent systems to perceive the physical world. Among
the various tactile technologies, the GelSight sensor (Yuan et al., 2017a) and its variants (Wang et al.,
2021; GelSight, 2024; Zhao & Adelson, 2023) have recently emerged as one of the most influential
tactile technologies, offering rich and detailed information on contact surfaces. GelSight captures
fine contact geometries through an optical system that transforms tactile data into visual images.
This enables robots to precisely detect object shapes, recognize materials, and perform fine-grained
manipulations with a high degree of accuracy (Yuan et al., 2018; Dong et al., 2019; Hogan et al.,
2020; Ota et al., 2023; Yang et al., 2023; Shirai et al., 2023).

Despite their advantages, GelSight-like sensors, and vision-based tactile sensing in a more general
sense, still face a key challenge: sensor variance. Differences in the optical design or manufacturing
process can result in significant discrepancies in sensor output. Consequently, machine learning
models trained on data from one sensor often fail to generalize to other sensors. This challenge is
further compounded by the high cost and effort of collecting tactile datasets, creating a major barrier
to sensor transferability in tactile perception.
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In this paper, we address the challenge of data transferability between GelSight sensors by tackling
sensor variance arising from optical design and manufacturing differences. The key issue lies in en-
abling generalization to new sensors as the domain gap between individual sensors is substantial and
unpredictable. Previous methods, such as Yuan et al. (2018); Calandra et al. (2018), attempted to
improve generalization by using multiple GelSight sensors to gather diverse tactile datasets, but this
approach offered limited gains. More recently, T3 (Zhao et al., 2024) sought to improve transferabil-
ity by pre-training a transformer model across multiple sensors and tasks. However, their reliance
on category-specific encoders limited the ability of their model to generalize to unseen sensors.

In contrast, we propose that achieving sensor transferability requires learning effective sensor-
invariant representations by ensuring the model is trained on sufficiently diverse sensor variations.
We introduce a novel framework for generating sensor-invariant feature representations from high-
resolution tactile readings, enabling zero-shot transfer to unseen sensors across multiple downstream
tasks. Our framework incorporates three core innovations:

1. We utilize a small set of easy-to-acquire calibration images to characterize individual sen-
sors. We then use a transformer model as the encoder to effectively combine the calibration
images with the tactile reading.

2. We employ supervised contrastive learning (SCL) (Khosla et al., 2020) to emphasize the
geometric aspects of tactile data, encouraging the clustering of similar contact geometries
across multiple sensors. This training is further supervised by measuring geometric accu-
racy.

3. We develop a large-scale synthetic dataset using a physics-based simulator that models sen-
sor optical systems, capturing variations in both sensor characteristics and contact geome-
tries. This dataset, consisting of 1M examples across 100 sensor configurations, provides
the diversity necessary for robust model training using precise ground truth of the contact
geometries.

Our motivation comes from the belief that contact geometry is one of the most critical features for
most tactile-driven tasks, including shape recognition, texture classification, and contact localiza-
tion. By focusing on geometric accuracy and using calibration to remove sensor-specific variations,
we ensure the development of robust, sensor-invariant representations. Leveraging physics-based
simulations allows us to efficiently generate diverse tactile datasets, reducing the time and cost of
real-world data collection.

We evaluate the generalizability of our method across various downstream tasks using multiple real-
world GelSight sensors. Our results demonstrate that models trained on one sensor can be seamlessly
transferred to others in a zero-shot manner, significantly outperforming existing approaches. This
framework paves the way for easier transferability of machine learning models and datasets between
different sensors, thereby enhancing the future development of the tactile-sensing community.

2 RELATED WORKS

In the realm of vision-based tactile images, the application of computer vision models and algo-
rithms has become common practice due to the visual nature of the data these sensors capture (Dong
et al., 2021; Li et al., 2019; Calandra et al., 2018). Researchers have adapted mature representation
learning methods from the vision community to tactile images. One popular approach is contrastive
learning. Both tactile and visual-tactile representations have been explored for specific tasks (Yuan
et al., 2017b; Yang et al., 2022; Tian et al., 2020; Kerr et al., 2022; Guzey et al., 2023; Grill et al.,
2020; Zambelli et al., 2021). Another technical approach is based on auto-encoding representa-
tion. Cao et al. (2023) and Xu et al. (2024) leveraged Masked Auto-Encoder (MAE) to learn tactile
representations.

However, many works that directly apply existing representation learning methods to the tactile
modality ignore the significant domain gap seen between sensors. Representations trained on one
sensor may work well on the exact same sensor or the same type, but the domain gap between
different sensors makes models based on such representation fail to generalize to other sensors. To
address this, Zhao et al. (2024) trained individual encoder-decoder pairs for different sensor-task
combinations, focusing on learning the shared features and improving fine-tuned performance on
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new sensor-task combinations. Yang et al. (2024) sought to address this by proposing a general-
purpose multimodal representation for vision-based tactile sensors. By integrating multiple tactile
datasets into a large language model (LLM) framework and encoding sensor types as tokens, they
try to inform the LLM explicitly of the domain gap among different types of sensors. Higuera
et al. (2024) introduced a family of self-supervised models for vision-based tactile sensing that
learns general-purpose representations by leveraging masking and self-distillation pretraining across
multiple sensors. They aim to improve tactile perception and downstream task performance under a
limited labeled data budget. However, these methods often depend on large datasets and treat sensor
types as fixed categories, failing to account for variations within the same sensor type and lacking
the flexibility to generalize zero-shot to unseen sensors.

Our framework introduces a novel combination of geometry-preserving supervision, supervised con-
trastive learning, and sensor-specific calibration images. The calibration images capture sensor-
specific domain features, such as optical properties unique to each sensor, which help the encoder
adapt to these characteristics. By accounting for subtle variations both within the same sensor type
and across different types, our method enhances zero-shot generalization across tactile tasks and
demonstrates strong transferability to new sensors.

3 SENSOR-INVARIANT REPRESENTATION LEARNING

Figure 2: Our sensor-invariant representation learning framework. Each tactile image x is paired
with a set of calibration images c. We patchify and linearly project x and c to tokens. Additionally,
the c patches are region-wise stacked before projection. We concatenate the input tokens with a class
token z and pass it through a transformer encoder. The class token z is trained with SCL, while patch
tokens are supervised by normal map reconstruction loss. We highlight in grey the concatenation
of the output class token and patch tokens as our Sensor-Invariant Tactile Representation (SITR) for
downstream tasks.

In this section, we introduce our framework for training Sensor-Invariant Tactile Representation
(SITR). We explain how calibration images capture sensor-specific information and use normal maps
to preserve contact features. We introduce our implementation of SCL to align tactile features across
sensor domains. We provide details on the role of calibration in Section 3.1, followed by the network
architecture and training process in Section 3.2.

3.1 CALIBRATION IMAGES FOR TACTILE SENSORS

GelSight-like sensors map RGB values at each pixel to the local surface gradient, enabling the recon-
struction of the contact surface. However, these sensors exhibit variations in physical properties that
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introduce sensor-specific artifacts in tactile images. A widely adopted calibration technique involves
pressing a ball of known radius onto the sensor pad at various points. The tactile images captured
during this process, combined with the known geometry of the ball, establish the correspondence
between RGB changes and the local surface gradient at different locations. This method generates
a sensor-specific look-up table. While traditional techniques assume pixel-invariant projection for
simplicity, neural networks can further learn precise and pixel-dependent projections.

In the pre-training stage of SITR we adopt these steps to inform the model of sensor characteristics.
We include a cube in our calibration to inform SITR about how the gel deforms around edges and
corners. Thus, we press two objects—a 4mm diameter ball and a cube corner—at nine locations
each, roughly arranged in a 3 × 3 grid pattern across the sensor surface as seen in Fig. 3. These
calibration images guide the encoder to identify and factor out sensor-specific features.

Figure 3: Calibration images used in SITR,
obtained by pressing two objects—a 4mm
ball and a cube corner—at nine different lo-
cations each in a 3× 3 grid.

Formally, given a tactile image xi ∈ RH×W×C ,
we select K calibration images ci,k ∈ RH×W×C ,
where (H,W ) is the resolution of the original im-
age and C is the number of channels. To efficiently
encode multiple calibration images we reshape ci,k
into the form ci ∈ RH×W×KC , in effect stacking
the patches. We then linearly project xi and ci into a
sequence of N flattened 2D patches xp ∈ RN×P 2C

and cp ∈ RN×P 2C similar to a standard ViT, where
N = HW/P 2. The resulting token sequences from
xp, cp, and a class token zi are concatenated as input
to the transformer encoder.

3.2 NETWORK ARCHITECTURE

Input: We use the tactile image and a set of calibration images for the sensor as inputs for the net-
work. We subtract the sensor background from all the input images to get the pixel-wise color change
as described in Section 3.1. Following the process described in Vision Transformer (ViT) (Doso-
vitskiy et al., 2021) and Section 3.1, we linearly project the input and calibration images to tokens.
Note that calibration images need only be tokenized once per sensor.

Encoder: We modify a ViT to process both image and calibration tokens. Adapted from ViT, we add
positional encoding to them based on their 2D coordinates and then pass them into the encoder. We
apply two supervision signals to train this encoder. One is the pixel-wise normal map reconstruction
loss for the output patch tokens, and an additional contrastive loss for the class token.

Normal map reconstruction: During the SITR pre-training phase, we apply a lightweight decoder
to reconstruct the contact surface as a normal map from the encoder output. Normal maps record
the orientation of each 3D point on the contact surface. This feature is invariant to the variance
across different sensors, contains rich geometry information for downstream tasks, and is viable for
many GelSight-like vision-based tactile sensors. Therefore, we apply a pixel-wise MSE loss Lnormal
between predicted normal map n̂ and ground truth normal map n.

Supervised contrastive learning: SCL is an extension of contrastive learning that leverages label
information to learn more effective representations. Traditional contrastive learning aims to pull
together similar samples and push apart dissimilar ones in the embedding space, typically relying
on data augmentations to create positive pairs. SCL enhances this approach by utilizing class labels
to define similarity, allowing for more semantically meaningful contrasts.

We employ SCL to create sensor-invariant representations from our labeled simulated tactile dataset.
We label positive pairs from tactile images with the same contact geometry across multiple sensors,
while negative pairs are labeled from images of different contact geometries or locations. In our
batched implementation, we include two views for each sample: tactile images of the same contact
captured by two different sensors. This approach allows us to learn discriminative features for
downstream tasks while being robust to variations in sensor characteristics.

Formally, given a batch of N samples, let class token zi ∈ Rd represent the encoded feature vector
for sample i, where d is the dimension of the embedding space. Let yi denote its corresponding
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contact label. Let A(i) denote the set of all samples in the batch except for sample i itself. For each
anchor sample i, we define the set of positive samples as P (i) = p ∈ A(i) : yp = yi, with |P (i)|
being its cardinality. The supervised contrastive loss for a batch of samples is then formulated as

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp

( zi·zp
τ

)∑
a∈A(i) exp

(
zi·za
τ

)
where τ is a temperature parameter that scales the similarity values to control the concentration of
the distribution.

In summary, the total loss for SITR is defined as L = λnormal ·Lnormal+λSCL ·LSCL where λnormal

and λSCL are loss weighting hyperparameters. Refer to Section A.1 for more implementation de-
tails.

4 DATASETS

We collect three datasets for model training and evaluation. The first dataset contains purely syn-
thetic data and is used to train the encoder for SITR. The other two datasets are collected across 7
real sensors on two specific tactile applications: object classification and contact localization. These
two datasets are used to evaluate the zero-shot transferability of SITR for downstream tasks.

4.1 SIMULATED TACTILE DATASET

We construct a large-scale synthetic dataset that spans a wide range of tactile sensor configurations,
providing tactile signals of contact geometries along with their corresponding normal maps. The
sensor’s configuration is defined by its optical design, such as the location and optical properties of
the lights, cameras, and reflective surfaces. These attributes quantify the major variances seen in
real tactile sensors. The core idea is to train SITR with a large distribution of simulated sensors so
SITR can generalize to, and be aligned across, real-world sensors. This dataset is designed to be
sensor-aligned, where each contact geometry is sampled across all sensor configurations for SCL.

Figure 4: Demonstration of our physics-based
rendering (PBR) model to simulate GelSight sen-
sors. We parameterize the sensor’s optical design
in the environment.

We use Physics-based Rendering (PBR) (Pharr
et al., 2023) to simulate GelSight sen-
sors (Agarwal et al., 2021) and implement the
algorithm in Blender. PBR simulates the cam-
era images by tracing the path of light rays trav-
eling in the scene and how they interact with
optical components. Therefore, the technology
models the physical behavior of the optical sys-
tem and can simulate a GelSight sensor’s read-
ing with parameterized optical settings. We de-
sign the simulator platform to customize the
sensors by modulating the locations and char-
acteristics of each optical component. Fig. 4
illustrates an example setup where three light
sources surround a deformable surface. A cam-
era positioned above captures the change of
color on the surface caused by object contact.

Sensor variation: To mimic the variance across real-world tactile sensors, we identify key param-
eters that highlight the differences between real-world tactile sensors. Specifically, we look at the
differences among GelSight Mini (GelSight, 2024), GelSight Hex (Yuan et al., 2017a), GelSight
Wedge (Wang et al., 2021), GelSlim 3.0 (Taylor et al., 2022), GelSight Finray (Liu & Adelson,
2022), and DIGIT (Lambeta et al., 2020). This includes light properties (shape, orientation, angle,
color), gel properties (stiffness, specularity), and camera properties (FOV, sensing area). In total,
we generate 100 unique simulated sensor configurations. More details on the sensor configurations
and examples of rendered images for the same contact object can be found in Section A.2. For each
sensor, we also collect a set of calibration images as described in Section 3.1. We introduce random
variability in the calibration positions to make the training more robust to the real-world setting.
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Object diversity: To enable SITR to generalize across diverse contact geometries, we utilize 50
high-resolution 3D meshes of common household objects. These meshes include tools, kitchenware,
toys, and clothing items, which are often used in robotics research. During simulation, the objects
are randomly scaled, rotated, and placed at varying locations on the gel pad. For each contact
geometry, we render tactile images using all sensor configurations and pair them with ground-truth
surface normal maps. We generate a total of 10K contact configurations through this process.

With 10K unique contact configurations across 100 different sensor configurations, we pre-train
SITR encoder solely using our 1M synthetic dataset.

4.2 REAL-WORLD TACTILE DATASET

We collect real-world datasets for training and evaluating downstream tasks across different base-
lines. Compared to the synthetic dataset we used for SITR encoder pre-training phase, we keep
SITR encoder frozen and train only the corresponding task-specific decoder head for downstream
tasks. We use seven different sensors for our datasets: four GelSight Minis (GelSight, 2024) with
varying sensor bodies and in-house gel pad modifications, GelSight Hex (Yuan et al., 2017a), Gel-
Sight Wedge (Wang et al., 2021), and DIGIT (Lambeta et al., 2020).

For the classification task, we select 16 objects and press them against the sensor in various poses
and depths, recording 1K tactile images for each object. We repeat this process for all 16 objects
across the 7 sensors, resulting in a dataset with 112K tactile images, with 16K samples per sensor.
Section A.3 shows that tactile signals vary even when using the same object across different sensor
configurations.

For the pose estimation task, we modify an Ender-3 Pro 3D printer by replacing its extruder with 3D-
printed indenters and mount the tactile sensors onto the print bed. This setup provides the accurate
ground truth pose of each contact, including metric x, y, and z values. During the data collection
process, we press indentors at various locations and depths on the sensor surface. We collected 1K
samples per indentor for 6 different indentors across 4 sensors. This results in a dataset of 24K
tactile images with precise pose labels, with 6K samples per sensor. More details can be found in
Section A.4.

5 EXPERIMENTS

In this section, we show several experiments to evaluate the zero-shot transferability of our model
to different real sensors. We evaluate model performance on three downstream tasks: shape recon-
struction, object classification, and contact localization.

5.1 EXPERIMENT SETTING

We conduct experiments with multiple real tactile sensors that can be divided into two groups:

• Intra-sensor set: GelSight Mini 1 to 4 of different gel pads. These sensors have the same
optical design, i.e., placement of camera and light sources, but differ in brightness and color
of tactile signals due to manufacturing differences and choice of coating materials.

• Inter-sensor set: GelSight Mini 1, GelSight Wedge, GelSight Hex, and DIGIT. These sen-
sors are designed with very different optical structures and, therefore, generate tactile sig-
nals that are significantly different from each other.

For each downstream task, we freeze the SITR encoder and only train the downstream task-specific
decoder on a single sensor. We evaluate this model using the rest of the sensors in the set. Formally,
let S = {S1, S2, . . . , Sn} be the set of sensors. Let Aij represent the performance (e.g., classi-
fication accuracy or pose estimation error) when trained on Si and evaluated on Sj . The transfer
performance across all sensors in the set is computed as

Transfer Performance =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

Aij
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We also compute the score when training and testing on the same sensor i = j acting as an upper
bound of the performance: No Transfer Performance = 1

n

∑n
i=1 Aii.

Baseline: We compare our SITR with ViTs that are either trained from scratch or fine-tuned from
ImageNet weights to show the effectiveness of our method. As there is no previous work that
directly focuses on transferable tactile representations, we also compare against T3 (Zhao et al.,
2024) and UniT (Xu et al., 2024). T3 focuses on improving few-shot fine-tuning results across
different sensors and has the potential for zero-shot transfer. UniT learns dense representations
for various downstream tasks and shows preliminary results on transferring among GelSight Mini
sensors. We evaluate their available models for our experiments to compare the transferability of
these representations. Additionally, we ablate the method used in T3 (MAE) and UniT (VQGAN)
when trained on our synthetic dataset to test the effectiveness of our architecture in Section A.6. We
describe model configurations and decoders for each task in Section A.1.

5.2 ZERO-SHOT TRANSFER FOR SHAPE RECONSTRUCTION

Figure 5: Reconstruction examples for various sensors. The top row shows input tactile images, the
middle row presents 3D reconstructions, and the bottom row shows the contact objects. Simulated
sensors (Simulation 1 and 2) are in the training set, while real sensors (GelSight Mini, DIGIT, Hex,
Wedge) are not.

We qualitatively evaluate how SITR preserves geometry and texture information by reconstructing
the contact height map. As shown in Fig. 5, we reconstruct normal maps for objects in our real-world
classification dataset and integrate them to generate their corresponding height maps. These 3D re-
constructions capture fine-grained geometry and texture details of the contact surface. Though, these
reconstructions are naturally constrained by the resolution and sensitivity limitations of the sensors.
Despite these limitations, the preservation of dense surface features demonstrates the robustness of
SITR in accurately modeling the contact geometry across varying sensor inputs.

5.3 OBJECT CLASSIFICATION

We compare SITR with baselines using our real-world classification dataset from Section 4.2 and
report top-1 accuracy. We freeze our SITR encoder and train the downstream classifier using cross-
entropy loss. For T3, we use their released GelSight Mini encoder weights for intra-sensor exper-
iments. Since T3 does not provide encoder weights for GelSight Hex or DIGIT, we report inter-
sensor results only for the GelSight Wedge and Mini. Note that T3’s encoders were trained on
marked sensors, so the results in our unmarked evaluations may not reflect their full potential. UniT
demonstrates transferability only within GelSight Minis, so we exclude it from inter-sensor exper-
iments. We train a UniT encoder on our unmarked real-world dataset and evaluate its intra-sensor
transfer performance.

As shown in Table 1, SITR outperforms all baselines by a large margin regarding classification
accuracy when transferred across sensors. Note that most models perform well under the no-transfer
setting, but fail to generalize when tested on a different sensor. This indicates that baselines can
understand tactile features learned in the same domain, but SITR can capture meaningful features
that are robust to changes in the sensor domain. We also find that the ViT pre-trained on ImageNet
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Method Intra-sensor set ↑ Inter-sensor set ↑ Wedge-Mini ↑ No transfer ↑
ViT-Base Scratch 36.90 ± 22.19 24.02 ± 14.83 52.56 ± 4.95 96.76 ± 1.41

ViT-Base Pre-trained 73.22 ± 22.42 48.10 ± 22.82 76.28 ± 17.06 99.01 ± 1.14

ViT-Large Pre-trained 78.38 ± 17.79 54.34 ± 23.04 79.04 ± 16.44 99.44 ± 0.43

T3-Medium 38.66 ± 20.63 − − 17.02 ± 8.55 93.77 ± 2.87

UniT 46.39 ± 23.30 − − − − 92.53 ± 4.19

SITR (Ours) 90.23 ± 8.16 81.94 ± 12.92 90.80 ± 2.85 99.72 ± 0.22

Table 1: Results of object classification accuracy on 16 classes for model transfer and no-transfer
performance. We report the mean and standard deviation of transfer accuracy percent among the
sensor sets specified. Random guess classification accuracy corresponds to 6.67%.

performs better than that trained from scratch, which indicates the effectiveness of pre-training on
the image domain.

Moving to feature-level analysis, Fig. 6 presents the t-SNE visualization of the SITR features for
the contacts in our real-world classification dataset. The visualization illustrates that the use of
contrastive learning significantly improves feature clustering, bringing together samples of the same
object across different sensors. This indicates that SITR successfully aligns the tactile signals from
different sensors, highlighting its capacity to eliminate sensor-variant features.

Figure 6: t-SNE visualization of the feature space. We qualitatively show that our contrastive loss
term helps cluster those similar contacts from different sensors together.

However, the results also reveal some challenges. The features from the DIGIT sensor are somewhat
more difficult to cluster with those from other sensors. This is better demonstrated in our detailed
transfer results in Sec. A.5.1, where we see relatively worse classification transferability to and
from the DIGIT sensor. We attribute this to DIGIT’s distinct optical design, which differs from the
GelSight designs in our simulation dataset. We believe the result will be improved in the future if
we extend our synthetic dataset to cover optical designs similar to the DIGIT sensor.

5.4 POSE ESTIMATION

In this task, we try to estimate the 3-DoF (x, y, z) position change of the object in contact using an
initial and final tactile image. We separately feed 2 tactile images of the same object into the frozen
SITR encoder, concatenate their features, and train a decoder to learn the pose change with mean
square error (MSE) loss. For baseline models, we use similar pipelines as detailed in Section A.1.
We evaluate this task on the inter-sensor set to see how each model handles differences in scale
across sensors. Each sensor in this set has a different physical design, meaning they capture tactile
signals at varying scales. Variations in object size may create significant challenges for zero-shot
transfer tasks like pose estimation.

As shown in Table 2, SITR demonstrates strong performance on the pose estimation when tested on
a different sensor, reducing the RMSE by about 50% compared to baselines. Remarkably, all models
have similar RMSE errors for the no-transfer setting. This may suggest sub-millimeter inaccuracies
present in our data collection process. Nonetheless, the no-transfer setting serves as the upper bound
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Method Inter-sensor set ↓ Wedge-Mini ↓ No transfer ↓
ViT-Base Scratch 1.63 ± 0.20 1.69 ± 0.13 0.56 ± 0.02

ViT-Base Pre-trained 1.58 ± 0.22 1.65 ± 0.13 0.49 ± 0.01

ViT-Large Pre-trained 1.49 ± 0.25 1.45 ± 0.01 0.50 ± 0.02

T3-Medium − − 1.7 ± 0.07 0.51 ± 0.02

SITR (Ours) 0.80 ± 0.21 0.62 ± 0.11 0.51 ± 0.01

Table 2: Results of pose estimation with 6 objects. We report the mean and standard deviation of
transfer pose estimation root mean square error (RMSE) in mm among the sensor sets specified.
Random guess pose estimation RMSE corresponds to 2.52mm.

for our transfer setting. We also find that compared to ViT trained from scratch, the ViT pre-trained
on ImageNet only marginally improves this task. This indicates that features learned from natural
images may not transfer adequately to the tactile domain for accurate regression tasks like pose
estimation.

6 ABLATIONS

6.1 NUMBER AND TYPE OF CALIBRATION IMAGES

Figure 7: Ablation study on the number and type of calibration images used in SITR, showing their
effect on (i) Classification accuracy for inter-sensor transfer, (ii) Classification accuracy for intra-
sensor transfer, and (iii) Pose estimation error for inter-sensor transfer.

We conduct an ablation study to investigate the impact of the number and type of calibration images
on the performance of SITR. In the standard SITR setup, we press two objects—a ball and a cube
corner—at nine locations roughly arranged in a 3x3 grid pattern across the sensor surface. To ex-
plore variations, we retrained SITR using different subsets of these calibration images and evaluated
performance across all downstream tasks.

We test on five calibration configurations: No calibration images (0); Ball pressed at 4 corners
(4); Ball pressed in a 3x3 grid (9); Ball and cube pressed at 4 corners (8∗); Ball and cube pressed
in a 3x3 grid, which is the standard setup (18∗). Fig. 7 illustrates how different numbers and
types of calibration images impact SITR’s performance. We observe that increasing the number of
calibration images increases performance across all tasks. However, the performance gains diminish
as more images of the same object are added (as seen in the progression from cases (0) to (4) to (9)).
Introducing a second calibration object with a distinct geometry, such as the cube (cases (4) to
(8*)), results in a larger performance boost compared to simply adding more images of the same
object (cases (4) to (9)). The effect of calibration images is particularly notable in the inter-sensor
setting, where we see upwards of a 20% increase in classification accuracy from case (0) to (18*).
We choose case (18*) for SITR since increasing the number of calibration images does not incur
additional inference costs, as calibration tokens are computed only once per sensor.

6.2 CONTRASTIVE LOSS AND TEMPERATURE

We conduct an ablation study to assess the effect of SCL and varying contrastive temperatures τ on
SITR’s performance. Specifically, we compared models with and without the SCL term and tested
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Figure 8: Ablation study examining the impact of SCL and varying contrastive temperature τ on
SITR’s performance. Subplots (i) and (ii) show classification accuracy in inter-sensor and intra-
sensor settings, respectively, while (iii) shows the effect on pose estimation RMSE.

five contrastive temperatures: 0.25, 0.10, 0.07, 0.03, and 0.01. No SCL corresponds to using only
the normal map reconstruction loss during pre-training. Results in Fig. 8 show that a contrastive
temperature of 0.07 achieves the best classification performance in the intra-sensor setting, while
0.03 performs best for the inter-sensor setting. Lower or higher temperatures lead to reduced per-
formance in both cases. For the pose estimation task, the addition of SCL has a negligible impact
on the RMSE. These results suggest that contrastive learning helps align features across sensors in
classification tasks. However, in the pose estimation task, the model’s performance is more depen-
dent on the fine-grained geometry information from the contact surface. For SITR, we choose a
temperature of 0.07 for its strong performance in the classification task.

7 DISCUSSION

Our qualitative and quantitative results indicate that SITR can generalize across sensors while pre-
serving key geometric and texture features from tactile interactions. Our model has been largely
trained and evaluated on optical tactile sensors with flat gel pads within the GelSight family. De-
spite this, SITR can be adapted to a broader range of sensors. Our PBR environment can be easily
expanded to accommodate new parameters to explore distinct optical properties in flat tactile sen-
sors. For more complex optical sensors like GelSight Svelte (Zhao & Adelson, 2023) or DIGIT
360 (Lambeta et al., 2024), adaptation remains feasible using an appropriate PBR model and con-
tact surface mapping.

One future direction of our framework is to generalize to traditional array-based tactile sensors. The
challenge lies in bridging the signal modalities of low-resolution normal force distribution to the
high-resolution contact geometry from GelSight sensors. One possible approach is to downsample
vision-based tactile sensors’ depth maps to approximate low-resolution tactile signals while estab-
lishing a meaningful invariant relationship between depth and force. While this approach provides a
step towards a unified tactile modality, its effectiveness in maintaining transferability requires further
validation and exploration.

Another direction of future work is incorporating marker-based tactile information to SITR. Many
variations of GelSight are equipped with markers—distinct patterns embedded within the gel sur-
face—that provide force and torque information. Currently, these markers are reconstructed using
simple computer vision techniques to generate a marker motion field. We believe that unifying
marker motion fields between sensors may be possible with adaptations to calibration in SITR. This
extension would broaden the applicability of our model to a wider range of tactile sensing tasks.

8 CONCLUSION

In this paper, we introduced SITR, a tactile representation that transfers across various vision-based
tactile sensors in a zero-shot manner. We build large-scale, sensor-aligned datasets using synthetic
and real-world data, and propose a method to train SITR to capture dense, sensor-invariant fea-
tures. Our experimental results demonstrate that SITR outperforms baseline models and other re-
lated tactile representations in different downstream tasks, showcasing robust transferability and
effectiveness. SITR represents a step towards a unified approach to tactile sensing, where models
can generalize seamlessly across different sensor types, facilitating advancements in robotic and
tactile research.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

This section outlines the detailed implementation steps, including pre-processing, architecture, train-
ing settings, and decoder choices for all models.

A.1.1 PRE-PROCESSING

For SITR, we apply the following pre-processing steps across real and simulated sensors:

1. All input images are resized to 224 × 224. For the GelSight Wedge sensor, an affine
transformation is applied to correct distortions in the tactile images.

2. Batched data augmentations are applied during training to both the tactile input and cali-
bration images, including color jitter and Gaussian blur.

3. Background subtraction is performed on each image to isolate the tactile signal. All im-
ages are then normalized based on the mean and standard deviation calculated from the
simulated dataset.

A.1.2 ARCHITECTURE

Encoders: Table 3 shows the number of parameters used in each encoder.

Model Number of Parameters

ViT-Base 86M
ViT-Large 307M
T3-Medium 173M
UniT 25M

SITR (Ours) 96M

Table 3: Comparison of model parameters.

Our SITR model is derived from the ViT-Base architecture. The key modification is in the patch em-
bedding, where we tokenize the tactile input and calibration images separately and add a positional
embedding before passing them through the transformer.

SITR Training Decoders: During the pre-training phase for SITR, we use two decoders:

• Normal Map Reconstruction Decoder: We apply a simple linear projection to the output
tactile image tokens from SITR. We reshape and unpatchify the output to create a feature
image map. We supervise with MSE loss λnormal against the ground truth normal map.

• Class Token Decoder: The class token is passed through a linear projection to a 128-
dimensional embedding. We then supervise this embedding with SCL loss λSCL.

• Loss Terms The total loss during training is a weighted sum of these two loss terms: L =
λnormal · Lnormal + λSCL · LSCL We set both loss weighting hyperparameters λnormal and
λSCL to 1.

Downstream Task Decoders: We try several decoders for downstream tasks for each baseline and
task and report the best-performing ones here.

1. Classification Decoders We use Cross Entropy Loss for this task.

• SITR: We unpatchify the output tokens xi to a feature map and pass it through a
ResNet-18 network. The resulting feature vector is concatenated with the class token
zi. We then apply a 3-layer MLP decoder with dimensions [256, 128, 16]. The SITR
encoder is frozen during this process.
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• ViT: For all ViT encoders, we linearly project the class token to an output of 16
dimensions. We also find that unfreezing the ViT pre-trained weights during training
improves performance.

• T3: We unpatchify the output tokens to a feature map and pass it through a ResNet-18
network with an output dimension of 16. The T3 encoder is frozen for this process.

• UniT: We directly apply their proposed pooling and MLP decoder blocks to an output
dimension of 16. We find that unfreezing the UniT encoder provides better results.

2. Pose Estimation Decoders We use MSE loss for this task.
• SITR: We pass 2 tactile images x1 and x2 into the network separately. We unpatchify

the output tokens from x1 and x2 and concatenate their feature maps. We pass the
concatenated feature maps into a modified ResNet-18 with a 6-channel input. We
then linearly project the resulting feature vector to an output dimension of 3. The
SITR encoder is frozen during this process.

• ViT: For all ViT encoders, we pass 2 tactile images x1 and x2 into a modified ViT
network allowing 6 channel input. We then linearly project the resulting class token
to an output dimension of 3. We unfreeze the ViTs when training.

• T3: We follow the same procedure described in SITR’s pose estimation decoder. 2
tactile images x1 and x2 are passed into the network separately. We unpatchify the
output tokens from x1 and x2 and concatenate their feature maps. We pass this feature
into a modified ResNet-18 and linearly project the resulting feature vector to an output
dimension of 3. We keep the T3 encoder frozen during this training process.

15



Published as a conference paper at ICLR 2025

A.2 SIMULATED DATASET

Parameter Lower
bound

Upper
bound

Lower
bound vis.

Upper
bound vis.

Lower
bound env.

Upper
bound env.

Light
shape point area

Light
orienta-

tion
sides corners

Light
angle 5◦ 30◦

Light
color rand rand

Gel
stiffness low high

Gel
specular-

ity
low high

Camera
FOV 40◦ 90◦

Sensing
area 4cm2 16cm2

Table 4: Visualization of parameter bounds in the simulated dataset.
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As discussed in Section 4.1, we construct a large-scale simulated dataset that includes a wide range
of tactile sensor configurations. Figure 9 illustrates a sample of tactile images from different simu-
lated sensor configurations and contact geometry within the dataset. The samples can be retrieved
from our dataset with the sensor IDs and contact IDs provided.

Figure 9: Samples from the simulation dataset.
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A.3 CLASSIFICATION DATASET SAMPLES

Figure 10 and 11 show the real-world classification dataset that we used to generate the result dis-
cussed in Section 5.3. Each row corresponds to a different object class, and each column represents
a different sensor.

Figure 10: Samples from the classification dataset. (Part 1)
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Figure 11: Samples from the classification dataset. (Part 2)
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A.4 POSE ESTIMATION DATASET SAMPLES

Figure 12 shows the real-world classification dataset that we used to generate the result discussed in
Section 5.4. Each row corresponds to a different object class, and each column represents a different
sensor.

Figure 12: Samples from pose estimation dataset.

Figure 13 shows the modified Ender-3 3D printer. We mount indentors and collect the pose estima-
tion dataset for multiple sensors.

Figure 13: Modified Ender-3 Pro 3D printer
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A.5 TRANSFERABILITY DETAILS

In this section, we present the full results of the sensor transfer downstream experiments. Details of
experiments can be found in Section 5.3 and 5.4. Figure 14 and 15 show the classification results
and Figure 16 shows pose estimation results.

A.5.1 CLASSIFICATION

(a) ViT-Base Scratch Intra-sensor (b) ViT-Base Scratched Inter-sensor

(c) ViT-Base Pre-trained Intra-sensor (d) ViT-Base Pre-trained Inter-sensor

(e) ViT-Large Pre-trained Intra-sensor (f) ViT-Large Pre-trained Inter-sensor

Figure 14: Transferability on classification tasks. (Part 1)
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(a) T3 Intra-sensor (b) T3 Inter-sensor

(c) UniT Intra-sensor

(d) SITR Intra-sensor (e) SITR Inter-sensor

Figure 15: Transferability on classification tasks. (Part 2)
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A.5.2 POSE ESTIMATION

(a) ViT-Base Scratch Inter-sensor (b) ViT-Base Pre-trained Inter-sensor

(c) ViT-Large Pre-trained Inter-sensor (d) T3 Inter-sensor

(e) SITR Inter-sensor

Figure 16: Transferability on pose estimation tasks.
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A.6 ADDITIONAL ABLATIONS

This section presents ablation experiments to evaluate the impact of loss terms, alternative supervi-
sion signals, and dataset size on SITR’s performance.

A.6.1 CONTRIBUTION OF LOSS TERMS

We conduct an ablation study to evaluate the contributions of the normal map loss and SCL loss
to SITR’s performance. As shown in Table 5, either loss term independently serves as an effective
supervision signal. However, their combination yields the strongest results. This evaluation is con-
ducted on the dataset visualized in Figure 6, further highlighting how these two loss terms synergize
to improve representation learning.

Method Classification (%)

Normal loss only 84.21 ± 14.01

SCL loss only 78.86 ± 18.72

Normal + SCL losses 91.43 ± 9.88

Table 5: Ablation study showing the impact of different loss terms on classification accuracy trans-
ferability.

A.6.2 CHOICE OF SUPERVISION SIGNAL

There are alternative supervisions to our normal map, such as using MAE or VQGAN to reconstruct
tactile images, as employed in T3 and UniT. To evaluate the effectiveness of SITR, we adapt these
supervisions to train representations using our simulated dataset. We evaluate the models’ trans-
ferability as described in Section 5.3 and Section 5.4. SITR consistently outperforms MAE and
VQGAN, highlighting the benefits of SITR’s architecture and training pipeline.

Classification (%) Pose estimation (mm)
Method Intra-sensor set ↑ Inter-sensor set ↑ Inter-sensor set ↓
MAE 45.81 ± 21.44 26.46 ± 19.54 1.13 ± 0.19

VQGAN 59.41 ± 19.50 31.02 ± 22.01 1.18 ± 0.14

SITR (Ours) 90.23 ± 8.16 81.94 ± 12.92 0.80 ± 0.21

Table 6: Comparison of MAE, VQGAN, and SITR performance on intra-sensor and inter-sensor
classification tasks (%) and inter-sensor pose estimation (mm)

A.6.3 EFFECT OF SIMULATION DATASET SIZE

We evaluate how the size of the simulation dataset and the variety of sensor configurations impact
classification transfer performance on inter-set classification. Table 7 shows that increasing the
number of samples per sensor and the number of sensor variations lead to increases in performance.
This demonstrates the benefit of a diverse and large-scale training dataset.

Sensor
Variations

Samples per sensor

1K 5K 10K

10 45.82 ± 21.12 57.00 ± 21.55 61.44 ± 22.81

50 55.86 ± 25.04 68.55 ± 11.96 76.78 ± 13.91

100 62.85 ± 16.45 73.71 ± 14.27 81.94 ± 12.92

Table 7: Transfer classification accuracy (%) on the inter-set dataset across different sensor varia-
tions and samples per sensor.
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