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Abstract

Robustness of deep neural networks to input noise remains a critical challenge, as naive
noise injection often degrades accuracy on clean (uncorrupted) data. We propose a novel
training framework that addresses this trade-off through two complementary objectives.
First, we introduce a loss function applied at the penultimate layer that explicitly enforces
intra-class compactness and increases the margin to analytically defined decision boundaries.
This enhances feature discriminativeness and class separability for clean data. Second, we
propose a class-wise feature alignment mechanism that brings noisy data clusters closer to
their clean counterparts. Furthermore, we provide a theoretical analysis demonstrating that
improving feature stability under additive Gaussian noise implicitly reduces the curvature
of the softmax loss landscape in input space, as measured by Hessian eigenvalues.This thus
naturally enhances robustness without explicit curvature penalties. Conversely, we also
theoretically show that lower curvatures lead to more robust models. We validate the
effectiveness of our method on standard benchmarks and our custom dataset. Our approach
significantly reinforces model robustness to various perturbations while maintaining high
accuracy on clean data, advancing the understanding and practice of noise-robust deep
learning.

1 Introduction

Deep neural networks have achieved remarkable success across a wide range of tasks. However, their in-
stability to input perturbations, including noise and adversarial attacks, remains a major issue (Szegedy
et al., [2014; |Goodfellow et all 2015)). Training models to be robust against such perturbations is crucial for
deploying reliable machine learning systems in real-world noisy environments. For instance, when a classifi-
cation model is trained only with uncorrupted data, it tends to produce features that are not well separated
between classes when facing noisy data (Fig. .

A common and straightforward approach to improve robustness is to augment the training data by adding
some noise (Bishop, |1995)). While noise injection often improves model robustness, it can also degrade the
accuracy on the uncorrupted (clean) data. This trade-off arises because naively forcing the model to fit
noisy data generally reduces the discriminativeness of the learned features. This results in blurred decision
boundaries and ambiguous feature representations (Fig. [Lb).

Therefore, naively injecting noise into the training data is inadequate and may adversely affect the model’s
performance on the original data distribution. This observation motivates the need for principled methods
that explicitly balance robustness to noisy inputs with the preservation of discriminative feature representa-
tions for original data (features produced by our method are depicted in Fig. .

In this paper, we propose a novel framework that explicitly addresses these challenges by focusing on two
complementary objectives (illustrated in Fig. :

1. Boosting the discriminativeness of features for clean data. We introduce a new loss operating
at the penultimate layer of the network, which encourages intra-class compactness and simultane-
ously increases the margin between features and decision boundaries. Crucially, in this penultimate
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Figure 1: t-SNE feature visualization for test set of CIFAR10 of original (clean) and noisy data (additive
Gaussian noise), produced by models trained with different methods. When training the model with the
clean data, it produces features that are not well separated between the classes for noisy data (right plot of
Fig. . Training model with both clean and noisy data helps to produce more discriminative features for
the noisy data (Fig. but also makes features on the clean data less discriminative. Our method helps
the model to produce more discriminative features both on clean and noisy data (Fig. .

feature space, decision boundaries can be analytically characterized as hyperplanes. This enables
an explicit and tractable formulation for the loss. Consequently, by directly shaping the geometry
of the feature space, our loss strengthens class separability, mitigating the blurring effect that noise
injection may induce.

2. Aligning noisy data features with clean data clusters. Unlike classical approaches that enforce
individual noisy samples to be close to their clean counterparts (e.g., stability training
or Lipschitz-constrained networks (Tsuzuku et al. [2018)), our method performs class-wise
alignment. Specifically, we encourage the entire cluster of noisy samples for a given class to be close
to the corresponding cluster of clean samples from the same class. This cluster-level alignment is less
restrictive and allows the model to maintain expressiveness, avoiding the performance degradation
often observed when forcing strict pointwise matching between noisy and clean samples.

Theoretical insights on noise injection and curvature. Beyond the novel loss function design, we
provide a theoretical analysis revealing that training with Gaussian noise implicitly acts as a loss curvature
regularizer in the input space (that we call input loss curvature). More precisely, we show that noise injection
reduces the eigenvalues of the Hessian of the loss with respect to the input, effectively smoothing the local loss
landscape. This curvature reduction serves as a natural regularization mechanism that enhances robustness
against input perturbations without explicitly adding curvature penalty terms. Conversely, we also show
that a lower curvature in the input space leads to a model producing more stable features under Gaussian
perturbations. This insight bridges the gap between noise-based robustness methods, which traditionally rely
on data augmentation or smoothing, and curvature-based approaches that explicitly constrain the geometry
of the loss surface (Jin et al., [2019; Moosavi-Dezfooli et al.,[2019b)). Our work is, to the best of our knowledge,
the first to formally link Gaussian noise training, curvature reduction in input space, and improved robustness
in a unified framework.
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Figure 2: Illustration of our method applied on the features of the penultimate layer. In the feature space,
each color represents the data cluster of each class, where darker and lighter colors represent clean and
noisy data, respectively. Our method focuses on boosting discriminativeness of features on clean data (by
enforcing intra-class compactness and inter-class separability) and aligning noisy data clusters with those of
clean data from the same class (in feature space).

Contributions. The main contributions of this paper are summarized as follows:

o We propose a novel loss function applied at the penultimate layer that simultaneously enforces intra-class
compactness and maximizes inter-class margins with respect to analytically defined decision boundaries
(hyperplanes). This encourages more discriminative feature representations for clean data. We also
provide theoretical insights showing that enforcing only intra-class compactness or only inter-class sep-
arability can lead to trivial solutions that fail to improve model performance (Proposition . This
justifies our design choice of combining both constraints.

e In addition to the loss applied on clean data, we introduce a simple yet effective class-wise feature
alignment strategy that encourages clean and noisy data clusters to align in the feature space. This
contrasts with classical point-wise stability methods and helps preserve model expressiveness, avoiding
the performance degradation commonly seen with naive noise augmentation (see our method in Fig. .

¢ We theoretically demonstrate that training with additive Gaussian noise reduces the eigenvalues of the
input-space Hessian of the standard cross-entropy loss, effectively regularizing curvature. Conversely, we
also prove that reduced curvature in the input space leads to more stable features under Gaussian noise,
from a probabilistic standpoint (Theorem [6.1).

e We provide further theoretical insights into the proposed method. This includes a generalization behavior
analysis for the compactness constraint (Theorem [6.2]), and an investigation of how applying the loss
solely at the penultimate layer impacts intermediate representations (Theorem [6.3)).

o We demonstrate the theoretical insights and validate the effectiveness of our method through experiments
on both standard benchmarks and our road image dataset (Section. Notably, models trained exclusively
on Gaussian-noised data using our approach show substantial performance gains over baseline methods
when evaluated on other perturbations, such as random occlusion and resolution degradation (see Fig. |§|
for examples).

Paper Organization. Section [2] reviews related works. Section [3] introduces the standard softmax clas-
sification framework and the notations used throughout the paper. It also discusses theoretical decision
boundaries and the limitations of the standard softmax loss. Building on this, Section [g] presents our pro-
posed method, followed by a discussion of its design properties in Section 5} Theoretical insights into our
method are provided in Section [6] including the impact of our method on input-space curvature under Gaus-
sian noise (Section 7 generalization analysis of the compactness constraint (Section , and the effect
of our method on intermediate representations (Section [6.3). Experimental results on standard and custom
datasets are presented in Section[7] Our code is publicly available at anonymized-codel
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2 Related works

Adversarial perturbations and Lipschitz models. Training models that are more stable against input
perturbations is an important subject in deep learning. A well-studied direction is to include examples
with adversarial perturbations in training (Dong et al, [2020; Miyato et al., |2015; |Qin et al., |2019). While
this approach has proven its effectiveness, it is very time-consuming to generate adversarial perturbations.
Another direction is to construct models with Lipschitz property so that features of the corrupted input stay
close to those of clean counterpart (Fazlyab et al., |2023; [Zhang et al., 2022} |2021)). This approach requires
to modify the model architecture (to ensure Lipschitz property by construction), so it is not applicable on
an existing base model.

Noise Injection. Training neural networks with noise injected into inputs or weights is a classical technique
for improving generalization (e.g., [Bishop| (1995)); Zheng et al.| (2016)); He et al. (2019)). Bishop established
that input noise training is approximately equivalent to Tikhonov regularization in the parameter space, ef-
fectively smoothing the learned function. However, this equivalence does not explicitly connect noise injection
to changes in the curvature of the loss landscape in the input space. More recent research has leveraged noise
during inference to improve robustness against perturbations such as the method of randomized smoothing
(Cohen et al., 2019} Levine & Feizi, 2020; [Scholten et al.l 2023). This method is more computationally
expensive, as it requires multiple inference passes per data point to average the model outputs over Gaussian
noise added to the inputs. Moreover, it does not directly analyze or control the curvature of the loss function
with respect to the inputs.

Loss curvature in Deep Learning. Understanding the geometry and curvature of the loss landscape in
deep learning has been an important area of research for understanding the model stability. These studies
mainly focus on the model parameter space and reveal that sharp or flat minima in the parameter space can
significantly affect a model’s generalization performance (see, e.g., Foret et al| (2020); |[Dinh et al.| (2017)); |Li
et al.| (2018]); /Andriushchenko & Flammarion| (2022))). However, the relationship between the model stability
and the loss curvature in the input space seems to be less studied. Moosavi-Dezfooli et al. [Moosavi-Dezfooli
et al| (2019b) demonstrate that the Hessian of the loss function with respect to the input captures local
curvature information that is essential for understanding a model’s sensitivity to perturbations. Several
works have explored explicit regularization strategies targeting curvature metrics, such as Hessian norms of
the model output or loss with respect to the inputs (Jin et al.l [2019; [Mustafa et al., 2020; Moosavi-Dezfooli
et al., |2019a). Most of these approaches requires the explicit computation or approximation of the Hessian,
which can be computationally expensive. Other related methods focus on Jacobian regularization (Rifai
et all [2011) or smoothing techniques for boosting local linearity (Qin et al. [2019) that implicitly reduce
sensitivity to input perturbations but do not necessarily analyze the eigenvalues directly.

Discriminativeness in feature spaces. To enhance the discriminativeness of learned features, [Tang
(2013) proposed a margin-based approach by incorporating a multi-class SVM into deep learning. However,
their method relies on a one-vs-rest scheme, requiring the training of C' separate classifiers for C' classes.
Elsayed et al. (2018) also advocated maximizing the margin to decision boundaries in the feature space,
using a quadratic approximation. In another line of work, [Wen et al. (2016) introduced the center loss,
which explicitly encourages intra-class compactness by minimizing the distance between each feature and its
corresponding class centroid. However, this formulation does not explicitly enforce inter-class separability.
The advantages of large-margin learning in deep neural networks were further emphasized by [Liu et al.
(2016) and [Liu et al.| (2017)). More recently, [Papyan et al.| (2020) observed that within-class variation tends
to vanish if one continues training a softmax-based classifier beyond the zero-error regime. While this
finding is theoretically appealing, achieving the zero-error regime in practice is challenging. Therefore, it is
often desirable to introduce supplementary discriminative constraints, as in the aforementioned works. In
our method, we propose to simultaneously enforce intra-class compactness and inter-class separability to
enhance feature discriminativeness when training with noise-injected inputs.

Our contribution compared to related literature. In contrast to prior work, our method theoreti-
cally and empirically demonstrates that training with Gaussian noise inherently leads to a reduction in the
eigenvalues of the Hessian of the loss function with respect to the inputs. This mechanism acts as an im-
plicit curvature regularizer, naturally flattening the local loss landscape without the need for explicit penalty
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terms. Conversely, we also demonstrate that the curvature reduction correlates with robustness to Gaus-
sian noise perturbations at inference time. This provides a principled explanation for why noise injection
enhances robustness beyond classical generalization arguments. To the best of our knowledge, this explicit
link between noise injection during training, input loss curvature reduction, and improved noise robustness
has not been previously characterized in the literature. Moreover, our method also emphasizes enhancing
the discriminative power of clean data features to ensure strong performance on clean inputs. This is in
contrast with standard approaches, where one typically focuses only on improving the accuracy on noisy
(corrupted) data. Our paper thus offers both practical and theoretical insights that complement and extend
existing approaches.

3 Background and framework

3.1 Preliminaries: classification with softmax model

Let us consider a classification problem with C classes (C' > 2). The input space is denoted by X, which
can be a space of images, time series or vectors. The neural network (backbone) transforms an input into
a fixed-dimension vector. Formally we model the network by a function: fy : X — F C R%, where 6 is the
set of parameters of the neural network, d is the dimension of the so-called feature space F. That is, F is
the representation space induced from X by the transformation fy. Given an input « € X, let ¢ = fo(x). In
order to perform a classification task, ¢ is then passed through a softmax layer consisting of an affine (linear)
transformation (Eq. ) and a softmaz function (Eq. ) Expressed in formal equations, we have

z2=Wq+b, WeR*?and be R, (1)
e
Zj:l e
Here, fori = 1,---,C, z; (resp. o(2);) is the i*" component of column-vector z (resp. o(z)). The components

z;’s of z are called logits (and so z is called logit vector). The predicted class is then the class with maximum
value for o(z), i.e.
j(x) = argmax o(2);.
K2

In summary, the whole softmax model can be summarized as the following sequence of transformations in

Fig. B

- fo o) € Rd Affine (W,0) . 2(q) € RC softmax function

o(z) € A"t c RY

Ne

Figure 3: Pipeline from input z to softmax output o(z) € A®~!, which is the simplex in R of probability
measures. The whole softmax model is denoted by Ng, composed of fy and the softmax layer, where © is
the concatenation of all the parameters of (6, W, b).

Remark 3.1 We note that arg max; o(z); = argmax; z;. So that, j = arg max; z;.

In the standard approach, to train the neural network to predict maximal score for the right class, the
softmax loss is used. This loss is written as

Ls(©:B) =5 3 I 3)
(z,y)eB

where
lz,y) = —loga (W fo(z) +b), . (4)
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Here, © is the concatenation of all the parameters of (6, W,b), B is the current mini-batch, x being a training
example associated with its ground-truth label y € {1,2...,C}. By minimizing this loss function w.r.t. ©,
the model learns to assign maximal score to the right class.

Throughout this paper, ¢ and g(x) refer generally to the same object. Writing ¢(x) highlights its dependence
on z. By analogy, depending on the context, we may write z(q) in place of z. We also denote the whole
softmax model by Mg, composed of fy and the softmax layer. This notation will be used in Section for
our theoretical insights.

3.2 Decision boundaries and the drawback of softmax loss

As presented in the last section, a feature vector ¢ € F induces a logit vector z(¢) = Wq+b € RY. Consider
the pair of classes {i, j}, we have:

2i(q) — zj(q) = Wq+b)i — (Wq+b); = (W; = Wj,q) + (b — by). (5)
Zl(Q) W1T
Here, 2(q) = : and W= [ : |. Notethat for j =1,---,C, W; € R% Set
zc(q) Wg
Pij={qeF, (W;=W;,q)+ (b; —b;) =0} . (6)

Notice that {¢ € F : z;(¢) > z;(¢)} and {¢ € F : z;(¢) < z;(q)} are the two half-spaces separated by P;;.
Hence, the decision boundary for the pair {7,j} is the hyperplane P;;, and for ¢ € P;;, the scores assigned
to the classes ¢ and j are the same (z;(q¢) = 2;(q)). Using Eq. , for an input of class i, we see that the
softmax loss pushes z; to be larger than all other z;’s (j # i), i.e., (W; — Wj,q) + (b; — b;) > 0. Hence,
the softmax loss enforces the features to be in the right side w.r.t. decision hyper-planes. Notice that the
softmax loss has a contraction effect. In fact, inputs from the same class tend to produce probability vectors
that are close to each other and lie near an extremal point of A®~!, the simplex of probability measures
in Rcﬂ However, this does not guarantee that features of the same class form a compact cluster in feature
space. To make this precise, we introduce the following definition.

Definition 3.1 (Class dispersion) We define the dispersion of a given class ¢ as the mazimal Fuclidean
distance (in feature space F) between two samples belonging to that class:

dispersion(c) := mancD llg(z1) — q(x2)]],
T1,T2 c

where CP = {z : (z,y) € D, y = ¢} and D denotes the training dataset.

A key reason is the translation invariance of the softmax function. Specifically, for any € € R, we have
o(z) = o(z +¢€l), where 1 is the all-ones vector. Thus, for a reference feature ¢ € F with logits z = Wq + b,
the set of features that yield the same softmax output is

S(@)={qg+v:Wov=¢l, eeR}.

This implies that even if o(2(q1)) = o(2(¢2)), the corresponding features ¢; and ¢ can be arbitrarily far
apart (unless the classifier matrix W has very specific structure). Hence, although two inputs z; and x5 from
the same class may produce probability vectors close to each other (and close to an extremal point of A¢~1),
there is no guarantee that g(z1) and g(z2) are close in feature space. This is because entire subspaces of
features can map to the same probability vector (illustrated in Fig. [4]). This suggests the need of an explicit
constraint that enforces such compactness (i.e., small class dispersion for all the classes).

— C .
IFormally, A~ = {(p1,...,pc) € RC | Zi:l pi =1, p; >0 Vi}.
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Figure 4: Motivating remark. Ideally, inputs from the same class produce probability vectors close to each
other and near a corner of A°~1. However, for a given feature ¢ € F, there exists an entire subspace
mapping to the same probability vector. Consequently, using the softmax loss alone does not enforce small
class dispersion.

4 Proposed method

As presented in the Introduction, our method includes two complementary objectives: boosting the discrim-
inativeness of features for clean data (Eq. (7)) and aligning noisy data features with clean data clusters (Eq.
(12])). This will be introduced in Sections and subsequently.

4.1 Proposed loss function on clean data

To have a better classification, we rely on the following two factors: intra-class compactness and inter-
class separability. To obtain these properties, we work in the feature space F. In many classification
problems, the intra-class variance is very large. So, by forcing the model to map various samples of the same
class in a compact representation, the model learns the representative features of each class and ignores
irrelevant details. Moreover, it may happen that samples in different classes are very similar. This leads to
misclassification. Hence, we also aim to learn a representation having large margins to the decision boundaries
between classes. To achieve all these objectives, we propose the following loss function on uncorrupted (clean)
data:

£clean =a- Lcompact + ﬂ : Emargin + Vreg * Ereg . (7)

Here, Leompact; Lmargin and Lyeg enforce the constraints for class compactness, inter-class separability and
regularization, respectively. We now discuss in detail these three terms. Let us consider the current mini-
batch B C D, where D is the given training dataset. Let Cz be the set of classes present in B, i.e.,

s=1{y€{1,2---,C}: (x,y) € B}. Let CB be the examples of class cin B, i.e., C5 = {z : (z,y) € B,y = c}.

To ensure intra-class compactness, we use the discriminative loss proposed in |De Brabandere et al. (2017)).
Note that in the latter article, this loss is used in the different context of image segmentation. This loss is

written
|CB‘ Z | B| Z Hmc— H _5} (8)

ceCp zeCB

Ecompact (6 B

where g(x) = fo(z) (recall from Section as we work in the feature space F) and m, is the centroid of
the class c. We will discuss how to compute these centroids in Section Here, ||.|| is the Euclidean norm,
l[g]+ = max(0, ¢). This function is zero when ||m. — ¢|| < d,. Hence, this function enforces that the distance
of each point to its centroid is smaller than §,. Notice that this function only pushes the distance to be
smaller than d,, and not to be zero. Hence, we avoid the phenomenon of feature collapse.

To have a better inter-class separability, we build a loss function enforcing large margin between classes and
the decision boundaries. A naive strategy would be to maximize distance of each sample to all the decision
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boundaries. However, this is very costly and not really necessary. Instead, we propose to maximize the
distance of each centroids to the decision boundaries. Indeed, we will give in Proposition a lower bound
for the class margins. The margin loss is defined as follows,

Lmargin(0; B) = X Z m;gc [0a + d(mec, Pei) sign(z(me)i — z(me)e)]y (9)

1
[Cs]
where we recall that z(m.) = Wm, +b € R®. This function is inspired by the work of Elsayed et al.| (2018).
Intuitively, when the centroid m, is on the right side of the decision boundary, z(m.); — z(m.). < 0. Hence,
in this case we minimize [dq — d(m., Pe;)]+ and consequently d(me,Pe;) is encouraged to be larger than
d4. In contrast, if m. is on the wrong side of the decision boundary, then we minimize [§4 + d(me, Pei)]+-
This enforces m. to pass to the right side. Hence, this loss is only deactivated if the centroid is on the
right side w.r.t all the decision boundaries and its distance to the decision boundaries are larger than dg.
Moreover, notice that we opt for the aggregation operation max;.. instead of mean;x.. Indeed, it may
happen that some pairs of class are easier to separate than others. With mean aggregation, loss can be
minimized by focusing only on easy pairs and ignoring difficult pairs. In contrast, with aggregation max, we
enforce the neural networks to focus on difficult pairs. As such, it can learn more useful features to increase
discriminative power. Notice that the distance of m. to the hyperplane P.;, the decision boundary of class
pair (¢, 1), can be computed explicitly as,

|<Wc - Wi7mc> + (bc - bz)|

d cy Fei) —
(me, Pei) e -

(10)

Our loss function encourages each centroids to be far away from the decision boundaries. However, there
are no guarantee that the decision boundaries lead to closed cells. The resulted centroids could be pushed
far away. Hence, to address this problem, we add a regularization term as proposed in [De Brabandere et al.
(2017),

L1cs(©:8) = Z el - (1)

CECB

Note that this regularization term is optional, meaning that we can set Yy = 0.

We also note that we use the squared loss for Lcompact, While a non-squared version is used for Liargin. The
rationale behind this design choice is provided in Appendix [A]

4.2 Aligning noisy data with clean data

In the section above, we have introduced the constraint to boost the discriminativeness of the features on
clean data. Now, we need to introduce an additional constraint to ensure that the model produces more
stable features under input perturbations. For this, let noised(z) denote the noisy version of = (after being
injected with noise). We then introduce the following loss function,

Enomy(@ B |CB| Z | B| Z Hmc_ H_(S} (12)

ceCpn ECB

where ¢ is the corresponding feature of the perturbed input noised(z), i.e., ¢(z) = fo(noised(x)).

We notice that the final constraint is similar to the intra-class compactness loss applied to the clean data.
This constraint encourages the features of noisy samples to lie on the same hypersphere as those of clean
samples from the same class. Unlike standard methods that align each noisy sample directly with its clean
counterpart, our approach performs feature alignment only at the class level. This more flexible design helps
maintain the expressiveness of the learned features.
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4.3 Our loss
With all the components presented above, we come up with the total constraint as follows
Eours = £clean + A[-:noisy 5 (13)

where we fix A = 1 for the sake of simplicity.

4.4 Computing class centroid: partial momentum strategy

In our loss presented above, the class centroids appear in different constraints (Egs. , @D, and )
We now discuss how to compute and update such class centroids during training. Let us now consider a
class ¢. To compute the centroid of this class, we use only the clean data. This is because during training,
the features of corrupted data can be very far away from those of clean data, or even fall in the wrong class.
Consequently, this can make the centroid updated in the wrong direction. There are 2 straightforward ways:

« Naive way. Using all the sample of the considered class in the current mini-batch: m! := m&"r»*(0; B) =
1
¢8| Zmec/g q(z).
momentum

o Using momentum. m/ := m] =v-mi7 4 (1 —~) - m&urent(0; B), where 7 is chosen to be close
to 1, such as 0.9. Note that m!~! from the last batch is used as a fixed quantity here (no gradient).

One major advantage of using momentum is stability. Recall that in modern machine learning, very small
mini-batches are now common to achieve speed-ups at the cost of noisy gradient steps. Thus it can happen
that the centroid of each class fluctuates too much from one batch to another. In such case, we do not have
a stable direction to that centroid. As Lcompact aims to push each point to its corresponding centroid, the
optimization becomes less effective. Hence, the use of momentum allows us to avoid this problem. However,
using momentum makes the gradient much smaller when updating the model parameters. More precisely,
we have following proposition:

543 moment __ naive naive moment ;
Proposition 4.1 VoLEonett = (1 — v) - VeLpnle,,. Here, LiVe, and LERSt are the margin losses

computed using the centroids updated based on naive way and momentum way, respectively.
Proof 4.1 See Appendiz[C

This proposition shows that using centroid with or without momentum gives the same gradient direction.
Nevertheless, with momentum the very small shrinking scaling factor 1 — + appears.

Further, this small gradient is multiplied by a small learning rate ( typically in the range [107°,1072]). So, on
the one hand, the parameter updating in the momentum method is extremely small (or even get completely
canceled out by the computer rounding limit or machine epsilon). On the other hand, as discussed previously,
using momentum allows more stability. To overcome the gradient drawback but to conserve the stability
benefit, we combine the naive and momentum ways. We come up with a strategy named partial momentum.
This strategy uses momentum for the compactness loss and naive way for the margin loss, respectively.
Doing so, we have stable centroids. So that, each point is pushed in a stable direction. But at the same
time, the centroids are kept consistent. That is, the parameters of the neural network evolve along training
with sufficiently large gradients.

5 Some properties of our loss function

5.1 Properties of intra-class compactness and inter-class separability

In this section, we investigate the properties of compactness and separability of the loss function. Fur-
thermore, we discuss the impact of the hyper-parameters §, in Lcompact and dq in Liyargin. This gives us
a guideline on the choice of these hyper-parameters. We recall that D denotes the training dataset and
CP ={z:(z,y) €D, y=c}.
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Proposition 5.1 If Leompact(0; D) = 0, then the dispersion of all classes (see Definition is at most
20,.

Proof 5.1 See Appendiz[B-1]
This last proposition shows that the hinge center loss ensures the intra-compactness property of each class.

Definition 5.1 (Class margin) Let us define the margin of a given class ¢ as the smallest Fuclidean
distance of samples in this class to its closest decision boundary, i.e.

margin(c) := min <min d(q(x),Pcz’)>

xzeCP \ i#c

Proposition 5.2 Assume that Loompact(©; D) = Lmargin(©; D) = 0. Then,

1. If 64 > 0y, then the margin of all classes is at least §g — Oy .

2. If 64 > 20,, then in the feature space F, the distances between any points in the same class are
smaller than the distances between any points from different classes.

Proof 5.2 See Appendiz[B.3

Hence, if we aim to obtain class margin at least ¢, then we can set 4 = J,, +¢. Furthermore, this proposition
provides a guideline for the choice of 4, and d4. We are aiming for a representation with not only a large
inter-class margin, but also one in which the distances between points in the same class are smaller than the
distances between points in different classes. This is particularly useful for problems where samples in each
class are too diverse whereas samples from different classes are too similar.

5.2 Intra-class compactness or inter-class separability constraint alone does not suffice

Recall that the Huygens Inertia Theorem decomposes total inertia into a sum of inter-class inertia and intra-
class inertia. As such, as in the context of clustering for example, minimizing intra-class inertia is equivalent
to maximizing inter-class inertia. Because of that, one may wrongly think that boosting only one of these
inertias suffices. However, in the context of classification, and more generally feature learning, we train our
model to produce relevant features and the initial cloud of features is not fixed. Let us thus discuss the
respective effects of a compactness loss and a margin loss on the discriminative power of a neural network.

In order to boost class compactness, one can minimize the distance of each point to the corresponding class
centroid. As presented in Section [2| this approach is proposed in (Wen et al.| (2016) using a center loss.
Boosting the class margin is proposed by [Elsayed et al.| (2018]). However, we shall prove that applying only
one of these two approaches, the model can be encouraged to evolve in a direction that does not change the
model prediction.

Indeed, they can lead to solutions that allow for enforcing class compactness or class margin but where
the predictions of the model remain unchanged — and so does the generalization capability. In such cases,
the model is not encouraged to learn more discriminative features. This also suggests that the use of both
compactness and margin is necessary. More formally, let us recall that N (with the parameters ©) denotes
the softmax model, as defined in Section [3.I] We suppose that the layer prior to the feature space F is
a convolutional or fully-connected layer, that can be followed or not followed by the non-linearity ReLU.
Suppose that the current parameters of A/ is © (denoted by Ng).

Proposition 5.3 For a > 0, there exists a map, depending on «, T,, such that 6 = Ta(O) satisfies
Ng(x) = No(x) for all x € X. Furthermore,

1. If Ne is such that min. margin(c) = dmargin > 0 (see Definition , then, for the new model Ng,
min, margin(c) = admargin-
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2. If No is such that 0 < max, dispersion(c) = dgispersion (See Definition , then, for the new model
Ng, max, dispersion(c) = adgispersion -

3. Ta(©) — © = (a — 1)u, where u is a vector depending only on ©.
Proof 5.3 See Appendiz[D]

Corollary 5.1 Yai,az > 1, 74,(0) — © and T1/4,(©) — © are vectors of opposite directions.

In particular, as oy or ag increase, the movement of parameters happens in opposite directions. That is,
using this family of transformations, the class margin expansion and the class dispersion shrinkage cannot
happen at the same time.

Suppose that we are given a network Mg with certain class margin and dispersion — and that was trained
with softmax loss for example. We note that the statements (1) and (2) in Proposition [5.3/hold for all o > 0.
This indicates that, by choosing a@ < 1 or a > 1, we can explicitly perform a transformation to obtain new
parameters of A to increase the class margin or decrease the class dispersion — to satisfy the constraints
imposed by either center loss or margin loss alone, respectively — without changing the predictions of A.
That is, the model is not really encouraged to learn more discriminative features and the generalization of the
model is not improved. However, Corollary tells that we cannot both expand the class margin and shrink
the class dispersion simultaneously. This is because © is moved in two exactly opposite directions for these
two objectives. Thus, by maximizing the class margin and minimizing the class dispersion simultaneously,
our loss guarantees that transformations along opposite directions cannot occur. That is, our loss can avoid
a solution that do not improve the generalization error of the model.

6 Theoretical insights on our method

In this section, we present theoretical insights into our method. In Section[6.1] we analyze how our approach
affects the curvature of the softmax loss in the input space. Since our method also enforces that the inputs
are projected onto the hypersphere corresponding to their class, Section [6.2] investigates the generalization
behavior of this constraint, based on how well it is empirically satisfied on the training set. Lastly, as our
method is applied only at the penultimate layer (i.e., in the feature space JF), we analyze in Section its
potential impact on intermediate layers.

6.1 Impact of our method on the curvature of the softmax loss in the input space

When analyzing model stability with respect to input perturbations, a common approach is to examine the
curvature of a standard loss function in the input space. Typical loss functions include the mean squared
error for regression and the softmax loss for multiclass classification. Following this line of reasoning, in this
section we analyze how our method effectively reduces the curvature of the softmax loss in the input space
(that we called input loss curvature). Conversely, we also demonstrate that a reduction in this curvature
leads to improved model stability under Gaussian input perturbation. Note that prior works (e.g., [Moosavi-
Dezfooli et al.[(2019b))) have also shown experimentally that reducing the input loss curvature leads to models
that are more robust to input perturbations.

Background: input loss curvature and its relation with the Hessian matrix. We first recall some
background for studying the curvature of a loss function at an input point x € RF via its Hessian matrix
(assume that the input domain X C R¥). Consider the softmax loss function (Eq. ):

lz) =1(z,y) = —logo (W fe(z) + b)y

Notice that, we aim at studying the curvature with respect to the input x, so we drop y in the annotation
for brevity, and we write {(z). Assume that [ is twice continuously differentiable (with respect to x). The

11
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Hessian matrix H(z) is defined as the matrix of the second-order partial derivatives:

Plz) 8%(x)
8&3% 8$181k
H(z) = Vzl(sc) = : ) _
Plz) 8%1(x)
szaml 8%2

k

This can be interpreted as the Jacobian of the gradient vector: H(z) = -LVi(z). If we move in a direction

v € R¥, we consider the path x(t) = x + tv. We notice that

lim Vi(z + tv) — Vi(x)

d
lim ; = %VZ(I + tv) = H(z)v .

t=0

Hence, if v is a unit vector (||v|| = 1), ||H(z)v|| describes the change in the gradient per unit length (or
gradient change rate) at the point x, as we move in direction v. This can be regarded as the curvature
along the direction v. Consider an eigenvector v of H (||v|| = 1), with corresponding eigenvalue A, then we
have ||H (z)v|| = || \v|| = |A|. Therefore, the set of absolute eigenvalue magnitudes {|\;|}¥_; of H(z) provides
a representation of the geometric (unsigned) curvature of [ at point . For instance, a way to quantify the
overall curvature at z is computing Y, A? or >, ||

Theoretical insights in the impact of our method on the softmax loss curvature. Equipped with
the background above, we now introduce our theoretical results. For a perturbation € around = € X, we
assume the following approximation

Iz +e)~l(z)+ Vi) e + %é‘tH(x)E . (14)

Consider an input z from class y, with feature representation q(z) = fp(x) in the feature space F. We
use fy(x) instead of ¢(z) to emphasize its dependence on the model. For 6 > 0, let C(fy(z),d) denote the
hypersphere of radius d centered at fp(z). Under the compactness 10ss Loompact (Eq. ) for clean inputs
and the alignment loss Laiign (Eq. ) for noisy inputs, a well-trained model ensures that both clean and
noisy features of the same class lie within a hypersphere of radius §, around the class centroid. Hence, their
distance is at most 2d,. Therefore, under a Gaussian perturbation e, we expect

fo(x +¢) € C(fo(x),d), with & =24,

with high probability. This observation is the key link between input loss curvature and model stability
under Gaussian perturbations. More formally, we define stability under Gaussian perturbations as follows.

Definition 6.1 (Stability under Gaussian perturbations) Consider a Gaussian noise € ~ N(0,0°I).
For a given 6 > 0, let n = P. (fo(w +2) € C(fo(2),9)),  Lowr =Ee [l +2) | fo(w +2) ¢ CJo(x),9)].

o Feature stability. We say that fy produces stable features w.r.t. € (at x) if n is large for small §.

o Loss stability. We say that fo produces stable loss w.r.t. € (at x) if |lout — I(2)| is small. That is, even
when features fall outside C(fg(x),0), the resulting loss does not deviate much from the clean loss l(x) (in
expectation).

In the extreme case of feature stability, where n = 1 for § = 0, fy produces features that are almost surely
invariant under the noise ¢. In this case, we will show that the input loss curvature is zero. Conversely, we
will also show that a low input loss curvature encourages at least feature stability or loss stability.

Assuming that the logit values are bounded within [—Kax, Kmax] for all inputs, the following theorem
formalizes the connection between input loss curvature and model stability under additive Gaussian noise.

12
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Theorem 6.1 (Upper-bound and lower-bound of the input loss curvature) Assume that € follows
the distribution N'(0,0°1), and let n = P. (fo(z +¢) € C(f(x)g,0)) (we assume that n > 0). Then,

1. Denoting the set of eigenvalues of H(z) by {\;}F_; and |W 2,00 = max; |W;||, we have

SN S (W 82 40— 1) KR (15)
2. Letloyy =E: [l(z+¢€) | fo(z+¢€) ¢ C(fo(x),d)], we have

234+ (ZIM) > 2 (=) o =100 = 291 P) (16)

Proof 6.1 See Appendiz[E]

In Eq. , the left-hand side (LHS) ), A? represents the input loss curvature. In the right-hand side
(RHS), if n increases to 1 then the second term decreases to 0. An obvious way to increase 7 is by increasing
d (there is a higher chance that fy(z + ¢) € C(fo(z),d)). However, by doing so, we also increase the first
term of the RHS (as it depends on §). Therefore, one way to minimize the upper bound on the curvature is
to train the model such that fg(z+¢) € C(fo(x),0) with high probability n, for a small §. This also suggests
that choosing § close to zero is not a good choice. Indeed, in this case it is difficult to train a model such
that 7 is large. With our intra-compactness constraint, we push the features of the clean and noisy inputs
(fo(x) and fg(x +€)) to lie within the hypersphere C(m,,d,) of the same class. Hence, if the model is well
trained and taking § = 24,, with high probability we have fy(x +¢) € C(fo(x),0). So, this effectively helps
to decrease the input loss curvature. This will be demonstrated in our experiments (see Section .

In Eq. , if we assume that the gradient of the loss at x is sufficiently small, combining with the fact that
o is generally small, we then have o2||VI(z)||? =~ 0. In this case,

2
23"+ (Zw) 2 M 1)

This inequality suggests that, for a fixed 4, reducing the input loss curvature (i.e., the Hessian eigenvalues)
either increases n or encourages a smaller value of |loyt — {(2)|. This indicates that reducing the curvature
of the loss with respect to the input encourages at least feature stability or loss stability. Besides,
recall that our loss function includes a constraint that explicitly increases the margin between clean sample
features and the classification decision boundaries. As a result, when noisy features remain close to their
clean counterparts, the classifier is more likely to make consistent predictions under perturbations. This
highlights the complementary role of the margin-based constraint in promoting classification stability.

As a concluding remark, this last theorem reveals a strong connection between the input loss curvature and
the model stability.

6.2 Generalization behavior of the compactness constraint for mapping features onto a hypersphere

Recall that our method enforces inputs to be projected onto the hypersphere associated with their class via
the intra-class compactness constraint Leompact in Eq. . In this section, we fix a particular class and focus
on the compactness constraint. We assume that Lcompact vanishes on the training set; that is, for all training
samples z, we have ||f(z) — m| < d,. We now examine whether compactness is preserved on the test data.
More concretely, for a given r > 0, let C(m,r) denote the hypersphere centered at m with radius r. We then
study the probability that a test point x is projected inside C(m,r). In short, we investigate how well the
compactness observed on the training set generalizes to the test set.

To this end, we first recall the notion of margin loss introduced in [Mohri| (2018)).

13
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Definition 6.2 (Margin loss function) For any p > 0, the p-margin loss function is defined as

1 if 7 <0,
Pp(r)=q1-7/p f0<T<p, (17)
0 ift>p.

Now, for a given r > 0 and 0 < p < 72, define h(z) := r* — || f(x) — m|*. Then,

1 it [[f(x) —mll =,
Op(h(x)) = ¢ 1= (r? = [If (@) —=ml*)/p if /12 = p<|f(z) —m| <, (18)
0 if |[f(z) —m[l < v/r2 —p.

Remark 6.1 When p — 0, the function in Eq. (18) penalizes inputs x that are projected outside C(m,r) (i.e.,
|| f(x) —m]| > r). This allows us to quantify the projection error. For larger p, the function also penalizes
points lying inside C(m,r) but within a margin p of the boundary (i.e., \/r?> —p < ||f(x) —m]|| <r). Thus,
the parameter p can be interpreted as a confidence margin.

In our method, by enforcing the model to satisfy the compactness constraint on the training set, we expect
the compactness property to generalize to the test set. Is this a reasonable objective? To address this
question, we quantify the mapping error, i.e., the probability that a point is projected outside C(m, ) for a
given r > 0.

Recall that F denotes the feature space, and let M (X, F) be the set of all measurable functions from X to
F. For parameters R,r, A > 0, we consider the following function class:

1= {0 == 1 =l < ol < R f € M), sp )] <4

This class allows both the feature mapping f and the hypersphere center m to vary, subject to boundedness
assumptions. Such assumptions are natural in light of the regularization term in Eq. . The next theorem
provides an empirical generalization bound on the mapping error. Let S denote a sample consisting of N > 0
i.i.d. copies of X.

Theorem 6.2 For any § > 0, with probability at least 1 — § over the draw of an i.i.d. sample S of size N,
the following holds for all h € H:

~ 2 R? log 2
P(h(X < R, Z (A2 +2RA + —— =29 1
(h( )<0)_Rs7p(h)+p< + 2R +\/N>+3 e (19)

Here, E’S’p(h) =+ Zfil ®,(h(x;)) denotes the empirical error on S.
Proof 6.2 See Appendiz[F.1]

Remarks. If an input z is mapped inside the hypersphere in the feature space, then h(xz) > 0. Thus,
P(h(X) < 0) measures the mapping error, i.e., the probability that inputs are mapped outside the hyper-
sphere.

From Eq. and Remark we note that I:Eig ,(h) penalizes training examples @ such that /7% —p <
[ f(x) —m]|. In particular, if §, < /72 — p, then R (h) = 0. Besides, observe that the upper bound in
Eq. decreases as the number of training examples N increases. This is natural, since a larger training
set provides better coverage of the underlying input distribution. Consequently, if the model is well trained
(i.e., the empirical loss on the training set is small), it is more likely to generalize well to unseen data.
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6.3 Impact on the features of intermediate layers

Our loss is applied only to the features at the penultimate layer. This naturally raises an important ques-
tion: does it also influence the representations learned in the earlier, intermediate layers? In this section,
we provide theoretical insights into this question. In short, Theorem shows that enforcing inter-class
separability at the penultimate layer allows us to derive a lower bound on the inter-class separability of the
features in intermediate layers.

Let X € X and Y € Y denote the random variables (r.v.), modeling respectively the input and the label.
Let Dx and Dy be the distributions of X and Y, respectively. Assume that fy is composed of L layers. For
a given layer [ € {1,2,---, L}, let Q' denote the feature r.v. of this layer. That is, the distribution Dg of
@' is an induced distribution of Dx. Given y e, let DQz‘y be the induced distribution from the conditional
input distribution D(X|Y = y).

We recall that our loss operates at the outputs of fy, i.e., the feature space of layer L. This aims to enforce
features of different classes to be contained in different hyper-spheres. Hence, in some sense, it pushes away
Dgey from Dy, for any (y,y') € Y? (y # y'). In this way, the features of different classes can be more
separable.

Now, let us consider an arbitrary intermediate layer | < L before the penultimate layer. The question is: For
all (y,y") € Y? (y #v'), does our 10ss L ciean make Dq),, more separated from Dgiy,y ¢ In order to measure
the divergence between distributions, we first recall some definitions.

Definition 6.3 (Kullback—Leibler divergence) Let D; and Dy be probability measures on a measurable
space Q). The Kullback—Leibler divergence (KL divergence) between Dy and Dy is defined as Dy (D1]|D2) =

Joeq log (%(w)) Di(dw) , and +oo if the Radon-Nikodym derivative Zg; does not ezxist.

We note that Dk, is not symmetric. To overcome such drawbacks, we can use the Jensen-Shannon divergence
with the following definition.

Definition 6.4 (Jensen—Shannon divergence (JSD)) Let Dy and Dy be probability measures on a mea-
surable space Q. The Jensen—Shannon divergence (JSD) between Dy and Dy is defined as D js(D1||D2) =
%DKL(D1||D) + %DKL(IDQHD) , where D = %(Dl + Dy) is a mizture distribution of D1 and Ds.

Now, let us consider a trained model with our method. Recall that the compactness loss encourages the
features in F of each class y to be contained in a hyper-sphere of radius d,, and centered at m,, denoted by
C(my, d,). Thus, it is natural to make the following margin assumption

(H) There exists a 7 (1/2 < 7 < 1) such that for all y € ), we have

Dgriy(C(my,d,)) :==P(Q" € C(my,8,)[Y =y) > 1.

Under this assumption, the probability that each point is projected in the right hyper-sphere is at least
7 > 1/2. This is a reasonable assumption if the model is well trained. Under the assumption (H), we have
the following theorem.

Theorem 6.3 Lety,y’ € Y such thaty #y'. For any intermediate layer | < L before the penultimate layer,
we have
Dys(Dgiyy || Daipy) > (27 —1)7/2. (20)

Proof 6.3 See Appendiz[G

This theorem gives a lower bound for the JSD between the conditional feature distributions of intermediate
layers. If the model is well trained, 7 gets larger, so does D ys(Dqi|y || Dot)y). That is, in the intermediate
layers, features of different classes become more separated from each other. The intuition behind this is rather
simple. Indeed, let us argue using contradiction reasoning in an informal manner. Suppose for example that

Dquy is very similar to Dgi),, and that they share a large part of their supports. Then, the features of this
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layer are propagated until the feature space F by the same mapping — which is the set of layers between
layer [ and the penultimate layer. Hence, the two conditional distributions Dgr|, and Dgr |, in F should be
also similar. This contradicts the condition imposed by our loss, where features of different classes should be
contained in distinct hyper-spheres. Hence, Dg), should be distinct from Dgij,r so that these constraints
on the penultimate layer are satisfied. Theorem [6.3] formalizes this idea. Indeed, this matches the results
observed in our experiments (see Section .

7 Experiments

In this section, we conduct experiments to evaluate the robustness of our method in comparison with baseline
approaches (Section . In addition, we aim to verify whether our method can preserve model performance
on clean data (relative to training without noise injection), while simultaneously improving robustness against
input perturbations (Section . We further investigate in Section the relationship between robustness
and the curvature of the input loss surface, providing empirical evidence that supports our theoretical
result in Theorem [6.1] Moreover, we demonstrate that our method effectively reduces input loss curvature
(Section [7.4)). Finally, we present qualitative results showing that, when our method is applied at the
penultimate layer, the intermediate feature representations also become more discriminative (Section ,
thereby supporting the theoretical findings in Theorem

7.1 General experimental details

Here, we provide some general experimental details; all additional information can be found in Appendix [H]
In our experiments, we use 3 different datasets.

o CIFAR-10 dataset. CIFAR-10 (Krizhevsky et al|(2009)) consists of 50,000 training images and 10,000
test images across 10 classes, including both vehicles and animals. These are 32 x 32 color images.

« Street View House Numbers (SVHN) dataset. SVHN (Netzer et al. (2011)) contains 73,257 training
images and 26,032 test images of house numbers captured from Google Street View. These are also 32 x 32
RGB images.

¢ Road Condition Image Dataset. We construct a custom dataset tailored to our task, comprising 1,897
road images collected from both publicly available sources and our own road image recording campaign.
All the images are resized to 400 x 500 x 3. The dataset is divided into three classes: dry (460 images),
wet/watered (460 images), and icy/snowy (977 images). To ensure diversity, we deliberately select images
from a wide range of scenes within each class. Some examples from our dataset are depicted in Fig. [

Figure 5: Some examples from our custom road image dataset, including 3 categories.

Neural network models. For the two datasets CIFAR10 and SVHN, we use ResNet18 (2016)) as
backbone, followed by some fully connected layers prior to softmax layer. For our own dataset, we test on the
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model MobileNetV3 [Howard et al.| (2019), as this model is sufficiently lightweight for real-time application
on vehicles.

Noisy test accuracy. For each type of input perturbation, we perform 10 independent runs and report
the average and standard deviation (std) of the test accuracy under noise.

Baseline methods. We compare our approach with the following baseline methods.

e Normal training. We train models with the standard softmax loss on clean training data (with standard
data augmentation, see Appendix [H).

o Training only on noisy data. We apply Gaussian noise (on top of data augmentation) to clean data
for training model with the standard softmax loss .

e Training on both clean and noisy data. Besides noisy data, we also keep the clean data. Then the
model is trained on both clean and noisy data with the standard softmax loss.

e Stability training. This method was first proposed in |Zheng et al| (2016]). It introduces a stability
regularization term in addition to the standard softmax loss on the clean data. The stability regularization
encourages the feature representations of clean and noisy versions of the same input to be close, by
minimizing their distance. For a fair comparison, we apply this constraint to the same feature space F
as used in our method, so we minimize || fo(x) — fo(z + £)|| during training, where ¢ is Gaussian noise in
our experiments.

Note that in our method, the proposed constraints are applied alongside the standard softmax loss on clean
data, as this helps produce more separable features (as discussed in Section .

Calculation of the input loss curvature. We notice that the curvature of the softmax loss function at
a point z can be calculated as Y, A\? = E, [e7H(z)%¢| = | H(z)el|?, where € ~ N(0,I). Moreover, for any e,
by definition of the Hessian, H(z)e = 4 H(z + ta)!tzo = lim; 0 w. Hence, we can estimate the
input loss curvature without calculating the second derivatives w.r.t. inputs as follows:

11
A(z) := Z)\f ~ EZ t—2HVl(x+taj) - Vl(:v)”2 ,

j=1

(21)

where ¢; are i.i.d. samples from A/(0,I). In our experiments, we fix t = 1072 and K = 20. Preliminary results
show that K = 20 already provides stable estimates, with small variance across different approximations.

7.2 Model performance under input perturbations

Experiments on standard datasets CIFAR-10 and SVHN. For CIFAR-10, we inject additive Gaussian
noise with std = 0.06 during training for all methods. After training, the models are evaluated under varying
levels of additive Gaussian noise, as shown in Table [I] We follow the same procedure for SVHN, but use
a higher noise level of std = 0.15 during training, since SVHN appears more robust to small perturbations
compared to CIFAR-10. The results for CIFAR-10 and SVHN are reported in Tables [1| and [2] respectively.

Table 1: Accuracy on noisy test set at different Gaussian noise level for CIFAR10. Note that for training,
we set the standard deviation (std) of the Gaussian noise to 0.06.

Additive Gaussian noise level (std) Clean | 2/255 4/255 8/255 16/255

Normal training 92.73 | 92.63£0.09 | 91.95£0.09 | 87.73£0.19 | 64.93£0.18
Training only on noisy images 89.64 | 89.65£0.06 | 89.70£0.07 | 89.99+£0.08 | 89.81 £0.14
Training on both clean and noisy images | 91.48 | 91.45+0.04 | 91.41 +£0.07 | 91.15+0.11 | 90.06 + 0.14
Stability training 91.13 | 91.16 +£0.04 | 91.244+0.09 | 91.26 £0.08 | 89.12+0.15
Ours 92.67 | 92.70+0.05 | 92.68 £ 0.07 | 92.61 £ 0.07 | 91.15+0.20
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Table 2: Accuracy on noisy test set at different Gaussian noise level for SVHN. Note that for training, we
set the standard deviation (std) of the Gaussian noise to 0.15.

Additive Gaussian noise level (std) Clean | 5/255 10/255 20/255 36/255
Normal training 95.69 | 95.41£0.06 | 94.32+£0.08 | 86.85£0.13 | 66.36 £0.21
Training only on noisy images 93.42 | 93.39£0.03 | 93.37£0.04 | 93.02+£0.07 | 91.64£0.15
Training on both clean and noisy images | 95.34 | 95.25 +0.02 | 94.96 £0.07 | 93.94 £ 0.07 | 91.62 4+ 0.09
Stability training 96.01 | 95.93£0.03 | 95.63 £0.07 | 94.59+£0.06 | 91.45+0.14
Ours 96.13 | 96.06 =0.03 | 95.91 £0.05 | 95.17 £0.07 | 92.47 £ 0.09

From Tables (1| and we observe that training solely on noisy data, or on both clean and noisy data,
tends to degrade performance on uncorrupted (clean) or mildly corrupted test samples (i.e., perturbations
smaller than 4/255 for CIFAR10 and 10/255 for SVHN). In contrast, when the noise level is sufficiently
high (i.e., > 8/255 for CIFAR10 and > 20/255 for SVHN), training on noisy data can actually outperform
standard training. This suggests that noisy training helps the model fit to the noisy distribution, but does
not necessarily promote learning of well-generalized features that perform well on clean inputs.

On CIFAR-10, stability training notably reduces clean-data accuracy, whereas our method maintains perfor-
mance comparable to normal training. On SVHN, our method even improves accuracy on clean data. With
small perturbations (2/255 for CIFAR-10 and 5/255 for SVHN), the performance gain over normal training
is limited. However, as the noise level increases, our method consistently outperforms both normal training
and alternative approaches. Specifically, it yields improvements of up to nearly 30% over the normal training
baseline at the highest noise level on both datasets. Furthermore, our method systematically outperforms
the stability training counterpart, demonstrating its effectiveness.

We use the t-SNE technique to visualize the learned feature representations of CIFAR-10 in two-dimensional
space, as shown in Fig. [ The visualization reveals that under normal training, features are not well
separated when evaluated on noisy data (right plot of Fig. . When trained on both clean and noisy data
(Fig. , feature separation improves on noisy inputs, but the structure of clean data becomes less distinct
compared to normal training. This trade-off leads to a performance drop on clean inputs. In contrast, our
method enhances feature separability on both clean and noisy data (Fig. . These qualitative observations
are consistent with the quantitative results, further demonstrating the effectiveness of our approach.

Experiments on our custom road image dataset. We randomly split the dataset into 80% for training
and 20% for testing. During training, all methods are exposed to additive Gaussian noise with std = 40/255.
Additional training details are provided in Appendix[H] Once trained, the models are evaluated under various
types of input perturbations to assess their robustness.

We evaluate model robustness under the following perturbations (illustrated in Fig. @:

e Additive Gaussian noise. As in the CIFAR-10 and SVHN experiments, we apply varying noise levels
(standard deviation), each evaluated over 10 independent runs to ensure statistical reliability.

¢ Random occlusion. We randomly mask 20 patches of size 70 x 70 per image. Results are averaged over
10 independent runs.

o Downsampling-Upsampling (DU sampling). In this method, we first downsample each image by
a factor of 1/3 in both dimensions, then upsample it by a factor of 3 to restore the original size. This
operation is deterministic, so we report results from a single run.

e Random Stripe Masking. We randomly mask 10 vertical stripes of thickness equal to 6.

o Combination. We also evaluate the combined effects of (i) random occlusion with Gaussian noise, (ii)
random occlusion with DU sampling and (iii) DU sampling with random stripe masking.

Results on additive Gaussian noise. The results at different noise levels are reported in Table [3] Our
method consistently outperforms the other methods. Notably, it slightly improves performance even on clean
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data. At the highest noise level, our approach yields an improvement of more than 30% compared to the
baseline of standard training. For the other methods, we observe the same phenomenon as in CIFAR10 and
SVHN.

Clean Down/Up Sampling (ratio=3)  Additive Gaussian (std=40/255)
\ (

o, ]

Stripe Masking

Figure 6: Examples of perturbations applied on the inputs at inference, including Gaussian noise, random
occlusion, down/up sampling and stripe masking. In occlusion, we randomly mask 20 patches of size 70 x 70.
In stripe masking, we randomly mask 10 stripes of thickness equal to 6.

Table 3: Accuracy on noisy test set at different Gaussian noise level for road data. During training, we set
the standard deviation (std) of the Gaussian noise to 40/255.

Additive Gaussian noise level (std) | clean | 10/255 30/255 40/255

normal training (clean data) 96.84 | 95.57 + 0.28 | 75.42 £ 1.08 | 59.34 £+ 1.28
training with noisy data 91.58 | 92.66 & 0.41 | 95.71 £ 0.24 | 94.95 £ 0.62
training with noisy and clean data | 96.31 | 96.36 £ 0.35 | 95.97 £ 0.58 | 95.39 £ 0.73
stability training 96.05 | 96.31 & 0.23 | 94.63 £ 0.58 | 92.92 £ 0.80
ours 97.37 | 97.29 £+ 0.17 | 96.71 £+ 0.49 | 95.52 £ 0.64

Results for other perturbations (Table [4)). We further evaluate the models under additional perturba-
tions, including random occlusion, DU sampling and stripe masking, as previously described. For random
occlusion, our method significantly outperforms the other methods. Notably, while stability training per-
forms well under additive Gaussian noise, it yields poor results under random occlusion. When combining
random occlusion with additive Gaussian noise, our method again surpasses the others. On DU sampling,
our method is slightly outperformed by stability training. However, when DU sampling is combined with
occlusion, our method clearly demonstrates superior performance over all other methods. This is also the
case with random stripe masking. These experiments strongly support the conclusion that training with
additive Gaussian noise alone with our method can enhance the model’s robustness to a broader range of
perturbations beyond Gaussian noise.

7.3 Correlation between input loss curvature and model stability under input perturbations

The results of Theorem suggest a strong correlation between the input loss curvature with the model
performance under input perturbations. In this section, we perform experiments to observe this curvature-
stability relation in practice, where we use uniform and Gaussian noises.

Noisy test accuracy as a function of retained low-curvature samples. Consider the clean test
set Diest = {(7i,9:)}L,. For each sample x;, we estimate the loss curvature A(x;) using the procedure in
Eq. , and collect the results into A = {A(x;)}X,;. We then evaluate noisy test accuracy by retaining
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Table 4: Accuracy on noisy test set for road data under input perturbations. The standard deviation (std)
of Gaussian noise is 40/255. For random occlusion, we randomly mask 20 patches of size 70 x 70. In stripe
masking, we randomly mask 10 stripes of thickness equal to 6. DU Sampling stands for Downsampling-
Upsampling, where we down-sample image resolution by 1/3 and then up-sample by the factor of 3 to

recover the initial size.

Perturbation Normal Training only Training on both Stability Our

type training on noisy images | clean and noisy images | training urs
Occlusion 89.89 +£0.49 | 80.21 £1.02 87.92 £+ 0.68 80.99 +£1.19 | 94.05 £+ 0.75
Occlusion + 27.68 +0.30 | 74.00 & 1.23 78.60 % 1.48 54.07 +£1.32 | 82.73 £ 1.45
Gaussian noise

DU Sampling 92.36 86.58 91.84 96.05 95.79

DU Sampling + | 2 5o 1 1 09 | 78.86 + 1.35 81.34 +0.71 74.47+1.02 | 88.05 + 0.55
Occlusion

Stripe masking 84.39 £1.30 | 76.21 +1.23 88.00 + 0.65 86.63 = 1.16 | 90.42 £ 0.62
DU Sampling + | 49 50 4 4 69 | 70.13 + 1.33 77.78 £ 1.06 82.44+0.99 | 87.99 +1.53
Stripe masking

different proportions of low-curvature samples. Specifically, for p € [0, 1], we compute the p-th quantile of
A, denoted by Quantile(A, p). We define the subset

Drest (p) = {(37:, yz) € Dhest - A(xz) < Quantile(A,p)}.

The average noisy accuracy on this subset is computed as

1
acc(Dyest(p)) == —=——
( t t( )) IDtest(p)| (x4 yi)EZDcest(p)

]l{g(wﬁ-ai):yi}’

where y(z; + ¢;) denotes the model prediction under noisy input z; + &;, and we consider both uniform and
Gaussian noise.

By varying p, we obtain the results in Fig. [7] For both standard training and our proposed method, the
noisy test accuracy decreases as a larger portion of samples is retained. Equivalently, restricting evaluation
to fewer (lower-curvature) samples yields higher robustness to noise. This behavior indicates that robustness
is strongly correlated with low-curvature inputs, consistent with the theoretical result in Theorem

100 » fi o 100

- v‘—\ o5 4 ﬁ"\n
90 +

e Normal training - Gaussian noise

Ours - Gaussian noise
4 —— Normal training - uniform noise
—— Ours - uniform noise

70 4
654

02 03 04 05 06 07 08 09 10 02 03 04 05 05 07 08 09 10
Portion of Retained Test Samples (Lowest Curvature First) Portion of Retained Test Samples (Lowest Curvature First)

(a) CIFARI0. (b) SVHN.

90

—— Normal training - Gaussian noise
Ours - Gaussian noise

704 — Normal training - uniform noise
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Test accuracy (%) on noisy images
Test accuracy (%) on noisy images
@
3

Figure 7: Test accuracy on noisy images for different retained portion of test samples with lowest curvature.
We conduct experiments using both models trained with our method and normal training. For CIFAR-10,
we set the standard deviation of the Gaussian noise and the amplitude of the uniform noise to 0.06. For
SVHN, we fix both values to 0.15.

Further analysis of the robustness—curvature relationship. To further investigate the connection
between robustness and input loss curvature, we conduct the following experiment. For each test sample
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(zi,Yi) € Diest, we record how many times the model produces a correct prediction over 10 independent
random noise perturbations:

10
count(i) =Y Lo, oy
=1

where y(x; + ;) denotes the model prediction under noisy input x; + ¢;.

Based on this count, we partition the test set into groups according to the number of correct predictions.
Specifically, for each k € {0,1,...,10}, we define

G(k) :={i: count(i) = k }.

We then compute the average input loss curvature (on clean inputs) for each group:
1

Ak) == ] ie%(:k)A(xi).

Finally, we plot k versus A(k) to analyze how robustness correlates with input loss curvature. The results for
both uniform and Gaussian noise on CIFAR-10 and SVHN are shown in Fig. [8] We observe a strong negative
correlation between the number of correct predictions and the average input loss curvature, indicated by
a high Pearson correlation coefficient. This provides additional evidence that lower input loss curvature is
associated with greater robustness to input noise.
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(a) CIFARI10. (b) SVHN.

Figure 8: Average input loss curvature for groups of test samples, partitioned by the number of correct
predictions over 10 random noise injections. For CIFAR-10, we set the standard deviation of the Gaussian
noise and the amplitude of the uniform noise to 0.06. For SVHN, we fix both values to 0.15.

7.4 Impact of our method on the input loss curvature

Theoretical results from Theorem indicate that training a model to be robust to Gaussian noise should
lead to a reduction in input loss curvature. Our method enforces that features from clean and noisy inputs
lie on the same hypersphere for each class, promoting feature stability under Gaussian perturbations. As a
result, the input loss curvature is expected to decrease.

Given that the noisy test accuracy of the best-performing method is around 90%, we select the 90% of test
samples with the lowest input loss curvatures for each method and compute their curvature values. Fig. [J]
shows boxplots of the curvature distributions for each training method. Our method significantly reduces
input loss curvature compared to standard training. While training on both clean and noisy data also lowers
curvature, it is less effective than our approach.

We also qualitatively examine the curvature of the input-space loss surface. For a fixed test example, we
sample a grid of points in the input space along two directions: the gradient of the loss with respect to the
input, and a random direction orthogonal to it. We then visualize the negative of the loss function over this
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Figure 9: Boxplot of the top 90% lowest curvature values on the test set for each method. Since the
accuracy of the best-performing method is around 90%, we visualize whether better performing method has
lower curvatures among the top 90% lowest-curvature samples.
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Figure 10: Ilustration on 2D surface of the negative of the standard softmax loss at a given input of SVHN.
Original input is marked by the black dot.

2D grid, as shown in Fig. The results show that our method significantly smooths the loss landscape
compared to the baselines. This qualitative observation is consistent with the quantitative results in Fig. [J]
where our method notably reduces the input-space curvature of the loss.

7.5 Impact of our method on intermediate layers

In the experiments above, we use ResNet18 as the backbone, followed by a fully connected
layer prior to the softmax layer. Recall that our loss function is applied to the features of the penultimate
layer (i.e., the layer immediately before the softmax). Thus, it is natural to ask whether the proposed loss
influences only the final fully connected layers, or whether it also affects the backbone feature extractor.
Figure [1] visualizes the features at the penultimate layer and shows improved class separability under our
method. However, one could argue that this improvement is limited to the penultimate layer and does not
reflect changes in the backbone representations. While Section provides theoretical insights into how our
constraint affects the intermediate layers of the network, we also investigate this question experimentally. To
do so, we apply the same t-SNE visualization technique to the intermediate feature maps of the ResNet18
backbone. Specifically, ResNet18 consists of four main residual blocks, each producing outputs of dimension
H; x W; x C; for i = 1,...,4, where H; and W; are the spatial dimensions and C; is the number of output
channels for block i. For each block output, we apply Global Average Pooling over the spatial dimensions to
obtain a feature vector of size C;. We then apply t-SNE to these pooled features, as done for the penultimate
layer. The resulting visualizations for the clean and noisy CIFAR-10 test set are shown in Figures[II]and
respectively.
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Figure 11: t-SNE visualization for features on clean CIFAR10 test set of different intermediate layers of the
models trained with normal approach and our approach.

Block 1 Block 2 Block 3 Block 4

(a) Normal training.
Block 1 Block 2 Block 3 Block 4

(b) Our method.

Figure 12: t-SNE visualization for features on noisy CIFAR10 test set of different intermediate layers of the
models trained with normal approach and our approach (Gaussian noise with std equal to 0.06).

We observe that the features extracted from the first two blocks do not form distinctive clusters, which is
expected since these early layers primarily capture low-level patterns rather than semantic class information.
Starting from block 3, however, our loss function begins to encourage the formation of more clearly separated
clusters compared to standard training, as shown in Figures and This effect becomes especially
pronounced in block 4 for both clean and noisy inputs. In particular, the t-SNE plots for the noisy data
(Figure show a striking difference between our method and the standard baseline. While standard
training fails to produce well-separated class clusters under noise, our method significantly enhances feature
discriminability, even in the presence of perturbations. These findings indicate that our loss function not
only improves representations at the penultimate layer but also promotes the learning of more structured
and discriminative features in intermediate layers of the backbone. This empirical evidence aligns with our
theoretical results presented in Theorem [6.3] further supporting the claim that our approach affects the
model’s internal representations in a meaningful and robust manner.
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8 Conclusion

We presented a simple and general training framework that improves the robustness of deep neural networks
to input perturbations while maintaining strong accuracy on clean data. Our method introduces a loss at
the penultimate layer that is easy to integrate into existing models and training routines without requiring
architectural changes or complex optimization procedures. This loss promotes intra-class compactness and
inter-class separability of clean features, while also aligning noisy features at the class level—encouraging
robustness without sacrificing expressiveness. From a theoretical perspective, we demonstrated that training
with additive Gaussian noise implicitly regularizes the input-space curvature of the loss function by reducing
the eigenvalues of its Hessian. This provides a principled explanation for the improved stability and ro-
bustness observed in practice. Importantly, we also show that this curvature reduction leads to more stable
feature representations under noise, establishing a bidirectional connection between noise injection and input-
space geometry. Empirically, our approach consistently improves performance on both clean and noisy data.
Moreover, models trained with our method on Gaussian noise exhibit strong generalization to other types
of corruptions, including occlusion and resolution degradation. This demonstrates robustness beyond the
specific perturbation seen during training. Overall, our work offers a theoretically grounded, easy-to-adopt,
and empirically validated approach for enhancing robustness in modern deep learning systems.
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Appendix A  More insights about our loss function

A.1 To square the loss or not to square the loss

We can notice that each term under the sum operation in Lcompact is squared, whereas this is not the case
for Liargin- In this section, we will discuss the rationale behind this design choice. We notice that terms
under the sum operation of Leompact and Limargin can be written in a general form as

el|u — wret|| + 0], if non-squared version
P(u) = 2 . .
([ellw — uret]| + 0], if squared version
where € is equal to 1 or —1 (the sign indicator) and wuyer is the reference point. In the case of Lcompacts
|lu — uret]| is the distance from a generic point to its corresponding centroid denoted here by wuyes. In the
case of Liargin, ||t — Uref|| is the distance of a centroid to its projection on the closest boundary. For sake of

simplicity, we ignore the sign indicator € before ||u — uyef|| as here this does not matter. Consider the case
where ¢(u) is still activated, i.e., ||u — uret|| + b > 0. In this case, we can show that:

et if non squared version
vu¢ = llu—ureell
2(J|u — uret]] + ) x Mooy, if squared version

which implies

1, if non squared version
IVugll = :

2 x ‘Hu — Upet|| + 0|, if squared version

Consider the regime where u approaches wu,ot. If not squared, the gradient remains of constant magnitude
as long as it is still activated. In contrast, if the term is squared, then, for states close to be deactivated,
[l — uret]| + b| is close to 0. Hence, the gradient is very small. Thus, the magnitude of the update direction
for u becomes minimal when it is close to the deactivated state.

Following this discussion, on the one hand, squaring in Lcompact gives a smoother and less stringent loss.
For example, if there are very abnormal points, then this condition does not enforce completely the points
to be in the hyper-sphere around their centroid. On the other hand, by not squaring for the margin loss,
we enforce stronger conditions on the centroid until it attains the deactivated state. That is, its distance to
the closest boundary is at least larger than §4. This is important as the position of each centroid impact the
distribution of the whole class. This insight justifies our proposed loss functions.

Appendix B Proofs of intra-class compactness and inter-class separability

B.1 Proof of Proposition [5.1]

Proof B.1 Let ¢1 and qa be 2 arbitrary points (in feature space F) in any class c. By triangle inequality,
we have: ||Q1 - (12|| < ||(I1 - mc” + ”mc - Q2|| < 61} + 61} = 251}

B.2 Proof of Proposition [5.2]
Proof of Proposition [5.2]1

Proof B.2 Consider an arbitrary class c. Let p be a point in this class (in feature space F) and let q be any
point on the hyperplane Pg; for any i # c. Then, by triangle inequality, we have:

[me —qll < |lme —pll +[lp —qll-

As d(me,Pei) > 04, we have ||me — q|| > 04, Vg € P.i. At the same time, we also have |m. — p|| < dy.
Consequently, we obtain:

0a < [lme —qll < [lme —pll +1lp —qll <6 + llp — 4ql|-
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Hence, ||p — q|| = 64 — 6y, Yy € Pei. So, by definition, d(p, Pe;) > 64 — 8. This holds Vp € C. and Vi # c.
Hence, margin(c) = minyec, (minz. d(p, Pei)) > dq — dy. As we choose an arbitrary class ¢, this holds for
all classes. The proposition is proved.

Proof of Proposition [5.2] 2

Proof B.3 Let g1 and g2 be 2 arbitrary points in any class same c. By Proposition we have: ||g1 —qz| <
26,. Now, let p and q by 2 arbitrary points in any two different classes i and j, respectively. It suffices to
show that ||p — q|| > 26, with §4 > 28,. Again, by triangle inequality, we have:

[mi = m;|| < [lmi = pll + [lp = mjll < llmi = pll + (Ip = gl + llg = m;l]).

So, [lp—qll = llmi —m;|| = (lmi = pll + llg = myl) = [[mi —my | — 26,. Now, let us consider [|m; —myl|. By
Cauchy-Schwart inequality, we have:

‘<m. . w)’ < |lmi —my]| - I = Wil = |lm; — m;|.
S L U] I B U 1 !
Hence,
Imi — my|| > ’<Wi —Wj,my) (Wi — Wj,my)
S N (| U 1 W — Wi
_ ’(Wz‘ — Wy mi) + (bi = b;) (Wi — Wj,m;) + (bi — b))
Wi = Wil Wi — Wi

Asm; and m; are on 2 different sides of the hyperplane P;; (which is the decision boundary), (W; —W;,m;)+
(b; — bj) is of opposite sign of (W; — W;,m;) + (b; —b;). Hence,

(Wi = Wy, ma) + (b = b;) (Wi = Wy, my) + (b — by)

+
Wi — Wil Wi = Wil

_ ‘ (Wi — Wj,mq) + (bi — bj)

a Wi — W]

’(Wi — Wj,m;) + (bi — b;)
Wi — Wyl

Consequently,

(Wi = Wy, mi) + (b — by)
Wi = Wj]|

= d(mg, Pij) + d(my, Pij) > 204.

‘<Wi—Wj7mj>+(bi — b))

[[rmi = m| >
Y Wi = Wil

So, |lp—ql| > ||mj —m;|| — 26, > 28q — 20,,. With §q > 26,, we have ||p—q| > 26,. So, |[p—q| > |lg1 — g2

Appendix C Proof of Gradients in Proposition [4.7]

Proof C.1 If Liargin = 0, then the gradient w.r.t. 0 is 0, hence proposition is proved. Let us now consider
the case where Lmargin > 0 is still larger than 0. We can easily see that

vGACmargin = Sign((mc)i - (mc)c> . VOd(mcypcj)-
Hence, if we show Vod(mS ™ P.) = (1 — ) - Vod(m2oment P.,;), the proposition is proved. First, we

recall that for two differentiable functions: g, : R4 — R% and gy : R% — R% | and if g denotes the composed
function g := ga 0 g1, then for x € R4 we have the following chain rule for computing the Jacobian matrix:

Jo(2) = Jg, (91(2)) X Jy, ().
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In the case where ds = 1, then we have:
Vg = Jg(x)T = Jgjl () x Jgj;(gl(:c)) = J;‘q () X Vg, (2)92-

Now, recall that d(m.,Pe;) = ‘<WC"ﬂVViI}"’”L_C‘>/[ZT|bC7b’7)‘. For sake of brevity, we consider the case where (W, —

Wi, me) + (be — b;) > 0 and the argument is the same for the case (W, — Wi, m.) + (b — b;) < 0. We have,
d(me, Pei) = <W°_T|Vl}}"f1>;‘(|bc_b”). Using the chain rule from Eq. with go(-) = ‘(Wcjlvvlg’z;(lbnc_bi)‘,

get:

we

Vod(m&™ ™ Pe;) = JL (0) X Vi, g
On the one hand, we can easily show that V,,_ g2 is independent of m. and equals to % So,

W, —-W;

Vod(me, Pei) = JL (0) x ——'
O

On the other hand, we have that m»°™™ = v . mi~1 4 (1 — ) - m&urent . Consequently,
ngjul‘ncnt (9) = (1 - ’7) . J,Z;gu'r‘rent (9)~
Hence, Vod(mmement D) = (1 — ) - Vod(mc " P;). So,

veﬁrnoment — ( _ 'Y) . V@ﬁnaive

margin margin*

Appendix D Proof of Proposition [5.3]

Recall that we work in the feature space where each point is denoted by ¢g. Each ¢ itself is the output of its
prior layer. As assumed in the theorem, this is a convolutional layer or fully connected layer, with or without
a non-linearity ReLU. Convolutional or fully-connected layer can be written in a general matrix-operation
form as,

_JWrq +b, if no non-linearity.
~ | ReLU(W—¢~ +b7), if ReLU. '
Here, W~ and b~ are parameters of the prior layer, ¢~ is the input of this layer. We denote this layer by

hw - p-y- We recall that ReLU(a) = max(0,a), Va € R. When ReLU is applied to a vector, we understand
that ReLU is applied to each element of the vector.

Remark D.1 It is obvious that haww-p-)(¢”) = ahaw- p-y(q7), Ya € R.
We also recall that the softmax layer has parameters (W,b) (see Eq. (). For ease of notation, we refer
to (W=,b7,b) as a flattened colunm-vector concatenating W~, b~ and b. Furthermore, we denote © =

( O: ), i.e., O is the vector containing all the parameters of A" except (W~,b7,b). For an o > 0,

(W=,b-,b)
Ta: ((W?é,b)) - <a(W®,Ib,b)) . ((Wééﬁ)) '

we define 7, as
In words, by applying 7, on ©, (W~,b7,b) is multiplied by «, that is to say (W=,b7,b) = a(W~,b7,b),
and other parameters of © stay unchanged (07 = ©y).

1. First, we prove that after applying 7,, the predictions of model do not change. Consider an
arbitrary input. By Remark we know that ¢ is transformed into ¢§ = ag . Moreover, from Eq. , we
have

F=Wi+b=2=Wag+ab=a(Wq+b) =az.
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Now, by Remark the outputs of the new model and the old model are arg max; az; and argmax; z;,
respectively. As « > 0, argmax; az; = argmax; z;. S0, the new model has exactly the same prediction as
the old one.

2. Now, let us consider the class margin. Recall that the distance from g to the decision boundary

P;; (between class ¢ and j) is d(g, Pi;) = NW"fllv‘I,/‘}i’q_)VT,yﬁ"*bm. So, the distance after the transformation is

(Wi = W;, @) + (b — b))

d(q, 75ij) = (as W stays unchanged)

Wi — W]
(Wi = W, aq) + ab; — by)]
Wi — Wil
[(W; — Wj,q) + (b; — by)]
=ax = ad(q, Pij).
Wi — Wil !

So, the distance of ¢ to an arbitrary decision boundary is multiplied by «. As we consider an arbitrary input,
by the definition of class margin, the class margin of all classes is multiplied by a.

3. Now, let us consider the class dispersion. Let consider two arbitrary points qi1,q2 € F. The
(euclidean) distance between these 2 points is ||¢g1 — ¢z2||. By Remark we know that ¢; and ¢o are
turned into ¢ := aqg; and §o := «gq2, respectively. Hence, the distance between these 2 points is now
g1 — @2l = allg1 — g2||- So, the distance between ¢; and ¢o is multiplied by «. As we chose 2 arbitrary
points, this holds for any 2 points. By the definition of class dispersion, it is obvious that the class dispersion
of any class is multiplied by « as well.

4. Prove that 7,(0) — © = (o — 1)u, where u is a vector depending only on 0. By definition of 7,
we have that

7a(6) -6 = (a<w@fb, b)) B QW%’ b))

N ((a - 1)(1/?/,17,17)) = (=1 ((W,Ob,b)> .

0

So, we have that 7,(©) — © = (o — 1)u, where u = ((W‘, b b)

>, depending only on O.

Appendix E  Proof of Theorem [6.1]

In this section, we provide a complete proof for the bounds of the curvatures. For clarity, we introduce
separately some technical lemmas that are useful for the main proof (Lemmas and in
Subsection [E.3]).

E.1 Proof of the upper-bound

Proof E.1 Using the property tr(H?) = |H|% = >, A\? in Lemma it suffices to upper bound tr(H?).
Using the assumption on quadratic approzimation of l(x + €) around x, we have:

1
Iz +e)=1(z)+ Vi(z) e + §5TH€ .

Step 1. Showing that tr(H?) < ZE[[l(z + ¢) — I(z)[?].

We analyze the squared loss change:

2
Iz +e)—l(z)* = <Vl(x)—r5 + ;ETHE>
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Let’s denote A=V1'e, B= %{-ZTHE-Z. Take expectation:

E[(I(x +¢) — I(z))?] = E[A?] 4+ 2E[AB] + E[B?] .
For the cross-term, we have:
E[AB] = %E[(VZTE)(ETHE)] = %vﬁ -Elee"He] .
By Lemma we know that E[ee " He] = 0. Hence,
E[AB] =0 .
For the quadratic term, by using Lemma [E-3, we have

E[B?] = EE[(ETHEF] - i Co* (2 HIIZ + (trH)?)

So we get:
E[((z + ) — ()] = E[A%) + 3o* @I HI} + (wH)?) > T A (22

Therefore,

w(H?) = | HI% < Bl +2) 1))

Step 2. Partitioning the expectation of the squared loss change into 2 regions.

Let A be the event “fo(xz +¢) € C(f(x),0)". So, P(A) =n. We split the expectation into two regions A and
A:

E (e +e) ~ U2)]] =[x +2) = 1)’ | A] -0+ E[(@+e) —1@)” | A] - (1=n)  (23)

Step 3. Showing that |l(x + €) — l(x)| < 2max; |Az;|, where Az; := z;(x + ) — zj(x) is the logit shift.
Recall that the cross-entropy loss w.r.t. the true class y is

e*v (=)

J

—zy(x) + logz e (@),
J
Hence, let pj = o(z); = e /32, €% (so 3 ;p; = 1), we have

Z.sz(erE) A
Wz +e)—l(z) = —Az ‘HO.%W = Az +10g2pje o
J J

Therefore,

iz + ) — 1()] < |Azy| + [log Y pjet=
J
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As Zj p; = 1,p; >0, the sum Zj pjeAZJ is a convex combination of exponentials. Hence, the log-sum-exp
function satisfies

mjin Az; < logijeAzj < mjax Azj .
J

Hence, |log ), pjet% | < max; |Azj|. Obviously, we also have |Az,| < max; |Az;|. So,

[l(z +¢) —l(z)] < 2max |Az;| .
J

Step 4. Upper-bounding max; |Az;| in the case where A happens.
In this case, fo(x+¢) € C(f(x),d). It is easy to see that || fo(x + ) — fo(z)|| < 6.
Recall that the logits for input x is defined by

2(x) =W fo(x) + b€ RC .
The logits are
zj(x) = W fo(x) + by,
Let v = fo(xz +¢) — fo(x), so after perturbation,
zi(x +¢) = Wj—rfg(l‘ +e)+b; =zj(x) + Wj—rv.
Thus the logit shift Az; is bounded by
|Az;] = |z(z +€) — 2z ()| < W]l - [loll < [[Wj]] 6.

Let
[Wll2,00 == mjaXHWjIL

Then for all j,
A2] < [Wlaoo 6.

This means that max; |Az;| < ||W]|2,00 9.

Step 5. Upper-bounding max; |Az;| in the case where A does not happen. In this case, as we assume that
the absolute value of logit is bounded by Kmax, it is easy to see that max; |Az;| < 2Kpax.

Step 6. Upper-bounding E [(l(m +e)— l(m))z} to upper-bound tr(H?).

From FEq. and using the results of Steps 3, 4 and 5, we have that
E (e +e) = U))| < 4n|W |3 6% +16(1 =) - K2
So
() < 55 (W30 67 440 — ) K2)

This completes the proof.

E.2 Proof of the lower-bound

Proof E.2 Step 1. Using the property tr(H?) = |[H||% = >, A7 and tr(H) = >, \; in Lemma we
first establish a relation between the terms relating to tr(H) and the expectation of the squared loss change.
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From the result of Eq. (@ in previous part, we know that:
1
E[(i(z +¢) = U(2))"] = E[A*] + o' QIH|F + (trH)?) ,
where A = V1Te. It is easy to see that E[A?] = o2||V1||%.
So,

2| H} + (H)? = ¢ (B[ +2) ~ 1(@))”) — o[ V1?) -

We note that ||H||% = >, A2 and |tr(H)| = |3, \il < X2, |\il, which leads to
’ 4
23N+ (Zm) > L (®l1G + o) - 1)) - 2IVIP)

Step 2. Partitioning the expectation of the squared loss change into 2 regions to find a lower bound.

Let A be the event “fo(xz +¢) € C(f(x),0)". So, P(A) =n. We split the expectation into two regions A and
A:

E (@ +e) = U2)]] =E [z + ) = 1(@)* | A] -0+ E [(lw+2) = 1())” | 4] - (1= n)
> (1—n) E [ +e) 1) | 4] .
We notice that by Lemma[E, we have:
E [(z(x +e)—1(x)? | X} = Var(I(z +¢) | A) + (B [I(z + &) | 4] — I(2))”

(E [z +¢) | A — 1))
= (lout — U2))? (E [z + ) | A] = Lous) .

Y]

Thus,

E (e +2) = 1@)*] 2 (1L =n) - (ow — 1)) .

Step 3. Conclusion.

Using the results of step 1 and step 2 leads us to the conclusion
2
2y X+ (Zm) > 2 (0= ) Qe — 1) — 21 9012)
This completes the proof.
E.3 Some useful technical lemmas
We recall some classical lemmas (with complete proof) that are useful for the proof of Theorem [6.1

Lemma E.1 Let H € R™™" be a symmetric matriz with eigenvalues A1, Ao, ..., \,. Then,
tr(H) =Y N and tr(H?) = >0 | A\

i=1""

Proof E.3 Since H is symmetric, by the spectral theorem, there exists an orthogonal matriz Q (i.e., QTQ =
I) and a diagonal matriz A = diag(A1, Aa, ..., An) such that

H = QAQ".
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Then,
tr(H) = tr(QAQT) = tr(AQTQ) = tr(Al) = tr(A) = Y A
Moreover,
H? = (QAQT)(QAQT) = QAQTQIAQT = QA*QT,
where A% = diag(A\?,\3,...,\2).
Using the cyclic property of the trace, we have

tr(H?) = tr(QA2QT) = tr(A2QT Q) = tr(A?%) = ZAQ

This completes the proof.
Lemma E.2 Let e ~ N(0,0%1,,) and let H € R™"™ be a deterministic matriz. Then:
Elee " He] = 0.

Proof E.4 We consider the i component of the vector Elec " He] € R™. It is given by:
(IE[EETHE =E 2515] (He); ZEEEJ He);

Note that

(He); =) Hjker,
k=1

so we can write:
n n

(Elec " He)) ZZZijEEZEJEk

j=1k=1

Now, since e ~ N(0,0%1,), the random variables ¢; are jointly Gaussian with zero mean. Therefore, any
odd-order moment (i.e., the product of an odd number of Gaussian variables) has expectation zero:

Elesejer] =0  for all i, j, k.
Hence, every term in the above double sum vanishes, and we conclude:
(E[EETHE])i =0 for alli.

Therefore,
Elee " He] = 0.

Lemma E.3 Let ¢ ~ N(0,0%1,) and H € R™*"™ be a symmetric matriz. Then,
E[(e" He)?] = 20| H||% + o (tr H)?
Proof E.5 Let ¢ ~ N(0,0%1,) and H € R"*™ be a symmetric matriz. We want to compute

IE[(ETHE)Q].

Since H is symmetric, it can be diagonalized as

H=QAQT,
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where @Q is an orthogonal matriz and A = diag(A1,...,\,) contains the eigenvalues of H.

Define & := Qe. Then & ~ N(0,02I) and we have

eTHe=¢"QAQTe =T Ae = Z Nié2.
i=1

Define X =31 | \ié%. Then:

n 2
E[X?) =E (Z Ag?) = ANE[ES).
i=1 i,j

Now recall:
E[&}] = 30*, for all i,
E[g;]] = EEFE[E}) = 0%, fori#j.
Therefore,

EX? =Y A7 30"+ \i)j - o
i=1 i#j

=30" Y Mot [ Do =D N
i=1 i i=1
= 30" | H|[% + o (0H)? — || H| %)
= 20%|H||% + o (tr H)?.
So, E[(eTHe)?| = 20| H||% + o*(trH)? .

Lemma E.4 Let X € R be a real-valued random variable, and let A be an event (or more generally, a
sub-o-algebra). Let p € R be a fized constant. Then:

E[(X —p)” | A] = Var(X | A) + (B[X | A] - p)*.
Proof E.6
Let ju:= E[X | A]. Then we can write:
X—p=X—-p)+(u-p),

and hence:
(X =p)? = (X —p)? +2(X = p)(pp = p) + (= p)*.

Taking conditional expectation with respect to A, and using linearity of expectation:
E[(X —p)* | A = E[(X — p)* | A] +2(n — p)E[X — p| Al + (1~ p)*.
Since u=E[X | A], we have E[X — | A] =0, and thus:

E[(X — p)? | A] = E[(X — u)* | A] + (4 — p)* = Var(X | A) + (E[X | 4] - p)2.
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Appendix F Proofs of generalization errors

In this section, we provide the complete proofs concerning the generalization errors discussed in Section
Our proofs are inspired by the methodology developed in [Mohri| (2018). To begin with, we introduce some
notations and results given in [Mohri (2018).

Definition F.1 (Empirical Rademacher complexity, p. 30 in Mohri| (2018)) Let H be a family of
functions mapping from Z to [a,b] and S = (21, ...,2N) a fized sample of size N with elements in Z. Then,
the empirical Rademacher complexity of H with respect to the sample S is defined as:

N

~ 1
Rs(H) =E, L?lelg N z;aih(zi)l , (24)

where 0 = (01, ...,0n), with o;’s independent uniform random variables taking values in {—1,4+1}. The
random variables o; are called Rademacher variables.

Theorem F.1 (Theorem 3.3, p. 31 in [Mohri| (2018))) Let G be a family of functions mapping from Z
to [0,1]. Then, for any & > 0, with probability at least 1 — & over the draw of an i.i.d. sample S of size N,
the following holds for all g € G:

N
Elg(2)] < 1 D ola0) + 2Rs(0) +3

=1

log %
2N

Lemma F.1 (Talagrand’s lemma, p.93 in Mohri (2018)) Let ® : R — R be an I-Lipschitz (I > 0).
Then, for any hypothesis set H of real-valued functions, the following inequality holds:

Rs(®o H) <IRg(H) .

Using Theorem and Lemma we can derive following theorem:

Theorem F.2 Let H be a set of real-valued functions and let Px be the distribution over the input space
X. Fix p > 0, then, for any § > 0, with probability at least 1 — & over a sample S of size N drawn according
to Px, the following holds for all h € H:

~ 2 ~ log %
R(h) < Rsﬂo(h) + *Rs(H) +3 N (25)
where R(h) = [1{h(X)<0}] (generalization error), Rsp( ) =% va:l O, (h(x;)) is the empirical margin loss

on S of size N and ’RS( ) is the empirical Rademacher complexity of H with respect to the sample S .

Proof F.1 Let G ={®,0h:h € H}. By theorem forallgeg,

N 2
E[g(X)] < NZ gla) +2Rs(9) + 3|/ 522 |
and consequently, for all h € H,
N lo og 2
E[®,(h Z )+ 2Rs(®, 0 H) +3 2N5

Since 1g,<oy < ®,(u), we have R(h) = E[lgx)<0y] < E[®,(h(X))], so

R(h) < §S7p(h) + 27%5(4% oH)+3
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On the other hand, since ®, is 1/p-Lipschitz, by lemma we have ﬁs(q)p oH) < %ﬁs(H) So, R(h) <
Rsp(h) + 2Rs(H) +3 lef |

With all these notions and theorems, we are well-equipped to prove Theorem [6.2]

F.1 Proof of Theorem

By using Theorem [F.2] to prove Theorem [6.2} it suffices to prove the following result:

Theorem F.3 The empirical Rademacher complexity of H can be bounded as follows:

~ R2
Rg(H) < A’ +2RA + — . 26

Proof F.2 Let Go = {f : | sup,exr f(2)|| < A}. Let 0 = (01,...,0n), with o;’s independent uniform random
variables taking values in {—1,+1}. By definition of the empirical Rademacher complexity, we have:

Rs(H)
=E, oi(r? — || f(zi) — m|*)
um||<R jeas N Z
1 N
= o’ 4+ sup —oill f(z;) — m]?
N ; Imll<R,feGs ;

1 r N N N
= N]EU sup Z —oi|lf(z;) — m||21 ( as E, lz Uﬁ“Q] =r? ZEU[Q] = 0)

_H"LHSRafeg2 i=1

N
1
= 2B, | s Sl @l ol + 2007 i), m))
LImI<R, f€g2i 1
1 r N
< —E, | sup —oi|l f(x;) ||2 + sup aszH2 sup 20;(f(x;),m)| .
N 7 reg 2 m|< Z ||m\|§R,feg2;

Considering each term inside the expectation operation, we get,

N
fsup | Z —oi || f ()]

sup an )12

o

N

<E, Lsup > Ui||f($i)|2]
G2 =1

<E, [ZAz

N
Ey |sup > —oillf (i)
feg2 3,

= NA?.

O'
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Consider now the second term. We have,

a[ sup Z —oi||m|| ]

m|I<R i=1

N

z—ai||m|2|

i=1

sup
Im[I<

N
Do
i=1

|

=E, | sup ||m||2
[lm|[<R

1
2

< R’E, < R?> | E,

Nl

Nl

N
N
= R? (]E‘7 lz 0?]) (as Eyloi05] =0 if i # j and 1 otherwise)
i=1
= R*/N .

Consider now the final term inside the expectation operation.

N

E, sup Z 20:(f(z;),m)| <E, sup
ImlI<R.feg2 5= LImI<R,fegs

N

Zaa,-<f<xi>,m>H

=1

S 204l ) |m||H

=1

<E, sup
Hm\|<R f€G2

<E, 2Rsup Z|Uz| | f(z )]

fe92 =1
i N N
=E, 2RsupZfol I| <E, |2RY A| =2NRA .
feg2 i=1

Hence, Rs(H) < §(A’N + R*V/N + 2NRA) = A2 + 2RA + 2=

Appendix G Proof of Theorem [6.3]

We first recall some definitions and lemmas needed in the proof.

Definition G.1 (Total variation distance) Let D; and Do be probability measures on a measurable space
Q. The total variation (TV) distance between Dy and Ds is defined as

drv (D1, Dz2) = sup |D1(S) — D1(9)] -
5CQ
Lemma G.1 (Pinsker’s inequality) For every Dy, Dy on €,

1
dry (D1, D) < iDKL(’D1||D2) .

Lemma G.2 (Relation between JSD and mutual information) Let B be the equiprobable binary r.v.
taking value in {0,1}. Given two distributions Dy and Da, let X1 ~ Dy let Xo ~ Dy. Assume that X1 and
Xo are independent of B, let X = BX; + (1 — B)X5. Then, we have

Dys(Dh||D2) = I(X, B) , (27)

where I1(X, B) is the mutual information of X and B (see|Cover & Thomas (2006))).
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Remark. We see that we choose the value of X according to D; if B = 0 and according to Dy if B = 1. That
is, D(X|B = 0) = D; and D(X|B = 1) = Ds. Hence, B can be considered as “flipping variable". Moreover,
notice that in Eq. , the entropy (used in the mutual information) is with respect to a reference measure
and that implicitly D; and D, are absolutely continuous with respect to this reference measure.

Now, we are ready for the proof.

Proof G.1 We consider any class pair (y # y') € Y?. Let us first consider the conditional distributions on
F. For brevity, we write Q instead of Q. We have that

Daly + Dl Doy (S) + Doy (S
drv (DvaszQy) — Sgl}’DQly(S)_ Qly(S) : oy ( )’
Doy (S) — Doy (S
= sup ‘ o (5) Qly'( )‘
SCF 2

We consider S = C(my, 6,), the hyper-sphere of radius 6, centered at m,. Recall that we have assumption
Dg|y(C(my,6,)) > 7, Yy €Y (1/2 <71 <1). Hence, we have Dg),(S) > 7 .

Moreover, as the hyper-spheres of each class are disjoint, S = C(my,6,) € F \ C(my,d,). So, Dgj,y(S) <
DQ|y/(.7:\C(my/,5v)) =1- DQ‘y/(C(my/,év)) S 1—7.

Therefore, we have that Dy(S) — Dy (S) > 7 — (1 — 1) = 27 — 1. Note that this term is positive as T > 1/2.
Hence, |Dy(S) — Dy (S)| = Dy(S) — Dy (S) > 27 — 1.

D y+D !
So, dry (DQW, H) = supscx [Py (S) — Dopyr(S)]/2 > (21 —1)/2 .

Using Lemma[G.1], we have that

1 DQIy + DQIy’ DQ\y + DQly’ (21 — 1)2
50w (Pay || P79 ) > dry (Dm0 ) > CE

As this hold for any (y #vy') € Y, we also have that

| DQIerDQy’) N (27 — 1)2 '

1
D Py || 2220 ) > P12

Therefore, by summing these 2 terms, using the definition of JSD, we have

27 —1)2
Dys (Dayy Il Dopy) = % :

(28)
Let B be the equiprobable binary r.v. taking value in {0,1}. Consider now the conditional distributions Dqy

and Dguy in the feature space F! of a layer | before the penultimate layer. Let Q'y be the random variable

associated to a mizture distribution of Dgqu, and Dy with B as flipping variable in the way defined in
Lemma[G.3 So, we have

Dys (Dquyy || Dguyyr) = 1(B, Q) - (29)

Let f; denote the mapping representing the set of layers between layer I and the penultimate layer. So,
we have that the distributions Dqy, and Dq, are induced by fi from Dgqr), and Dgiy,, respectively. Let

Qp = fi(QY). So we have the Markovian relationship: B — Qly — Qp. The data processing inequality
Cover & Thomad (20006) follows that

I(B,Q%) > I(B,Q3) . (30)

Moreover, note that the distribution Dg, is induced by f; from DQzB. Given B =0, D(Q%|B =0) = Dqr)y-
So, the distribution D(Qp|B = 0) is induced from Dgqi|, by fi. That is, D(Qp|B = 0) = Dq),. Similarly,
we also have D(Qp|B = 1) = D). Hence, by Lemma we have

Dys (Dqjy || Dgpy) = 1(B,Q5) - (31)
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From @), (@) and , we have D g (DQz|y I DQlly’) > Djg (DQ|y [l DQ\y’)' Combining with @), we
have that % 1y
Dys (DQl\y | DQlly’) z % :

This completes the proof.

Appendix H Experiment details

In this section, we provide the details for conducting our experiments. All of our experiments are performed
using Pytorch. When the models are trained, we fix the models and test with different noise levels and
perturbations. We run 10 independent perturbations to report the results.

H.1 Training ResNet18

For ResNet18, the features of the final convolutional layer are subjected to Global Average Pooloing (GAP)
over the spatial dimensions to obtain a vector of dimension 512. Then this vector is passed through a ReL U
non-lineariy, followed by a fully connected layer (output dim=128). The output space of this layer is the
feature space F in our framework. Finally, this is passed through the softmax layer (with 10 output classes),
which is composed of an affine transformation and softmax function.

We intentionally aimed to keep a very minimal setup. Thus, we use the same training scheme for all the
experiments with ResNet18, with softmax loss and our loss, on both CIFAR10 and SVHN. We use SGD
optimizer with nesterov momentum, with initial learning rate of 1073 (decayed by factor of 5 at epochs
60,120 and 160), momentum 0.9, weight decay 5-10~*. Model is trained for 200 epochs, with mini-batch
size equal to 64.

For the training sets of CIFAR10 and SVHN, we apply data augmentation techniques including Random
Cropping (padding=4) and Random Horizontal Flipping before data normalization. This is referred to as
normal training in our main text. For the other methods using Gaussian noise, we simply add Gaussian
noise on top of these data augmentations.

For our method, we set 6, = 0.5 and d; = 5.0 in our constraints. The total loss is Liotal = Lours + Ls, where
Ls is the standard softmax loss (see Eq. (3)).

H.2 Training MobileNetV3 on our road image dataset

We use models pretrained on ImageNet as initialization as our dataset is quite small to train the model from
scratch.

During training, we apply data augmentation techniques including: ColorJitter(brightness=0.3, con-
trast=0.3,saturation=0.3), RandomRotation(10), Random Perspective (with pytorch default parameters)and
Random Horizontal Flipping, before the data normalization. This is referred to as normal training in our
main text. For the other methods using Gaussian noise, we simply add Gaussian noise on top of these data
augmentations.

We use Adam optimizer with learning rate 10~* (decayed by factor of 10 at epochs 50). We train models
for 70 epochs, with and keep the best models based on the validation accuracy.

For our method, we set 6, = 0.5 and d; = 3.0 in our constraints. The total loss is Liotal = Lours + Ls, where
Ls is the standard softmax loss (see Eq. (3)).
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