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Abstract

Current 3D gaze estimation methods struggle to generalize across diverse data do-
mains, primarily due to i) the scarcity of annotated datasets, and ii) the insufficient
diversity of labeled data. In this work, we present OMNIGAZE, a semi-supervised
framework for 3D gaze estimation, which utilizes large-scale unlabeled data col-
lected from diverse and unconstrained real-world environments to mitigate domain
bias and generalize gaze estimation in the wild. First, we build a diverse col-
lection of unlabeled facial images, varying in facial appearances, background
environments, illumination conditions, head poses, and eye occlusions. In order to
leverage unlabeled data spanning a broader distribution, OMNIGAZE adopts a stan-
dard pseudo-labeling strategy and devises a reward model to assess the reliability of
pseudo labels. Beyond pseudo labels as 3D direction vectors, the reward model also
incorporates visual embeddings extracted by an off-the-shelf visual encoder and
semantic cues from gaze perspective generated by prompting a Multimodal Large
Language Model to compute confidence scores. Then, these scores are utilized to
select high-quality pseudo labels and weight them for loss computation. Extensive
experiments demonstrate that OMNIGAZE achieves state-of-the-art performance
on five datasets under both in-domain and cross-domain settings. Furthermore,
we also evaluate the efficacy of OMNIGAZE as a scalable data engine for gaze
estimation, which exhibits robust zero-shot generalization on four unseen datasets.

1 Introduction

Eye gaze provides human with a means for evaluating an individual’s interest in their internal and
external environments [1, 2], which is subtle but informative. 3D gaze estimation, as a crucial topic
in the field of gaze signal analysis, aims to directly predict gaze direction from face images, which
serves as the foundational representation in various applications, such as virtual reality [3, 4, 5],
human-computer interaction [6, 7, 8], medical diagnosis [9, 10], and driver monitor systems [11, 12].

Due to the variants of subject appearance, background environments, image quality, shooting angle
and illumination across existing datasets [13, 14, 15, 16], the performance of gaze estimation
methods [17, 18] trained on a single dataset suffer from performance degradation when testing on
new, unseen datasets. This limitation motivates recent research [19, 20, 21, 22, 23, 24, 25, 26] to focus
on cross-domain generalization for gaze estimation, seeking to bridge inter-dataset discrepancies.
Though effective, these methods are still constrained by the limited diversity of labeled training data,
restricting their applicability for real-world applications. In contrast, enormous face images can be
easily accessed by crawling from Internet [27] or synthetic generation using generative models [28].
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Figure 1: Left: By making efficient use of large-scale diverse unlabeled datasets via reward-driven pseudo
label selection, our OMINGAZE can estimate high-quality 3D gaze directions for in-the-wild images in diverse
conditions, e.g., extreme head poses, varying lighting conditions, and appearance, etc. Red and yellow arrows
represent predictions from OMNIGAZE and base model. Right: our OMINGAZE achieves state-of-the-art
performance on five datasets under three settings, i.e., in-domain, cross-domain, and zero-shot generalization.

To generalize gaze estimation with large-scale unlabeled face datasets, there are two main strands of
research: weakly supervised learning and unsupervised learning. Regarding to weakly supervised
learning, previous works enhance 3D gaze estimation with weak social gaze interaction labels
(e.g., mutual-gaze [29] and gaze-following [30]), while [31] generates gaze pseudo-annotations
by leveraging 3D eye region geometry. However, their effectiveness is constrained by reliance on
labeled datasets from gaze-related domains. In the context of unsupervised learning, self-supervised
pre-training stands out as the leading paradigm, which endeavors to learn a robust gaze representation
via well-designed pretext tasks, e.g., eye-consistent image reconstruction [32, 33, 34], masked image
restoration [35] and gaze redirection [36]. Nevertheless, these pretext tasks exhibit weak semantic
relevance to gaze estimation, resulting in inefficient utilization of unlabeled face images.

In light of these limitations, we find that there remains a notable void for semi-supervised frameworks
capable of effectively harnessing both labeled data and large-scale unlabeled datasets in the gaze esti-
mation community. Then, we propose OMNIGAZE, a semi-supervised learning framework (cf. Fig. 1),
which employs a pseudo-labeling strategy to generalize gaze estimation in the wild with large-scale
unlabeled face datasets. Concretely, OMNIGAZE implements a standard SSL three-phase training
protocol: i) a teacher model is trained via supervised learning on annotated datasets; ii) this model is
utilized to generate pseudo-labels for unlabeled samples and high-quality instances are selected to
enhance training data; iii) a generalized student model is optimized by integrating both annotated and
pseudo-labeled data. However, applying this strategy to 3D gaze estimation is confronted with three
critical challenges: ❶ existing threshold-based pseudo-labeling methods [37, 38, 39], specifically
tailored for classification tasks, are inapplicable for regression output; ❷ pseudo-labels generated by
a teacher model trained on labeled datasets with limited diversity suffer from domain bias [40], which
leads to difficulty in utilizing the pseudo labels; ❸ learning robust gaze representations demands
training data with rich diversity [41, 30, 35] to capture the wide variability across individuals.

Faced with challenge ❶, OMNIGAZE devises a dedicated reward model that utilizes unlabeled images
paired with pseudo labels to assess the reliability of these pseudo labels. To learn reliable reward
scores, we propose two advancements: i) Each pseudo gaze label is interpolated into a 3D gaze
direction vector, thereby enabling a geometry-aware representation and enhancing alignment with
natural gaze behaviors; ii) To harness the enormous knowledge stored in large-scale pretrained
language models, we extract visual embeddings of unlabeled images via an off-the-shelf visual
encoder and define a prompt to guide the Multimodal Large Language Model to generate scene-
specific gaze descriptions for unlabeled images; These linguistic descriptions are encoded via the text
encoder of CLIP and combined with visual features to construct a multi-modal gaze representation.
Thus, the reward model can capture the nuanced nature of gaze for robust confidence assessments.

As a response to challenge ❷, OMNIGAZE adopt two strategies: i) utilize confidence scores to
filter out unreliable pseudo labels and reweight the importance of different high-quality samples for
loss computation; ii) establish a loop for mutual boosting between the student model and reward
model training, enabling continuous refinement of pseudo labels to progressively enhance both gaze
estimation accuracy and pseudo-label quality in OMNIGAZE.
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To tackle challenge ❸ and fuel the proposed semi-supervised data engine, we curate a diverse
collection of unlabeled face images from six publicly available sources, exhibiting wide variability in
terms of facial appearance, lighting conditions, head poses, imaging environments, etc (Table 1).

Through embracing scaling up data as well as effective reward-inspired pseudo label selection, our
OMNIGAZE surpasses all top-leading solutions on five datasets under both in-domain and cross-
domain settings (§4.2). Furthermore, we demonstrate the efficacy of OMNIGAZE as a scalable data
engine for generating reliable gaze annotations for facial images under diverse conditions. Without
any fine-tuning, OMNIGAZE exhibits robust zero-shot generalization across four unseen datasets,
evidencing its great potential for deployment in wild-scene applications (§4.3).

2 Related Work

Appearance-based Gaze Estimation. Appearance-based gaze estimation aims to regress 3D gaze
from 2D face images captured by web cameras. Early methods develop their algorithm using
scene-restricted datasets and attempt to enhance generalizability through strategies such as extracting
gaze-correlated face features [42, 15, 43, 44] or integrating geometric constraints [45, 46, 47]. Though
effective enough for certain subjects, they suffer from performance degradation in unconstrained
environments, e.g., free head motion and profile faces of subjects positioned further from the camera.
To track this issue, subsequent studies endeavor to construct datasets [13, 14, 15, 16] for gaze
estimation in more physically unconstrained settings. Though they employed various methods to
simulate real-world scenarios, such as using panoramic cameras to record multiple participants at
once [14] or multi-view photogrammetry to simulate gaze variations under extreme head poses [13],
these approaches still rely on pre-defined assumptions that inherently simplify real-world complexity,
and remain difficult to scale compared to web-crawled [27], crowd-sourced [15] or synthetic data [28].

Cross-domain Gaze Estimation. The scarcity of diverse labeled training data in appearance-based
gaze estimation leads current fully-supervised methods to achieve strong within-domain performance
but suffer from poor generalization in cross-domain scenarios. To address this challenge, recent
efforts for gaze estimation can be categorized into two paradigms: domain adaptation and domain
generalization. Domain adaptation approaches primarily try to minimize the domain discrepancy
between source domain and known target domain via strategies, e.g., adversarial learning [14, 48],
collaborative learning [49], contrastive learning [22], and consistency learning [23, 24]. In contrast,
recent endeavors in domain generalization address a more realistic scenario without access to target
samples, focusing on learning domain-invariant features through methods, e.g., self-adversarial
learning to preserve gaze information [25] or data augmentation based on gaze-irrelevant factors [26].
However, given the inherent diversity of face images (e.g., illumination, head orientation, and eye
occlusion), these methods remain constrained by their reliance on the coverage of labeled source-
domain data, which hinders their performance in the unconstrained real-world environments.

Semi-supervised Learning. The goal of semi-supervised learning (SSL) is to enhance model’s
performance under the limited availability of labeled data by leveraging unlabeled data. The two
mainstream methods are entropy minimization [37, 38] and consistency regularization [39, 50, 51, 52].
The former is proposed based on the manifold assumption or the smoothness assumption, i.e., the
model should output similar predictions regardless of input perturbations, which necessitates well-
designed data augmentations based on the prior of specific tasks. The latter encourages the model
itself to output confident predictions on unlabeled data, leading to the main problem of SSL: how
to efficiently select high-quality pseudo labels? For classification tasks, FixMatch [53] uses a fixed
confidence threshold to filter out uncertain samples, while FlexMatch [54] enhances this strategy with
class-aware thresholds. Furthermore, SemiReward [55] introduces a reward score based on cosine
similarity between pseudo and groundtruth labels to evaluate the quality of pseudo labels. Despite
these advances, the SSL for gaze estimation still remain to be explored.

3 OMNIGAZE

3.1 Semi-supervised Training Pipeline

We first formulate the semi-supervised framework in 3D gaze estimation. Let DL = {xli, yli}
NL
i=1 and

D̂U = {xuj }
NU
j=1 denotes the labeled and unlabeled datasets, where xli and xuj are the labeled and
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Figure 2: Overview of the proposed semi-supervised learning framework. (a) OMINGAZE jointly trains on
both labeled data and large-scale unlabeled data, and utilizes a reward model to select and reweight high-quality
pseudo labels for unlabeled data. (b) The reward model evaluates the reliability of pseudo labels by jointly
reasoning over visual appearance, scene-specific gaze descriptions, and geometric gaze directions.

unlabeled face images, and yli is the 3D gaze ground truth label. To make use of all training data,
the training pipeline of OMNIGAZE can be divided into three phases: i) Pseudo-label generation.
Following previous self-training strategies [37, 38], a teacher model θT pre-trained on DL via
supervised learning is applied to generate pseudo labels yuj for D̂U ; ii) Reward-driven pseudo-label
selection. To measure the reliability of continuous pseudo labels, a reward model is proposed to
predict confidence scores, which are then used to filter out low-quality pseudo labels and reweight the
contribution of high-quality samples in the loss calculation (§3.4); iii) Student model self-training.
These high-quality samples along with labeled data are utilized to train a robust student model hS
(§3.5). A brief illustration of training pipeline is shown in Fig. 2.

3.2 Learning Labeled Face Images

Model Architecture. Our gaze estimation model adopts a Vision Transformer (ViT) architecture [56].
Specifically, given an input image x, the model first extracts gaze representation via a transformer
encoder, and then employs a lightweight MLP to regress the gaze direction ŷ as yaw and pitch angles.

Supervised Loss. Following [57, 58, 44], we adopt an angular loss to optimize our gaze estimator:

Ls =
1

NL

∑NL

i=1
∥ŷ − yli∥2, (1)

where ŷ = hT (x) is the estimation result.

3.3 Unleashing the Power of Unlabeled Face Images

Unlabeled Face Image Collection. Due to impoverished labeled data, current gaze estimators
struggle to generalize to diverse real-world conditions, e.g., different facial appearance, extreme head
poses, varying lighting conditions, and broader gaze distributions. To learn robust gaze representations,
we attempt to harness the power of large-scale unlabeled face images, which are widely available
through online repositories and publicly curated datasets [59, 60, 28, 61, 62, 27] originally designed
for facial analysis tasks. Concretely, we compile face images from six public datasets to construct a
large-scale unlabeled dataset compassing over 1.4 million images, which covers diverse head poses,
lighting conditions, appearance, etc. Table 1 provides a detailed breakdown of this dataset.

Pseudo-label Generation. Given an unlabeled dataset, we first developed a high-performing teacher
model to automatically generate pseudo gaze labels. Specifically, we make full use of existing labeled
datasets to train this teacher model hT in a supervised manner. Then, we utilize hT to assign pseudo
gaze labels on unlabeled images:

DU = {(xuj , yuj )|yuj = hT (x
u
j ), x

u
j ∈ D̂U}NU

j=1, (2)
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Table 1: Key characteristics of unlabeled training datasets used in OMINGAZE. In total, our OMINGAZE is
trained on labeled images and 1.4M unlabeled facial images jointly.

Dataset Appearance Diversity Scene Illumination Head Pose Eye Occ. Face Res. Size
CelebA [59] Attributes, makeup, age Studio-like Controlled Mostly frontal ✗ Low ∼177K
VGGFace2 [60] Identity, age, ethnicity Real-world Varied Wide range ✓ Varying ∼489K
FaceSynthetics [28] Synthetic with variation Synthetic Controlled Wide range ✓ High ∼86K
SFHQ-T2I [61] Broad demographic Synthetic Varied Wide range ✓ High ∼120K
VFHQ [62] High-fidelity Real-world Varied Wide range ✓ High ∼210K
WebFace [27] Identity, ethnicity Indoor Controlled Mostly frontal ✗ Medium ∼354K

where DU is the pseudo labeled dataset. Then we combine the labeled dataset and pseudo labeled
dataset as a new training dataset D = DL ∪ DU to jointly train a student model hS .

Pseudo-label Selection. Pseudo-labels generated by teacher models pre-trained on limited annota-
tions are susceptible to confirmation bias. The effective utilization of noisy pseudo-labels during
training remains a persistent challenge in self-training paradigms. Prior research [53, 54] has pre-
dominantly addressed this by filtering out low-quality pseudo-labels through dynamic or handcrafted
thresholding strategies. Though effective, these strategies are oriented for classification tasks while
ill-suited for regression tasks like gaze estimation, where 3D gaze labels are continuous signals. In
this work, we accompany the student model hS with an auxiliary reward model hG that generates
confidence scores to assess the reliability of pseudo-gaze labels. By learning to distinguish between
reliable and unreliable pseudo labels, hG can select high-quality samples from DU , thereby enhancing
the utilization of unlabeled data and improving the efficacy of self-training for the student model.

3.4 Empowering Reward Model with Multimodal Cues

Our reward model hG (cf. Fig. 2b) evaluates the reliability of pseudo labels by reasoning of multimodal
cues: geometric gaze directions, visual feature, and semantic context. By leveraging these cues, hG
can capture the nuanced and context-dependent nature of gaze for robust confidence assessments.

Multimodal Cues Integration. To improve the generalization capability of the reward model for
in-the-wild samples, we integrate multimodal cues, e.g., visual and linguistic cues, into the reward
model, enabling it to distinguish visually similar but semantically different gaze patterns. First, we
extract the visual cues by encoding the input image xk ∈ D via the visual encoder of CLIP [63]:

fv
k =[fv

cls,f
v
1 ,f

v
2 , · · · ,fv

M ]=MLP(Encoderv(xk)), (3)

where M denotes the number of patch in the image. Second, we further obtain the linguistic
descriptions by questioning MLLMs, e.g., InstructBLIP [64], on the input image with a pre-defined
prompt: In 3D space, where is the person looking, including details about horizontal (left/right)
direction, vertical (up/down) direction, and forward/backward relative to the viewer? Then, these
descriptions are converted into linguistic embeddings f t

k via the text encoder of CLIP. Finally, we
adopt cross-attention to aggregate f v

k and f t
k, resulting in an semantic-aware gaze representation:

f̂v
k = AvgPool(LN(CrossAttn(fv

k ,f
t
k)), (4)

where AvgPool is the average pooling. LN is the standard layer normalization. CrossAttn denotes
the standard cross-attention operation, where visual features f v

k is the query, and text features f t
k is

the key and value. As such, our reward model can dynamically attend to relevant semantic cues when
interpreting visual features, enhancing its ability to disambiguate subtle gaze variations. We provide
more examples for generating scene-specific gaze descriptions in the Appendix.

Reward Model as Scorer. Given a pseudo label yk = (θk, ψk), we first interpolate it into a 3D
direction vector. Compared to angular representations such as yaw and pitch, 3D direction vectors
provide a more expressive and continuous formulation for modeling gaze behavior, which facilitates
more precise alignment with semantic-aware gaze representations. Specifically, we convert the pseudo
gaze label into a 3D direction vector vk using a Spherical-to-Cartesian coordinate transformation:

vk = [cos(ψk) · sin(θk), cos(ψk), cos(ψk) · cos(θk)]. (5)

Leveraging the obtained semantic-aware gaze representation f̂ v
k and 3D gaze vector vk, the reward

model predicts confidence scores via a cross-attention followed by an MLP:

r̂k = Sigmoid(MLP(CrossAttn(f̂v
k ,vk))), (6)

where r̂k ∈ [0, 1] and Sigmoid denotes the Sigmoid function. Such confidence score allows the
reward model to assess the consistency between visual appearance, semantic cues, and gaze labels.
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To further strengthen the evaluation capability of reward model, we feed the confidence score r̂k and
the cosine similarity score (between the student model prediction ŷk and the pseudo label yk) into a
label scorer implemented via a lightweight MLP to obtain final confidence scores rk∈ [0, 1], yielding
a holistic and reliable measure of pseudo-label quality:

rk = Sigmoid(MLP([(r̂k, sim(ŷk, yk)])). (7)
These confidence scores are then utilized to filter out unreliable samples and reweight high-quality
ones (see §3.5), thus enhancing the stability and effectiveness of student model self-training.

3.5 Training with Pseudo Labels

Training of Reward Model hG. We train reward model hG by jointly using the labeled and unlabeled
dataset (i.e., DL and DU ), where we treat ground-truth gaze labels of labeled data as trust pseudo-
labels. Formally, given confidence scores {rk}NL+NU

k=1 for DL and DU , the reward model hG is
supervised via a binary classification loss:

Lg =
∑NL+NU

k=1
−(ck log(rk) + (1− ck) log(1− rk)), (8)

where ck ∈ {0, 1} is a binary observability mask indicating the label source. Specifically, ck =1
denotes that yk is a ground-truth label, while ck = 0 indicates that yk is a pseudo label. By this means,
the reward model gradually learns to distinguish between reliable and unreliable pseudo labels.

Training of Student Model hS . Meanwhile, our student model hS receives the confidence scores
from the reward model hG for DU , which indicate the reliability of the corresponding pseudo labels.
These scores are used to modulate the learning of the student model hS in two ways: i) filtering out
low-confidence pseudo labels (i.e., rj <τ ), and ii) adaptively reweighting the contribution of the
remaining pseudo labels. In other words, the reward model hG guides the student model to attach
more attention to correct labels and ignore erroneous labels. Formally, given DU = {xuj , yuj }

NU
j=1 and

corresponding confidence scores {rj}NU
j=1, the unsupervised loss on unlabeled data can be defined as:

Lu =
∑NU

j=1
1[rj ≥ τ ] · rj · ∥hS(x

u
j )− yuj ∥2, (9)

where 1[·] is the indicator function for threshold filtering, and τ = 0.5 is a confidence threshold.
Specifically, if hG considers a pseudo label unreliable (i.e., 0<rj<0.5), the unsupervised loss Lu

encourages hS to increase its prediction gap from that pseudo label. In contrast, when hG highly
trusts a pseudo label (i.e., rj→1), Lu enforces stronger alignment between the student prediction and
pseudo label. We also explored confidence-based soft weighting α∈ [0, 1] for labeled samples, but it
yielded limited practical benefits, leaving deeper analysis for future work. Finally, overall training
objective of the student model hS is an average combination of Ls (Eq. 1) and Lu (Eq. 9).

Pseudo-label Update Strategy. To ensure training stability and robustness, we adopt a periodic
pseudo-label update strategy, where the frozen teacher model’s parameters are periodically refreshed
with the student model’s weights every K epochs to regenerate pseudo-labels (ablation study in
Table 7 of Appendix). This interval mitigates the risk of early-stage overfitting to noisy labels while
allowing the student model to progressively benefit from improved predictions over time.

4 Experiment

4.1 Experimental Settings

Training. OMNIGAZE is trained with a batch size of 512. The training of OMNIGAZE can be divided
into two stages: i) The teacher model is trained on labeled datasets for 50 epochs. We utilize the
Adam optimizer [65] with an initial learning rate of 0.005, and a weight decay of 0.05. ii) We train
the student model and reward model on both labeled and unlabeled data for 40 epochs with a base
learning rate of 0.001 and 0.0001, respectively. Hyper-parameter K is empirically set to 10.

Testing. Following previous works [13, 58, 31], we use one input image scale of 224× 224 without
any data augmentation for the sake of fairness. Note that, during model deployment, our OMNIGAZE
does not bring any change to network architecture of the student model or additional computation
cost. The reward model hG is directly discarded after network training.

Evaluation Metric. Following the conventions [66, 67, 68, 44], we use the angular error for
evaluation, where lower values indicate better performance.
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Table 2: Quantitative in-domain gaze estimation results (§4.2) on five benchmarks [43, 16, 44, 14, 12].
Method MPIIFaceGaze [43] EyeDiap [16] RT-Gene [44] Gaze360 [14] IVGaze [12]

FullFace [43] [CVPRW17] 4.93 6.53 10.00 14.99 13.67
RCNN [68] [BMVC18] 4.10 5.31 10.30 11.23 -

Gaze360 [14] [ICCV19] 4.06 5.36 7.06 11.04 8.15
RT-Gene [44] [ECCV18] 4.66 6.02 8.60 12.26 -

XGaze [13] [ECCV20] 4.80 6.50 12.00 - 7.06
CANet [58] [AAAI20] 4.27 5.27 8.27 11.20 -

GazeTR [57] [ICPR22] 4.00 5.17 6.55 10.62 7.33
AGE-Net [70] [ICIP24] 3.61 4.78 - - -

3DGazeNet [31] [ECCV24] 4.00 - - 9.60 -
OMNIGAZE (Ours) 2.97±0.09 4.07±0.15 5.40±0.21 9.12±0.11 6.72±0.15

4.2 OMNIGAZE as Generalized Gaze Estimator

We first pretrain OMNIGAZE on our curated training dataset, and then fine-tune it on downstream gaze
estimation tasks to examine OMNIGAZE as the weight initialization. We investigate the effectiveness
of OMNIGAZE on two settings: 1) in-domain gaze estimation, i.e., training and testing on the same
dataset, and 2) cross-domain gaze estimation, i.e., training on one dataset, testing on an unseen one.
In this part, we approach our algorithm on ViT-B encoder pre-trained on ImageNet-21K dataset [69].

Dataset. We curate a comprehensive training dataset by combining labeled gaze datasets with
six public unlabeled face datasets [59, 60, 28, 61, 62, 27] (Table 1). Note that in in-domain gaze
estimation, labeled gaze datasets comprises ETH-XGaze [13] along with specific evaluation training
datasets; In cross-domain gaze estimation, we only use source datasets as labeled gaze datasets. For
evaluation, beyond the test split of Gaze360 [14], we further assess OMNIGAZE on four widely used
benchmarks: MPIIFaceGaze [43], EyeDiap [16], RT-Gene [44], and IVGaze [12].

In-domain Gaze Estimation. We first compare OMNIGAZE with top-leading solutions on five
widely used gaze estimation benchmarks under the in-domain evaluation setup.As shown in Ta-
ble 2, OMNIGAZE surpasses recent state-of-the-art gaze estimation algorithms by solid margins.
In particular, it yields 0.64◦, 0.71◦, and 1.15◦ reductions in angular error on MPIIFaceGaze [43],
EyeDiap [16], and RT-Gene [44] respectively. It is particularly impressive considering the fact that
the improvement is solely achieved by our semi-supervised training scheme, without any network
architectural modification. Notably, we adopt the basic network design for in-domain gaze estimation,
and we believe our results can be further enhanced if equipped with more advanced architectures.

Table 3: Quantitative cross-domain gaze estimation results (§4.2).
DE, DG, DM, and DD denote ETH-XGaze [13], Gaze360 [14], MPI-
IFaceGaze [43] and EyeDiap [16] datasets.

Method DE→DM DE→DD DG→DM DG→DD

FullFace [43] [CVPRW17] 11.13 14.42 12.35 30.15
CANet [58] [AAAI20] - - 27.13 31.41

PureGaze [25] [AAAI22] 7.08 7.48 9.28 9.32
RAT [23] [CVPR22] 7.40 6.91 7.69 7.08

Gaze-Consistent [26] [AAAI23] 6.50 7.44 7.55 9.03
AGG [71] [CVPR24] 5.91 6.75 7.87 7.90

CLIP-Gaze [72] [AAAI24] 6.41 7.51 6.89 7.06
LG-Gaze [73] [ECCV24] 6.45 7.22 6.83 6.86

OMNIGAZE (Ours) 5.07±0.18 4.84±0.23 4.95±0.15 5.75±0.29

Cross-domain Gaze Estimation.
Next we investigate the cross-
domain generalization of OM-
NIGAZE under the cross-domain set-
ting. Like previous studies [26,
71, 72, 73] that report results for
models trained on ETH-XGaze [13]
or Gaze360 [14], we evaluate OM-
NIGAZE trained on the same la-
beled gaze dataset for the sake of
fairness. Table 3 reports our com-
parison results with SOTA domain-
generalization methods on ETH-XGaze [13] and Gaze360 [14]. We can observe that our training
algorithm always improves generalization on any dataset. This proves the effectiveness of making
use of labeled datasets and large-scale diverse unlabeled datasets.

4.3 OMNIGAZE as Automatic Data Engine

A fundamental challenge in gaze estimation lies in the limited availability of diverse and well-
annotated training data. To address this, we propose to leverage OMNIGAZE as a general-purpose
automatic data engine—a system capable of generating reliable gaze annotations for face images
under diverse conditions. Thus, we comprehensively validate the zero-shot gaze estimation capability
of OMNIGAZE, i.e., directly estimating gaze directions on unseen datasets or in-the-wild images.

Dataset. We curate a comprehensive training dataset by combining two public labeled 3D gaze
datasets (i.e., Gaze360 [14] and ETH-XGaze [13]) with six public unlabeled face datasets (see Table 1
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Figure 3: Visual comparison results (§4.3) on four unseen datasets (left) and in the wild (right). Red and
yellow arrows represent gaze estimation predictions from our OMNIGAZE and base model trained only on labeled
datasets. Four datasets from left to right: MPIIFaceGaze [76], EyeDiap [16], RT-Gene [44], and IVGaze [12].

Table 4: Quantitative zero-shot generalization results (§4.3) on MPIIFaceGaze [43], EyeDiap [16], RT-
Gene [44], and IVGaze [12]. Note that all methods in the first block follow the in-domain evaluation. We provide
three model scales, based on ViT-S (24.8M), ViT-B (97.5M), and ViT-L (335.3M), respectively.

Method Zero-shot MPIIFaceGaze [43] EyeDiap [16] RT-Gene [44] IVGaze [12]
FullFace [43] [CVPRW17] ✗ 4.93 6.53 10.00 13.67
Gaze360 [14] [ICCV19] ✗ 4.06 5.36 7.06 8.15

CANet [58] [AAAI20] ✗ 4.27 5.27 8.27 -
3DGazeNet [31] [ECCV24] ✗ 4.00 - - -

DINO-B [74] [ICCV21] ✓ 6.52 8.50 21.09 19.82
ViT-B [56] [ICLR21] ✓ 6.17 8.85 20.73 18.97

FaRL-B [75] [CVPR22] ✓ 6.09 8.12 19.80 18.06
OMNIGAZE-Small (Ours) ✓ 3.70±0.13 4.85±0.21 10.02±0.35 11.87±0.29

OMNIGAZE-Base (Ours) ✓ 3.44±0.10 4.31±0.12 9.09±0.21 10.81±0.27

OMNIGAZE-Large (Ours) ✓ 3.03±0.07 4.15±0.14 9.01±0.18 10.43±0.20

for more details), comprising over 2.4M data samples in total. We assess OMNIGAZE on four unseen
gaze estimation benchmarks, i.e., MPIIFaceGaze [43], EyeDiap [16], RT-Gene [44], and IVGaze [12].

Network Architecture. In principle, our semi-spervised learning scheme can be applied into any
feature encoder. In our experiments, we approach our algorithm on ViT-S, ViT-B, and ViT-L encoder.

Quantitative Zero-shot Benchmark Evaluation. Table 4 summarizes the zero-shot generalization
comparison results on four representative unseen datasets[43, 16, 44, 12]. Note that we also adopt
certain powerful ViT-based models (DINO-B [74], ViT-B [56], and FaRL-B [75]) as the gaze feature
encoder to fine-tune on labeled datasets, and directly evaluate on unseen datasets. DINO-B and
ViT-B have general semantic representations, while FaRL-B is designed for face analysis tasks. As
seen, both with a ViT-B encoder, OMNIGAZE consistently outperforms other ViT-based models on
diverse scenes, proving the high versatility of our algorithm. It is also worth noting that, though
previous SOTA methods in the first block uses the corresponding training images (not zero-shot
anymore), our OMNIGAZE is still evidently superior to them on certain datasets, e.g., 4.00◦ → 3.44◦
on MPIIFaceGaze. This highlights the remarkable potential of our model as an automatic data engine.

Qualitative Zero-shot Results. We visualize predicted gaze directions by OMNIGAZE and base
model (i.e., train on labeled datasets and directly evaluate unseen datasets) on four unseen datasets in
Fig. 3 (left). We observe that, after considering data scale-up and filtering out noisy pseudo labels,
OMNIGAZE demonstrates generalization improvements with a lower angular error on each dataset.

Qualitative Results in the Wild. In Fig. 3 (right), we provide additional qualitative results on in-the-
wild images, to resemble the practical zero-shot application in real-world conditions. Compared to
the base model trained only on labeled datasets, our OMNIGAZE can predict gaze direction accurately
in unseen diverse environments, e.g., extreme head poses, challenging lighting conditions, and diverse
appearances. We respectfully refer the reviewer to the appendix (§F) for more qualitative results.

4.4 Diagnostic Analysis

For in-depth analysis, we conduct ablative studies using ViT-B encoder under zero-shot setting (§4.3).

Key Component Analysis. In Table 5a, we first examine the efficacy of essential components in our
algorithm. The 1st row reports the result of the baseline model, which only trains on labeled datasets.
For 2nd row, through jointly training on labeled datasets and large-scale diverse unlabeled data in
a semi-supervised manner, we observe consistent and modest improvements against the baseline
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Table 5: A set of ablative studies (§4.4) on multiple unseen datasets (MG: MPIIFaceGaze [76], ED: Eye-
Diap [16], RG: RT-Gene [44]) under the zero-shot setting.

Labeled data Unlabeled data Pseudo-labels selection MG ED RG
✓ 6.17 8.45 20.73
✓ ✓ 4.97 5.42 13.75
✓ ✓ ✓ 3.44 4.31 9.09

(a) Core components in OMNIGAZE

Confidence score MG ED RG
w/o reward 4.97 5.42 13.75
r̂k (Eq. 6) 3.71 4.68 9.96
rk (Eq. 7) (Ours) 3.44 4.31 9.09

(b) Confidence score
Evaluator Component MG ED RG
BASELINE 4.52 5.19 12.01
+ Scene-specific Gaze Descriptions only 3.69 4.78 10.23
+ 3D Direction Vector only 4.03 4.93 10.56
Gaze Descriptions + 3D Direction Vector (Ours) 3.44 4.31 9.09

(c) Network design for reward model

Filtering Reweighting MG ED RG
4.97 5.42 13.75

✓ 4.18 5.02 11.71
✓ 3.84 4.78 10.39

✓ ✓ 3.44 4.31 9.09

(d) Filtering strategy

Table 6: Comparison results with the same backbone (§4.4) on MPIIFaceGaze [76], EyeDiap [16] and
RTGene [12] under the in-domain setting.

Method Backbone MPIIFaceGaze [76] EyeDiap [16] RT-Gene [12]
FullFace [43] AlexNet 4.93 6.53 10.00
Gaze360 [14] ResNet-18 4.06 5.36 7.06
XGaze [13] ResNet-50 4.80 6.50 12.00
CANet [58] ResNet-50 4.27 5.27 8.27
GazeTR [57] ResNet-18 4.00 5.17 6.55
AGE-Net [70] ResNet-34 3.61 4.78 –
3DGazeNet [31] ResNet-18 4.00 – –
BASELINE ResNet-18 4.48 5.56 7.45
OminGaze (Ours) ResNet-18 3.46 4.37 5.89

on each dataset (e.g., 8.45◦ → 5.42◦ on EyeDiap [16]). This supports our claim that large-scale
unlabeled face images provides significantly high level of data diversity, thus enhancing zero-shot
generalization of our method. Furthermore, after assessing and filtering out low-quality pseudo-labels
via the reward model, the performance boosts to 3.44◦ and 4.31◦ on MPIIFaceGaze and EyeDiap,
respectively. This suggests that scaling up datasets and further selecting high-quality samples can
work in a collaborative manner, confirming the effectiveness of our overall algorithmic design.

Network Design for Reward Model. We investigate the impact of scene-specific gaze descriptions
and gaze label interpolation (cf. Eq.5) in the reward model (§3.4), which is summarized in Table 5c.
We construct a BASELINE model that directly predicts confidence scores based on the visual appear-
ance and gaze labels. First, upon aggregating visual appearance and scene-specific gaze descriptions,
all datasets observe notable improvements (e.g., 4.52◦→3.69◦ on MPIIFaceGaze [76]). This verifies
the effectiveness of learning semantic-aware gaze representation. Second, after interpolating gaze
labels into 3D direction vectors, we also achieve significant angular error reductions, revealing the
value of capturing the underlying geometry of gaze behaviors. Finally, our full reward model delivers
the best performance across all datasets, validating the joint effectiveness of our network design.

Pseudo-label Filtering Strategy. We further probe the influence of different pseudo-label filtering
strategies (§3.5). As outlined in Table 5d, by filtering out low-quality pseudo-labels, the method
has a slight improvement of 0.79◦ and 0.40◦ angle error on MPIIFaceGaze [76] and EyeDiap [16],
respectively. In addition, using confidence scores to reweight the importance of different samples, the
model also exhibits improvements in angle error, achieving 3.84◦ and 4.78◦ on MPIIFaceGaze and
EyeDiap, respectively. Outstandingly, OMNIGAZE achieves the highest performance on all datasets
by integrating both confidence-based pseudo-label filtering and reweighting. The empirical evidence
proves that our design facilitates gaze representation learning of the student model.

Student Prediction in Confidence Evaluation. To evaluate the contribution of student model and
pseudo label prediction similarity sim(ŷk, yk) in final scores rk (cf. Eq. 7), we remove the similarity
sim(ŷk, yk) from the final confidence scores (cf. Eq. 6) and report the results in Table 5b. The absence
of additional information about gaze estimation results in a slight performance decline, suggesting
that this can serve as a complementary cue for the assessment ability of the reward model.

Comparison with Same Backbone. To ensure a fair comparison and address potential concerns
regarding backbone capacity, we present additional experiments using the same lightweight ResNet-
18 backbone as several SOTA methods [57, 70, 31] under the in-domain setting. The comparison
results are summarized in Table 6. As shown, our OMNIGAZE achieves consistently better per-
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formance than both the baseline and existing SOTA methods (e.g., GazeTR [57], AGE-Net [70],
and 3DGazeNet [31]) when adopting the similar backbone architecture. This confirms that the
improvements stem from our proposed semi-supervised learning strategies rather than model scales.

5 Conclusion

In this work, we present OMNIGAZE, a novel semi-supervised framework to effectively generalize
gaze estimation in the wild via harnessing the power of large-scale unlabeled data. To achieve
this, we carefully construct a diverse collection of unlabeled face images, varying in head poses,
illumination conditions, facial appearances, etc, and devise a reward model to filter out noisy pseudo
labels in unlabeled data. The reward model jointly reasons over visual appearance, semantic gaze
context, and geometric gaze labels to predict confidence scores for accurate pseudo-label assessments.
Extensive empirical analysis demonstrates that OMNIGAZE sets new SOTAs on both in-domain and
cross-domain settings, and also exhibits excellent zero-shot generalization ability.

Acknowledgement. This work was supported by the National Natural Science Foundation of
China (Grant No. 62222207, 62427808, 62472222), Fundamental Research Funds for the Central
Universities (226-2025-00057), Zhejiang Provincial Natural Science Foundation of China (No.
LD25F020001), the Open Project Program of State Key Laboratory of Virtual Reality Technology
and Systems, Beihang University (No. VRLAB2025A02), the Major Research Program of Jiangsu
Province (Grant No. BG2024042), the Postgraduate Research & Practice Innovation Program of
Jiangsu Province (No. KYCX25_0755), and the Natural Science Foundation of Jiangsu Province
(No. BK20240080).

References
[1] Nathan J Emery. The eyes have it: the neuroethology, function and evolution of social gaze. Neuroscience

& biobehavioral reviews, 24(6):581–604, 2000.

[2] Lifeng Fan, Wenguan Wang, Siyuan Huang, Xinyu Tang, and Song-Chun Zhu. Understanding human gaze
communication by spatio-temporal graph reasoning. In ICCV, pages 5724–5733, 2019.

[3] Katerina Mania, Ann McNamara, and Andreas Polychronakis. Gaze-aware displays and interaction. In
SIGGRAPH, pages 1–67. 2021.

[4] Yun Suen Pai, Benjamin Tag, Benjamin Outram, Noriyasu Vontin, Kazunori Sugiura, and Kai Kunze.
Gazesim: simulating foveated rendering using depth in eye gaze for vr. In SIGGRAPH, pages 1–2. 2016.

[5] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir Benty, David Luebke,
and Aaron Lefohn. Towards foveated rendering for gaze-tracked virtual reality. ACM Transactions On
Graphics, 35(6):1–12, 2016.

[6] Myungguen Choi, Daisuke Sakamoto, and Tetsuo Ono. Kuiper belt: Utilizing the “out-of-natural angle”
region in the eye-gaze interaction for virtual reality. In CHI, pages 1–17, 2022.

[7] Carlos Elmadjian and Carlos H Morimoto. Gazebar: Exploiting the midas touch in gaze interaction. In
CHI, pages 1–7, 2021.

[8] Sean Andrist, Xiang Zhi Tan, Michael Gleicher, and Bilge Mutlu. Conversational gaze aversion for
humanlike robots. In CHI, pages 25–32, 2014.

[9] Zhuoqing Chang, J Matias Di Martino, Rachel Aiello, Jeffrey Baker, Kimberly Carpenter, Scott Compton,
Naomi Davis, Brian Eichner, Steven Espinosa, Jacqueline Flowers, et al. Computational methods to
measure patterns of gaze in toddlers with autism spectrum disorder. JAMA pediatrics, 175(8):827–836,
2021.

[10] Sam Perochon, J Matias Di Martino, Kimberly LH Carpenter, Scott Compton, Naomi Davis, Brian Eichner,
Steven Espinosa, Lauren Franz, Pradeep Raj Krishnappa Babu, Guillermo Sapiro, et al. Early detection of
autism using digital behavioral phenotyping. Nature Medicine, 29(10):2489–2497, 2023.

[11] Muhammad Qasim Khan and Sukhan Lee. A comprehensive survey of driving monitoring and assistance
systems. Sensors, 19(11):2574, 2019.

10



[12] Yihua Cheng, Yaning Zhu, Zongji Wang, Hongquan Hao, Yongwei Liu, Shiqing Cheng, Xi Wang, and
Hyung Jin Chang. What do you see in vehicle? comprehensive vision solution for in-vehicle gaze
estimation. In CVPR, pages 1556–1565, 2024.

[13] Xucong Zhang, Seonwook Park, Thabo Beeler, Derek Bradley, Siyu Tang, and Otmar Hilliges. Eth-xgaze:
A large scale dataset for gaze estimation under extreme head pose and gaze variation. In ECCV, pages
365–381, 2020.

[14] Petr Kellnhofer, Adria Recasens, Simon Stent, Wojciech Matusik, and Antonio Torralba. Gaze360:
Physically unconstrained gaze estimation in the wild. In ICCV, pages 6912–6921, 2019.

[15] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhandarkar, Wojciech Matusik,
and Antonio Torralba. Eye tracking for everyone. In CVPR, pages 2176–2184, 2016.

[16] Kenneth Alberto Funes Mora, Florent Monay, and Jean-Marc Odobez. Eyediap: A database for the
development and evaluation of gaze estimation algorithms from rgb and rgb-d cameras. In Proceedings of
the symposium on eye tracking research and applications, pages 255–258, 2014.

[17] Hengfei Wang, Jun O Oh, Hyung Jin Chang, Jin Hee Na, Minwoo Tae, Zhongqun Zhang, and Sang-Il Choi.
Gazecaps: Gaze estimation with self-attention-routed capsules. In CVPR, pages 2669–2677, 2023.

[18] Jun O Oh, Hyung Jin Chang, and Sang-Il Choi. Self-attention with convolution and deconvolution for
efficient eye gaze estimation from a full face image. In CVPR, pages 4992–5000, 2022.

[19] Isack Lee, Jun-Seok Yun, Hee Hyeon Kim, Youngju Na, and Seok Bong Yoo. Latentgaze: Cross-domain
gaze estimation through gaze-aware analytic latent code manipulation. In ACCV, pages 3379–3395, 2022.

[20] Xin Cai, Jiabei Zeng, Shiguang Shan, and Xilin Chen. Source-free adaptive gaze estimation by uncertainty
reduction. In CVPR, pages 22035–22045, 2023.

[21] Jiawei Qin, Takuru Shimoyama, and Yusuke Sugano. Learning-by-novel-view-synthesis for full-face
appearance-based 3d gaze estimation. In CVPR, pages 4981–4991, 2022.

[22] Yaoming Wang, Yangzhou Jiang, Jin Li, Bingbing Ni, Wenrui Dai, Chenglin Li, Hongkai Xiong, and Teng
Li. Contrastive regression for domain adaptation on gaze estimation. In CVPR, pages 19376–19385, 2022.

[23] Yiwei Bao, Yunfei Liu, Haofei Wang, and Feng Lu. Generalizing gaze estimation with rotation consistency.
In CVPR, pages 4207–4216, 2022.

[24] Yoichiro Hisadome, Tianyi Wu, Jiawei Qin, and Yusuke Sugano. Rotation-constrained cross-view feature
fusion for multi-view appearance-based gaze estimation. In WACV, pages 5985–5994, 2024.

[25] Yihua Cheng, Yiwei Bao, and Feng Lu. Puregaze: Purifying gaze feature for generalizable gaze estimation.
In AAAI, volume 36, pages 436–443, 2022.

[26] Mingjie Xu, Haofei Wang, and Feng Lu. Learning a generalized gaze estimator from gaze-consistent
feature. In AAAI, volume 37, pages 3027–3035, 2023.

[27] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch. arXiv
preprint arXiv:1411.7923, 2014.

[28] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J Cashman, and Jamie
Shotton. Fake it till you make it: face analysis in the wild using synthetic data alone. In ICCV, pages
3681–3691, 2021.

[29] Rakshit Kothari, Shalini De Mello, Umar Iqbal, Wonmin Byeon, Seonwook Park, and Jan Kautz. Weakly-
supervised physically unconstrained gaze estimation. In CVPR, pages 9980–9989, 2021.

[30] Pierre Vuillecard and Jean-Marc Odobez. Enhancing 3d gaze estimation in the wild using weak supervision
with gaze following labels. arXiv preprint arXiv:2502.20249, 2025.

[31] Evangelos Ververas, Polydefkis Gkagkos, Jiankang Deng, Michail Christos Doukas, Jia Guo, and Stefanos
Zafeiriou. 3dgazenet: Generalizing 3d gaze estimation with weak-supervision from synthetic views. In
ECCV, pages 387–404, 2024.

[32] Yunjia Sun, Jiabei Zeng, Shiguang Shan, and Xilin Chen. Cross-encoder for unsupervised gaze representa-
tion learning. In ICCV, pages 3702–3711, 2021.

[33] Yiwei Bao and Feng Lu. Unsupervised gaze representation learning from multi-view face images. In
CVPR, pages 1419–1428, 2024.

11



[34] Yaoming Wang, Jin Li, Wenrui Dai, Bowen Shi, Xiaopeng Zhang, Chenglin Li, and Hongkai Xiong.
Bootstrap autoencoders with contrastive paradigm for self-supervised gaze estimation. In ICML, 2024.

[35] Jiawei Qin, Xucong Zhang, and Yusuke Sugano. Unigaze: Towards universal gaze estimation via large-scale
pre-training. arXiv preprint arXiv:2502.02307, 2025.

[36] Yu Yu and Jean-Marc Odobez. Unsupervised representation learning for gaze estimation. In CVPR, pages
7314–7324, 2020.

[37] Zhi-Hua Zhou and Ming Li. Semi-supervised learning by disagreement. Knowledge and Information
Systems, 24:415–439, 2010.

[38] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student improves
imagenet classification. In CVPR, pages 10687–10698, 2020.

[39] Jiwon Kim, Youngjo Min, Daehwan Kim, Gyuseong Lee, Junyoung Seo, Kwangrok Ryoo, and Seungryong
Kim. Conmatch: Semi-supervised learning with confidence-guided consistency regularization. In ECCV,
pages 674–690. Springer, 2022.

[40] I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale semi-supervised
learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

[41] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything:
Unleashing the power of large-scale unlabeled data. In CVPR, pages 10371–10381, 2024.

[42] Timo Schneider, Boris Schauerte, and Rainer Stiefelhagen. Manifold alignment for person independent
appearance-based gaze estimation. In ICPR, pages 1167–1172, 2014.

[43] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. It’s written all over your face: Full-face
appearance-based gaze estimation. In CVPRW, pages 51–60, 2017.

[44] Tobias Fischer, Hyung Jin Chang, and Yiannis Demiris. Rt-gene: Real-time eye gaze estimation in natural
environments. In ECCV, pages 334–352, 2018.

[45] Wangjiang Zhu and Haoping Deng. Monocular free-head 3d gaze tracking with deep learning and geometry
constraints. In ICCV, pages 3143–3152, 2017.

[46] Seonwook Park, Adrian Spurr, and Otmar Hilliges. Deep pictorial gaze estimation. In ECCV, pages
721–738, 2018.

[47] Rajeev Ranjan, Shalini De Mello, and Jan Kautz. Light-weight head pose invariant gaze tracking. In
CVPRW, pages 2156–2164, 2018.

[48] Kang Wang, Rui Zhao, Hui Su, and Qiang Ji. Generalizing eye tracking with bayesian adversarial learning.
In CVPR, pages 11907–11916, 2019.

[49] Yunfei Liu, Ruicong Liu, Haofei Wang, and Feng Lu. Generalizing gaze estimation with outlier-guided
collaborative adaptation. In ICCV, pages 3835–3844, 2021.

[50] Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides,
Takahiro Shinozaki, Bhiksha Raj, et al. Freematch: Self-adaptive thresholding for semi-supervised learning.
arXiv preprint arXiv:2205.07246, 2022.

[51] Junbo Yin, Jin Fang, Dingfu Zhou, Liangjun Zhang, Cheng-Zhong Xu, Jianbing Shen, and Wenguan Wang.
Semi-supervised 3d object detection with proficient teachers. In ECCV, pages 727–743. Springer, 2022.

[52] Chen Liang, Wenguan Wang, Jiaxu Miao, and Yi Yang. Logic-induced diagnostic reasoning for semi-
supervised semantic segmentation. In ICCV, pages 16197–16208, 2023.

[53] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus
Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In NeurIPS, pages 596–608, 2020.

[54] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In NeurIPS,
pages 18408–18419, 2021.

[55] Siyuan Li, Weiyang Jin, Zedong Wang, Fang Wu, Zicheng Liu, Cheng Tan, and Stan Z Li. Semireward: A
general reward model for semi-supervised learning. In ICLR, 2023.

12



[56] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[57] Yihua Cheng and Feng Lu. Gaze estimation using transformer. In ICPR, pages 3341–3347, 2022.

[58] Yihua Cheng, Shiyao Huang, Fei Wang, Chen Qian, and Feng Lu. A coarse-to-fine adaptive network for
appearance-based gaze estimation. In AAAI, pages 10623–10630, 2020.

[59] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, pages 3730–3738, 2015.

[60] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset for
recognising faces across pose and age. In FG, pages 67–74, 2018.

[61] David Beniaguev. Synthetic faces high quality - text 2 image (sfhq-t2i) dataset, 2024.

[62] Liangbin Xie, Xintao Wang, Honglun Zhang, Chao Dong, and Ying Shan. Vfhq: A high-quality dataset
and benchmark for video face super-resolution. In CVPR, pages 657–666, 2022.

[63] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, pages 8748–8763, 2021.

[64] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang
Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with
instruction tuning. arXiv, 2023.

[65] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

[66] Mingjie Xu and Feng Lu. Gaze from origin: learning for generalized gaze estimation by embedding the
gaze frontalization process. In AAAI, pages 6333–6341, 2024.

[67] Huan Liu, Julia Qi, Zhenhao Li, Mohammad Hassanpour, Yang Wang, Konstantinos N Plataniotis, and
Yuanhao Yu. Test-time personalization with meta prompt for gaze estimation. In AAAI, pages 3621–3629,
2024.

[68] Cristina Palmero, Javier Selva, Mohammad Ali Bagheri, and Sergio Escalera. Recurrent cnn for 3d gaze
estimation using appearance and shape cues. In BMVC, 2018.

[69] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for the
masses. arXiv preprint arXiv:2104.10972, 2021.

[70] Yichen Shi, Feifei Zhang, Wenming Yang, Guijin Wang, and Nan Su. Agent-guided gaze estimation
network by two-eye asymmetry exploration. In ICIP, pages 2320–2326, 2024.

[71] Yiwei Bao and Feng Lu. From feature to gaze: A generalizable replacement of linear layer for gaze
estimation. In CVPR, pages 1409–1418, 2024.

[72] Pengwei Yin, Guanzhong Zeng, Jingjing Wang, and Di Xie. Clip-gaze: towards general gaze estimation
via visual-linguistic model. In AAAI, pages 6729–6737, 2024.

[73] Pengwei Yin, Jingjing Wang, Guanzhong Zeng, Di Xie, and Jiang Zhu. Lg-gaze: Learning geometry-aware
continuous prompts for language-guided gaze estimation. In ECCV, pages 1–17, 2024.

[74] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In ICCV, pages 9650–9660, 2021.

[75] Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dongdong Chen, Yangyu Huang, Lu Yuan, Dong
Chen, Ming Zeng, and Fang Wen. General facial representation learning in a visual-linguistic manner. In
CVPR, pages 18697–18709, 2022.

[76] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Appearance-based gaze estimation in
the wild. In CVPR, pages 4511–4520, 2015.

[77] Shreya Ghosh, Munawar Hayat, Abhinav Dhall, and Jarrod Knibbe. Mtgls: Multi-task gaze estimation
with limited supervision. In WACV, pages 3223–3234, 2022.

[78] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face alignment
problem?(and a dataset of 230,000 3d facial landmarks). In ICCV, pages 1021–1030, 2017.

13



[79] MA FISCHLER AND. Random sample consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM, 24(6):381–395, 1981.

[80] Xucong Zhang, Yusuke Sugano, and Andreas Bulling. Revisiting data normalization for appearance-based
gaze estimation. In ETRA, pages 1–9, 2018.

[81] Peng Wu, Xiankai Lu, Hao Hu, Yongqin Xian, Jianbing Shen, and Wenguan Wang. Logiczsl: Exploring
logic-induced representation for compositional zero-shot learning. In CVPR, pages 30301–30311, 2025.

[82] Hongyu Qu, Rui Yan, Xiangbo Shu, Hailiang Gao, Peng Huang, and Guo-Sen Xie. Mvp-shot: Multi-
velocity progressive-alignment framework for few-shot action recognition. IEEE Transactions on Multime-
dia, 2025.

[83] Hongyu Qu, Jianan Wei, Xiangbo Shu, and Wenguan Wang. Learning clustering-based prototypes for
compositional zero-shot learning. In ICLR, 2025.

[84] Ling Xing, Hongyu Qu, Rui Yan, Xiangbo Shu, and Jinhui Tang. Locality-aware cross-modal correspon-
dence learning for dense audio-visual events localization. arXiv preprint arXiv:2409.07967, 2024.

[85] Pengpeng Li, Xiangbo Shu, Chun-Mei Feng, Yifei Feng, Wangmeng Zuo, and Jinhui Tang. Surgical video
workflow analysis via visual-language learning. npj Health Systems, 2(1):5, 2025.

[86] Ling Xing, Alex Jinpeng Wang, Rui Yan, Xiangbo Shu, and Jinhui Tang. Vision-centric token compression
in large language model. In NeurIPS, 2025.

[87] Jianan Wei, Tianfei Zhou, Yi Yang, and Wenguan Wang. Nonverbal interaction detection. In ECCV, pages
277–295, 2024.

[88] Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. Hydra-sgg: Hybrid relation assignment for
one-stage scene graph generation. In ICLR, 2025.

[89] Guikun Chen, Jin Li, and Wenguan Wang. Scene graph generation with role-playing large language models.
In NeurIPS, pages 132238–132266, 2024.

[90] Liulei Li, Jianan Wei, Wenguan Wang, and Yi Yang. Neural-logic human-object interaction detection. In
NeurIPS, pages 21158–21171, 2023.

[91] Liulei Li, Wenguan Wang, and Yi Yang. Human-object interaction detection collaborated with large
relation-driven diffusion models. In NeurIPS, pages 23655–23678, 2024.

[92] Tianfei Zhou, Wenguan Wang, Siyuan Qi, Haibin Ling, and Jianbing Shen. Cascaded human-object
interaction recognition. In CVPR, pages 4263–4272, 2020.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work is discussed and the related details can be found
in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results. Instead, we provide compre-
hensive ablation study on our provided method.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results of this paper and the data used in this paper is publicly available (see §3 and §4).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code of this paper will be released later while the data used in this paper is
publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in §4 to understand the experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see the experimental results our method in Table 2, Table 3, and Table 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We conduct all experiments on four NVIDIA RTX 3090 GPUs which is
provided §4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of this work in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have correctly and respectfully cited the original paper that produced the
dataset used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: About the code and model of this paper, they will be publicly available as soon
as the paper is published.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology and experimental pipeline of this study do not involve
the use of any large language models (LLMs).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Summary of the Appendix

This appendix provides additional details for the main paper, titled “OMINGAZE: Reward-inspired
Generalizable Gaze Estimation in the Wild”. The appendix is organized as follows:

• §A provides additional dataset analysis.

• §B presents more quantitative results.

• §C provides more implementation details of OMINGAZE.

• §D provides the pseudo-code of the reward model.

• §E shows generated scene-specific gaze descriptions along with corresponding face images.

• §F offers more qualitative results.

• §G discusses our limitations, broader impact, future work, and ethical considerations.

A Additional Dataset Analysis

A.1 Unlabeled Dataset Details

CelebA [59] is a large-scale dataset containing a variety of facial attributes, including 40 attributes
such as makeup, age, and gender. This dataset consists of over 200,000 images collected from several
celebrities in a screen-based gaze target setup. The head poses of these face images are mostly frontal,
and there are minimal facial occlusions. To reduce redundancy and filter out samples with extreme
head poses, we sub-sample about 177,000 images from CelebA.

VGGFace2 [60] is a diverse face dataset that includes images from people of various ages, ethnicities,
and identities around the world. Unlike CelebA, VGGFace2 focuses on real-world images that
capture a variety of environmental conditions, backgrounds, and lighting variations. This dataset
features a wide range of head poses, including frontal, profile, and other angles, providing greater
challenges for gaze estimation. There are also varying levels of occlusion present in the images. To
reduce redundancy while maintaining diversity, we select 55 images per identity from VGGFace2.

FaceSynthetics [28] is a synthetic face image dataset designed to simulate real-world variations in
facial features, age, gender, and expression. This dataset includes a wide range of head poses, from
frontal to profile. As the data is synthetic, various levels of occlusion are introduced for experimental
purposes. Additionally, these face images are of high quality, with high resolution and rich detail.

SFHQ-T2I [61] is a synthetic face dataset that covers a broad demographic range, including variations
in age, gender, ethnicity, and facial expressions. The dataset consists of around 120,000 images
generated in various environments, including different lighting settings and background variations.
The head poses are diverse, covering a wide range of angles, from frontal to profile and other
perspectives. The image quality is high, with detailed and clear facial features.

VFHQ [62] is a high-fidelity face video dataset with a focus on generating highly realistic images.
VFHQ contains various facial features and expressions, wide head poses and gaze variations. To
reduce redundancy while maintaining diversity, we sub-sample every 20 frames from VFHQ.

WebFace [27] is a large-scale real-world face dataset collected from various online sources. It
includes a diverse range of demographics, e.g., different races, ages, genders, and facial expressions.
Due to the data from the internet, WebFace features a wide variety of conditions, such as varying
lighting, backgrounds, and facial poses. To reduce redundancy and filter out samples with extreme
head poses, we sub-sample about 354,000 images from WebFace.

A.2 Dataset Diversity

We provide additional examples from each dataset in Fig. 4. It can be observed that each dataset
covers a narrow range of visual conditions, e.g., specific capturing environments (e.g., indoor [13],
outdoor [14], synthetic [28, 61], or in-vehicle [12] scenes), controlled or studio-like illumination,
specific facial appearance, and frontal head poses. Due to the domain-specific bias, gaze estimation
models trained on one single dataset suffer from performance degradation when testing on new,
unseen datasets. To overcome this limitation, our OMNIGAZE not only combines multiple labeled
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Figure 4: Additional examples of each dataset(§A.2). Our curated training dataset (i.e., labeled datasets and
large-scale unlabeled data) exhibits wide variability in terms of capturing environments (e.g., indoor, outdoor,
synthetic, or in-vehicle scenes), facial appearance, lighting conditions, head poses, etc.

datasets but also incorporates a diverse collection of larges-scale unlabeled datasets, varying in
facial appearance, capturing environments, illumination conditions, head poses, eye occlusions, etc.
By effectively harnessing both labeled data and large-scale unlabeled datasets, OMNIGAZE mitigates
domain bias and achieves robust, high-quality 3D gaze estimation in the wild.

B More Quantitative Results

Pseudo-label Update Strategy. We next probe the effectiveness of the periodic pseudo-label update
strategy and the choice of update interval K under the zero-shot setting, which is summarized in
Table 7. The 1st row, which removes the pseudo-label update mechanism during training, results
in a consistent performance drop on each dataset, confirming that noisy pseudo labels hinder zero-
shot gaze estimation generalization of the student model. We further investigate the impact of the
pseudo-label update interval K. As outlined in Table 7, our OMINGAZE yields the best performance
with a moderate update interval (i.e., K=10). Too frequent updates regarding pseudo-labels (i.e.,
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Table 7: Analysis of pseudo-label update strategy and update interval K (§B) on MPIIFaceGaze [43],
EyeDiap [16] and RTGene [12] under the zero-shot setting. The adopted network designs are marked in red.

Update Strategy Update Interval K MPIIFaceGaze [43] EyeDiap [16] RTGene [12]
✗ - 3.77 4.98 10.15
✓ 1 3.89 5.19 11.17
✓ 5 3.52 4.38 9.27
✓ 10 3.44 4.31 9.09
✓ 20 3.59 4.55 9.78

K=1) may introduce instability due to noisy early predictions, while overly sparse updates regarding
pseudo-labels (i.e., K=20) limit the model’s ability to correct its own mistakes, thus significantly
increasing the training complexity. The empirical evidence proves that updating pseudo-labels every
K=10 epochs mitigates the risk of early-stage overfitting to noisy labels while allowing the student
model to progressively benefit from improved predictions over time.
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Figure 5: The impact of unlabeled data size (§B).

Unlabeled Data Size. We study the impact of
the unlabeled data size under the zero-shot set-
ting in Fig. 5. We randomly sample subsets
from each component dataset to create 25%,
50%, and 75% subsets of the full unlabeled
data. Note that 0% subset means our OM-
NIGAZE is trained only on labeled data with-
out any unlabeled data. When jointly train-
ing our OMNIGAZE on both labeled and un-
labeled data, we observe that OMNIGAZE gains
stable improvements (e.g., 6.17◦ → 4.32◦ on
MPIIFaceGaze [76] and 20.73◦ → 16.98◦ on
RT-Gene [44]) as the size of unlabeled data
grows (e.g., 0% subset → 50% subset). When
more than 75% subset, further increasing the
unlabeled data size gives marginal performance
gains. We speculate this is because our per-
formance is primarily driven by data diversity,
which appears sufficient at this scale. This study
confirms our motivation to make full use of large-scale and diverse unlabeled data for predicting gaze
direction accurately across various domains.

Effect of Scene-specific Gaze Descriptions. We investigate the effect of only using scene-specific
gaze descriptions to train the reward model, without incorporating other semi-supervised strategies
proposed in OMNIGAZE (e.g., 3D direction vector pseudo labels, pseudo label filtering and reweight-
ing, periodic pseudo-label updating). We report the results in Table 8. As seen, the performance
improvement brought by using only scene-specific gaze descriptions is limited, e.g., 0.42◦ gains on
MPIIFaceGaze [76]. The empirical evidence proves that the major gains of OMNIGAZE come from
the ensemble of our semi-supervised training strategies rather than the use of MLLM for calibration.

Table 8: Effect of scene-specific gaze descriptions (§B) on MPIIFaceGaze [76], EyeDiap [16] and RTGene [12]
under the zero-shot setting.

Method MPIIFaceGaze [76] EyeDiap [16] RTGene [12]
BASELINE 4.62 5.24 12.95

+scene-specific gaze descriptions 4.20 4.91 12.03
OMNIGAZE (Ours) 3.44 4.31 9.09

Efficiency Analysis. Table 9 reports the inference speed comparison between OMNIGAZE and the
baseline under different backbones. Note that, OMNIGAZE introduces the reward model only during
training for pseudo-label assessment and selection, and discards the reward model during the testing
phase. Thus, as shown in Table 9, OMNIGAZE neither introduces additional computational overhead
nor architectural modification to the base model during testing compared to the base model.

Comparison with Methods Utilizing Large-scale Unlabeled Data. To further validate the effec-
tiveness of OMNIGAZE in leveraging unlabeled data, we conduct a comprehensive comparison with

24



Table 9: Inference speed comparison (§B) between baseline and OMNIGAZE under different backbones.

Method Backbone Inference Speed (ms) MPIIFaceGaze [76] EyeDiap [16] RTGene [12]
Baseline ResNet-18 2.7 4.48 5.56 7.45

OMNIGAZE (Ours) ResNet-18 2.7 3.46 4.37 5.89
Baseline ViT-B 10.9 4.62 5.24 12.95

OMNIGAZE (Ours) ViT-B 10.9 3.44 4.31 9.09

several state-of-the-art methods that utilize large-scale unlabeled facial datasets in Table 10. As
shown, OMNIGAZE consistently outperforms all the competitors trained with large-scale unlabeled
data. This verifies the effectiveness of our model design and training strategy.

Table 10: Comparison results with methods that utilize large-scale unlabeled data (§B) on MPI-
IFaceGaze [76], EyeDiap [16] and Gaze360 [14] under the in-domain setting.

Method Backbone MPIIFaceGaze [76] EyeDiap [16] Gaze360 [14]
3DGazeNet [31] ResNet-18 4.00 – 9.60
MTGLS [77] ResNet-50 4.07 – 12.83
UniGaze [35] ViT-B 4.75 5.52 9.64
ST-WSGE [30] ViT-B 6.40 8.20 13.20
OMNIGAZE (Ours) ViT-B 2.97 4.07 9.12

More Cross-domain Results. To further evaluate the generalization ability of OMNIGAZE, we
train our OMNIGAZE on ground truth datasets that are more limited (e.g., MPIIFaceGaze [76] or
GazeCapture [15]), and test our model on testing datasets that have large diversity (e.g., Gaze360 [14]).
We compare our OMNIGAZE with LAEO [29] and 3DGazeNet [31], and provide the cross-domain
comparison results in Table 11. As observed, OMNIGAZE consistently outperforms these methods
under the cross-domain setting, demonstrating its effectiveness as a generalized gaze estimator.

Table 11: Quantitative cross-domain gaze estimation results (§B). Note that we train our OMNIGAZE on
ground truth datasets that are more limited, and test our model on testing datasets that have large diversity.

Method MPIIFaceGaze [76] → Gaze360 [14] GazeCapture [15] → Gaze360 [14]
LAEO [16] – 27.2
3DGazeNet [14] 17.6 17.6
OminGaze (Ours) 13.8 14.2

Reward Model Training Strategy. We study the impact of different reward model training strategies
in Table 12. Here we pre-train the reward model by jointly using the labeled and unlabeled datasets,
and then evaluate the performance of our model with the pre-trained reward model under the zero-
shot setting. As seen, the performance of the pre-trained reward model is inferior to that of the
online-trained counterpart. We hypothesize that this is because the pre-trained model tends to overfit
to the initial distribution of pseudo labels, and thus struggles to assess the reliability of pseudo labels
at different training stages.

C Implementation Details

Unlabeled Data Pre-processing. We first detect facial landmarks [78] and estimate the 3D head
pose through the Perspective-n-Point (PnP) algorithm [79]. Based on the estimated pose, we apply
data normalization [80] to crop face images, so as to align each face image to a canonical coordinate
system. Specifically, five key landmarks (i.e., eye centers, nose tip, and mouth corners) are aligned
to pre-defined facial templates. Such alignment procedure is crucial for reducing pose variation
and improving the generalization of gaze estimation models. Moreover, we filter out samples with
extreme head poses for unlabeled datasets.

Training. OMNIGAZE is trained with a batch size of 512. All face images are in the size of 224×224
after the data normalization process. The training of OMNIGAZE can be divided into two stages: i)
The teacher model is trained on labeled datasets for 50 epochs. We utilize the Adam optimizer [65]
with an initial learning rate of 0.005, and a weight decay of 0.05. ii) We train the student model and
reward model on both labeled and unlabeled data for 40 epochs with a base learning rate of 0.001 and
0.0001, respectively. Both labeled and unlabeled datasets are balanced in a minibatch to ensure each
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Table 12: Ablation studies on different reward model training strategies (§B) on MPIIFaceGaze [76],
EyeDiap [16] and RTGene [12] under the zero-shot setting.

Reward Model Training MPIIFaceGaze [76] EyeDiap [16] RTGene [12]
Pre training 3.71 5.03 10.24
Online training (Ours) 3.44 4.31 9.09

dataset accounts for an almost equal ratio. During training, we do not apply any image augmentation.
The pseudo-label updating interval K is empirically set to 10.

Reproducibility. OMNIGAZE is implemented in PyTorch, and trained on on 4 NVIDIA RTX 3090
GPUs with 24GB memory per card.

D Pseudo Code

Algorithm S1 provides the pseudo-code of the reward model. To guarantee reproducibility, our code
and pre-trained models will be made publicly available.

Algorithm S1 Pseudo-code for the reward model of OMNIGAZE in a PyTorch-like style.

"""
img: input face image
gaze_des: scene-specific gaze descriptions
pseudo_label: pseudo gaze label
pre_label: student model prediction
"""

def RewardModel(img, gaze_des, pseudo_label, pre_label):

# Encode images using CLIP
img_feats = EncodeImage(img) # CLIP’s visual encoder and MLP, Eq. 3

# Tokenize and encode gaze descriptions via CLIP
text_feats = EncodeText(Tokenize(gaze_des))

# Multimodal feature integration via cross-attention
img_enfeats = AvgPool(CrossAttn(img_feats, text_feats)) # Eq. 4

# Convert pseudo gaze label to 3D direction vector
theta, psi = pseudo_label
dir_vector = [cos(psi)*sin(theta),cos(psi),cos(psi)*cos(theta)] # Eq. 5

# Obtain initial confidence scores via the reward model
cross_feat = CrossAttn(img_enfeats, dir_vector)
int_score = Sigmoid(MLP(cross_feat)) # Initial confidence score in [0,1], Eq. 6

# Compute cosine similarity between pseudo label and prediction
sim_score = CosineSimilarity(pseudo_label, pre_label)

# Define Final confidence scores
final_input = Cat([int_score, sim_score])
final_score = Sigmoid(MLP(final_input)) # Final confidence score, Eq. 7

return final_score

E Scene-specific Gaze Descriptions

The detailed, scene-specific descriptions are obtained by questioning MLLMs, e.g., InstructBLIP [64],
on the input image with a pre-defined prompt: In 3D space, where is the person looking, including
details about horizontal (left/right) direction, vertical (up/down) direction, and forward/backward
relative to the viewer? We provide several examples of scene-specific gaze descriptions in Fig. 6. As
seen, scene-specific gaze descriptions complement low-level visual features by providing additional
high-level spatial semantics, which are often ambiguous or underdetermined in raw image space.
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Gaze DescriptionGaze DescriptionFace Image Face Image

The person is looking

slightly to their left

and upward. The

person is not looking

directly forward;

their gaze is angled

slightly away from

the viewer.

The person is looking

straight ahead and

downward, with no

significant left or right

deviation. The gaze is

angled downward, so

it is away from the

viewer.

The person is looking

slightly to the left

and at eye - level.

The person maintains

a direct gaze towards

the viewer.

The person is looking

straight ahead, with

minimal deviation to

the left or right. The

gaze is at eye - level.

The gaze is looking

forward.

The baby is looking

slightly to the left

relative to the viewer

and directed upwards.

The baby is looking

forward towards the

viewer.

The person is looking

almost straight ahead,

with minimal deviation

to the right. The person

is looking forward

towards the viewer.

Figure 6: Examples of the generated scene-specific gaze descriptions along with face images (§E).

F More Qualitative Results

We provide more qualitative results on in-the-wild images in Fig. 7, to resemble the practical zero-
shot application in real-world conditions. We use a pre-trained facial landmark detector [78] to
normalize input images for gaze estimation, and de-normalize the gaze direction predictions for
visualization in the original image space. We observe that our OMNIGAZE can predict gaze directions
accurately in unseen diverse environments, e.g., extreme head poses, challenging lighting conditions,
background environments, and diverse appearances, based on large-scale diverse unlabeled datasets
and reward-driven pseudo label selection.

G Discussion

Limitation. One limitation of our algorithm is that it needs a large amount of unlabeled data,
varying in facial appearances, illumination conditions, head poses, and eye occlusions, which may be
time-consuming to collect. However, in practice, enormous face images can be easily accessed by
crawling from the Internet [27] or synthetic generation using generative models [28]; we compile
face images from six public datasets [59, 60, 28, 61, 62, 27] to construct a large-scale unlabeled
dataset encompassing over 1.4 million images, which covers significant data diversity. In the future,
we will attempt to collect face images from more sources to train a more capable student model
for generalizable gaze estimation in the wild. Additionally, though the reward model evaluates the
reliability of pseudo labels and selects high-quality ones, OMNIGAZE still requires repeating the
teacher model and reward model several times (i.e., pseudo-label update strategy) to refine pseudo
labels like many previous semi-supervised learning algorithms, which incurs extra computational
costs. Therefore, an important consideration in future research is the balance between computational
cost and the quality of pseudo labels provided by the teacher model. Moreover, though the reward
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Figure 7: Visual comparison results (§F) on in-the-wild images. Red and yellow arrows represent gaze
estimation predictions from our OMNIGAZE and base model trained only on labeled datasets.

model utilizes VLMs [63] and MLLMs [64] to offline extract visual features and generate scene-
specific descriptions, respectively, it still requires extra computational budget for pseudo-label
assessment during the training phase. Note that we directly discard the reward model during the
testing phase without any network architectural modification or extra inference cost.

Broader Impact. This work introduces OMNIGAZE, a powerful semi-supervised framework for
generalizable gaze estimation in the wild via harnessing both labeled data and large-scale unlabeled
datasets, which overcomes the limitations of previous solutions struggling to generalize across diverse
data domains due to the scarcity and insufficient diversity of annotated datasets. Like every coin
has two sides, using our framework will have both positive and negative impacts. On the positive
side, OMNIGAZE pushes the boundary of gaze estimation algorithms, particularly under the cross-
domain and zero-shot/few-shot settings [81, 82, 83] that are common in real-world scenarios. This
advancement can significantly contribute to a number of potential real-world applications, e.g., virtual
reality [3, 4, 5], human-computer interaction [6, 7, 8], video understanding [84, 85], and autonomous
driving [11, 12]. For potential negative social impact, the reward model in OMNIGAZE relies heavily
on VLMs [63] and MLLMs [64, 86] for pseudo-label assessment, thus leading to the reinforcement
of biases and inequalities inherent in the data used during their large-scale pre-training stage. In
addition, it is essential to ensure that gaze algorithms do not invade the privacy of people by adhering
to ethical standards and legal regulations, so as to avoid potential negative societal impacts.

Future Work. Our OMNIGAZE aims to estimate high-quality 3D gaze directions for in-the-wild
images in diverse conditions by making efficient use of large-scale unlabeled datasets and reward-
driven pseudo label selection. It is also interesting to extend the idea of our algorithm to develop a
scalable data engine for other visual tasks, which might improve data engineering techniques for
producing reliable supervision. Moreover, the design of our reward model, which reasons over
multimodal cues for pseudo-label assessments, stands for an early attempt to select high-quality
pseudo-labels in gaze estimation and deserves to be further explored. In the future, we plan to
generalize this framework to broader domains, e.g., nonverbal communication understanding [87]
and relational reasoning [88, 89, 90, 91, 92] tasks.

Ethical Considerations. Our research utilizes existing facial and gaze datasets, and does not generate
any new face images. In accordance with ethical guidelines, we assume that these datasets are
originally collected and published in compliance with relevant ethical and data protection standards.
Our experimental protocols only focus on image content, ensuring that no personally identifiable
information or links to other personal data are involved.
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