
B’MOJO: Hybrid State Space Realizations of
Foundation Models with Eidetic and Fading Memory

Luca Zancato∗ Arjun Seshadri Yonatan Dukler Aditya Golatkar Yantao Shen

Benjamin Bowman Matthew Trager Alessandro Achille Stefano Soatto

AWS AI Labs

Abstract
We describe a family of architectures to support transductive inference by allowing
memory to grow to a finite but a-priori unknown bound while making efficient
use of finite resources for inference. Current architectures use such resources to
represent data either eidetically over a finite span (“context” in Transformers), or
fading over an infinite span (in State Space Models, or SSMs). Recent hybrid
architectures have combined eidetic and fading memory, but with limitations that
do not allow the designer or the learning process to seamlessly modulate the
two, nor to extend the eidetic memory span. We leverage ideas from Stochastic
Realization Theory to develop a class of models called B’MOJO to seamlessly
combine eidetic and fading memory within an elementary composable module.
The overall architecture can be used to implement models that can access short-
term eidetic memory “in-context,” permanent structural memory “in-weights,”
fading memory “in-state,” and long-term eidetic memory “in-storage” by natively
incorporating retrieval from an asynchronously updated memory. We show that
Transformers, existing SSMs such as Mamba, and hybrid architectures such as
Jamba are special cases of B’MOJO and describe a basic implementation, to be
open sourced, that can be stacked and scaled efficiently in hardware. We test
B’MOJO on transductive inference tasks, such as associative recall, where it
outperforms existing SSMs and Hybrid models; as a baseline, we test ordinary
language modeling where B’MOJO achieves perplexity comparable to similarly-
sized Transformers and SSMs up to 1.4B parameters, while being up to 10% faster
to train. Finally, we test whether models trained inductively on a-priori bounded
sequences (up to 8K tokens) can still perform transductive inference on sequences
many-fold longer. B’MOJO’s ability to modulate eidetic and fading memory results
in better inference on longer sequences tested up to 32K tokens, four-fold the length
of the longest sequences seen during training.

1 Introduction
In Machine Learning, data representations are parametric maps trained to re-present data either
individually, by optimizing a reconstruction criterion, or collectively, by optimizing a classification
criterion. A trained representation can be co-opted to map a previously unseen datum to a hypothesis,
for instance a class label. Representation learning with deep neural networks has been at the core of
recent progress in artificial intelligence (AI) during the past decade. This paper is instead concerned
with data realizations, which are maps trained to realize, i.e., to make real, bring into existence, or
generate data. Roughly speaking, realizations are “generative representations,” trained by optimizing
a prediction criterion, that can be used as sequential decision or prediction maps, or as generative

∗Correspondence to: zancato@amazon.com

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

models for sequence data. Large language models (LLMs) and other predictive models that involve
randomness in the sequential generation process are special cases of stochastic realizations [29].

Representations are the backbone of inference from inductive learning, or induction for short. In-
duction refers to the process of mapping properties of a particular set of training data, through the
parameters of the learned map, to properties of general test data. Successful induction, leading to
generalization, hinges on an assumption of stationarity, namely the existence of some unknown
distribution from which both past (training) data and present (inference) data are independently and
identically drawn (IID). While uniform generalization bounds provide provable guarantees for any
distribution, they do so under the assumption that the distribution exists and is the same for training
and testing. This assumption is routinely violated in practice (e.g., language, climate, and business
data), as manifest in so-called “out-of-distribution” effects or “distribution shift.” These lead to
apparent paradoxes involving generalization and memorization [57].

Realizations, on the other hand, are the backbone of transductive inference and generative AI (GenAI).
Transduction refers to the process of inferring particular properties of test data by processing, at
inference time, all given (particular) training data.2 The boundary between induction and transduction
is blurry: Induction can be viewed as a restricted form of transduction, where training data is accessible
only through the learned weights. An over-parametrized representation, when overfit to training
data, could in principle store the training set in the weights, thus making induction functionally
identical to transduction. However, optimal induction aims to foster generalization by using various
forms of regularization to prevent memorization, leading to sub-optimal transduction. Another form
of sub-optimal transductive inference is termed “in-context learning” – which notably involves no
learning if by learning one means to “improve by experience:” The same in-context task, presented
multiple times, requires identical effort and leads to no improvement. In-context learning can be
optimal transduction only if all the data of interest fits in the context (including the entire training
set), and even then it has been proven optimal for Transformers only for simple tasks such as
linear classification. In summary, memorization and specific inference computation at the core
of transduction are in contrast with the biases fostered by inductive learning: Whereas inductive
inference seeks to minimize memorization to avoid overfitting and to foster generalization to unseen
data, transductive inference seeks to maximize memorization and forgo generalization in favor of
sample-specific inference computation.3

Transduction does not require the train and test distribution to be the same. Indeed, the joint
distribution from which both present and past data could have been jointly drawn can change with
every sample. Therefore, optimality is not measured relative to one unknown distribution, as in
generalization bounds, but rather relative to all possible distributions. If the data is generated by a
physically realizable process, such distributions are computable. Optimal inference measured on
average over all possible computable distributions, weighted by the Universal Prior, has been described
by Solomonoff [42]. Solomonoff-style inference can be thought of as the limit of transduction, and
similarly involves no learning. Instead, it consists of cycling through all computable programs using
a Universal Turing Machine, which requires infinite time, memory, and compute resources, which in
turn renders such inference unattainable.

Nonetheless, this Solomonoff limit points to two directions for improving inference: (a) efficient
memorization, ideally by losslessly encoding all past data, and (b) efficient test-time computation
through hardware and model co-design. Ideally, the resulting realizations would be such that,
if memory and compute resources were extrapolated to infinity, inference would approach the
Solomonoff limit. In reality, inference is always resource bound, so if something has to grow it would
have to be external to the core inference engine. Accordingly, our goal in this work is to design
and analyze families of architectures that (a) natively incorporate retrieval from a growing external
memory (retrieval-augmented generation, or RAG), and (b) can scale to perform efficient inference.

In order to design families of architectures that efficiently memorize and scale inference computation,
we must exploit the structure of the data they realize. When past and present data are known to

2Sometimes ambiguously termed ‘test-time computation’ [7, 45], which is confusing since inductive inference
also involves test-time computation. Another term sometimes used is ‘test-time training’ [43, 53], which is
also confusing since ‘training’ and ‘testing’ are disjoint and complementary phases of inference from inductive
learning. All these are different forms of transduction.

3We report more examples on the differences between representations/realizations and induction/transduction
in Appendix A.

2

be independent and identically distributed (IID) one can encode inference computation through a
fixed “stateless” map, or model, which is a representation that can be trained inductively regardless of
the inference query. When past and future data are not IID but generated by a Markov process of
known order, there exist finite-dimensional statistics, called states, that summarize all past data for the
purpose of prediction [26, 23, 29]. But even if the underlying process is Markovian of bounded order,
unless such an order is known a-priori optimal realization is generally not possible with constant
complexity [33]. To perform optimal inference, memory has to grow, and if the data generation
mechanism has finite complexity at some point an efficient encoding of past data into memory will
stop growing, but it is not possible to know when [1]. Therefore, a suitable architecture has to always
allow the possibility of adding new storage.

In the seventies, Stochastic Realization Theory [11] studied State Space Models (SSMs) under the
known-order Markov assumption, since realizations with growing memory were unmanageable then.
4 Today, Foundation Models can ingest a large portion of the growing volume of data accessible
through the Internet and make it available for inference. Current AI systems are typically hard-
constrained by inference time and compute resources, but not by storage—one can always add more
disks. To extend Stochastic Realization beyond the IID or known-Markov cases, Foundation Models
need scalable architectures that comprise short-term memory updated synchronously within the given
computational constraints and long-term memory updated and accessed sparingly and asynchronously.
The former includes both eidetic (lossless) and fading (lossy) memory for efficient computation, while
the latter is akin to an integrated form of “retrieval-augmented” inference. Such architectures would
seamlessly manage short-term eidetic memory “in-context”, fading memory “in-state”, long-term
structural memory “in-weights” and long-term eidetic memory ‘in-storage’ [13].

Existing architectures such as Transformers and SSMs fall short of encompassing these criteria.
Transformer-based architectures use eidetic memory restricted to a finite span, “context length”
[6, 24], while recent SSM-based architectures [19, 16, 51] use only fading memory in their state. In
both cases, scaling requires allowing the context (and the key-value cache) or recurrent state to grow
unbounded. Recent work on hybrid combinations of Transformer and State Space layers [28, 39, 10]
show promise in striking a balance between eidetic memory, fading memory and compute.

1.1 Contributions
In this work, we describe a class of models that encompasses both recent SSMs [19], Transformers
[24], and hybrid architectures [28, 10] as special cases, which we call B’MOJO. This model family
simultaneously renders the high expressivity and recall of Transformers, and the high compute
efficiency of SSMs. And, rather than assigning tokens to the attention mechanism by recency, an
asynchronous selection mechanism assigns tokens based on unpredictability. That is, whenever the
model processes a new token that cannot be well-explained it will append it to the registers that
implement B’MOJO’s eidetic memory—a process we call Innovation Selection.

We demonstrate through synthetic tasks that B’MOJO outperforms existing SSM and hybrid model
architectures in transductive inference. Empirically, we show that our implementation is 15% faster
than similarly-sized Transformers and SSMs while achieving comparable perplexity on language
model tasks up to the 1.4B scale. Finally, we show that B’MOJO can operate effectively at inference
time on sequences far longer (tested up to 4×) than those used for training. Specifically, experiments
with a B’MOJO architecture trained with sequences of at most 8K tokens show consistent length
generalization on test sequences of 32K tokens.

2 Background and Related Work
We start with a general overview of models for sequence data, whether of text tokens (Large Language
Models), images (e.g., Vision Language Models), video, or other physical sensory data (World
Models). Any predictive model inferred from a sequence is called a realization.5 If one assumes that
there exists one “true” model, coming from a known model class, then the problem of realization
reduces to System Identification [31], which is to estimate the true model parameters from data. If
the model is linear and driven by Gaussian noise, the Cayley-Hamilton theorem [25] implies that

4Under the stationary assumption, one stochastic realization of an SSM is a convolution. This input-output
map is equivalent to an SSM and standard transformations can be applied from one to the other.

5Diffusion Models, a special case, are treated as realizations during training but used as representations
during inference since all but the final element of the denoised sequence are discarded.

3

the model’s “true” order can be inferred with a variety of model selection criteria, including greedy
selection. Otherwise, the rank of the non-linear analog of the observability matrix, the Observability
Codistribution, can grow in fits and starts, making greedy model selection undecidable [22]. If not
only the model class, but the model itself are known, then the problem further reduces to filtering or
prediction, which for the linear-Gaussian case can be implemented as a closed-form iterative update
[26]. When building a (generally non-unique) realization, all one is given is the data, which leaves
complete freedom of choice of model class and order, or number of free parameters.

Stochastic Realization. A “sequence model” is a mathematical representation of sequential data
capable of predicting the next datum in the sequence given previous ones. The Wiener Filter [48] was
among the earliest to be deployed, superseded by the Kalman Filter [26], the first State Space Model
(SSM) with an explicit “state” updated recursively. The ensuing decades saw extensions to more
general models leading to Stochastic Realization Theory [29]. The general problem of stochastic
realization is, given a (potentially infinite) sequence {. . . , ut−1, ut}

.
= u≤t observed up to time t,

infer (i.e., “learn”) some parametric model, a function ϕ with parameters θ, ϕθ(u≤t) such that the
prediction ût+1 = ϕθ(u≤t) yields a residual ϵt+1 = ut+1 − ût+1 (“innovation process”) that is as
close as possible to independent and identically distributed samples (IID). In a nutshell, an optimal
predictor is one that makes the prediction error unpredictable.

State. The state of a model is a statistic that makes the future independent of the past. In particular,
such a statistic (function of past data) ξ(u≤t) yields to the following conditional entropy equality
H(ut+1|ξ(u≤t), u≤t) = H(ut+1|ξ(u≤t)) relative to the joint distribution of all past and present
data [31, 30]. Trivially, the data itself fits the definition of state with ξ(u≤t) = u≤t, but it grows
unbounded over time. Instead, one seeks a bounded complexity state given which all past data can be
ignored with no loss of information. Building such a state is the core goal of stochastic realization.

Elementary model classes: LTI, LTV and LIV. Any finite sequence can be realized by a linear
time-invariant (LTI) system driven by IID Gaussian noise [29]. It would therefore appear that this
model class is sufficient for any practical purpose, and we need models no more expressive than
linear time-invariant ones driven by white zero-mean Gaussian noise:6{

xt+1 = Axt +But

yt = Cxt + vt
LTI

{
xt+1 = A(ut)xt +B(ut)ut

yt = C(ut)xt + vt
LIV

Given observations y0:t, stochastic realization deals with the problem of inferring an equivalence
class of model parameters A,B,C [44] and a state xt along with a covariance matrix Pt of [ut, vt]
that can be propagated deterministically to approximate trajectories produced by the underlying data
generation mechanism, y0:t [49]. However, arbitrarily long and complex time series would require a
growing state, therefore making the model no longer time-invariant. More expressive model classes,
such as time-varying [23] and input-varying [27] afford more efficient representation by considering
At, Bt, Ct known functions of time (Linear-Time Varying) or of their input (Linear-Input Varying,
LIV). As we describe next, a special case of LIV model class where the dependency on the input is
linear, resulting in a so-called bilinear realization, is gathering considerable attention [19, 10, 51].

Modern realizations. Input-dependent (bilinear) models first gained popularity half a century ago
starting with Brockett [5], when [27] showed that “every nonlinear system with controls entering
linearly is locally almost bilinear”; [11] developed a complete realization theory for this class of
systems including minimal realizations, and showed that they not only minimize the dimension of the
state, but also minimize the number of operations necessary for the update. Most recently, special
cases of bilinear realizations are being used as building blocks in stacked architectures like Mamba
[19, 46], Jamba [28] and Griffin [10]; they refer to input-dependency as “selectivity” [19, 20, 37] and
combine Attention mechanisms and other techniques to scale up to 52B parameters. Similarly, but at
a smaller scale, Block State Transformers [14], GSS [34] and H3 [16] consider using State Space
Models to contextualize information that is later aggregated with Attention. All these models differ
by their choices of A,B,C, each with its own advantages and limitations which we describe next.

6Note that Stochastic Realization Theory does not assume that the data is Gaussian, zero-mean and white, it
only requires the innovation process to be so. That is the condition that the prediction residual (innovation) be
unpredictable, regardless of whatever distribution the data is drawn from.

4

Input tokens

SSM

Innovation Selection

Eidetic Memory Fading Memory Input tokens

Sliding Window Attention

Output tokens

SSM

Most informative remote past Summary of the
remote past

Recent past

xt−K−∞

xt−K−∞ ut−K+1, . . . , utu−∞, . . . , ut−K

Sliding Window Attention

uii, ui2, . . . , uiM
Innovation
Selection

Figure 1: B’MOJO’s memory management. (Left) Illustration of the B’MOJO layer. (Right)
B’MOJO’s Realization. B’MOJO’s fading memory is computed by a SSM that represents long-
range dependencies through its state (a fixed-dimensional representation) which is later aggregated
along with with the most recent past. B’MOJO’s eidetic memory stores tokens selected from the past
using an innovation test on the SSM’s state and appends them to the current sliding window. The
innovation test measures how difficult it is to predict the next token using the SSM’s state. If a token
is difficult to predict, we store it in the eidetic memory and pass it to the attention module together
with the state, a compressed summary of the past, and the most recent tokens.

3 B’MOJO
We now introduce B’MOJO, a general family of architectures based on a stackable module, designed
to foster transductive inference. We represent fading memory using the state of a dynamical model
whose size is fixed a-priori based on hardware constraints. Since the state of a dynamical model is a
lossy memory of past data, we implement a complementary eidetic memory with shifting registers
that directly encode past data as new information is processed. Although adding storage is simple
and cheap, peering back into the growing history with every new query is not. Approximate retrieval
[35, 52] also grows as more tokens are processed, potentially sub-linearly if optimized off-line. We
propose to access information arbitrarily far in the past at a fixed compute cost by keeping only the
most unpredictable tokens according to an innovation test. While we respect hard constraints on the
amount of memory processed at inference-time, we impose no constraint on its time span.

3.1 Fading Attention
We begin by describing the elementary components of B’MOJO, which we show to encompass
existing models. We first show that the Attention mechanism implements a non-linear nil-potent
system whose state grows as more samples are processed. Much like a Moving-Average (MA) system
with non-linear read-out, the attention state is required to increase as its span is enlarged. Then,
we show that Mamba [19] has a fixed-dimensional Auto-Regressive (AR) (fading) state and hence
cannot perform exact recall. Finally, we describe a model that modulates the two forms of memory,
B’MOJO-Fading (B’MOJO-F), effectively realizing a non-linear ARMA model [31, 54, 55].

Transformers use Attention to map input to output sequences according to yt =
∑t

i=1 exp(qtk
T
i)vi∑t

i=1 exp(qtkT
i)

,
where qt, kt, vt are the query, key and value vectors and are all computed directly from the input
tokens ut. We write this equation as a nil-potent dynamical system with a softmax read-out function
ρ as follows:

xt+1 = A(ut)xt +B(ut); yt = ρ(ut, xt) (1)

where

A(ut) = AATT =

0 I

. . .
I
0

 ∈ R2V N×2V N and B(ut) = bATT(ut) =

0
...
0

b(ut)

with b(ut) :=

[
kt
vt

]
∈ R2V , where 2V is the embedding dimension of the KV cache and N is the

length of the Attention window. A Transformer has only short-term eidetic memory that is deadbeat
in N steps: what slides “out of context” is permanently removed.

5

Mamba is complementary in that it only has fading memory [19] with decoupled (diagonal) dynamics.
Specifically,

A(ut) = AMamba(ut) =

 a1(ut)
. . .

aN (ut)

 , b(ut) = bMamba(ut) =

 b1(ut)
...

bN (ut)

where N is picked a-priori and the output is yt = C(ut)xt + Dut. A Mamba model is obtained
by stacking diagonal Mamba layers, hence insufficient to realize even a simple oscillator without
resorting to (numerically slow) complex algebra. A marginally stable pole (ai = 1) can be used as
permanent memory but at an unbounded cost of encumbering the state and re-processing it at each
time step. [19] emphasizes the use of “selective state space,” which is simply a bilinear realization
[12, 11]. However, crucial to its implementation are interleaved convolutional layers that retrieve
some of the eidetic functionality lost with the diagonal dynamics. In Sect. E we derive in detail the
form above from the description of the paper, forgoing the unnecessary continuous time narrative,
and comment on the model in relation to the actual implementation.

B’MOJO-F bypasses the limitations of Transformer and Mamba layers by using a Controllable
Canonical Form [25] to realize Equation (1) (see appendix C), that is:

AB’MOJO(ut) =

0 I

. . .
I

a1(ut) a2(ut) . . . aN (ut)

 , bB’MOJO(ut) =

0
...
0

b(ut)

In Appendix C we show that B’MOJO-F is a minimal realization and, when the state dimension is
fixed, it generalizes both Mamba and Attention modules. B’MOJO-F uses a fixed computational
budget to capture long-range dependencies far beyond the span of Attention thanks to the last rows
in the state transition matrix. Specifically, the order N fixes the number of tokens (the most recent
ones) that are processed by a local attention window ρ thanks to the upper diagonal identities in
AB’MOJO(ut). On the other hand, the last rows of AB’MOJO(ut) aggregate information from the most
recent past data, akin to “attention sinks” [50].

3.2 B’MOJO’s complete functional form
While B’MOJO-F generalizes both Transformers and Mamba models, it can only access information
outside the current window with lossy fading memory. Data that becomes relevant only after a long
time span would be ignored. We therefore modify our model class to detect and incorporate such
tokens into the span of the local attention eidetically. We do so with a simple method that we call
Innovation Selection: whenever B’MOJO processes a new token that cannot be explained using the
lossy fading memory, we affix it to the eidetic memory. Innovation Selection operates similarly to the
mechanism behind the Lempel-Ziv-Welch (LZW) compression algorithm [58, 47].7 Like with fading
memory, the tokens in the new eidetic memory are processed by the same sliding window attention
we use in B’MOJO-F. Algorithm 1 captures the steps we perform from input to output of each layer
of B’MOJO architecture, which we discuss below.

Algorithm 1: The B’MOJO Mechanism
Data: Input data ut, inner recurrent state xt−1, fading output yt−1, eidetic memory Mt−1,

window size w, B’MOJO’s state update matrix A(ut), input to state vector B(ut),
state to output vector C(ut), a predictor function ŷ(·) over a span of length k.

Result: Output outt
ut−w:t ← ut−w−1:t−1 ∪ ut ; // Short-term memory window
xt ← A(ut)xt−1 + b(ut) ; yt ← C(ut)xt ; // Long-term fading memory
ϵt ← error(ŷ(yt−1:t−k), yt) ; // Innovation computation

Mt ←
{
Mt−1 ∪ {ut, ϵt} if ϵt > minϵ∈Mt−1

(ϵ)

Mt−1 otherwise
; // Long-term eidetic memory

outt ← Attn(ut−w:t, yt−w,Mt); // Model output

7In brief, LZW scans an input sequence to find the shortest sequence that is currently unknown, appends
this sequence to a dictionary while returning indices for known sub-sequences. Similarly, Innovation Selection
scans the input sequence to find the shortest sequence that has high prediction error, adds to the eidetic memory
unpredictable inputs, while returning outputs that leverage known sub-sequences.

6

In Algorithm 1, the first line updates the short-term memory (collection of the last w seen tokens)
by ejecting the oldest token and appending the new token. The second line updates the SSM fading
memory, which stores new information into the state xt. Then, we augment fading memory with our
eidetic memory Mt, a set of tokens that the model decides to keep based on their unpredictability:
tokens that are difficult to predict given the past, as measured by error(ŷt(yt−1:t−k), yt), could be
valuable far in the future when their memory has faded away, and are hence curated in the eidetic
memory. The amount of information stored in Mt can grow unbounded over time up to hardware
limitations, in Section 3.3 we further discuss how to efficiently implement the predictor ŷ.

Finally, we weave fading and eidetic memory together to predict a new token through a sliding
attention mechanism, which aggregates relevant information from short-term memory ut−w:t, the
fading memory yt and the long term eidetic memory Mt.

Differences between B’MOJO, B’MOJO-F and vanilla Hybrid models. Differently from vanilla
hybrid models that stack SSM and Attention layers, B’MOJO-F and B’MOJO allows the Attention
module to attend to both the input and output tokens of the SSM, allowing the Attention layer to merge
information from fading “memory” tokens (output of the SSM) with “eidetic” tokens (the layers’
inputs). Differently from B’MOJO, B’MOJO-F does not use the innovation selection mechanism and
therefore it does not implement long term eidetic memory.

3.3 B’MOJO’s efficient implementation
We efficiently implement B’MOJO’s tiered memory hierarchy at scale. The modelling choices that
lead to B’MOJO closely follow ideas from Stochastic Realization and have an obvious recurrent
efficient implementation. On the other hand, during training, one is more interested in a parallel
formulation that can allow processing of multiple tokens at the same time and in a single forward
pass. In the following, we describe how we use chunking to develop B’MOJO’s parallel form.

Efficient sliding window and memory chunking. Computing fading memory and selecting the most
unpredictable tokens to store before feeding them into an attention layer is a sequential process which
is hard to parallelize. To solve this we use chunks of length w and use fading and eidetic memory to
summarize the whole past before the beginning of each chunk. Then, to aggregate information from
the input and memory tokens, we use a sliding window over the interleaved concatenation of input
chunks and their respective memory tokens as shown in Figure 7 (see Appendix B.2). Our modular
and interleaved approach in Figure 7 enables us to leverage optimized kernels for both SSM [19] and
sliding window attention [9], enabling fast training and inference beyond the 1B scale. In Figure 4
we show that our efficient implementation is faster than both Mamba [19] and Mistral [24].

Efficient Innovation Selection. The Innovation Selection process we describe in Algorithm 1 requires
the predictor ŷ(yt−1:t−k). While building a new parametric predictor with learnable parameters is
possible, in practice, this requires modifying the training loss. In our implementation, we consider a
fixed predictor so no extra weights need to be learned. We fix ŷ as a running weighted average and
implement it using short 1D grouped causal convolutions.

4 Experimental Results
To evaluate the scalability and efficiency of B’MOJO, we compare it with state-of-the-art model
classes (SSMs, Transformers and hybrid variants) on both synthetic and language modeling tasks.
Our experimental results are of two main types, (i) language modeling scaling laws (Section 4.2)
with zero-shot evaluation on short context text benchmarks (Section 4.3), and (ii) specific long
context/recall-based tasks where finite-context models are ill-fit. We wish to emphasize that in this
setting, and for the results of type (i), Transformers are a paragon, not a baseline, since most tasks are
answerable within the context. Therefore in the results of type (ii) we leverage specific benchmarks,
like synthetic tasks (Section 4.1), long context evaluation and length generalization to assess our
models (Section 4.3). The goal of our novel model class is to cover the entire spectrum, i.e. perform
comparably to the paragon on finite contexts while preserving higher performance than Transformers
whenever the data relevant to solve the inference tasks fall outside the context window.

All experiments compare against three baselines: (1) Transformers, represented by a downscaled
Mistral-7B [24] architecture re-trained from scratch (2) SSMs, represented by Mamba and (3) Hybrid
models, implemented by stacking Mamba with a sliding window attention [10, 28]. For a fair
apples-to-apples comparison all our models are trained from scratch using the same pre-training data,

7

8 16 32 64 128
Model Dimension

0

20

40

60

80

100

Ac
cu

ra
cy

Number of Key Value Pairs: 6

Mamba
Mistral
Hybrid
B'MOJO-F
B'MOJO

8 16 32 64 128
Model Dimension

0

20

40

60

80

100

Number of Key Value Pairs: 12

Mamba
Mistral
Hybrid
B'MOJO-F
B'MOJO

8 16 32 64 128
Model Dimension

0

20

40

60

80

100

Number of Key Value Pairs: 24

Mamba
Mistral
Hybrid
B'MOJO-F
B'MOJO

8 16 32 64 128
Model Dimension

0

20

40

60

80

100

Adding Eidetic Memory

2 Tokens
4 Tokens
8 Tokens
16 Tokens
32 Tokens

Figure 2: (Panels 1-3) B’MOJO has high memory efficiency on Associative Recall Tasks (se-
quence length is 256 and attention window 32). For various models, we plot accuracy on the
Multi-Query Associative Recall (MQAR) task as a function of the model dimension (totaling the
SSM state, eidetic memory and KV cache where applicable). The transformer paragon attains 100%
accuracy because it operates on the full context. While all models benefit strongly from increased
memory, B’MOJO and B’MOJO-F consistently achieve the best accuracies for a given memory
budget. Panels 1-3 report MQAR tasks of increasing difficulty, on which the performance gap
between B’MOJO and other models increases, showcasing the value of eidetic memory. (Panel 4)
Increases in eidetic memory size corresponds to gains in recall. We ablate the effects of eidetic
memory by growing the number of eidetic memory tokens in B’MOJO. Each added token contributes
to an increase in recall accuracy until performance is saturated.

130 370 790 1400
Parameters (Millions)

10

12

14

16
18
20
22

Pe
rp

le
xi

ty

Mamba
Mistral
Hybrid
B'MOJO-F
B'MOJO

104 105

Training Time (seconds)

10

12

14

16
18
20
22

Pe
rp

le
xi

ty

Mamba
Mistral
Hybrid
B'MOJO-F
B'MOJO

Figure 3: B’MOJO language modeling scaling laws. We plot the perplexity reached by models
at different scales against the number of parameters and the wall-clock training time. B’MOJO is
faster than Mamba and Mistral at training time while achieving better perplexity than Mamba and
comparable perplexity with Mistral. The plot also exhibits a non-saturating scaling law, showing that
increasing the amount of resources leads to increasingly better B’MOJO models.

tokenizer [24], and context length. And, in order to abalte the contribution of eidetic memory, we
consider B’MOJO-F in addition to B’MOJO in all our experiments.

4.1 Synthetic Tasks
We use synthetic tasks to test B’MOJO’s ability to recall exact information from beyond the attention
span [2, 51]. We do so with Multi-Query Associative Recall (MQAR) data in the main text, and
consider other tasks such as Induction Heads [36], Selective Copying [19], Fuzzy MQAR[39], and
Noisy MQAR [39] in Appendix D.1.

B’MOJO’s Memory Efficiency on Associative Recall Tasks. The MQAR task [2] has been shown
to correlate well with language modeling performance [2, 39]. Compared to its peers (e.g. Induction
Heads [36]) MQAR is considerably more difficult and requires strong recall capabilities. In Figure 2,
we display accuracy on MQAR as we vary the size of the recurrent state for 2-layer instances of our
models. Panels 1-3 consider varying numbers of key-value pairs to illustrate increasing complexity.
Here, a Transformer (Mistral), with its sequence-length-sized KV cache serves as the paragon, always
achieving a 100% accuracy. Should its window size be restricted not to include the KV pairs, its
accuracy would drop to that of a random guess. Our results show that while every model class
improves in recall accuracy as its size increases, B’MOJO and B’MOJO-F do so more reliably and
faster than others. We explain these findings as follows. Mamba possesses only fading memory
to propagate information to the future, and therefore has a limited recall capacity [2] for a given
size of its recurrent state. Hybrid models leverage a sliding window attention to mitigate this issue,

8

Table 1: B’MOJO’s performance on downstream tasks. We compare different architectures on
several zero-shot downstream tasks used to test common-sense reasoning and question-answering
on relatively small contexts. These tasks, however, do not require strong recall capabilities because
the input text is typically very short (results on longer contexts are reported in Table 2). On pre-
training perplexity B’MOJO performs on par with our pre-trained Mistral model and outperforms our
pre-trained Mamba models at the largest scale we test 1.4B. However, on accuracy metrics, while
B’MOJO still outperforms Mamba, its gap with the Mistral model increases.

Pre-training Short Context (acc ↑)
Log-Perplexity LAMBADA [38] HellaSwag [56] PIQA [4] ARC-E [8] ARC-C [8] WinoGrande [40] Avg.

37
0M

Mistral (Full-Attention) 2.56 31.6 33.8 64.0 44.9 23.5 50.4 41.4
Mamba (SSM) 2.62 31.4 33.4 63.5 45.0 22.3 51.7 41.2
Hybrid (Sliding Attention + SSM) 2.69 26.3 31.3 61.1 42.7 22.4 51.9 39.3
BMoJo (Fading) 2.68 29.6 33.2 63.7 43.1 23.0 51.8 40.7
BMoJo (Fading + Eidetic) 2.67 28.6 33.3 63.9 44.3 22.1 50.7 40.5

1.
4B

Mistral (Full-Attention) 2.27 50.1 50.7 70.4 58.2 27.5 54.4 51.9
Mamba (SSM) 2.37 43.9 45.0 70.3 52.4 28.0 51.9 48.6
Hybrid (Sliding Attention + SSM) 2.42 37.6 38.8 66.1 48.4 25.4 52.6 44.8
BMoJo (Fading) 2.27 45.4 46.0 70.0 52.3 26.6 53.3 48.9
BMoJo (Fading + Eidetic) 2.26 44.8 46.8 69.9 54.7 26.6 52.1 49.1

however they require a lengthy window to increase their span and recall the reference pairs. The
strong performance of B’MOJO-F showcases the value of fading memory over a simple hybrid
configuration, and the even stronger performance of B’MOJO, most evident in the panel on the right,
highlights the added contribution of an eidetic memory for precise recall.

4.2 Language Modeling Scaling laws
We next demonstrate B’MOJO’s favourable scaling laws on mid-size language modeling, baselining
against the same set of state-of-the art-model classes as the previous section. We report the training
setting and hyper-parameters in Appendix B.1.

Results. In Figure 3, we report perplexity at different scales against (left) the number of parameters
and (right) the wall-clock training time. B’MOJO is faster than Mamba and Mistral that use efficient
CUDA kernels (Flash attention and Selective Scan), outperforms our pre-trained Mamba baseline
at all scales, and is comparable with our Mistral Transformer model, in Appendix D.2 we further
comment our results in relation to other recent hybrid models like Griffin [10] and Zamba [18].

We additionally report the scaling behavior of B’MOJO-F as an ablation of the eidetic memory, as
well as a vanilla hybrid architecture composed of interleaved SSM and attention layers as an ablation
of both fading and eidetic memory. Despite using only short context sizes (2k) in Figure 3, our results
show that adding fading memory strictly improves pre-training perplexity over the baseline hybrid
model at all scales. Performance is further improved when eidetic memory is added despite incurring
a slightly higher training time. Our results suggest that B’MOJO exhibits a non saturating scaling
law: increasing the amount of resources (parameters/FLOPs) leads to increasingly better models.

4.3 Zero Shot Evaluation
We catalog the performance of our pre-trained models on an assortment of short and long context
zero-shot evaluation tasks. While perplexity captures the models’ ability to predict language, these
evaluations characterize their generalization capabilities to unseen tasks. We use the EleutherAI LLM
Harness [17] to conduct all evaluations.

Short Context Evaluation. In Table 1 we report results on common-sense reasoning and question-
answering tasks that require processing both short [19] and medium-sized contexts [2, 35]. Since these
language tasks do not require long range modeling we would not expect B’MOJO to meaningfully
outperform our baselines. Moreover, B’MOJO uses a smaller sliding window (512 tokens) than
Mistral (1024 tokens), placing the former on an uneven footing. Despite these caveats, we find that
B’MOJO still bests Mamba at the 1.4B scale and performs comparably to the Mistral model.

Long Context Evaluation. We next investigate the ability of B’MOJO to process long contexts using
the PG-19 dataset [17] and more recall-intensive natural language tasks using the SWDE, Scrolls
[2, 41] benchmarks. Our results show that B’MOJO outperforms Mamba and our hybrid baseline
on PG-19 and SWDE, while B’MOJO-F outperforms Mamba on the Scrolls datasets, in line with
our previous findings on the synthetic tasks in Figure 2. These long context tasks showcase—in a
practical setting—B’MOJO’s efficacy in recalling information from beyond the attention span.

9

Table 2: Long range downstream tasks. We compare
different architectures on several zero-shot long range
recall-intensive downstream tasks [2]. Our B’MOJO
variants outperform Mamba since they have stronger
recall capabilities.

Long Context (log-ppl ↓) Long Context (acc ↑)
PG-19 SWDE Scrolls-QAsper Scrolls-NarraQA

37
0M

Mistral (Full-Attention) 2.91 47.16 13.35 9.24
Mamba (SSM) 3.24 7.38 9.54 6.04
Hybrid (Sliding Attention + SSM) 3.13 8.55 7.77 5.35
BMoJo (Fading) 3.05 15.56 10.29 7.48
BMoJo (Fading + Eidetic) 3.04 17.91 9.02 5.92

79
0M

Mistral (Full-Attention) 2.73 61.2 14.80 12.29
Mamba (SSM) 2.98 17.37 12.43 9.62
Hybrid (Sliding Attention + SSM) 3.08 8.37 7.63 3.62
BMoJo (Fading) 2.83 22.59 12.8 9.66
BMoJo (Fading + Eidetic) 2.84 23.40 11.05 7.64

130M (8) 370M (4) 790M (2) 1.4B (1)
Parameters/Batch size

0

100

200

300

400

500

600

700

800

Ti
m

e
(m

s)

Architecture
B'MOJO
B'MOJO-F
Mamba
Mistral

Figure 4: Time in ms to process 2k se-
quences. B’MOJO is faster than other ef-
ficient implementations of Mamba [19]
and Transformers [19] at all scales.

512 2048 8192 32768
Evaluated Context Size

14

15

16

17

18

19

Pe
rp

le
xi

ty

Mamba
B'MOJO-F
B'MOJO
Mistral

512 2048 8192 32768
Evaluated Context Size

16

17

18

19

20

21

22

23

Pe
rp

le
xi

ty

Mamba
B'MOJO-F
B'MOJO

Figure 5: Length generalization. (Left) We pre-train B’MOJO 1.4B and Mamba 1.4B on 2k context
lengths and a 1.4B Transformer baseline on 1k. (Right) We pre-train B’MOJO 790M and Mamba
790M on 8k context length and compare models evaluating perplexity on longer sequences up to 32K
tokens on PG-19. Transformers cannot length generalize (a known failure mode), on the other hand
B’MOJO preserves/improves in perplexity better than Mamba even on longer sequences.

4.4 Length Generalization
We evaluate the ability of B’MOJO to improve its predictions with longer contexts than ones seen
during training, an attribute termed length generalization [10, 51, 3]. Whereas length generalization
in Transformers is limited by positional encodings and memory constraints [10], for SSMs and
B’MOJO, it is instead limited by the capacity of the recurrent state. In Figure 5 we report perplexity
on PG-19 as the model processes contexts larger than pre-training contexts. We observe that B’MOJO
1.4B and Mamba 1.4B are capable of reducing and maintaining lower perplexity levels than Mistral
at long context sizes. Curiously, we find that on models trained on longer sequences (8k), length
generalization still holds and allows the model to continuously reduce perplexity as more tokens
are processed, up to 4× the pre-training sequence length. Additionally, the pre-training perplexity
of B’MOJO models trained on longer contexts is lower than identical ones trained on the same
amount of tokens but on shorter contexts, showcasing that our model can properly leverage the eidetic
and fading memory to process long sequences. In Appendix B.2, we report our implementation of
backpropagation through time that we use to efficiently train our models on even longer contexts
(beyond 16k). Our results on smaller scales (up to 370M) show that a model trained on 16k tokens
can length generalize up to contexts of length 64k.

5 Conclusions and Limitations
Although our experiments have been conducted up to a 1.4B scale, scaling B’MOJO further requires
non-trivial engineering and compute. Therefore, despite B’MOJO’s promising scaling laws, it is
difficult to ascertain whether it could scale to even larger models and datasets, and do so competitively.
Scaling our work to even larger models could result in positive societal benefits such as ease of
access to information. However, these models could be used also to spread misinformation, so
novel algorithms and research is important to improve controllability and reduce hallucination [15].
Despite our promising results on length generalization, we observed that Mamba checkpoints trained
on more compute tend not to length generalize that well. Since B’MOJO leverages a Mamba-like
module to implement fading memory, we cannot exclude the possibility that it will be less effective
in length generalization as we scale more. However, exploring simple time normalization techniques
as mitigations is a promising area for future work [32].

10

References
[1] Alessandro Achille and Stefano Soatto. On the learnability of physical concepts: Can a neural

network understand what’s real? arXiv preprint arXiv:2207.12186, 2022.

[2] Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

[3] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

[4] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[5] R Brockett. On the algebraic structure of bilinear systems. theory and applica-tions of variable
structure systems, 1972.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Olivier Chapelle, Vladimir Vapnik, and Jason Weston. Transductive inference for estimating
values of functions. Advances in Neural Information Processing Systems, 12, 1999.

[8] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[9] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[10] Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru,
Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin:
Mixing gated linear recurrences with local attention for efficient language models. arXiv
preprint arXiv:2402.19427, 2024.

[11] Paolo D’Alessandro, Alberto Isidori, and Antonio Ruberti. Realization and structure theory of
bilinear dynamical systems. SIAM Journal on Control, 12(3):517–535, 1974.

[12] David LeRoy Elliott. Bilinear control systems: matrices in action, volume 169. Springer, 2009.

[13] B. Bowman et al. Inductive learning of transductive inference:. ArXiv [pending], 2021.

[14] Mahan Fathi, Jonathan Pilault, Pierre-Luc Bacon, Christopher Joseph Pal, Orhan Firat, and
Ross Goroshin. Block-state transformers. In Neural Information Processing Systems, 2023.

[15] Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination
control by visual information grounding. arXiv preprint arXiv:2403.14003, 2024.

[16] Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

[17] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023.

11

[18] Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint
arXiv:2405.16712, 2024.

[19] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[20] Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

[21] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[22] Alberto Isidori. Nonlinear control systems: an introduction. Springer, 1985.

[23] Andrew H Jazwinski. Stochastic processes and filtering theory. Courier Corporation, 2007.

[24] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[25] Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.

[26] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

[27] Arthur J Krener. Bilinear and nonlinear realizations of input-output maps. SIAM Journal on
Control, 13(4):827–834, 1975.

[28] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez
Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid
transformer-mamba language model. arXiv preprint arXiv:2403.19887, 2024.

[29] Anders Lindquist and Giorgio Picci. On the stochastic realization problem. SIAM Journal on
Control and Optimization, 17(3):365–389, 1979.

[30] Greta M Ljung and George EP Box. On a measure of lack of fit in time series models. Biometrika,
65(2):297–303, 1978.

[31] Lennart Ljung. System identification toolbox: User’s guide. Citeseer, 1995.

[32] Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May,
Luke Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and
inference with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

[33] Mireille Chaleyat Maurel and Dominique Michel. Results on the non existence of finite dimen-
sional filters. Stochastics: An International Journal of Probability and Stochastic Processes,
13(1-2):83–102, 1984.

[34] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language
modeling via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

[35] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

[36] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

12

[37] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
International Conference on Machine Learning, pages 26670–26698. PMLR, 2023.

[38] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

[39] Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian
Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, et al. Mechanistic design
and scaling of hybrid architectures. arXiv preprint arXiv:2403.17844, 2024.

[40] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[41] Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan
Xiong, Mor Geva, Jonathan Berant, and Omer Levy. SCROLLS: Standardized CompaRison
over long language sequences. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 12007–12021, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics.

[42] RJ Solmonoff. A formal theory of inductive inference. i. II Information and Control, 7:224–254,
1964.

[43] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In International
conference on machine learning, pages 9229–9248. PMLR, 2020.

[44] Peter Van Overschee and Bart De Moor. Subspace identification for linear systems: The-
ory—Implementation—Applications. Springer Science & Business Media, 2012.

[45] Vladimir Vapnik. Transductive inference and semi-supervised learning. 2006.

[46] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao,
Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of
mamba-based language models. arXiv preprint arXiv:2406.07887, 2024.

[47] Terry A. Welch. A technique for high-performance data compression. Computer, 17(06):8–19,
1984.

[48] Norbert Wiener. Extrapolation, interpolation, and smoothing of stationary time series: with
engineering applications. The MIT press, 1949.

[49] William M Wonham. On a matrix riccati equation of stochastic control. SIAM Journal on
Control, 6(4):681–697, 1968.

[50] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2023.

[51] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear
attention transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

[52] Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers. Advances in Neural
Information Processing Systems, 36, 2024.

[53] Luca Zancato, Alessandro Achille, Tian Yu Liu, Matthew Trager, Pramuditha Perera, and
Stefano Soatto. Train/test-time adaptation with retrieval. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 15911–15921, 2023.

[54] Luca Zancato, Alessandro Achille, Giovanni Paolini, Alessandro Chiuso, and Stefano Soatto.
Stric: Stacked residuals of interpretable components for time series anomaly detection. 2021.

13

[55] Luca Zancato and Alessandro Chiuso. A novel deep neural network architecture for non-linear
system identification. IFAC-PapersOnLine, 54(7):186–191, 2021. 19th IFAC Symposium on
System Identification SYSID 2021.

[56] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[57] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[58] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE transactions on Information Theory, 24(5):530–536, 1978.

14

A Induction and Transduction
Example A.1 (Biology). We note that biological agents have no option but to operate inductively,
due to (a) hard memory bounds, and (b) evolutionary pressure towards minimizing inference latency:
When faced with a threat, a biological agent is better served by a quick suboptimal decision than
by reasoning over all past experience. AI built on silicon has no such limitations: Memory can
grow unbounded and test-time computation can be distributed and improved by hardware design.
Nonetheless, any practical realization involves some kind of constraint on inference time or compute
resources. Therefore, resource-constrained optimal inference hinges on how to best use the available
resources against a growing memory.

Example A.2 (CNN Classifiers, VAEs and GANs). A trained representation can be co-opted to
generate data. For example, a CNN can be used to classify random data until one is labeled with
the desired class, and the resulting sample considered as being “generated” by the CNN. Similarly,
one could generate random data indirectly by feeding noise to an encoder, as done in Generative
Adversarial Networks (GANs), again co-opting a representation for generating data. In a Variational
Autoencoder (VAE), data is generated by perturbing the latent representation of a map trained to
re-construct the dataset.

Example A.3 (Diffusion Models). Diffusion Models are representations, trained to re-construct the
original data, but the mechanics used to reconstruct the data during training are sequential, using an
artificial “time” variable, akin to a realization. This makes their use as “generative representation”
natural since the reconstruction process is already a stochastic realization.8

Example A.4 (The Sage and the Savant). Picture the Library of Alexandria in 40 BCE, with the two
best known experts, Sage and Savant. Sage had spent years reading the entire library and distilled
its content down to maxims, proverbs, and various nuggets of wisdom. When asked a question,
Sage would quickly return a pithy answer, although for the occasional unusual question, a generic
answer. Savant was the librarian, with a preternatural ability to rapidly find content to assemble
answers to any question. Savant did not have ready answers but, when asked, Savant would scour
the library to retrieve relevant sources, speed-read through them, and assemble an answer. If asked
the same question by the next customer, Savant would repeat the process anew, to the dismay of
customers who saw Savant re-read the same material over and over, seemingly without understanding
or learning anything. When voices spread that Savant produced more accurate answers, the enraged
Sage burned down the library, putting Savant out of work. Sage regained the status of preeminent
source of consultation, who could generalize wisdom from sources long gone, until two millennia
later, when a new Savant was created from bits.

Sage personifies inductive learning, favoring thoughtful and time-consuming learning to enable quick
inference and rapid answers to questions. Savant represents transductive inference, which requires
access to memory and efficient computation that is specific and tailored to the question, at the cost of
having to repeat it all over.

B B’MOJO implementation details
B.1 Training details
We train all the models from scratch on a common language dataset at scales from 130M to 1.4B
using instances with 8 40GB NVIDIA A100 GPUs. For our 1.4B experiments, we use 8 instances
simultaneously to train our model and perform the remaining experiments on a single instance.
Models are trained using AdamW on 20x the number of tokens as parameters [21]. We use a batch
size of 0.5M tokens and a cosine learning rate schedule with 5% warmup and a minimum learning
rate of 1e-5. Finally, we use a weight decay of 0.1 and gradient clipping of 1 (see the Appendix for
additional details). B’MOJO and B’MOJO-F do not use positional encodings, and both, along with
Hybrid use a sliding window of 512 tokens. Furthermore, we found that the learning dynamics of
our hybrid models can be improved by having two different learning rates parameters for the hidden
SSM and the sliding window. We follow Mamba’s learning rates [19] and GPT3’s [6] for the sliding
window.

8It is curious that the reverse diffusion equation was first derived in the context of Stochastic Realization
Theory by [29] to argue that a stochastic realization is a model, distinct from the physical system it realizes:
Time is reversible in the former, but not in the latter.

15

Sliding Window Attention

xt−K−∞

Summary of the remote past Recent past

ut−K+1, . . . , ut

xt−K−∞SSM

u−∞, . . . , ut−K

SSM

Most informative remote past Summary of the
remote past

Recent past

xt−K−∞

xt−K−∞ ut−K+1, . . . , utu−∞, . . . , ut−K

Sliding Window Attention

uii, ui2, . . . , uiM
Innovation
Selection

Figure 6: B’MOJO’s Memory management. (Left) Fading Memory B’MOJO fading memory is
computed by a SSM that represents long-range dependencies through a fixed-dimensional representa-
tion which is later aggregated on the current tokens along with with the most recent past. (Right)
Eidetic + Fading Memory Fading memory is handled as in the left panel while tokens from the
past are selected using an innovation test over the SSM output and appended to the current sliding
window. The innovation test measures how difficult a new tokens is to predict using the state of the
SSM, if a tokens is difficult to predict from the state we store it in the eidetic memory and pass it to
the attention module.

Input tokens

SSM

Innovation Selection

Eidetic Memory Fading Memory Input tokens

Sliding Window Attention

Output tokens

Sliding Window Attention

MemoryInput tokens MemoryInput tokens Input tokens

Output tokens Output tokens Output tokens

Sliding Window Length

Figure 7: (Left) B’MOJO’s implementation. We report the basic layer we use to implement
B’MOJO and its memory hierachy (fading and eidetic). (Right) Efficient interleaved implementa-
tion. We show to efficiently implement a sliding window attention over chunks of input, fading and
eidetic tokens.

B.2 B’MOJO’s efficient implementation

We efficiently implement B’MOJO’s tiered memory hierarchy at scale. The modelling choices that
lead to B’MOJO closely follow ideas from Stochastic Realization and have an obvious recurrent
efficient implementation. On the other hand, during training one is more interested in a parallel
formulation that can allow to process multiple tokens at the same time in a single sequence. In the
following we describe how we use chunking to develop B’MOJO’s parallel form.

Efficient sliding window. Computing fading memory and selecting the most unpredictable tokens to
store before feeding them into an attention layer is a sequential process which is hard to parallelize.
To solve this we use chunks of length w and use fading and eidetic memory to summarize the whole
past before the beginning of each chunk. Then, to efficiently aggregate information from the input
and memory tokens we use a sliding window over the interleaved concatenation of input chunks and
their respective memory tokens as shown in Figure 7. To make sure that every token is computed
uniformly we pick the size of the sliding window to be K := w+mf +me, where mf is the number
of fading memory tokens, and me is the number of eidetic tokens. Note that the number of eidetic
tokens is not known a priori however, in our experiments, we fixed it to an upper-bound. The modular
and interleaved approach Figure 7 enables us to leverage optimized kernels for both the SSM [19]
and the sliding window attention [9] components enabling fast training and inference beyond the
1B scale. Furthermore, one can accelerate the Attention components in B’MOJO using standard

16

techniques like GQA, which, for example, can make B’MOJO 1.4B with 2k context length up to 7%
faster than a vanilla implementation.

Efficient Innovation Selection. The Innovation Selection process we describe in Algorithm Line 1
requires a ŷ(yt−1:t−k) whose task is to predict the next output yt of the SSM. Whenever, it is difficult
to predict yt using samples from the past yt−1:t−k the consider the most recent input token ut highly
informative and store it. While building a new parametric predictor with learnable parameters is
possible, in practice, this will require to modify the training loss. In our experiments we consider a
fixed predictor so no extra weights need to be learned. We fix ŷ as a running weighted average and
implement it using short 1D grouped causal convolutions.

BPTT: Back-propagation Through Time In this section we discuss our technique for back-
propagation through time which enables training with arbitrary context length, potentially infinite.
This enables us to treat the training data as batch of samples or as one large string. The trick to
enable such training lies in splitting the data into multiple chunks, performing computations on each
chunk, caching the statistics like the hidden states for SSMs or the tokens in the previous sliding
window/eidetic memory, and then using them for the next chunk of data. One way to efficiently
implement this is to write a custom CUDA kernel for this task which defines a Mamba layer which
can process a non-zero initial hidden state (as the current implementations only support a zero initial
hidden state). However, we would like to use the existing implementations and instead modify
the inputs/layer weights such that we can load the cached hidden state before that start of every
chunk. Let xt ∈ Rb×d×h be the hidden state of an SSM layer (Mamba), where b, d, h are the
batch-size, model hidden dimension, state hidden dimension (channels for each state dimension)
respectively, and ut ∈ Rb×d is the input to the layer. The state update equations in Mamba evolve as
xt+1 = A(ut)∗xt+B(ut)∗ût, where A(ut) ∈ Rb×d×h, B(ut) ∈ Rb×d×h, ût is ut stacked h×, and
∗ is an element-wise multiplication operation. In the traditional implementations x0 = 0, however,
we would like to use a non-zero initial state x′

0. The trick we use here is to break x′
0 ∈ Rb×d×h into

h tokens of size b × d (which is the same as the size of ut) and pass them as additional prompts
to the input. In practice the dimension h is usually small (like 16) and as a result we can afford to
break the hidden state into tokens and pass them as inputs. Let T be the size of each chunk (input),
then to enable processing non-zero initial hidden states (or caching) we need to process chunks of
size T + h where T ≫ h. We perform h initial steps of the SSM to load the previous hidden state,
before we start processing the current chunk. To dynamics for the first h timesteps are governed by
the following equation for t ∈ [0, h]: xt+1 = xt +B′

t ∗ x̂′
0,t, where x′

0,t chooses elements from the
t column in the final dimension, B′

t is one-hot with 1 in dimension t, and acts a shifting operation
which ensures that the tokenized previous hidden state is correctly loaded. Thus after h time-steps the
hidden state xh is loaded with the final hidden state from the previous chunk, which can be used with
gradient accumulation techniques to compute gradients on arbitrarily sized input sequences. Note
that B’MOJO has additional components like the eidetic memory, however, that can be efficiently
cached from the previous chunk in constant time/memory cost.

C State Space realization Attention
Lets start from the usual expression of the attention,9 given an input sequence {ui} ∈ Rnch , we
create the keys, values and queries vectors as follows, ki := {WKui} ∈ Rn, qi := {WQui} ∈ Rn,
vi := {WV ui} ∈ Rn. Now the output of a causal attention layer is given by:

yt =

∑t
i=1 exp(q

T
t ki)vi∑t

i=1 exp(q
T
t ki)

(2)

C.1 Linear attention
It is possible to approximate the exponential in the numerator using a kernel representation which
makes the attention a linear operator (the ratio of two linear operators) onto the augmented feature
space. The basic idea is to write exp(qTt ki) ≈ ϕ(qt)

Tϕ(ki), we therefore get that the linear attention
can be computed as:

yt ≈ ylint =

∑t
i=1 ϕ(qt)

Tϕ(ki)vi∑t
i=1 ϕ(qt)

Tϕ(ki)
(3)

9For the sake of simplicity we do not use Multi-Head Attention, however the generalization is straightforward.

17

2048 4096 8192 16384 32768 65536
Evaluated Context Size

28.5

29.0

29.5

30.0

30.5

31.0

31.5

Pe
rp

le
xi

ty

Long Context Evaluation

Training Context Size=2k
Training Context Size=16k

Figure 8: B’MOJO’s long context training using BPTT Appendix B.2. We train B’MOJO with two
different context sizes, 2k and 16k (BPTT) respectively and evaluate on long context task (PG-19).
We show that our model trained with 2k context size is able to extrapolate for context size upto 65536
(with marginal increase in the perplexity), while model trained with 16k context size can handle long
context much more effectively which can be seen by the lower perplexity values as the context size
increases. Remarkably, as previously observed in [10], B’MOJO models trained on long contexts
underperform models trained on shorter ones if evaluated on fewer tokens (i.e., when the inference
context size is much smaller than the training context size).

Now consider the numerator, the denominator can be obtained by fixing the input vi = 1 ∀i. It is
trivial to show that we can represent the linear attention using a Finite-Impulse Response dynamical
system as follows: {

xt =
∑t

i=1 ϕ(ki)vi
yt = ϕ(qt)xt

(4)

This is a linear dynamical system that evolves over time and returns the final values of the linear
attention at each time instant t.

Remark: Note that we can modify the previous equations to represent the attention mechanism by
simply using a non-linear read out function (the exp) in place of the identity. However, this is not
very insightful since this simple FIR system is simply a shifting register over time.

It is worth noticing that the state of this system is t, and it always increases over time, usually up to
a design parameter specified by the system design which is dictated by the available compute and
memory (typical values are set to 2k).

A simple way to measure the state of the system is to write its state space realization, whose dimension
directly informs us on the expressivity of the system. In our case we shall assume that the attention is
computed on a sliding window of size K. A canonical realization of the FIR described above is:

Zt+1 :=

z
t−K+1

...
zt+1

t+1

=

0 1

. . .
1

0 0 . . . 0

z

t−K

...
zt

t

+

0

0
...
1

ϕ(kt)vt

Z̄t =
[
1 ... 1

]
Zt + ϕ(kt)vt

ylin
t = ϕ(qt)Z̄t

(5)

C.2 Connection with State Space Models
In this section, we describe the connection with State Space models, in particular Mamba (input
dependent state space model) and characterize how it approximates a linear attention mechanism.

18

First we state the Mamba equations:
ūt = w0ut + w1ut−1 + w2ut−2 + w3ut−3

xt = a(ūt)xt−1 + b(ūt)ūt

yt = c(ūt)xt + dūt

(6)

For the sake of simplicity we shall now study the input to state and the read out equation. It is easy to
show that this is not a strictly causal realization of a dynamical system (since the state at time t is
updated with the input at the same time).

Remark: Every single channel in a Mamba block is independent from each other and unnormalized,
Mamba reduces the variability across channels with a coupling in the lower dimensional projections
of the gating parameter ∆.

C.2.1 Local Global factorization of the attention mechanism
A natural way to prevent the system matrices to grow ever larger is to approximate the FIR above
using an AR component, which would essentially keep a running average of the keys for each token
seen so far. This will allow the model to keep some higher level statistics of past data which would
be used to summarize past information into a single dimension of the dynamical system.

yt =

t∑
i=1

ϕ(qt)
Tϕ(ki)vi = ϕ(qt)

T
(K−1∑

i=0

ϕ(kt−i)vt−i +

t−K∑
i=1

ϕ(ki)vi

)
(7)

= ϕ(qt)
T
(K−1∑

i=0

ϕ(kt−i)vt−i + Z̄t−K

)
(8)

which can be written as: {
xt = xt−K +

∑K−1
i=0 ϕ(kt−i)vt−i

yt = ϕ(qt)
Txt

(9)

and canonically realized as:
Zt+1 :=

z
t−K+1

...
zt+1

t+1

=

0 1

. . .
1

0 0 . . . 1

z

t−K

...
zt

t

+

0

0
...
1

ϕ(kt)vt

Z̄t =
[
1 ... 1

]
Zt + ϕ(kt)vt

yt = ϕ(qt)Z̄t

(10)

C.3 Elements of Realization Theory
When studying dynamical systems it comes particularly helpful to study canonical forms. They are
particularly well suited to assess properties of dynamical systems and to realize state space models
that realize a desired input-output behavior.

In particular, given a transfer function of a LTI system

W (z) =
β0 + β1z + ...+ βn−1z

n−1

α0 + α1z + ...+ αn−1zn−1 + zn
(11)

we can write its state space canonical controllable realization as
Xt+1 =

0 1

. . .
1

−α0 −α1 . . . −αn−1

Xt +

0

0
...
1

ut

yt =
[
β0 ... βn−1

]
Xt +Dut

(12)

19

The first simple result to show is that any causal (but non-strictly) dynamical system in the following
form {

xt = Axt−1 +But

yt = Cxt +Dut
(13)

can be rewritten in its canonical form as{
x̂t = Ax̂t−1 + ut−1

yt = Ĉx̂t + D̂ut
(14)

In fact, starting from the transfer function of the first system

W (z) =
B

1−Az−1
=

zB

z −A
= B +

AB

z −A
(15)

We get
x̂t+1 = Ax̂t + ut−1

xt = ABx̂t +But

yt = Cxt +Dut

→
{
x̂t+1 = Ax̂t + ut−1

yt = CABx̂t + (CB +D)ut
(16)

Note that the terms C and B only appear as the product CB, which then we can rename as Ĉ.

Remark: Extending the previous canonical from to Time-Varying Systems is tedious but straightfor-
ward.

The controllable canonical form we introduced in Equation (12) can be easily extended to Time-
Varying Systems and Input-Varying as well since it encodes the algebraic properties of the relationship
between “positional” variables at time time instants (or of different inputs). Hence, it is straightforward
to see that when setting all the coefficients on the last row of the state transition matrix to zero we
get back the same nilpotent dynamical system that represents the attention mechanism (note that,
differently from the linear attention case, the read-out function is non-linear).

On the other hand, we can use this canonical form to represent a Mamba (diagonal) model (which
is non-canonical) by simply picking the coefficients of the characteristic polynomial such that its
poles are the same as the diagonal entries of the Mamba block. Note however, that Mamba being
non-minimal, could have some zero-pole cancellations depending on the specific values of the input
matrix B(ut) and C(ut), in such cases the input-output behaviour associated with the cancellation
does not appear in the output of Mamba and, so long as it is stable (which is always the case thanks to
Mamba’s parametrization), it is guaranteed to remain bounded and decay to zero exponentially fast.

Hence, both Mamba and the Attention mechanism can be implemented by B’MOJO for any fixed
state N .

D Further empirical results
D.1 Synthetic Tasks Beyond Associative Recall
In Table 3 we report results on synthetic tasks other than Multi-Query Associative Recall (MQAR).
The table below expands the range of synthetic tasks from MQAR to four more synthetic tasks and
compares performance across multiple scales.

D.2 Scaling laws and zero-shot evaluations
In Figure 3, we report perplexity at different scales against (left) the number of parameters and (right)
the wall-clock training time. B’MOJO is faster than Mamba and Mistral that use efficient CUDA
kernels (Flash attention and Selective Scan), outperforms our pre-trained Mamba baseline at all
scales, and is comparable with our Mistral Transformer model.

While prior works like Jamba [28] (and the recently released Zamba [18]) slightly outperform pure
Transformer models they used full attention, and thus retain the quadratic dependence of Transformers.
In contrast, our work only uses a small 512 token sliding window attention to produce a model with
linear dependency on the sequence length with a constant KV cache size. Other works like Griffin
[10] also use sliding windows, but manage to slightly outperform Transformer leveraging much
longer sliding windows sizes than ours.

20

Table 3: BMOJO demonstrates strong performance on a wide range of synthetic tasks, and both
small and medium scale. We compare the performance of various models at the 2 layer and the
130M scale on 4 different synthetic tasks, (1) Selective Copying, a task involving recall of a specific
sequence of tokens with random spacing (2) Induction Heads, the recall of a specific token amongst
noisy tokens (3) Noisy MQAR, an associative recall task retrieving keys in a noisy environment and
(4) Fuzzy Recall, an associative recall task involving keys and values that are multiple tokens each.
We find that B’MOJO models consistently outperform or match all existing baselines.

Selective Copying Induction Heads Noisy MQAR Fuzzy MQAR

Model 2 layers 130M 2 layers 130M 2 layers 130M 2 layers 130M

Full context
GPT2 93.56 97.28 100 1 99.92 99.97 49.17 98.79
Mistral 94.67 100 99.99 98.23
Pythia 160m 99.9 100 1 1 98.99

SSM
Mamba 94.42 99.74 100 7.6 99.99 1 88.04 60.04

Reduced context (smaller window)
Hybrid 93.82 97.69 7.64 1 99.99 99.98 90.47 98.56
B’MOJO-F 93.92 98.58 100 1 99.97 99.99 90.62 98.35
B’MOJO 94.04 99.85 99.94 1 99.99 99.99 90.38 96.87

E Strip MAMBA
In this section we derive the form of MAMBA reported above from the original source, combining
the published paper and software implementation provided by the authors [19].

Every Mamba layer contains a State Space Model which maps sequences (B,L, din) to (B,L, din).
Call the input of the state space models in Mamba is (B,L, din) is {ui}Li=0.

The input sequence is used to generate the discretization time-step ∆, the input matrix B and
the output matrix C, using the following projection matrices: P∆down

∈ R∆down×din , P∆up ∈
Rdin×∆down and PB ∈ RN×din and PC ∈ RN×din .

Overall, we have
B(ut) = PBut ∈ Rdin

C(ut) = PCut ∈ Rdin

∆(ut) = softplus(P∆up
P∆down

ut) ∈ Rdin

(17)

Now, given a state representation for all din dimensions xt ∈ Rdin×N and the state update matrix
A ∈ Rdin×N , We can now write the mamba update rule as:

∆(ut) = softplus(P∆upP∆down
ut) ∈ Rdin

xt+1 = exp(Diag(∆(ut))A) ∗ xt + Diag(∆(ut))utu
T
t P

T
B

yt = xtP
T
C ut +D

where ∗ denotes the element wise product. The elementwise product makes clear that Mamba’s
dynamics are diagonal. Revisiting the description of Mamba’s diagonal dynamics in the main paper,

A(ut) = AMamba(ut) =

 a1(ut)
. . .

aN (ut)

 , b(ut) = bMamba(ut) =

 b1(ut)
...

bN (ut)

it is natural to see that the values of ai(ut) are elements of the matrix exp(Diag(∆(ut))A) =
exp(Diag(softplus(P∆up

P∆down
ut))A), and bi(ut) are elements of Diag(∆(ut))utu

T
t P

T
B . Our non-

linear readout function ρ is simply bilinear in xt and ut.

21

E.1 Bilinear Mamba
With some approximations, we can further show that Mamba can be written as a bilinear system on
an augmented input space. Using the first order Taylor Series, we have

xt+1 = eDiag(∆t)A ∗ xt + Diag(∆t)utu
T
t PB

= (Diag(∆t)A+ 11T) ∗ xt + Diag(∆t)utu
T
t PB

= xt + Diag(∆t)(A ∗ xt + utu
T
t PB)

= xt + Diag(log(1 + exp(P∆ut)))(A ∗ xt + utu
T
t PB)

= xt + Diag([P∆ut]+)(A ∗ xt + utu
T
t PB)

where the second line follows from the application of the first order Taylor Series, the third from
rearranging terms while applying the definition of ∆t, and the forth line follows from replacing
notation for the soft hinge loss gating with [·]+. Now, we carry out some algebra as follows:

xt+1 = xt + Diag([ut]+)(A ∗ xt + P †
∆utu

T
t P

T†
∆ PB)

= xt + Diag([ut]+)A ∗ xt + Diag([ut]+)P
†
∆utu

T
t PB

= xt + Diag([ut]+)A ∗ xt + (uT
t ⊗ Diag([ut]+))vec(P †

∆)vec(PB)
T (I ⊗ uT

t)
T

where vec vectorizes a matrix into a column vector, and ⊗ is the Kronecker Product between two
matrices. Now we can look at the vectorized evolution of h, denoting vec(xt) as x̃t ∈ RdN :

x̃t+1 = x̃t + vec(Diag([ut]+)A) ∗ x̃t + vec((uT
t ⊗ Diag([ut]+))vec(P †

∆)vec(PB)
T (I ⊗ uT

t)
T)

= x̃t + (AT ⊙ I)︸ ︷︷ ︸
Parameters

[ut]+︸ ︷︷ ︸
Features

∗x̃t + ((I ⊗ uT
t)⊗ (uT

t ⊗ Diag([ut]+)))︸ ︷︷ ︸
Features

(vec(PB)⊗ vec(P †
∆))︸ ︷︷ ︸

Parameters

,

where ⊙ is the Khatri-Rao product. The purpose of this highly messy derivation is simply to
demonstrate that there exists a feature map of ut that we will call zt, and sparse parameter sets Ã,
P̃B , P̃C such that {

x̃t+1 = Ãzt ∗ x̃t + ztP̃B

yt = x̃tP̃
T
C zt +D,

(18)

and the system can be described as a discrete bilinear system.

Mamba Model

Text tokens (B, L)

RMS Norm

(B, L, nch)

x N

RMS Norm

Mamba BLK

+

(B, L, nch)

LM Head

(B, L, vocab size)

Embedding
Table

Mamba Block

Input (B, L, nch)

(B, L, din)(B, L, din)
zx

Conv1D (k=4)

SSM

SiLU SiLU

+
(B, L, din)

Output (B, L, nch)
Out Proj.

In Proj.

Figure 9: An illustration of the Mamba architecture and main block.

22

SSM

Selective Scan

ui (B, L, din)

 up Δt

 downΔt

Proj

(B, L, N)(B, L, N)(B, L, Δtrank)

Softplus

δ B(ui) C(ui)

A (din, N) D (din)

A D

y (B, L, din)

ui(B, L, din)

Selective Scan

Selective Scan

Exp

A (din, N)D (din,) δ B(ui) ui(B, L, din)

EINSUM
(B, L, din) × (B, L, N) × (B, L, din)

(B, L, din, N)

EINSUM
(B, L, din) × (din, N)

(B, L, N) (B, L, din)

δA δBu

xt = exp(δ(ut)A)xt−1 + δBu(ui)
yt = C(ui)T xt

x−1 = 0 ∈ (B, din, N)

(B, L, din, N)

y (B, L, din)

C(ui) (B, L, N)

y = y + Du

y (B, L, din)

Figure 10: An illustration of the Mamba SSM block and Selective Scan operation.

23

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction proposes a novel model class leveraging both
eideic and fading memory for sequence modeling. In our paper we propose the B’MOJO
model class, we motivate it through stochastic realization theory, and we conduct experi-
ments demonstrating its main capabilities, all reflect what is described in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have a Limitations section that explicity describes multiple limitations of
the model and our experiments.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

24

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We prove our theoretical claims about transformers’s eidetic memory and
SSMs’s fading memory constructively inline by showing the corresponding state matrix for
each model in the main text of the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use the supplement to add a plethora of details to reproduce our empirical
findings.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

25

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not provide code at submission time.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We have a section titled Training Details in the appendix that covers precisely
the hyperparameters, and type of optimizer and other crucial training details.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars in our paper, but clarify the sample sizes of our
evaluation sets and other choices of hyperparameters so that the reader recognizes the
significance of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly state the compute hardware we used and the quantity we used in
Training defaullts.

Guidelines:

• The answer NA means that the paper does not include experiments.

27

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Upon review of the NeurIPS Code of Ethics we conform.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss how if our elementary realizations were scaled to the size of foun-
dation models there could be both positive and negative societal impacts in the limitations
section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

28

https://neurips.cc/public/EthicsGuidelines

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release models.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the creators and original owners of assets used in the paper
by citing them according to their request. We explicitly mention the license in our codebase
for the paper where the creators and owners have requested we do so.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

29

paperswithcode.com/datasets

Justification: The paper does not release new assets at this time, but will thoroughly
document its assets when realeased at camera ready.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Contributions

	Background and Related Work
	B'MOJO
	Fading Attention
	B'MOJO's complete functional form
	B'MOJO's efficient implementation

	Experimental Results
	Synthetic Tasks
	Language Modeling Scaling laws
	Zero Shot Evaluation
	Length Generalization

	Conclusions and Limitations
	Induction and Transduction
	B'MOJO implementation details
	Training details
	B'MOJO's efficient implementation

	State Space realization Attention
	Linear attention
	Connection with State Space Models
	Local Global factorization of the attention mechanism

	Elements of Realization Theory

	Further empirical results
	Synthetic Tasks Beyond Associative Recall
	Scaling laws and zero-shot evaluations

	Strip MAMBA
	Bilinear Mamba

