

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DECOMPOSING EXTRAPOLATIVE PROBLEM SOLVING: SPATIAL TRANSFER AND LENGTH SCALING WITH MAP WORLDS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Someone who learns to walk shortest paths in New York can, upon receiving a map of Paris, immediately apply the same rule to navigate, despite never practicing there. This ability to recombine known rules to solve novel problems exemplifies compositional generalization (CG), a hallmark of human cognition. Yet our understanding of what drives the success or failure of such extrapolative problem solving, particularly the roles of training data properties and optimization paradigms, remains limited. In this work, we introduce a controlled map-navigation testbed that cleanly separates two dimensions of CG: *spatial transfer* (systematicity across environments) and *length scaling* (productivity along problem difficulty). Through quantitative experiments, we show that transfer is enabled by sufficient distinct questions with high coverage and modest diversity, while scaling critically depends on exposure to neighboring-but-longer examples. Finally, we find that reinforcement learning (RL) stabilizes optimization but does not surpass the ceiling set by supervised fine-tuning (SFT). Together, these results provide principled insights into how data properties and training paradigms shape extrapolative problem solving.

## 1 INTRODUCTION

The field is currently excited by strong evidence of LLMs’ ability to tackle truly novel problems—solving IMO 2025 questions (Huang & Yang, 2025) and discovering algorithms that surpass state-of-the-art solutions (Novikov et al., 2025). To solve such novel questions, a model must compose the words and rules learned, echoing a fundamental hallmark of human cognition: compositional generalization (CG)—the ability to make “*infinite use of finite means*” (Chomsky, 1957).

Despite this promise, our understanding of extrapolative and compositional problem solving remains limited. Since it is hard to cleanly separate “novel” problems in natural language, prior work has turned to synthetic challenges/puzzles to test whether foundation models can solve problems not present in training (Ramesh et al., 2023; Xu et al., 2024; Dziri et al., 2023). These studies reached mixed conclusions: sometimes models succeed, sometimes they fail. We view this inconsistency as evidence that LLMs generalize along some dimensions more readily than others. This motivates our work. Rather than asking for a brute-force CG-or-not answer, we aim to **decompose “novel problem solving” into concrete, well-defined extrapolation dimensions**, and study **how data properties and training paradigms drive success or failure along each**.

Concretely, we focus on two fundamental dimensions of CG (Sinha et al., 2024), while restricting ourselves to a single problem class to avoid entanglement: (1) **Transfer (systematicity in CG)**: the ability to solve the same class of problems in entirely new environments. For example, a model trained on English problems should also succeed in German or French; in mathematics, this corresponds to learning induction in algebra and applying the same inductive structure in number theory (e.g., divisibility proofs) or combinatorics (e.g., binomial identities); (2) **Scaling (productivity in CG)**: the ability to solve harder (e.g., longer) problems after having seen simpler ones. For example, once a model has learned induction, it should then be able to solve problems requiring induction *recursively*.

We use navigation tasks on 2D sparse grid maps as our testbed. This setup offers two key advantages. (1) **Orthogonal factors:** path data separates cleanly into spatial (where the path is) and length (how long it is) components, enabling controlled measurement of each dimension of generalization. This is far harder in natural language or arithmetic, where vocabulary and sequence length are deeply entangled. (2) **True systematicity:** When we speak of “infinite use of finite means” in linguistics, we expect rules learned in one domain to apply even to a disjoint one (e.g., transferring from English to German). In natural data, however, primitives are embedded in unknown high-dimensional spaces, making it nearly impossible to enforce completely disjoint test domains, or design cross-lingual or cross-topic evaluations. Grid maps, by contrast, allow us to build arbitrarily many disjoint worlds, providing a clean test of whether rules generalize to entirely novel primitives. Note that, unlike graph-based generalization tests (Cai et al., 2025; Zhang et al., 2024) that feed the full graph structure upfront into pretrained models and reduce the task to explicit rule application, our setup uses map data to simulate a language-like world. The model must infer the map’s structure from its training corpus of paths, much as language models learn word relations from text during training.

In the remainder of this paper, we examine how data selection and training paradigms (i.e., SFT and RL) influence the emergence of generalization along the two dimensions (transfer and scaling). We defer detailed discussions of research gaps and motivations to the beginning of each section, and related work can be found in Section B. Our main conclusions are: (1) problem-solving transfer is primarily enabled by distinct path prompts with high coverage and modest diversity (Section 3); (2) length scaling critically depends on exposure to neighboring-but-longer examples, and can only be locally mitigated regardless of the training paradigm (Section 4); and (3) RL effectively stabilizes optimization but does not provide additional gains beyond the ceiling established by SFT (Section 5).

## 2 PRELIMINARIES AND EXPERIMENTAL SETUP

**Spatial Transfer (Systematicity).** Following the classic definition of systematicity in compositional generalization (Wiedemer et al., 2023b; Fu et al., 2024), we define it as the ability to correctly apply a known rule to new compositions of primitives that lie outside the training support. Formally, let  $G = (V, A)$  be a *sparse grid map* (i.e., with edges blocked) with node set  $V$  and adjacency  $A$ . A mobility *rule*  $f(i, j \mid G)$  returns a mobility path from node  $i$  to node  $j$  under  $G$ . The *training support* is the set of ordered start–end node pairs used in training,  $\text{supp}(\mathcal{D}_{\text{train}}) \subseteq V \times V \setminus \{(i, i)\}$ . We evaluate systematicity of a model  $\theta$  trained on  $\mathcal{D}_{\text{train}}$  as its performance in applying rule  $f$  to novel ordered pairs  $(i, j) \sim \mathcal{D}_{\text{test}}$ , where all node pairs in the test set are disjoint from those in training, i.e.,  $\text{supp}(\mathcal{D}_{\text{test}}) \cap \text{supp}(\mathcal{D}_{\text{train}}) = \emptyset$ . In our case,  $\mathcal{D}_{\text{test}}$  is drawn from a disjoint novel map  $\hat{G} = (\hat{V}, \hat{A})$  with  $\hat{V} \cap V = \emptyset$  and  $\hat{A} \neq A$ , i.e., irrelevant to  $G$  in nodes, edges, sparsity or size.

Such a truly disjoint test space is rarely achievable in natural language, where systematicity is often evaluated by holding out primitives within the same domain. This can yield overly optimistic estimates, since semantically similar primitives (e.g., “run” vs. “walk”) may lie close in embedding space. Our spatial setup therefore provides a more faithful measure of systematic generalization.

**Length scaling (Productivity).** Problem-solving scaling corresponds to productivity (or length generalization) in CG (Sinha et al., 2024; Cai et al., 2025). Within the same notation, it can be viewed as a constrained form of Systematicity, where novelty is enforced along the path-length axis. Let  $l(\mathcal{D})$  denote the set of path lengths for the mobility pairs in dataset  $\mathcal{D}$ . Then, in addition to the disjointness condition  $\text{supp}(\mathcal{D}_{\text{test}}) \cap \text{supp}(\mathcal{D}_{\text{train}}) = \emptyset$ , productivity further requires  $\max l(\mathcal{D}_{\text{train}}) \leq \min l(\mathcal{D}_{\text{test}})$ , i.e., all test pairs must involve strictly longer paths than any seen in training.

**Metric.** Let  $\hat{f}_\theta(i, j \mid G)$  denote the path predicted by the model  $\theta$ . We measure extrapolative problem-solving performance using the *success rate (SR)*:

$$\text{SR} = \Pr_{(i, j) \sim \mathcal{D}_{\text{test}}} [\hat{f}_\theta(i, j \mid G) = f(i, j \mid G)] \quad (1)$$

In our experiments, we adopt the shortest-path rule for  $f$ , which makes path length precisely controllable.<sup>1</sup> Our goal is to study the properties of the data and training paradigm rather than the inherent

<sup>1</sup>Many other common mobility rules, such as DFS, yield unconstrained lengths.

108 learnability of the task itself, and shortest-path is a canonical pathfinding problem that is theoretically  
 109 regarded learnable by language models (Cohen et al., 2025; Dai et al., 2024). In shortest-path,  
 110  $f(i, j \mid G)$  may return a *set of valid paths* whenever multiple paths exist between  $i$  and  $j$ . During  
 111 evaluation in Equation (1), we deem  $\hat{f}_\theta(i, j \mid G)$  successful if it belongs to the set  $f(i, j \mid G)$ .  
 112

113 **Empirical Setup.** We trained 8-layer, 8-head Transformer models from scratch following the  
 114 LLaMA architecture (AI@Meta, 2024), which employs Rotary Positional Embeddings (RoPE) (Su  
 115 et al., 2021) for position encoding. The models were pretrained on random-walk paths over all maps  
 116 ( $G$  and  $\hat{G}$ ), simulating the autoregressive pretraining phase of large language models (LLMs). This  
 117 pretraining enables the model to acquire the primitives (nodes) and their semantics, defined by their  
 118 adjacency relationships. To prevent interference with downstream mobility-rule learning tasks, we  
 119 bias the pretraining distribution by constraining random-walk paths to have a minimum length sub-  
 120 stantially longer than any path in the fine-tuning distribution. (We also validate this non-interference  
 121 in Section C.3.) This mirrors common practice in LLM pretraining, where models are exposed to  
 122 much longer sequences than those used in fine-tuning or evaluation.

123 For evaluation, we fine-tune the models on shortest paths on the training map  $G = (V, A)$ . We split  
 124 the node set  $V$  into training and test regions: the training region contains 80% of the nodes (from  
 125 which a subset of nodes  $V_{\text{train}}$  used to form  $\mathcal{D}_{\text{train}}$  is sampled) and the remaining 20% for length  
 126 scaling evaluation. We test spatial transfer on different disjoint test maps  $\hat{G} = (\hat{V}, \hat{A})$ .

127

128 **Training paradigms and data format.** We study two training paradigms: supervised fine-tuning  
 129 (SFT) and reinforcement learning (RL).

130 For SFT, each training sample is represented as a sequence of the form  
 131  $\langle s \rangle i \ j : i \ E \ S \ E \ E \dots N \ E \ S \ W \ W \ j \ \langle /s \rangle$ , where  $i$  and  $j$  denote the start  
 132 and end nodes,  $\langle s \rangle$  and  $\langle /s \rangle$  are special tokens, and the path is encoded as a sequence of  
 133 movement directions (E, W, N, S). Using directions instead of node indices prevents the model  
 134 from trivially memorizing n-gram sequences of node identifiers. The prompt prefix  $\langle s \rangle i \ j :$ ,  
 135 which we refer to as the *question* such that the path itself is the *answer*, is excluded from the loss  
 136 during SFT. At test time, we feed this prompt to the model and evaluate the generated continuation,  
 137 i.e., asking the question “what is the shortest path from  $i$  to  $j$ ?”.

138 Our path setup also naturally lends itself to RL for two reasons. (1) The shortest paths are inherently  
 139 verifiable: a generated sequence either forms a valid shortest path or not, allowing us to define  
 140 a binary reward without additional heuristics; (2) Although the model is not explicitly designed to  
 141 “think”, the path-generation process itself resembles a step-by-step reasoning procedure, making RL  
 142 a natural training paradigm for this setting. We adopt the Dr.GRPO (Liu et al., 2025) algorithm (an  
 143 unbiased variant of GRPO and the de facto standard in recent implementations of RL with LLMs),  
 144 with a binary reward of 1 if the generated sequence forms a valid shortest path between  $i$  and  $j$  and  
 145 0 otherwise. The model is trained on the same prompt prefix  $\langle s \rangle i \ j :$ , and we vary the number  
 146 of rollouts per prompt (4, 8, and 16) during training.

147

### 3 EFFECTS OF DATA SELECTION ON PROBLEM-SOLVING TRANSFER

149

150 We start by analyzing the effects of data selection for the classic SFT paradigm. A model exhibits  
 151 systematic generalization if it can solve problems built from disjoint primitives. In our setting, this  
 152 means generating valid mobility paths in a map never seen during training. We ask here: how  
 153 to allocate a fixed training budget of records to best support such transfer? Should the budget go  
 154 toward collecting diverse answers for each question, or toward covering as many distinct questions  
 155 as possible (Section 3.1)? And if more questions are preferable, what kinds of questions should be  
 156 prioritized (Section 3.2)?

157

#### 3.1 MORE QUESTIONS VS. MORE ANSWERS

158

159 In many domains of current interest (e.g., mathematics, program synthesis, navigation), a single  
 160 problem naturally admits multiple valid solutions. This makes budget allocation an important con-  
 161 sideration in SFT, especially since collecting high-quality solutions often requires significant ef-  
 orts (Cobbe et al., 2021; Hendrycks et al., 2021). The question is not trivial: the model requires

162 sufficiently diverse questions to capture the underlying rules; but if each problem is paired with only  
 163 one solution, the model may overfit to surface patterns rather than acquiring the underlying rule, po-  
 164 tentially harming transfer. We therefore investigate whether allocating budget to solution diversity  
 165 improves extrapolation, or if prioritizing distinct questions is more effective.  
 166

167 **Experiment Design.** We consider five training budgets  $B \in \{5\%, 10\%, 20\%, 60\%, 80\%\}$  of the  
 168 total possible training records, where the total is determined by the maximum number of directed  
 169 start-end pairs within the designated training region (80% of the nodes in the training map  $G$ , as  
 170 illustrated in Section 2). We use a  $50 \times 40$  sparse grid map with  $|V| = 2000$  nodes as  $G$ . For  
 171 each budget, we vary the number of distinct questions (unique start-end pairs) and the average  
 172 number of answers per question (distinct valid shortest paths between each node pair), subject to the  
 173 constraint  $N_{\text{questions}} \times N_{\text{answers per question}} = B$ .<sup>2</sup> Problem-solving transfer is measured by the success  
 174 rate (SR, Equation (1)) on disjoint test maps, restricted to paths within the training length (i.e.,  
 175 excluding length-scaling). We evaluate on three spatially disjoint maps of varying size ( $30 \times 30$ ,  
 176  $40 \times 40$ ,  $50 \times 50$ ), sparsity (25%–75%), and adjacency. We report the average SR across them.  
 177

178 **Unique questions drive transfer.** We first con-  
 179 firm that the model can spatial transfer: even when  
 180 trained on a limited subset of the training map (e.g.,  
 181 20% of the 80% training region, i.e., 16% of the full  
 182 training map), it achieves an average success rate  
 183 of 94% over three spatially disjoint test maps. As  
 184 shown in Figure 1, under a fixed budget, training on  
 185 more distinct questions consistently improves trans-  
 186 fer, even at the cost of reducing answer diversity.  
 187 For example, with a low budget, allocating all data  
 188 to distinct questions with one solution each yields  
 189 an SR of 94%, compared to only 82% when using  
 190 fewer questions but 32 solutions per question. This  
 191 pattern holds across all budget levels, showing that  
 192 unique questions provide higher marginal value than  
 193 unique solutions. (This does not imply that solutions  
 194 are unimportant; rather, one high-quality solution  
 195 per question appears sufficient under SFT.) How-  
 196 ever, the benefit of adding more questions quickly  
 197 saturates: at very high budgets, training with hun-  
 198 dreds of thousands of additional questions produces  
 199 almost no gain over low budgets.  
 200

201 **Takeaway 1 (Data efficiency guideline under SFT):** Spatial transfer (systematic CG) is best  
 202 supported by covering as many distinct questions as possible. This yields the most effective use  
 203 of the training budget, especially when collecting solutions is expensive.

### 204 3.2 COVERAGE VS. DIVERSITY IN QUESTIONS

205 If more distinct questions are more valuable, a second question arises: **which kinds of questions**  
 206 **should be prioritized?** Prior work on CG rarely considered solution diversity, but it has long  
 207 emphasized the importance of training distribution properties such as **coverage** and **diversity**. These  
 208 factors have been discussed since early seq2seq RNN and CNN models Lake & Baroni (2018);  
 209 Bahdanau et al. (2018); Keysers et al. (2019), and continue to play a central role for decoder-only  
 210 Transformers Lippl & Stachenfeld; Ahuja & Mansouri (2024); Levy et al. (2023). However, while  
 211 commonly believed to matter, their precise role remains unclear: are higher coverage and diversity  
 212 always beneficial? How do they interact? In this section, we empirically vary these two classic  
 213 factors in a controlled and decoupled way to measure their effect on systematic transfer.

214 We begin by defining these notions in our setting. Following Chang et al. (2025), we define coverage  
 215 and diversity in questions over node primitives.



216 Figure 1: Spatial transfer success rate (SR)  
 217 improves consistently with more budget allo-  
 218 cated to unique questions (log scale). Curves  
 219 show five budget levels (very low to very  
 220 high: 5%, 10%, 20%, 60%, 80% of all possi-  
 221 ble records). Dashed line marks the SR ceil.

222 <sup>2</sup>If a question admits fewer distinct solutions than required, we include all available solutions and allocate  
 223 the remaining budget to other questions without repetition.



216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269

Figure 2: Spatial transfer success rate (SR) measured on the disjoint maps as the nodes coverage ratio in the training map increases. Each curve corresponds to a fixed diversity level.



Figure 3: Spatial transfer success rate (SR) measured on the disjoint maps as the node pair com- position diversity level increases. Each curve corresponds to a fixed coverage ratio.

**(Local) Coverage.** Coverage measures the fraction of unique nodes (i.e., primitives) in the *local training map*  $G = (V, A)$  that appear in the training set. Formally, following Section 2, let  $V_{\text{train}} \subseteq V$  denote the set of nodes included in  $\mathcal{D}_{\text{train}}$ . We define  $c = |V_{\text{train}}|/|V|$ , which ranges between 0 and 1.

**Remark.** We stress that coverage is defined **only locally relative to the training map, not the global universe**. Even  $c = 0.8$  corresponds only to a tiny fraction of the universe of possible primitives. Since the model is expected (and observed) to spatially transfer to (infinitely) many disjoint maps  $\hat{G} = (\hat{V}, \hat{A})$ , including nodes from all such maps in the denominator would only dilute the fraction and make coverage misleadingly small. For comparability, we therefore compute coverage solely with respect to the training map; any nodes in any disjoint map  $\hat{G}$  are in fact uncovered.

**Diversity.** Diversity measures how richly the observed nodes are combined with each other in training. Formally, recall from Section 2 that  $\text{supp}(\mathcal{D}_{\text{train}})$  denotes the set of ordered node pairs included in training. We define  $d = |\text{supp}(\mathcal{D}_{\text{train}})|/|V_{\text{train}}|$ , which ranges from 1 to  $|V| - 1$ . Intuitively,  $d$  corresponds to the average number of distinct endpoints  $j$  that each start node  $i \in V_{\text{train}}$  is paired with. In practice, we control diversity explicitly by constraining, for each  $i$ , the number of distinct  $j$ 's that appear in pairs  $(i, j)$ .

**Remark.** Note that we intentionally do not normalize  $d$  by  $|V_{\text{train}}| - 1$ , since  $|V_{\text{train}}| = c|V|$ ; this would couple diversity with coverage and prevent the two from being varied independently.

**Experiment Design.** To disentangle the roles of coverage and diversity, we design controlled experiments where one factor is varied while the other is fixed. Coverage is defined as  $c = |V_{\text{train}}|/|V|$  and is varied by *linearly* increasing the fraction of nodes included in the training questions from as low as 4% up to 80% of the nodes in the training map. Diversity  $d$  is varied by controlling how many distinct endpoints  $j$  each start node  $i$  is connected to, ranging *exponentially* from  $2^0$  to  $2^7$ . We control the total number of question–answer records to remain fixed across conditions. We use the same evaluation protocol as before, with one training map  $G$  and three independent and disjoint maps  $\hat{G}$ , and report the average performance (measured by the success rate) over the three test maps.

### 3.2.1 COVERAGE QUANTIFICATION AT FIXED DIVERSITY

We draw three key observations from Figure 2:

**(1) Coverage determines the ceiling of spatial transfer.** Across a wide range of diversity levels (from  $d = 2^2$  to  $2^7$ ), the curves converge to a similar maximum SR once coverage is high. This shows that coverage ultimately sets the upper bound of systematic generalization, while diversity only influences how quickly, as coverage increases, this ceiling is approached.

**(2) Minimal diversity is required to unlock efficient use of coverage.** However, at very low diversity ( $d = 1, 2$ ), SR grows slowly and saturates at a noticeably lower level. Only when diversity passes a small threshold ( $d \geq 4$  here) does coverage begin to unlock its full effect.



Figure 4: Interaction between coverage and diversity on problem-solving transfer.

Figure 5: Spatial transfer does not imply length scaling.

**(3) Threshold and plateau phenomenon.** With sufficient diversity, SR exhibits a sharp inflection around mid-to-low coverage ( $\approx 0.2$ – $0.25$ ). Beyond this point, additional coverage yields diminishing returns, whereas below it, generalization remains poor.

**Takeaway 2:** Coverage in question sets the ceiling of spatial transfer, but minimal diversity is required to unlock it efficiently. Coverage also creates a sharp inflection point in SR, indicating a cost-efficient region at low values.

### 3.2.2 DIVERSITY EFFECTS AT FIXED COVERAGE

We next vary diversity while keeping coverage constant. Results in Figure 3 show two main patterns:

**(1) Log-linear gains at mid-to-high coverage.** At mid-to-high coverage, performance grows roughly linearly in  $\log(d)$ , indicating that the marginal benefit of additional diversity decreases as  $d$  grows. In other words, exposing the model to a few diverse combinations is highly beneficial, but each further doubling of diversity yields progressively smaller gains.

**(2) High diversity can hurt when coverage is low.** At low coverage, adding diversity sometimes reduces success rates. This likely occurs because exhaustively combining a tiny set of primitives encourages memorization rather than rule abstraction. For example, if a model is trained on a very small set 1, 2, 3 and exposed to all possible addition combinations, it can simply memorize the resulting facts without grasping the general rule of addition.

**Takeaway 3:** Diversity can bring rapid early gains but quickly flattens out, and may even harm transfer when coverage is low.

### 3.3 COVERAGE–DIVERSITY INTERACTION

Jointly analyzing coverage and diversity (Figure 4) reveals a clear interaction. At low coverage, even exponentially high diversity cannot rescue the performance (e.g., SR rises only from 0.06 to 0.19 when coverage is 4%). By contrast, at higher coverage (e.g., 64%), diversity strongly amplifies performance (raising SR from 0.42 at low diversity to above 0.65 at moderate-to-high diversity). High coverage can also partially compensate for low diversity (e.g., performance increasing from 0.08 to 0.70 when  $d = 1$ ).

Because diversity grows in cost exponentially, a **resource-efficient regime (highlighted in red, Figure 4) is to target mid-to-high coverage ( $\geq 32\%$ ) with modest diversity (8–32)**. This achieves strong performance at a much lower computational cost than maximizing both dimensions. Beyond this regime, both coverage and diversity show diminishing returns. Note that dataset size is approximately controlled across conditions by varying the number of answers, which actually makes high-coverage/low-diversity settings relatively disadvantaged (Section 3.1). The fact that such settings still outperform low-coverage/high-diversity extremes underscores the strength of the result.

324  
325  
326  
327

**Takeaway 4:** Low coverage in question cannot be rescued even with extreme diversity, but low diversity can be compensated by high coverage. Moderate-to-high coverage with modest diversity achieves the best efficiency–performance trade-off.

328  
329  
330  
331  
332  
333  
334  
335  
336

Intuitively, in broad problem-solving scenarios, primitives can be seen as the concepts that appear in questions. Coverage reflects how many distinct concepts are actually mentioned in training questions (e.g., in geometry, whether training questions touch only the triangle sum rule, or also include parallel-line angle rules, even though both are basic known primitives to the model). Diversity reflects how flexibly these concepts co-occur within questions (e.g., whether the triangle sum rule always appears alone, or also together with different angle rules across problems). The results in this section provide concrete guidance for dataset selection: to enable systematic transfer under a limited budget, one should prioritize broad coverage of concepts in question, combine it with only modest diversity in their combinations, and spend the least effort on solution diversity.

337  
338  
339  
340  
341  
342  
343  
344  
345

**Mechanistic explanation for the success of spatial transfer.** We observed strong generalization to disjoint maps, akin to how a language model, once having internalized a rule in English, can seamlessly apply the same rule to other languages it already knows. This suggests that the model does not merely memorize surface-level node n-gram, but rather encodes structured latent operators that can be flexibly reused across domains—for instance, “move to an adjacent node towards the end node” heuristic (which we probed in Section C.2). This interpretation aligns with recent theoretical progress framing attention as a hypernetwork (Schug et al., 2024), where attention scores serve as latent codes parameterizing reusable computations.

346  
347

#### 3.4 A CASE STUDY IN THE MATH DOMAIN

348  
349  
350  
351  
352

To examine whether the conclusions drawn from our controlled navigation environment transfer to a more realistic setting, we conduct a case study on mathematical word problems using the **MathQA** dataset (Amini et al., 2019). Each MathQA problem is annotated with a *linearized operation program* containing primitive mathematical operations. These programs serve as direct analogues of the primitives used in our navigation experiments. For instance, the problem:

353  
354  
355

“The ratio between the length and breadth of a rectangular park is 3 : 2. A man cycles around the boundary at 12 km/hr and completes one round in 8 minutes. What is the area of the park?”

356  
357  
358

has the corresponding operation chain:

```
divide(12, 60) | multiply(#0, 8) | multiply(#1, 1000) | add(3, 2) | multiply(2, #3) | divide(#2, #4) | multiply(#5, 3) | multiply(#5, 2) | rectangle_area(#6, #7)
```

359  
360  
361

We convert each program into an *unordered multiset of operations*, which defines the conceptual skill set of the problem. This allows us to operationalize:

362  
363  
364

- **Coverage:** number of distinct skill sets (operation-sets) in training;

- **Diversity:** number of distinct program structures that instantiate the same skill set.

365  
366  
367  
368  
369  
370

**Setup.** We fine-tune Qwen2.5-7B-Instruct (Team, 2024) on three representative categories—*probability* (easy), *gain* (medium), and *physics* (hard)—under a strict data budget of roughly 1,000 samples per category (and only  $\sim 200$  for *probability* due to its very small size). We use DeepSeek-R1 (DeepSeek-AI et al., 2025) to generate high-quality chain-of-thought solutions for supervision. Following our earlier observations, we compare the following data allocation strategies (more details are provided in Section D):

371  
372  
373

- **More Questions:** one solution per question, maximizing the number of distinct questions. This strategy has two variants:

374  
375  
376

- **High Coverage:** maximize the number of distinct operation-sets;
- **High Diversity:** increase the number of questions per operation-set (tenfold), and therefore operate under a smaller coverage.

377

- **More Solutions:** ten solutions per question and reducing the number of distinct questions.

378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
Table 1: Performance of different data regimes across MathQA categories.

|                            |                | probability (easy) | gain (medium) | physics (hard) |
|----------------------------|----------------|--------------------|---------------|----------------|
| <b>Qwen2.5-7B-Instruct</b> | –              | 0.729              | 0.70          | 0.68           |
| <b>More questions</b>      | High Coverage  | <b>0.792</b>       | <b>0.82</b>   | <b>0.77</b>    |
|                            | High Diversity | 0.792              | 0.74          | 0.74           |
| <b>More solutions</b>      | –              | 0.771              | 0.72          | 0.70           |

**More questions consistently outperform more solutions.** Across all three categories, both *More Questions* regimes (High Coverage and High Diversity) achieve better generalization than *More Solutions*. Notably, these improvements appear under an extremely small training budget: roughly 1,000 samples for category *gain* and *physics*, and only  $\sim 200$  for *probability*). Despite such limited supervision, allocating more budget to distinct questions still produces clear performance gains. For instance, in the *gain* category, accuracy rises from 0.70 to 0.82 under *High Coverage*, and a similar increase appears in the harder *physics* category (0.68  $\rightarrow$  0.77).

**Coverage plays the dominant role.** Within the *More Questions* group, *High Coverage* consistently outperforms *High Diversity* (e.g., 0.82 vs. 0.74 in *gain*; 0.77 vs. 0.74 in *physics*). This suggests that encountering a broader range of conceptual skills matters more than exposing the model to many different ways of applying or combining the seen skills. Taken together, these findings reinforce a simple intuition: *under realistic data budgets, breadth matters more than depth*.

## 4 EFFECTS OF DATA SELECTION ON PROBLEM-SOLVING SCALING

In addition to problem-solving transfer, a fundamental dimension of extrapolation is *problem-solving scaling* (or productivity in CG) (Sinha et al., 2024; Hupkes et al., 2020; Cai et al., 2025). While transfer asks whether rules can be applied spatially to infinitely many node pairs within the same length regime, scaling tests whether these rules extend to node pairs that require longer paths than those seen during training (see Section 2 for a formal definition). This raises a natural question: do the same conditions that enable spatial transfer (i.e., sufficient training questions and primitive coverage) also support scaling under SFT, or does this setting demand additional data conditions?

**Length scaling fails irrespective of the map.** In Figure 5, we show the length scaling performance of the strongest spatial-transfer model (selected under the high-budget setting with all budget allocated to questions and high primitive coverage–diversity). Results for other budgets are shown in Section C.6. We report success rate (SR) on both holdout nodes within the training map (*No spatial transfer*) and spatially disjoint maps (*Spatial transfer*). For each length group, evaluation is performed on 3,000 randomly sampled unseen node pairs. The trends are nearly identical: while the model achieves near-perfect generalization within the training length regime (blue region), SR rapidly deteriorates once path length exceeds the training maximum (red region). This indicates that **even when spatial transfer succeeds, length scaling can fail**.

**Rescuing with neighboring-and-longer paths.** Surprisingly, we found that adding even a handful of training examples randomly sampled from lengths at or above the target length can substantially rescue performance, whereas adding shorter paths provides much less benefit. For instance, in Figure 6, we evaluate performance on target length = 30, where the model exhibits suboptimal generalization. Augmenting the training set with a very small fraction ( $\approx 1\%$  of the training data) of neighboring-but-longer paths (e.g.,  $l = 32, 34$ ) raises success rates to nearly 90%. By contrast, adding shorter paths (e.g.,  $l = 22, 24$ ) yields small gains—even when added in large amounts (12%)—while much longer paths (e.g.,  $l = 80$ ) confuse the model and degrade performance. These results suggest that, under SFT, curriculum-like exposure to neighboring-and-longer examples provides the critical adaptation signal that neither shorter nor excessively long paths can supply.

**Takeaway 5:** Length generalization can be rescued by adding *neighboring-and-longer* paths; shorter ones give little benefit, and overly long ones can even harm performance.



Figure 6: Effect of adding paths of different lengths on SR to length = 30. A few neighboring-and-longer paths (e.g.,  $l = 32, 34$ ) give little gain, and overly long ones ( $l = 80$ ) degrade it. Dashed line: no augmentation.

Figure 7: RL does not further improve spatial transfer: performance bounded by the SFT baseline. Each group of bars corresponds to a different SFT checkpoint used to initialize RL. Blue bars denote one-pass RL and red bars denote multi-pass RL.

## 5 EFFECTS OF TRAINING PARADIGM ON PROBLEM-SOLVING

While the previous sections focus on how data properties shape problem-solving skills, another natural question is whether the training paradigm itself can provide further gains. A recent line of work presents compelling empirical evidence that reinforcement learning (RL) can enable extrapolative generalization beyond supervised fine-tuning (SFT) (Chu et al., 2025; Chen et al., 2025; Huang et al., 2025). At the same time, other studies argue that RL primarily unlocks capabilities already present in SFT rather than introducing new ones (Yue et al., 2025; Ma et al., 2025). We therefore test whether RL adds value on top of SFT for spatial transfer and length scaling.

**Spatial transfer setup.** As detailed in Section 2, we train the RLVR model using an unbiased GRPO variant with a binary reward of 1 if the generated sequence forms a valid shortest path, and 0 otherwise. The training data budget is set to high, under which the model is capable of spatially transferring (see Figure 1). RL is warm-started from different SFT checkpoints, ranging from 6% to 80% of SFT training progress. For each warm-start, we vary the number of rollouts per prompt in 4, 8, 16. We report two types of RL outcomes: (i) **one-pass RL** (blue bars), where the model is trained on the remaining data for a single pass; and (ii) **multi-pass RL** (red bars), where RL is allowed to repeatedly reuse the same remaining data. This disentangles the effects of warm-start quality, data availability, and rollout compute.

**RL does not improve spatial transfer.** As shown in Figure 7, RL does not confer additional capabilities beyond what can be achieved by a fully trained SFT for spatial transfer: the best RL curves are always bounded by the SFT upper line. Early warm-starts perform poorly in one-pass RL (blue bars), but multi-pass training (red bars) can recover the gap

**Length scaling setup.** To test whether RL can address the known weakness of SFT in length scaling under “unlimited” passes, we continue RL training for up to  $\sim 20$  epochs on the same dataset (rollout fixed at 8), with the model warm-started from an early SFT checkpoint (after 1 epoch, 400 steps). For comparison, we also extend SFT training for the same number of epochs.

**RL stabilizes training but cannot exceed the best SFT.** Figure 8 compares SFT and RL under the same 10-epoch progress and show a clear pattern: SFT initially improves with more steps but quickly overfits, leading to sharp degradation. RL curves, in contrast, remain tightly clustered across steps, indicating stable training even after many epochs. However, RL never exceeds the best SFT bound, confirming that additional training (whether SFT or RL) cannot resolve the fundamental limitation in length scaling. Results for extended RL training up to 20 epochs are provided Section C.7 and show the same stable trend.

Across both settings, RL’s role is primarily to **stabilize training** and avoid overfitting during prolonged training, rather than to unlock new reasoning capabilities. **As shown in Section F, the SFT and RL models exhibit the same error types with nearly identical error distributions**, indicating that



Figure 8: Length scaling under extended training (1 epoch  $\approx 400$  steps). Left: SFT improves at first but quickly overfits with more epochs. Right: RL (GRPO) remains stable across epochs but never exceeds the best SFT bound (dashed line).

RL cannot bypass the errors made by the corresponding SFT model. Consequently, the performance ceiling is always set by the best SFT model. This behavior is consistent with recent analyses of the *generation–verification gap* (Swamy et al., 2025): RL provides benefits when generating good continuations is difficult but verifying them is easy. In our setting, the optimal path can be computed explicitly, making generation nearly as easy as verification and effectively closing this gap. When the data are sufficient and high-quality, and data usage is carefully designed to avoid overfitting, SFT is more efficient at fitting available information. In contrast, RL serves as a more robust “safe default”, trading peak efficiency for stability when principled data selection is missing.

**Takeaway 6:** RL stabilizes training and prevents overfitting but does not unlock new transfer or scaling capabilities. The performance ceiling is always set by the best SFT model. SFT is more efficient with sufficient, high-quality data, while RL provides a safer default when principled data selection is missing.

*Remark.* Our findings do not suggest that RL is useless. In practice, training data are often noisy, heterogeneous, or subject to domain shifts, where SFT may overfit or struggle. RL, by exploiting sequence-level rewards, provides stability and robustness under such conditions. Our findings therefore reconcile two perspectives in the literature: RL may not add fundamentally new capabilities beyond SFT, but it can serve as a stability-enhancing paradigm when training on messy or poorly curated data. In such unfavorable settings for SFT, RL can appear to generalize better—not because it extends the capability frontier, but because it maintains robustness where SFT struggles.

## 6 CONCLUSION AND LIMITATIONS

In this work, we introduce a controlled map-navigation testbed to dissect extrapolative problem-solving. spatial transfer is primarily enabled by sufficient distinct questions with high coverage and modest diversity, while length scaling critically depends on exposure to neighboring-but-longer examples. For training paradigms, we find that RL effectively stabilizes optimization but cannot surpass the ceiling established by SFT. Overall, we provide clear guidelines for how data and training choices shape spatial and length generalization.

**Limitations** The main limitation of our study is that all conclusions are based on a synthetic testbed with small models, which naturally raises questions about practical relevance. We first want to highlight that this is an unavoidable trade-off: narrowing down the problem enables rigorous and well-controlled tests, but inevitably comes at the cost of practical realism. Despite the abundance of practical large-scale benchmarks, the insights gained so far remain limited. Our work therefore narrows the scope to a smaller, more concrete setting. To increase practical relevance, we ground our setup in problem-solving tasks that widely exist in real-world scenarios, employ path data that is closely tied to reasoning and math, and incorporate RL paradigms. In realistic contexts, training a series of RL models is mostly infeasible since RLVR typically requires large base models and substantial compute, whereas our synthetic task (with the easy-to-verify reward) makes such systematic experimentation tractable.

540 REFERENCES  
541

542 Amirhesam Abedsoltan, Huaqing Zhang, Kaiyue Wen, Hongzhou Lin, Jingzhao Zhang, and Mikhail  
543 Belkin. Task generalization with autoregressive compositional structure: Can learning from  $d$   
544 tasks generalize to  $d^t$  tasks? *arXiv preprint arXiv:2502.08991*, 2025.

545 Kartik Ahuja and Amin Mansouri. On provable length and compositional generalization. *arXiv*  
546 *preprint arXiv:2402.04875*, 2024.

547 AI@Meta. Llama 3 model card. 2024. URL [https://github.com/meta-llama/llama3/blob/main/MODEL\\_CARD.md](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md).

548 Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh  
549 Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based  
550 formalisms. In *Proceedings of the 2019 Conference of the North American Chapter of the Association  
551 for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short  
552 Papers)*, pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computational  
553 Linguistics. doi: 10.18653/v1/N19-1245. URL <https://aclanthology.org/N19-1245>.

554 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-  
555 brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization  
556 in large language models. In *Advances in Neural Information Processing Systems*, volume 35, pp.  
557 38546–38556, 2022.

558 Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and  
559 Aaron Courville. Systematic generalization: what is required and can it be learned? *arXiv*  
560 *preprint arXiv:1811.12889*, 2018.

561 Francesco Cagnetta, Leonardo Petrini, Umberto M Tomasini, Alessandro Favero, and Matthieu  
562 Wyart. How deep neural networks learn compositional data: The random hierarchy model. *Physical  
563 Review X*, 14(3):031001, 2024.

564 Ziyang Cai, Nayoung Lee, Avi Schwarzschild, Samet Oymak, and Dimitris Papailiopoulos. Ex-  
565 trapolation by association: Length generalization transfer in transformers. *arXiv preprint  
566 arXiv:2506.09251*, 2025.

567 Hoyeon Chang, Jinho Park, Hanseul Cho, Sohee Yang, Miyoung Ko, Hyeonbin Hwang, Seungpil  
568 Won, Dohaeng Lee, Youbin Ahn, and Minjoon Seo. The coverage principle: A framework for  
569 understanding compositional generalization. *arXiv preprint arXiv:2505.20278*, 2025.

570 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang  
571 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models.  
572 *arXiv preprint arXiv:2504.11468*, 2025.

573 Noam Chomsky. *Syntactic Structures*. Mouton, 1957.

574 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V  
575 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation  
576 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

577 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
578 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to  
579 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

580 Andrew Cohen, Andrey Gromov, Kaiyu Yang, and Yuandong Tian. Spectral journey: How trans-  
581 formers predict the shortest path. *arXiv preprint arXiv:2502.08794*, 2025.

582 Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. Ctl++: Evaluating generalization on never-  
583 seen compositional patterns of known functions, and compatibility of neural representations.  
584 *arXiv preprint arXiv:2210.06350*, 2022.

585 Xinnan Dai, Qihao Wen, Yifei Shen, Hongzhi Wen, Dongsheng Li, Jiliang Tang, and Caihua Shan.  
586 Revisiting the graph reasoning ability of large language models: Case studies in translation, con-  
587 nectivity and shortest path. *arXiv preprint arXiv:2408.09529*, 2024.

594 Verna Dankers, Elia Bruni, and Dieuwke Hupkes. The paradox of the compositionality of natural  
 595 language: A neural machine translation case study. *arXiv preprint arXiv:2108.05885*, 2021.  
 596

597 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
 598 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
 599 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao  
 600 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,  
 601 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,  
 602 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,  
 603 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang  
 604 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai  
 605 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,  
 606 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,  
 607 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,  
 608 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,  
 609 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng  
 610 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing  
 611 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen  
 612 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong  
 613 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,  
 614 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-  
 615 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia  
 616 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng  
 617 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong  
 618 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,  
 619 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,  
 620 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying  
 621 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda  
 622 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,  
 623 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu  
 624 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-  
 625 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

626 Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location attention for extrapolation  
 627 to longer sequences. *arXiv preprint arXiv:1911.03872*, 2019.

628 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean  
 629 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of trans-  
 630 formers on compositionality. *Advances in Neural Information Processing Systems*, 36:70293–  
 631 70332, 2023.

632 Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length  
 633 generalization. *arXiv preprint arXiv:2409.15647*, 2024.

634 Jingwen Fu, Zhizheng Zhang, Yan Lu, and Nanning Zheng. A general theory for compositional  
 635 generalization. *arXiv preprint arXiv:2405.11743*, 2024.

636 Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli. Compositional generalization  
 637 in semantic parsing: Pre-training vs. specialized architectures. *arXiv preprint arXiv:2007.08970*,  
 638 2020.

639 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin  
 640 Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence  
 641 with apps. *arXiv preprint arXiv:2105.09938*, 2021.

642 Wenzuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and  
 643 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.  
 644 *arXiv preprint arXiv:2503.06749*, 2025.

645 Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. *arXiv preprint*  
 646 *arXiv:2507.15855*, 2025.

648 Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:  
 649 How do neural networks generalise? *Journal of Artificial Intelligence Research*, 67:757–795,  
 650 2020.

651 Dieuwke Hupkes, Mario Giulianelli, Verna Dankers, Mikel Artetxe, Yanai Elazar, Tiago Pimentel,  
 652 Christos Christodoulopoulos, Karim Lasri, Naomi Saphra, Arabella Sinclair, et al. A taxonomy  
 653 and review of generalization research in nlp. *Nature Machine Intelligence*, 5(10):1161–1174,  
 654 2023.

655 Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François  
 656 Charton. Length generalization in arithmetic transformers. *arXiv preprint arXiv:2306.15400*,  
 657 2023.

658 Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion models.  
 659 *arXiv preprint arXiv:2412.20292*, 2024.

660 Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva  
 661 Reddy. The impact of positional encoding on length generalization in transformers. *Advances  
 662 in Neural Information Processing Systems*, 36:24892–24928, 2023.

663 Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-  
 664 bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measur-  
 665 ing compositional generalization: A comprehensive method on realistic data. *arXiv preprint  
 666 arXiv:1912.09713*, 2019.

667 Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on semantic  
 668 interpretation. *arXiv preprint arXiv:2010.05465*, 2020.

669 Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills  
 670 of sequence-to-sequence recurrent networks. In *International conference on machine learning*,  
 671 pp. 2873–2882. PMLR, 2018.

672 Michael Lepori, Thomas Serre, and Ellie Pavlick. Break it down: Evidence for structural compo-  
 673 sitionality in neural networks. *Advances in Neural Information Processing Systems*, 36:42623–  
 674 42660, 2023.

675 Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context compo-  
 676 sitional generalization. In *Proceedings of the 61st Annual Meeting of the Association for Compu-  
 677 tational Linguistics (Volume 1: Long Papers)*, pp. 1401–1422, 2023.

678 Martha Lewis, Nihal V Nayak, Peilin Yu, Qinan Yu, Jack Merullo, Stephen H Bach, and Ellie  
 679 Pavlick. Does clip bind concepts? probing compositionality in large image models. *arXiv preprint  
 680 arXiv:2212.10537*, 2022.

681 Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-  
 682 berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.  
 683 *ICLR*, 2023.

684 Qiyao Liang, Daoyuan Qian, Liu Ziyin, and Ila Fiete. Compositional generalization requires more  
 685 than disentangled representations. *arXiv e-prints*, pp. arXiv–2501, 2025.

686 Samuel Lippl and Kim Stachenfeld. When does compositional structure yield compositional gener-  
 687 alization? a kernel theory. In *The Thirteenth International Conference on Learning Representa-  
 688 tions*.

689 Adam Liška, Germán Kruszewski, and Marco Baroni. Memorize or generalize? searching for a  
 690 compositional rnn in a haystack. *arXiv preprint arXiv:1802.06467*, 2018.

691 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,  
 692 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint  
 693 arXiv:2503.20783*, 2025.

694 Joao Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar: Testing compositional  
 695 generalization in recurrent networks. *arXiv preprint arXiv:1807.07545*, 2018.

702 Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu,  
 703 Chengyu Shen, Runming He, Bin Cui, et al. Learning what reinforcement learning can't: In-  
 704 terleaved online fine-tuning for hardest questions. *arXiv preprint arXiv:2506.07527*, 2025.

705 Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision and  
 706 length extrapolation. *arXiv preprint arXiv:2010.07174*, 2020.

708 Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-  
 709 rithms: Language models solve math with a bag of heuristics. *arXiv preprint arXiv:2410.21272*,  
 710 2024.

711 Alexander Novikov, Ng n V , Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt  
 712 Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,  
 713 et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. *arXiv preprint*  
 714 *arXiv:2506.13131*, 2025.

716 Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge  
 717 multiplicatively: Exploring diffusion models on a synthetic task. *Advances in Neural Information*  
 718 *Processing Systems*, 36:50173–50195, 2023.

719 Santiago Ontanon, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making transformers solve  
 720 compositional tasks. *arXiv preprint arXiv:2108.04378*, 2021.

722 Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The  
 723 impact of depth on compositional generalization in transformer language models. *arXiv preprint*  
 724 *arXiv:2310.19956*, 2023.

726 Philip Quirk and Fazl Barez. Understanding addition in transformers. *arXiv preprint*  
 727 *arXiv:2310.13121*, 2023.

728 Philip Quirk, Clement Neo, and Fazl Barez. Arithmetic in transformers explained. *arXiv preprint*  
 729 *arXiv:2402.02619*, 2024.

731 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan  
 732 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,  
 733 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin  
 734 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,  
 735 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,  
 736 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.  
 737 URL <https://arxiv.org/abs/2412.15115>.

738 Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona, Robert P Dick, and Hidenori Tanaka. Com-  
 739 positional capabilities of autoregressive transformers: A study on synthetic, interpretable tasks.  
 740 *arXiv preprint arXiv:2311.12997*, 2023.

742 Simon Schug, Sejin Kobayashi, Yassir Akram, Jo o Sacramento, and Razvan Pascanu. Attention  
 743 as a hypernetwork. *arXiv preprint arXiv:2406.05816*, 2024.

744 Sania Sinha, Tanawan Prem Sri, and Parisa Kordjamshidi. A survey on compositional learning of ai  
 745 models: Theoretical and experimental practices. *arXiv preprint arXiv:2406.08787*, 2024.

747 Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer  
 748 with rotary position embedding. In *Proceedings of the 59th Annual Meeting of the Association*  
 749 *for Computational Linguistics (ACL)*, pp. 115–124. Association for Computational Linguistics,  
 750 2021.

751 Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, and J Andrew Bagnell. All  
 752 roads lead to likelihood: The value of reinforcement learning in fine-tuning. *arXiv preprint*  
 753 *arXiv:2503.01067*, 2025.

755 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

756 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan  
 757 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement  
 758 learning. <https://github.com/huggingface/trl>, 2020.

759

760 Yuxiang Wang, Xinnan Dai, Wenqi Fan, and Yao Ma. Exploring graph tasks with pure llms: A  
 761 comprehensive benchmark and investigation. *arXiv preprint arXiv:2502.18771*, 2025a.

762

763 Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,  
 764 Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.  
 765 *arXiv preprint arXiv:2505.15116*, 2025b.

766

767 Thaddäus Wiedemer, Jack Brady, Alexander Panfilov, Attila Juhos, Matthias Bethge, and Wieland  
 768 Brendel. Provable compositional generalization for object-centric learning. *arXiv preprint  
 769 arXiv:2310.05327*, 2023a.

770

771 Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Composi-  
 772 tional generalization from first principles. *Advances in Neural Information Processing Systems*,  
 773 36:6941–6960, 2023b.

774

775 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,  
 776 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art  
 777 natural language processing. In *Proceedings of the 2020 conference on empirical methods in  
 778 natural language processing: system demonstrations*, pp. 38–45, 2020.

779

780 Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-  
 781 ity? an investigation into limitations and scalability. *arXiv preprint arXiv:2407.15720*, 2024.

782

783 Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to  
 784 size generalization in graph neural networks. In *International Conference on Machine Learning*,  
 785 pp. 11975–11986. PMLR, 2021.

786

787 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-  
 788 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv  
 789 preprint arXiv:2504.13837*, 2025.

790

791 Tian Yun, Usha Bhalla, Ellie Pavlick, and Chen Sun. Do vision-language pretrained models learn  
 792 composable primitive concepts? *arXiv preprint arXiv:2203.17271*, 2022.

793

794 Qifan Zhang, Nuo Chen, Zehua Li, Miao Peng, Jing Tang, and Jia Li. Improving llms’ generalized  
 795 reasoning abilities by graph problems. *arXiv preprint arXiv:2507.17168*, 2025.

796

797 Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and  
 798 Yulia Tsvetkov. Can llm graph reasoning generalize beyond pattern memorization? *arXiv preprint  
 799 arXiv:2406.15992*, 2024.

800

801 Hattie Zhou, Arwen Bradley, Eta Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,  
 802 and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.  
 803 *arXiv preprint arXiv:2310.16028*, 2023.

804

## 805 A LLM USAGE

806 We use ChatGPT and Gemini to support writing and formatting, such as grammar and style refine-  
 807 ment, polishing figure and table captions, and other surface-level edits. Some of the code is written  
 808 with the help of GitHub Copilot and Claude, for example, in code auto-completion and providing  
 809 debugging suggestions.

810 B RELATED WORKS  
811

812 **Compositional and length generalization** Our notion of extrapolative problem-solving is closely  
813 tied to systematicity in compositional generalization (CG) and to length generalization, sometimes  
814 referred to as productivity in CG. Compositional Generalization (CG) plays a central role in gener-  
815 alization studies, which underpins the ability to extend learning to unseen situations (Hupkes et al.,  
816 2023). *Systematicity*, the most common definition of CG, refers to the capacity to systematically  
817 recombine known primitives and rules (Dankers et al., 2021). While Systematicity has long been  
818 regarded as a fundamental challenge for neural networks (Liška et al., 2018; Lake & Baroni, 2018;  
819 Loula et al., 2018; Csordás et al., 2022; Ontanon et al., 2021; Keysers et al., 2019; Lewis et al.,  
820 2022), recent work has increasingly provided evidence that modern generative models exhibit non-  
821 trivial Systematic CG abilities (Lepori et al., 2023; Yun et al., 2022; Okawa et al., 2023; Ramesh  
822 et al., 2023; Abedsoltan et al., 2025; Xu et al., 2024). Further progress in understanding Systematic  
823 CG comes from multiple perspectives: the structural side (Lepori et al., 2023; Schug et al., 2024;  
824 Quirke & Barez, 2023; Li et al., 2023), the task side (Abedsoltan et al., 2025; Zhou et al., 2023),  
825 and the data side (Lippl & Stachenfeld; Ahuja & Mansouri, 2024; Kamb & Ganguli, 2024; Chang  
826 et al., 2025; Cagnetta et al., 2024). For example, (Schug et al., 2024) shows that multi-head attention  
827 can function as a hypernetwork supporting compositional behavior (e.g., encouraging learning  
828 functions as reusable components). From the data perspective, (Ahuja & Mansouri, 2024) derives  
829 provable guarantees for length and compositional generalization under sufficient training-set diver-  
830 sity, while (Chang et al., 2025) frames training data coverage as a key factor in a model’s ability to  
831 generalize to unseen combinations.

832 Progress on compositionality in vision object learning has become increasingly well characterized,  
833 both empirically (Yun et al., 2022) and theoretically (Wiedemer et al., 2023b;a). In language, how-  
834 ever, understanding remains fragmented: studies have pointed to a variety of factors (e.g., from  
835 model-side (Kazemnejad et al., 2023; Petty et al., 2023) to data-side (Ahuja & Mansouri, 2024;  
836 Chang et al., 2025)), but lacking an integrated account. Our work takes a data-centric perspective,  
837 unifying the recurring factors into a coherent view of how they jointly shape the model’s systematic  
838 extrapolation. Inspired by progress in vision, where disentangled primitives and rules have enabled  
839 clearer advances, and to avoid prior inconclusive results in language (Lake & Baroni, 2018; Furrer  
840 et al., 2020; Dziri et al., 2023), we design map-navigation tasks in which primitives (nodes) and rules  
841 (mobilities) are cleanly disentangled, allowing us to directly assess the influence of data properties  
842 on generalization performance (Liang et al., 2025).

843 *Length generalization*, or *Productivity*, is another notion within the broader study of compositional  
844 generalization Sinha et al. (2024). It has been widely discussed as a central challenge (Dubois  
845 et al., 2019; Newman et al., 2020; Cai et al., 2025; Fan et al., 2024; Jelassi et al., 2023; Anil et al.,  
846 2022), and is sometimes framed as a form of recursive composition or extrapolation Kim & Linzen  
847 (2020); Hupkes et al. (2020); Dziri et al. (2023). For instance, in natural language tasks, longer  
848 input sequences may correspond to recursive or nested structures of previously seen phrases Kim  
849 & Linzen (2020). In our setting, path length provides a directly controllable axis for studying this  
850 phenomenon: extrapolating to longer paths mirrors the core difficulty of length generalization, while  
851 allowing us to systematically manipulate the data properties and training paradigm to probe its limits.

852 **Graph navigation and other capabilities** While our work may appear related to prior studies  
853 that evaluate models’ graph navigation abilities Zhang et al. (2024); Wang et al. (2025a), build  
854 powerful graph models Wang et al. (2025b); Yehudai et al. (2021), or use graph data to enhance LMs’  
855 reasoning Zhang et al. (2025), it is in fact fundamentally different in both task setting and goal. First,  
856 rather than treating the graph as the task itself (i.e., providing the model with many small graphs in  
857 prompts and training it to solve specific navigation task on future graphs), our work considers the  
858 large map and treats each map as an independent vocabulary world. Instead of explicitly describing  
859 the graph structure, we require the model to learn the connections and the map itself, analogous to  
860 how LLMs acquire word semantics during pretraining. The map is sufficiently complex that it cannot  
861 be memorized or learned within a single prompt. Second, our goal is not to test whether models  
862 can perform navigation tasks, nor to improve navigation performance by modifying architectures  
863 or training pipelines. Instead, we seek to understand models’ compositionality/extrapolation under  
864 varying data distributional properties. To ensure that our focus remains on distributional effects,  
865 we even restrict ourselves to tasks that are already proven to be learnable Cohen et al. (2025);

864 Dai et al. (2024). Therefore, our work is also orthogonal to studies that examine whether models  
 865 can perform specific capabilities with certain heuristics under narrowly defined tasks Quirke et al.  
 866 (2024); Nikankin et al. (2024); Cohen et al. (2025).

## 868 C ADDITIONAL RESULTS

### 871 C.1 IMPLEMENTATION AND LICENSING.

872 Our LLaMA-style models are based on the standard implementations in the Hugging Face  
 873 transformers library (Apache 2.0 license) Wolf et al. (2020). Reinforcement learning with  
 874 Dr.GRPO is conducted using the GRPOTrainer from the Hugging Face TRL library (Apache 2.0  
 875 license) (von Werra et al., 2020).

877 **Pretrain Specifications.** We pretrain the model on random-walk trajectories to provide basic “map  
 878 semantics” without leaking any shortest-path information. The pretraining data consists of long  
 879 random walks sampled uniformly across the grid.

880 We adopt a pretraining corpus of **10M random-walk trajectories** (approximately 1.3B tokens),  
 881 trained for **124,999** steps. This number was chosen based on preliminary runs with smaller datasets  
 882 (2M, 5M, and 8M trajectories), where we observed that the model’s valid-path rate increases steadily  
 883 with data size and saturates at the 10M scale. As reported in Table 3, at this final budget, the pre-  
 884 trained model achieves a **valid-path rate of 1.0** while retaining zero shortest-path capability, con-  
 885 firming that pretraining captures structural map knowledge without imparting any optimal navigation  
 886 behavior.

### 888 C.2 PROBING: MODEL TRACKS DISTANCE TO THE END NODE

890 We investigate whether the model encodes the remaining shortest-path distance to the end node,  
 891 which would allow it to apply heuristics such as “move towards the goal”. For probing, we apply a  
 892 2-layer MLP,  $p_{\theta}(x_t^k) = \text{softmax}(W_1 \text{ReLU}(W_2 x_t^k))$ , where  $x_t^k$  denotes the hidden representation of  
 893 the  $t$ -th token at the  $k$ -th layer. The probe outputs a probability distribution over discretized distance  
 894 classes ( $C = 10$ ). Although we probe at a *fixed token position*, the hidden state at this position  
 895 already integrates information from all previous tokens, including the traversed path. We thus train  
 896 a probe on paths of varied length from the training map for each layer, and test it on paths from  
 897 a disjoint map, grouping path lengths from 1–20 into 10 classes (granularity of 2). As shown in  
 898 Table 2, the nonlinear probe achieves high accuracy, especially in middle-to-late layers, supporting  
 899 the hypothesis that the model encodes distance-based heuristics as reusable operators for spatial  
 900 transfer. While a linear probe would provide a stronger conclusion, we have not yet identified one  
 901 that performs well in this setting.

902 Table 2: Probe accuracy (%) across layers.

| 904 Layer | 905 Accuracy (%) |
|-----------|------------------|
| 906 0     | 35.94            |
| 907 1     | 32.78            |
| 908 2     | 57.85            |
| 909 3     | 76.58            |
| 910 4     | 83.14            |
| 911 5     | <b>86.29</b>     |
| 912 6     | <b>85.77</b>     |
| 913 7     | 81.55            |

### 915 C.3 PRETRAINING DOES NOT INTERFERE WITH DOWNSTREAM SHORTEST-PATH LEARNING

916 To ensure that our pretraining stage does not leak or overlap with the downstream shortest-path  
 917 task, we evaluate pretrained models directly on shortest-path generation. Both the loss distribution

918  
 919 Table 3: Performance on shortest-path generation. Pretrained models cannot generate valid shortest  
 920 paths, confirming that pretraining does not interfere with downstream learning. The Avg. Length  
 921 Ratio measures the ratio between the true shortest-path length and the generated path length.  
 922

| Model Trained on | Valid Path Rate↑ | Shortest Path Rate↑ | Avg. Length Ratio↑ |
|------------------|------------------|---------------------|--------------------|
| Pretrain         | 1.0              | 0.00                | 0.0707             |
| Finetune         | 1.0              | 0.9726              | 0.9983             |

923  
 924 analysis Figure 9 and generation performance Table 3 confirm that pretraining does not endow the  
 925 model with shortest-path capabilities, thereby ruling out interference.  
 926



946 Figure 9: Loss distributions of the pretrained and fine-tuned models on test (*i.e.* unseen) shortest  
 947 paths. The distributions are completely disjoint, indicating that pretraining alone does not prepare  
 948 the model with shortest-path generation capabilities.  
 949

#### C.4 TRAINING PATH-LENGTH DISTRIBUTION UNDER VARYING COVERAGE VALUES

950 To examine whether the shortest-path distance distribution shifts as coverage increases, potentially  
 951 contributing to performance gains, we plot the shortest-path length histograms for different coverage  
 952 ratios (under fixed diversity). Figure 10 reports the relative-frequency distributions ( $x$ : path length,  
 953  $y$ : proportion of samples) for coverage values  $\{0.01, 0.05, 0.1, 0.2, 0.6, 0.8\}$  on the training map  $G$ .  
 954

955 Although the total number of sampled start–end pairs increases with coverage, the **shape of the**  
 956 **path-length distribution remains highly stable** across all settings. The mean shortest-path length  
 957 is consistently around 13.25 with a standard deviation of approximately 4.85, and the proportion of  
 958 samples near the maximum observed training length ( $L_{\max} = 20$ ) shows minimal variation.  
 959

960 These statistics confirm that increasing coverage does not introduce systematic changes to the length  
 961 distribution, ensuring that our analyses isolate the effect of coverage itself rather than incidental  
 962 differences in distance exposure.  
 963

#### C.5 LENGTH SCALING UNDER A RELAXED FEASIBILITY METRIC

964 We additionally evaluate navigation under a relaxed metric, valid rates, that counts any trajectory  
 965 reaching the goal (without using invalid edges) as correct, rather than requiring shortest-path optimality.  
 966 As shown in Figure 11, feasibility remains near perfect for in-distribution lengths but  
 967 still degrades substantially for longer paths. Relaxing the objective, therefore, does not remove the  
 968 length-scaling failure. Instead, the higher feasible-path rates relative to shortest-path success sug-  
 969 gest that the drop in performance arises from a combination of producing invalid trajectories and  
 970 producing valid but non-optimal (non-shortest) ones.  
 971



Figure 10: Shortest-path lengths distribution under varying coverage ratios (fixed diversity). The distributions remain stable across settings, indicating that coverage does not alter distance exposure.



Figure 11: Valid-path rates across length groups. Although absolute performance improves, the same length-scaling failure persists.

## C.6 LENGTH SCALING PERFORMANCE UNDER DIFFERENT BUDGETS

For completeness, we also evaluate length scaling across different data budgets (Figure 12). For each budget, we select the best-performing spatial-transfer model and report success rates (SR) on holdout node pairs with longer paths between them within the training map.



Figure 12: Length scaling performance of the best spatial-transfer model under different data budgets. All evaluations are conducted on holdout nodes within the training map (i.e., without spatial transfer). Despite variation in budgets, success rate (SR) consistently deteriorates as path length exceeds the training regime, showing that length scaling fails universally.

### C.7 RL PERFORMANCE FOR MORE TRAINING STEPS



Figure 13: Length scaling for RL under extended training for 20 epochs (1 epoch  $\approx$  400 steps).

## D PRACTICAL IMPLICATION: EVIDENCE FROM MATH DOMAIN

To assess the practical relevance of our findings beyond the synthetic map-navigation setting, we conduct a complementary study in the math domain. Specifically, we aim to examine whether, in a more realistic setting, *seeing more questions* remains more impactful than *seeing more solutions*, and whether a question’s *coverage* plays a more dominant role than its *diversity*.

### D.1 SETUP

**Dataset** We select the **MathQA** dataset (Amini et al., 2019) for evaluation because: (1) it contains six well-separated conceptual categories (gain, geometry, probability, physics, general, other), spanning a range of difficulties and posing greater challenges to commonly used 7B models than simpler math benchmarks such as **GSM8K** (Qwen et al., 2025); and (2) critically, it provides *linearized operation programs*. These programs act as direct analogues of the primitives in our navigation setting.

For instance, the problem:

1080        “The ratio between the length and breadth of a rectangular park is 3 : 2. A man cycles  
 1081        around the boundary at 12 km/hr and completes one round in 8 minutes. What is the area  
 1082        of the park?”

1083        has the corresponding operation chain:

1085         $\text{divide}(12, 60) \mid \text{multiply}(\#0, 8) \mid \text{multiply}(\#1, 1000) \mid \text{add}(3, 2) \mid \text{multiply}(2, \#3) \mid \text{divide}(\#2,$   
 1086         $\#4) \mid \text{multiply}(\#5, 3) \mid \text{multiply}(\#5, 2) \mid \text{rectangle\_area}(\#6, \#7)$

1088        Each operation chain can be converted into an unordered multiset of primitive operations, which  
 1089        captures the conceptual skills required by the problem and serves as a natural analogue to the primitives  
 1090        in our map setting. This representation allows us to define both *coverage* and *diversity* directly  
 1091        on mathematical problems. For datasets without human-provided formulas, we verify that a modern  
 1092        LLM can reliably extract the underlying primitive operations from natural-language questions using  
 1093        a short instruction prompt (e.g., `["compute rectangle area", "multiply", ...]`). A sample prompt-response pair is provided in Section E.1.

1095        **Definitions of terms** We restate the core terms (questions, solutions, coverage, diversity) in the  
 1096        context of this math setting:

- 1098        • **Questions:** Each distinct math word problem.
- 1099        • **Solutions:** For each question, multiple high-quality reasoning traces may exist, and each  
 1100        trace is counted as a solution. We use DeepSeek-R1 (DeepSeek-AI et al., 2025) to pro-  
 1101        duce such traces (i.e., explicit chain-of-thought outputs in the form of “Let’s think step-by-  
 1102        step.”).
- 1103        • **Coverage and diversity in the math domain.** Each MathQA problem is paired with a lin-  
 1104        earized operation program specifying the sequence of primitive mathematical operations  
 1105        used to solve the problem. To align these programs with the coverage–diversity frame-  
 1106        work introduced in our map-navigation setting, we decompose them into two orthogonal  
 1107        components:
  - 1108            – **Coverage.** A single primitive operation (e.g., `add`, `multiply`) is too coarse to char-  
 1109            acterize mathematical problem types, as most problems reuse the same small set of  
 1110            basic operations. What distinguishes one problem type from another is the *combi-*  
 1111            *nation* of operations required. Therefore, we treat the *primitive operation-set*—the  
 1112            unordered multiset of operations appearing in an operation program—as the atomic  
 1113            semantic unit of a mathematical problem. This operation-set captures the underly-  
 1114            ing conceptual skills (or knowledge points) and serves as the minimal distinguishing  
 1115            signature of a problem type. Under this abstraction, coverage measures how many  
 1116            distinct operation-sets the model encounters during training.
  - 1117            – **Diversity.** In the map setting, diversity measures how many distinct composition pat-  
 1118            terns exist under the same primitive support—that is, how flexibly a primitive partic-  
 1119            ipates in different relational structures. In the math domain, operations are composed  
 1120            sequentially rather than graphically, but the analogous notion remains: *the number of*  
 1121            *distinct program structures (operator orderings) that instantiate the same primitive*  
 1122            *operation-set*. This measures how flexibly a fixed conceptual skill set can be com-  
 1123            posed into different reasoning chains, without introducing new skills.

1123        For example, the two operation programs below share the same primitive operation-set but  
 1124        differ in ordering; thus, they contribute to diversity but not coverage:

1125         $[\text{divide}, \text{multiply}, \text{add}, \text{rectangle\_area}]$   
 1126         $[\text{add}, \text{divide}, \text{multiply}, \text{rectangle\_area}]$

1128        We fine-tune Qwen2.5-7B-Instruct (Team, 2024) across three representative difficulty categories in  
 1129        MathQA: *probability* (easy), *gain* (medium), and *physics* (hard). For each category, we  
 1130        fix a tight training budget of roughly 20% of its available samples (approximately 1,000 examples),  
 1131        except for the *probability* split, which uses 50% due to its extremely small size. All models are  
 1132        evaluated on the test set corresponding to the same category. As described above, we use DeepSeek-  
 1133        R1 to generate high-quality chain-of-thought traces for each question and construct three training  
 regimes:

1134 Table 4: Performance of different data regimes across three MathQA categories.  
1135

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | probability    | gain         | physics     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------|
| 1136 | <b>Qwen2.5-7B-Instruct</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | –              | 0.729        | 0.70        |
| 1137 | <b>More questions</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | High Coverage  | <b>0.792</b> | <b>0.82</b> |
| 1138 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | High Diversity | 0.792        | 0.74        |
| 1139 | <b>More solutions</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | –              | 0.771        | 0.70        |
| 1140 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1141 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1142 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1143 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1144 | • <b>More Questions:</b> each question is paired with exactly <i>one</i> solution, enabling a larger num-<br>1145 ber of distinct questions to be included under the same training budget. This includes two<br>1146 cases:<br>1147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |             |
| 1148 | – <b>High Coverage:</b> we include as many distinct primitive operation-sets as possible,<br>1149 resulting $n$ questions per set;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |             |
| 1150 | – <b>High Diversity:</b> for each operation-set we include $10n$ distinct questions, which in-<br>1151 creases structural diversity but necessarily reduces the number of covered operation-<br>1152 sets under the same training budget;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |              |             |
| 1153 | • <b>More Solutions:</b> each question is paired with ten independently generated solutions;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |              |             |
| 1154 | <b>D.2 RESULTS ANALYSIS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |              |             |
| 1155 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1156 | The results in Table 4 demonstrate that the core principles identified in our controlled navigation set-<br>1157 ting apply to the MathQA domain, even though these practical tasks contain heterogeneous natural-<br>1158 language formulations and lack clearly separable generalization axes (e.g., spatial or length extrap-<br>1159 olation).                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |              |             |
| 1160 | <b>More questions consistently outperform more solutions.</b> Across all three categories (i.e., gain,<br>1161 probability, and physics), both <i>More Questions</i> regimes (High Coverage and High Diver-<br>1162 sity) achieve better generalization than <i>More Solutions</i> . Notably, these improvements appear under<br>1163 an extremely small training budget: roughly 1,000 samples for category gain and physics, and<br>1164 only $\sim 200$ for probability). Despite such limited supervision, allocating more budget to dis-<br>1165 tinct questions still produces clear performance gains. For instance, in the gain category, accu-<br>1166 racy rises from 0.70 to 0.82 under High Coverage, and a similar increase appears in the harder<br>1167 physics category (0.68 $\rightarrow$ 0.77). |                |              |             |
| 1168 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1169 | <b>Coverage (operation-set variety) remains the dominant factor.</b> Within the <i>More Questions</i><br>1170 groups, High Coverage consistently outperforms High Diversity (e.g., 0.82 vs. 0.74 in<br>1171 gain, 0.77 vs. 0.74 in physics). This suggests that the model gains more from being exposed<br>1172 to a broader set of conceptual skills than from seeing many different applications, orderings, or<br>1173 compositional variants of the same skill set. This echoes the threshold behavior observed in the nav-<br>1174 igation setting: once the model has seen the <i>right set of conceptual skills</i> , generalization improves<br>1175 sharply—even without extensive practice on each skill.                                                                                                |                |              |             |
| 1176 | Taken together, these findings reinforce a simple intuition: <i>under realistic data budgets, breadth</i><br>1177 <i>matters more than depth.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |              |             |
| 1178 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1179 | <b>E PROMPTS USED IN THE PIPELINE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |              |             |
| 1180 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1181 | <b>E.1 PROMPT FOR EXTRACTING PRIMITIVE OPERATIONS FROM WORD PROBLEMS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |              |             |
| 1182 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |
| 1183 | For natural-language math questions without human annotation, we can directly prompt an LLM<br>1184 to extract the underlying primitive operations. Below we provide an example prompt-response<br>1185 pair. The extracted operations are highly reasonable—often comparable to, or even clearer than, the<br>1186 human-provided operation programs used in Section 3.4.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |              |             |
| 1187 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              |             |

1188 **Prompt**  
 1189 You are an expert at breaking down math word problems into primitive  
 1190 mathematical operations.  
 1191 Given a math word problem, output only a JSON list of short operation  
 1192 verbs (1-3 words) that describe the steps needed to solve it, such as:  
 1193 "add", "multiply", "divide", "use ratio", "convert units", "compute  
 1194 area".  
 1195 List them in the order they would be used.  
 1196 Do NOT show explanations or numbers.  
 1197 Output only the JSON list.

1198 **Model Response**  
 1199 ["convert minutes to hours", "multiply", "divide", "use ratio",  
 1200 "multiply", "compute rectangle area"]

## 1202 E.2 PROMPT FOR COLLECTING CHAIN-OF-THOUGHT REASONING TRACES

1204 To obtain high-quality chain-of-thought reasoning traces for each math question, we prompt a  
 1205 stronger LLM (DeepSeek-R1 in our implementation) with an instruction that encourages explicit  
 1206 step-by-step reasoning followed by a clearly formatted final answer. Below we provide the exact  
 1207 templates used in our data construction pipeline.

1208 **System Prompt**  
 1209 You are a helpful math tutor who explains things step-by-step and  
 1210 always finishes with a clearly formatted final answer.  
 1211  
 1212 **User Prompt**  
 1213 Break down your reasoning process step by step, and show your thought  
 1214 process explicitly.  
 1215 Separate each step using \n\n.  
 1216 At the end, conclude with a single line in the exact format:  
 1217 The answer choice is: <option>.  
 1218 Now solve the following multiple-choice math problem:  
 1219 [Question]  
 1220 {question\_text}  
 1221 [Solution]

## 1223 E.3 PROMPT FOR QWEN2.5-7B-INSTRUCT

1225 We use the same prompt for finetuning and evaluation of Qwen2.5-7B-Instruct and our finetuned  
 1226 variants. In all cases, the model is instructed to first produce a step-by-step reasoning trace and then  
 1227 output a clearly formatted final answer, as shown below.

1228 **System Prompt**  
 1229 You are a helpful assistant.  
 1230  
 1231 **User Prompt**  
 1232 Break down your reasoning process step by step, and show your thought  
 1233 process explicitly.  
 1234 Separate each step with \n\n.  
 1235 Conclude with a single line in the exact format:  
 1236 The answer choice is: [insert answer choice].  
 1237 [Question]  
 1238 {question\_text}  
 1239 [Solution]

1240  
 1241 **Chat template.** The human-readable prompts described above correspond to the `system` and  
 user messages used during both fine-tuning and evaluation. In practice, all messages are serialized

1242 using Qwen2.5’s official tokenizer chat template (via `apply_chat_template` function). This  
 1243 ensures that both fine-tuning and evaluation use the exact prompt format expected by Qwen2.5-7B-  
 1244 Instruct models, including all special tokens (e.g., `<|im_start|>`) and role indicators required  
 1245 by the tokenizer.

1246

1247

1248

1249

1250

## 1251 F QUALITATIVE ANALYSIS OF NAVIGATION FAILURE CASES

1252

1253

1254

1255 To complement the quantitative results in the main text, we provide qualitative examples and a  
 1256 systematic summary of failure modes for both SFT (coverage = 0.6, diversity = 64, and maximizing  
 1257 the number of questions) and the corresponding GRPO model (16 rollouts) across two representative  
 1258 length groups: **(10, 20)** (within the training-length regime) and **(40, 50)** (longer length regime). The  
 1259 model’s prediction errors consistently fall into the following three categories; we did not observe  
 1260 additional or unexpected behaviors (e.g., producing no trajectory or starting from the wrong initial  
 1261 node):

1262

1263

1264

- 1265 • **Valid but non-shortest path**

1266

1267

1268

1269

- 1270 • **Did not reach target**

1271

1272

1273

- 1274 • **Invalid move**

1275

1276

1277

1278 Table 5 summarizes error statistics. Representative visualizations are presented in Figures Figures 14  
 1279 to 17.

1280 These qualitative findings show that SFT and GRPO exhibit nearly identical failure modes, rein-  
 1281 forcing our conclusion that GRPO stabilizes training but does not surpass the performance ceiling  
 1282 established by the best SFT model.

1284

1285

1286

1287

1288

1289

Table 5: Error-type statistics for SFT and GRPO across length groups.

| Length Group | Method | Non-Shortest | Not Reach | Invalid Move |
|--------------|--------|--------------|-----------|--------------|
| (10, 20)     | SFT    | 80.0%        | 20.0%     | 0%           |
| (10, 20)     | GRPO   | 88.9%        | 11.1%     | 0%           |
| (40, 50)     | SFT    | 45.0%        | 49.0%     | 6.0%         |
| (40, 50)     | GRPO   | 43.0%        | 50.0%     | 7.0%         |

1296

Figure 14: Representative failure cases (SFT) for the (10, 20) length group.

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349



1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

Figure 15: Representative failure cases (GRPO) for the (10, 20) length group.

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382



1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403



1404

Figure 16: Representative failure cases (SFT) for the (40, 50) length group.

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457



1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Figure 17: Representative failure cases (GRPO) for the (40, 50) length group.

