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ABSTRACT

Someone who learns to walk shortest paths in New York can, upon receiving a
map of Paris, immediately apply the same rule to navigate, despite never prac-
ticing there. This ability to recombine known rules to solve novel problems
exemplifies compositional generalization (CG), a hallmark of human cognition.
Yet our understanding of what drives the success or failure of such extrapolative
problem solving, particularly the roles of training data properties and optimiza-
tion paradigms, remains limited. In this work, we introduce a controlled map-
navigation testbed that cleanly separates two dimensions of CG: spatial transfer
(systematicity across environments) and length scaling (productivity along prob-
lem difficulty). Through quantitative experiments, we show that transfer is en-
abled by sufficient distinct questions with high coverage and modest diversity,
while scaling critically depends on exposure to neighboring-but-longer examples.
Finally, we find that reinforcement learning (RL) stabilizes optimization but does
not surpass the ceiling set by supervised fine-tuning (SFT). Together, these results
provide principled insights into how data properties and training paradigms shape
extrapolative problem solving.

1 INTRODUCTION

The field is currently excited by strong evidence of LLMs’ ability to tackle truly novel problems—
solving IMO 2025 questions (Huang & Yang, 2025) and discovering algorithms that surpass state-
of-the-art solutions (Novikov et al., 2025). To solve such novel questions, a model must compose
the words and rules learned, echoing a fundamental hallmark of human cognition: compositional
generalization (CG)—the ability to make “infinite use of finite means” (Chomsky, 1957).

Despite this promise, our understanding of extrapolative and compositional problem solving remains
limited. Since it is hard to cleanly separate “novel” problems in natural language, prior work has
turned to synthetic challenges/puzzles to test whether foundation models can solve problems not
present in training (Ramesh et al., 2023; Xu et al., 2024; Dziri et al., 2023). These studies reached
mixed conclusions: sometimes models succeed, sometimes they fail. We view this inconsistency
as evidence that LLMs generalize along some dimensions more readily than others. This motivates
our work. Rather than asking for a brute-force CG-or-not answer, we aim to decompose “novel
problem solving” into concrete, well-defined extrapolation dimensions, and study how data
properties and training paradigms drive success or failure along each.

Concretely, we focus on two fundamental dimensions of CG (Sinha et al., 2024), while restricting
ourselves to a single problem class to avoid entanglement: (1) Transfer (systematicity in CG): the
ability to solve the same class of problems in entirely new environments. For example, a model
trained on English problems should also succeed in German or French; in mathematics, this corre-
sponds to learning induction in algebra and aplying the same inductive structure in number theory
(e.g., divisibility proofs) or combinatorics (e.g., binomial identities); (2) Scaling (productivity in
CG): the ability to solve harder (e.g., longer) problems after having seen simpler ones. For example,
once a model has learned induction, it should then be able to solve problems requiring induction
recursively.
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We use navigation tasks on 2D sparse grid maps as our testbed. This setup offers two key advantages.
(1) Orthogonal factors: path data separates cleanly into spatial (where the path is) and length (how
long it is) components, enabling controlled measurement of each dimension of generalization. This
is far harder in natural language or arithmetic, where vocabulary and sequence length are deeply
entangled. (2) True systematicity: When we speak of “infinite use of finite means” in linguistics,
we expect rules learned in one domain to apply even to a disjoint one (e.g., transferring from En-
glish to German). In natural data, however, primitives are embedded in unknown high-dimensional
spaces, making it nearly impossible to enforce completely disjoint test domains, or design cross-
lingual or cross-topic evaluations. Grid maps, by contrast, allow us to build arbitrarily many disjoint
worlds, providing a clean test of whether rules generalize to entirely novel primitives. Note that,
unlike graph-based generalization tests (Cai et al., 2025; Zhang et al., 2024) that feed the full graph
structure upfront into pretrained models and reduce the task to explicit rule application, our setup
uses map data to simulate a language-like world. The model must infer the map’s structure from its
training corpus of paths, much as language models learn word relations from text during training.

In the remainder of this paper, we examine how data selection and training paradigms (i.e., SFT and
RL) influence the emergence of generalization along the two dimensions (transfer and scaling). We
defer detailed discussions of research gaps and motivations to the beginning of each section, and
related work can be found in Section B. Our main conclusions are: (1) problem-solving transfer is
primarily enabled by distinct path prompts with high coverage and modest diversity (Section 3); (2)
length scaling critically depends on exposure to neighboring-but-longer examples, and can only be
locally mitigated regardless of the training paradigm (Section 4); and (3) RL effectively stabilizes
optimization but does not provide additional gains beyond the ceiling established by SFT (Section 5).

2 PRELIMINARIES AND EXPERIMENTAL SETUP

Spatial Transfer (Systematicity). Following the classic definition of systematicity in composi-
tional generalization (Wiedemer et al., 2023b; Fu et al., 2024), we define it as the ability to correctly
apply a known rule to new compositions of primitives that lie outside the training support. Formally,
let G = (V,A) be a sparse grid map (i.e., with edges blocked) with node set V and adjacency A.
A mobility rule f(i, j | G) returns a mobility path from node i to node j under G. The training
support is the set of ordered start–end node pairs used in training, supp(Dtrain) ⊆ V × V \ {(i, i)}.
We evaluate systematicity of a model θ trained on Dtrain as its performance in applying rule f
to novel ordered pairs (i, j) ∼ Dtest, where all node pairs in the test set are disjoint from those in
training, i.e., supp(Dtest) ∩ supp(Dtrain) = ∅. In our case, Dtest is drawn from a disjoint novel map
Ĝ = (V̂ , Â) with V̂ ∩ V = ∅ and Â ̸= A, i.e., irrelevant to G in nodes, edges, sparsity or size.

Such a truly disjoint test space is rarely achievable in natural language, where systematicity is of-
ten evaluated by holding out primitives within the same domain. This can yield overly optimistic
estimates, since semantically similar primitives (e.g., “run” vs. “walk”) may lie close in embedding
space. Our spatial setup therefore provides a more faithful measure of systematic generalization.

Length scaling (Productivity). Problem-solving scaling corresponds to productivity (or length
generalization) in CG (Sinha et al., 2024; Cai et al., 2025). Within the same notation, it can be
viewed as a constrained form of Systematicity, where novelty is enforced along the path-length axis.
Let l(D) denote the set of path lengths for the mobility pairs in dataset D. Then, in addition to the
disjointness condition supp(Dtest)∩supp(Dtrain) = ∅, productivity further requires max l(Dtrain) ≤
min l(Dtest), i.e., all test pairs must involve strictly longer paths than any seen in training.

Metric. Let f̂θ(i, j | G) denote the path predicted by the model θ. We measure extrapolative
problem-solving performance using the success rate (SR):

SR = Pr
(i,j)∼Dtest

[
f̂θ(i, j | G) = f(i, j | G)

]
(1)

In our experiments, we adopt the shortest-path rule for f , which makes path length precisely control-
lable.1Our goal is to study the properties of the data and training paradigm rather than the inherent

1Many other common mobility rules, such as DFS, yield unconstrained lengths.
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learnability of the task itself, and shortest-path is a canonical pathfinding problem that is theoreti-
cally regarded leanable by language models (Cohen et al., 2025; Dai et al., 2024). In shortest-path,
f(i, j | G) may return a set of valid paths whenever multiple paths exist between i and j. During
evaluation in Equation (1), we deem f̂θ(i, j | G) successful if it belongs to the set f(i, j | G).

Empirical Setup. We trained 8-layer, 8-head Transformer models from scratch following the
LLaMA architecture (AI@Meta, 2024), which employs Rotary Positional Embeddings (RoPE) (Su
et al., 2021) for position encoding. The models were pretrained on random-walk paths over all maps
(G and Ĝ), simulating the autoregressive pretraining phase of large language models (LLMs). This
pretraining enables the model to acquire the primitives (nodes) and their semantics, defined by their
adjacency relationships. To prevent interference with downstream mobility-rule learning tasks, we
bias the pretraining distribution by constraining random-walk paths to have a minimum length sub-
stantially longer than any path in the fine-tuning distribution. (We also validate this non-interference
in Section C.3.) This mirrors common practice in LLM pretraining, where models are exposed to
much longer sequences than those used in fine-tuning or evaluation.

For evaluation, we fine-tune the models on shortest paths on the training map G = (V,A). We split
the node set V into training and test regions: the training region contains 80% of the nodes (from
which a subset of nodes Vtrain used to form Dtrain is sampled) and the remaining 20% for length
scaling evaluation. We test spatial transfer on different disjoint test maps Ĝ = (V̂ , Â).

Training paradigms and data format. We study two training paradigms: supervised fine-tuning
(SFT) and reinforcement learning (RL).

For SFT, each training sample is represented as a sequence of the form
<s> i j : i E S E E ... N E S W W j </s>, where i and j denote the start
and end nodes, <s> and </s> are special tokens, and the path is encoded as a sequence of
movement directions (E, W, N, S). Using directions instead of node indices prevents the model
from trivially memorizing n-gram sequences of node identifiers. The prompt prefix <s> i j :,
which we refer to as the question such that the path itself is the answer, is excluded from the loss
during SFT. At test time, we feed this prompt to the model and evaluate the generated continuation,
i.e., asking the question “what is the shortest path from i to j?”.

Our path setup also naturally lends itself to RL for two reasons. (1) The shortest paths are inherently
verifiable: a generated sequence either forms a valid shortest path or not, allowing us to define
a binary reward without additional heuristics; (2) Although the model is not explicitly designed to
“think”, the path-generation process itself resembles a step-by-step reasoning procedure, making RL
a natural training paradigm for this setting. We adopt the Dr.GRPO (Liu et al., 2025) algorithm (an
unbiased variant of GRPO and the de facto standard in recent implementations of RL with LLMs),
with a binary reward of 1 if the generated sequence forms a valid shortest path between i and j and
0 otherwise. The model is trained on the same prompt prefix <s> i j :, and we vary the number
of rollouts per prompt (4, 8, and 16) during training.

3 EFFECTS OF DATA SELECTION ON PROBLEM-SOLVING TRANSFER

We start by analyzing the effects of data selection for the classic SFT paradigm. A model exhibits
systematic generalization if it can solve problems built from disjoint primitives. In our setting, this
means generating valid mobility paths in a map never seen during training. We ask here: how
to allocate a fixed training budget of records to best support such transfer? Should the budget go
toward collecting diverse answers for each question, or toward covering as many distinct questions
as possible (Section 3.1)? And if more questions are preferable, what kinds of questions should be
prioritized (Section 3.2)?

3.1 MORE QUESTIONS VS. MORE ANSWERS

In many domains of current interest (e.g., mathematics, program synthesis, navigation), a single
problem naturally admits multiple valid solutions. This makes budget allocation an important con-
sideration in SFT, especially since collecting high-quality solutions often requires significant ef-
forts (Cobbe et al., 2021; Hendrycks et al., 2021). The question is not trivial: the model requires
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sufficiently diverse questions to capture the underlying rules; but if each problem is paired with only
one solution, the model may overfit to surface patterns rather than acquiring the underlying rule, po-
tentially harming transfer. We therefore investigate whether allocating budget to solution diversity
improves extrapolation, or if prioritizing distinct questions is more effective.

Experiment Design. We consider five training budgets B ∈ {5%, 10%, 20%, 60%, 80%} of the
total possible training records, where the total is determined by the maximum number of directed
start–end pairs within the designated training region (80% of the nodes in the training map G, as
illustrated in Section 2). We use a 50 × 40 sparse grid map with |V | = 2000 nodes as G. For
each budget, we vary the number of distinct questions (unique start–end pairs) and the average
number of answers per question (distinct valid shortest paths between each node pair), subject to the
constraint Nquestions ×Nanswers per question = B.2 Problem-solving transfer is measured by the success
rate (SR, Equation (1)) on disjoint test maps, restricted to paths within the training length (i.e.,
excluding length-scaling). We evaluate on three spatially disjoint maps of varying size (30 × 30,
40× 40, 50× 50), sparsity (25%–75%), and adjacency. We report the average SR across them.

Figure 1: Spatial transfer success rate (SR)
improves consistently with more budget allo-
cated to unique questions (log scale). Curves
show five budget levels (very low to very
high: 5%, 10%, 20%, 60%, 80% of all possi-
ble records). Dashed line marks the SR ceil.

Unique questions drive transfer. We first con-
firm that the model can spatial transfer: even when
trained on a limited subset of the training map (e.g.,
20% of the 80% training region, i.e., 16% of the full
training map), it achieves an average success rate
of 94% over three spatially disjoint test maps. As
shown in Figure 1, under a fixed budget, training on
more distinct questions consistently improves trans-
fer, even at the cost of reducing answer diversity.
For example, with a low budget, allocating all data
to distinct questions with one solution each yields
an SR of 94%, compared to only 82% when using
fewer questions but 32 solutions per question. This
pattern holds across all budget levels, showing that
unique questions provide higher marginal value than
unique solutions. (This does not imply that solutions
are unimportant; rather, one high-quality solution
per question appears sufficient under SFT.) How-
ever, the benefit of adding more questions quickly
saturates: at very high budgets, training with hun-
dreds of thousands of additional questions produces
almost no gain over low budgets.

Takeaway 1 (Data efficiency guideline under SFT): Spatial transfer (systematic CG) is best
supported by covering as many distinct questions as possible. This yields the most effective use
of the training budget, especially when collecting solutions is expensive.

3.2 COVERAGE VS. DIVERSITY IN QUESTIONS

If more distinct questions are more valuable, a second question arises: which kinds of questions
should be prioritized? Prior work on CG rarely considered solution diversity, but it has long
emphasized the importance of training distribution properties such as coverage and diversity. These
factors have been discussed since early seq2seq RNN and CNN models Lake & Baroni (2018);
Bahdanau et al. (2018); Keysers et al. (2019), and continue to play a central role for decoder-only
Transformers Lippl & Stachenfeld; Ahuja & Mansouri (2024); Levy et al. (2023). However, while
commonly believed to matter, their precise role remains unclear: are higher coverage and diversity
always beneficial? How do they interact? In this section, we empirically vary these two classic
factors in a controlled and decoupled way to measure their effect on systematic transfer.

We begin by defining these notions in our setting. Following Chang et al. (2025), we define coverage
and diversity in questions over node primitives.

2If a question admits fewer distinct solutions than required, we include all available solutions and allocate
the remaining budget to other questions without repetition.
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Figure 2: Spatial transfer success rate (SR) mea-
sured on the disjoint maps as the nodes coverage
ratio in question in the training map increases.
Each curve corresponds to a fixed diversity level.

Figure 3: Spatial transfer success rate (SR) mea-
sured on the disjoint maps as the node pair com-
position diversity level increases. Each curve
corresponds to a fixed coverage ratio.

(Local) Coverage. Coverage measures the fraction of unique nodes (i.e., primitives) in the local
training map G = (V,A) that appear in the training set. Formally, following Section 2, let Vtrain ⊆ V
denote the set of nodes included in Dtrain. We define c = |Vtrain|/|V |, which ranges between 0 and 1.

Remark. We stress that coverage is defined only locally relative to the training map, not the global
universe. Even c = 0.8 corresponds only to a tiny fraction of the universe of possible primitives.
Since the model is expected (and observed) to spatially transfer to (infinitely) many disjoint maps
Ĝ = (V̂ , Â), including nodes from all such maps in the denominator would only dilute the fraction
and make coverage misleadingly small. For comparability, we therefore compute coverage solely
with respect to the training map; any nodes in any disjoint map Ĝ are in fact uncovered.

Diversity. Diversity measures how richly the observed nodes are combined with each other in
training. Formally, recall from Section 2 that supp(Dtrain) denotes the set of ordered node pairs
included in training. We define d = |supp(Dtrain)|/|Vtrain|, which ranges from 1 to |V |−1. Intuitively,
d corresponds to the average number of distinct endpoints j that each start node i ∈ Vtrain is paired
with. In practice, we control diversity explicitly by constraining, for each i, the number of distinct
j’s that appear in pairs (i, j).

Remark. Note that we intentionally do not normalize d by |Vtrain| − 1, since |Vtrain| = c|V |; this
would couple diversity with coverage and prevent the two from being varied independently.

Experiment Design. To disentangle the roles of coverage and diversity, we design controlled ex-
periments where one factor is varied while the other is fixed. Coverage is defined as c = |Vtrain|/|V |
and is varied by linearly increasing the fraction of nodes included in the training questions from as
low as 4% up to 80% of the nodes in the training map. Diversity d is varied by controlling how
many distinct endpoints j each start node i is connected to, ranging exponentially from 20 to 27.
We control the total number of question–answer records to remain fixed across conditions. We use
the same evaluation protocol as before, with one training map G and three independent and disjoint
maps Ĝ, and report the average performance (measured by the success rate) over the three test maps.

3.2.1 COVERAGE QUANTIFICATION AT FIXED DIVERSITY

We draw three key observations from Figure 2:

(1) Coverage determines the ceiling of spatial transfer. Across a wide range of diversity levels
(from d = 22 to s7), the curves converge to a similar maximum SR once coverage is high. This
shows that coverage ultimately sets the upper bound of systematic generalization, while diversity
only influences how quickly, as coverage increases, this ceiling is approached.

(2) Minimal diversity is required to unlock efficient use of coverage. However, at very low
diversity (d = 1, 2), SR grows slowly and saturates at a noticeably lower level. Only when diversity
passes a small threshold (d ≥ 4 here) does coverage begin to unlock its full effect.
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Figure 4: Interaction between coverage and diver-
sity on problem-solving transfer.

Figure 5: Spatial transfer does not imply length
scaling.

(3) Threshold and plateau phenomenon. With sufficient diversity, SR exhibits a sharp inflection
around mid-to-low coverage (≈ 0.2–0.25). Beyond this point, additional coverage yields diminish-
ing returns, whereas below it, generalization remains poor.

Takeaway 2: Coverage in question sets the ceiling of spatial transfer, but minimal diversity is
required to unlock it efficiently. Coverage also creates a sharp inflection point in SR, indicating
a cost-efficient region at low values.

3.2.2 DIVERSITY EFFECTS AT FIXED COVERAGE

We next vary diversity while keeping coverage constant. Results in Figure 3 show two main patterns:

(1) Log-linear gains at mid-to-high coverage. At mid-to-high coverage, performance grows
roughly linearly in log(d), indicating that the marginal benefit of additional diversity decreases as d
grows. In other words, exposing the model to a few diverse combinations is highly beneficial, but
each further doubling of diversity yields progressively smaller gains.

(2) High diversity can hurt when coverage is low. At low coverage, adding diversity sometimes
reduces success rates. This likely occurs because exhaustively combining a tiny set of primitives
encourages memorization rather than rule abstraction. For example, if a model is trained on a very
small set 1, 2, 3 and exposed to all possible addition combinations, it can simply memorize the
resulting facts without grasping the general rule of addition.

Takeaway 3: Diversity can bring rapid early gains but quickly flattens out, and may even harm
transfer when coverage is low.

3.3 COVERAGE–DIVERSITY INTERACTION

Jointly analyzing coverage and diversity (Figure 4) reveals a clear interaction. At low coverage,
even exponentially high diversity cannot rescue the performance (e.g., SR rises only from 0.06 to
0.19 when coverage is 4%). By contrast, at higher coverage (e.g., 64%), diversity strongly amplifies
performance (raising SR from 0.42 at low diversity to above 0.65 at moderate–to-high diversity).
High coverage can also partially compensate for low diversity (e.g., performance increasing from
0.08 to 0.70 when d = 1).

Because diversity grows in cost exponentially, a resource-efficient regime (highlighted in red, Fig-
ure 4) is to target mid-to-high coverage (≥ 32%) with modest diversity (8–32). This achieves
strong performance at a much lower computational cost than maximizing both dimensions. Beyond
this regime, both coverage and diversity show diminishing returns. Note that dataset size is ap-
proximately controlled across conditions by varying the number of answers, which actually makes
high-coverage/low-diversity settings relatively disadvantaged (Section 3.1). The fact that such set-
tings still outperform low-coverage/high-diversity extremes underscores the strength of the result.
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Takeaway 4: Low coverage in question cannot be rescued even with extreme diversity, but
low diversity can be compensated by high coverage. Moderate–to-high coverage with modest
diversity achieves the best efficiency–performance trade-off.

Intuitively, in broad problem-solving scenarios, primitives can be seen as the concepts that appear
in questions. Coverage reflects how many distinct concepts are actually mentioned in training ques-
tions (e.g., in geometry, whether training questions touch only the triangle sum rule, or also include
parallel-line angle rules, even though both are basic known primitives to the model). Diversity re-
flects how flexibly these concepts co-occur within questions (e.g., whether the triangle sum rule
always appears alone, or also together with different angle rules across problems). The results in
this section provide concrete guidance for dataset selection: to enable systematic transfer under a
limited budget, one should prioritize broad coverage of concepts in question, combine it with only
modest diversity in their combinations, and spend the least effort on solution diversity.

Mechanistic explanation for the success of spatial transfer. We observed strong generalization
to disjoint maps, akin to how a language model, once having internalized a rule in English, can
seamlessly apply the same rule to other languages it already knows. This suggests that the model
does not merely memorize surface-level node n-gram, but rather encodes structured latent operators
that can be flexibly reused across domains—for instance, “move to an adjacent node towards the end
node” heuristic (which we probed in Section C.2). This interpretation aligns with recent theoretical
progress framing attention as a hypernetwork (Schug et al., 2024), where attention scores serve as
latent codes parameterizing reusable computations.

4 EFFECTS OF DATA SELECTION ON PROBLEM-SOLVING SCALING

In addition to problem-solving transfer, a fundamental dimension of extrapolation is problem-solving
scaling (or productivity in CG) (Sinha et al., 2024; Hupkes et al., 2020; Cai et al., 2025). While
transfer asks whether rules can be applied spatially to infinitely many node pairs within the same
length regime, scaling tests whether these rules extend to node pairs that require longer paths than
those seen during training (see Section 2 for a formal definition). This raises a natural question:
do the same conditions that enable spatial transfer (i.e., sufficient training questions and primitive
coverage) also support scaling under SFT, or does this setting demand additional data conditions?

Length scaling fails irrespective of the map. In Figure 5, we show the length scaling perfor-
mance of the strongest spatial-transfer model (selected under the high-budget setting with all budget
allocated to questions and high primitive coverage–diversity). Results for other budgets are shown
in Section C.4. We report success rate (SR) on both holdout nodes within the training map (No
spatial transfer) and spatially disjoint maps (Spatial transfer). For each length group, evaluation is
performed on 3,000 randomly sampled unseen node pairs. The trends are nearly identical: while
the model achieves near-perfect generalization within the training length regime (blue region), SR
rapidly deteriorates once path length exceeds the training maximum (red region). This indicates that
even when spatial transfer succeeds, length scaling can fail.

Rescuing with neighboring-and-longer paths. Surprisingly, we found that adding even a hand-
ful of training examples randomly sampled from lengths at or above the target length can substan-
tially rescue performance, whereas adding shorter paths provides much less benefit. For instance,
in Figure 6, we evaluate performance on target length = 30, where the model exhibits subopti-
mal generalization. Augmenting the training set with a very small fraction (≈ 1% of the training
data) of neighboring-but-longer paths (e.g., l = 32, 34) raises success rates to nearly 90%. By con-
trast, adding shorter paths (e.g., l = 22, 24) yields small gains—even when added in large amounts
(12%)—while much longer paths (e.g., l = 80) confuse the model and degrade performance. These
results suggest that, under SFT, curriculum-like exposure to neighboring-and-longer examples pro-
vides the critical adaptation signal that neither shorter nor excessively long paths can supply.

Takeaway 5: Length generalization can be rescued by adding neighboring-and-longer paths;
shorter ones give little benefit, and overly long ones can even harm performance.
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Figure 6: Effect of adding paths of differ-
ent lengths on SR to length = 30. A few
neighboring-and-longer paths (e.g., l = 32, 34)
rescue performance, shorter ones (l = 22, 24)
give little gain, and overly long ones (l = 80)
degrade it. Dashed line: no augmentation.

Figure 7: RL does not further improve spatial
transfer: performance bounded by the SFT base-
line. Each group of bars corresponds to a differ-
ent SFT checkpoint used to initialize RL. Blue
bars denote one-pass RL and red bars denote
multi-pass RL.

5 EFFECTS OF TRAINING PARADIGM ON PROBLEM-SOLVING

While the previous sections focus on how data properties shape problem-solving skills, another nat-
ural question is whether the training paradigm itself can provide further gains. A recent line of work
presents compelling empirical evidence that reinforcement learning (RL) can enable extrapolative
generalization beyond supervised fine-tuning (SFT) (Chu et al., 2025; Chen et al., 2025; Huang
et al., 2025). At the same time, other studies argue that RL primarily unlocks capabilities already
present in SFT rather than introducing new ones (Yue et al., 2025; Ma et al., 2025). We therefore
test whether RL adds value on top of SFT for spatial transfer and length scaling.

Spatial transfer setup. As detailed in Section 2, we train the RLVR model using an unbiased GRPO
variant with a binary reward of 1 if the generated sequence forms a valid shortest path, and 0 other-
wise. The training data budget is set to high, under which the model is capable of spatially transfer-
ring (see Figure 1). RL is warm-started from different SFT checkpoints, ranging from 6% to 80% of
SFT training progress. For each warm-start, we vary the number of rollouts per prompt in 4, 8, 16.
We report two types of RL outcomes: (i) one-pass RL (blue bars), where the model is trained on
the remaining data for a single pass; and (ii) multi-pass RL (red bars), where RL is allowed to
repeatedly reuse the same remaining data. This disentangles the effects of warm-start quality, data
availability, and rollout compute.

RL does not improve spatial transfer. As shown in Figure 7, RL does not confer additional
capabilities beyond what can be achieved by a fully trained SFT for spatial transfer: the best RL
curves are always bounded by the SFT upper line. Early warm-starts perform poorly in one-pass RL
(blue bars), but multi-pass training (red bars) can recover the gap

Length scaling setup. To test whether RL can address the known weakness of SFT in length scaling
under “unlimited” passes, we continue RL training for up to ∼20 epochs on the same dataset (rollout
fixed at 8), with the model warm-started from an early SFT checkpoint (after 1 epoch, 400 steps).
For comparison, we also extend SFT training for the same number of epochs.

RL stabilizes training but cannot exceed the best SFT. Figure 8 compares SFT and RL under the
same 10-epoch progress and show a clear pattern: SFT initially improves with more steps but quickly
overfits, leading to sharp degradation. RL curves, in contrast, remain tightly clustered across steps,
indicating stable training even after many epochs. However, RL never exceeds the best SFT bound,
confirming that additional training (whether SFT or RL) cannot resolve the fundamental limitation
in length scaling. Results for extended RL training up to 20 epochs are provided Section C.5 and
show the same stable trend.

Across both settings, RL’s role is primarily to stabilize training and avoid overfitting during pro-
longed training. However, RL does not unlock new capabilities. The performance ceiling is always
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Figure 8: Length scaling under extended training (1 epoch ≈ 400 steps). Left: SFT improves at first
but quickly overfits with more epochs. Right: RL (GRPO) remains stable across epochs but never
exceeds the best SFT bound (dashed line).

set by the best SFT model. SFT is more efficient at fitting available information when the data is
sufficient and high-quality, and data usage is carefully designed to avoid overfitting. In contrast,
RL serves as a more robust “safe default”, trading peak efficiency for stability when principled data
selection is missing.

Takeaway 6: RL stabilizes training and prevents overfitting but does not unlock new transfer or
scaling capabilities. The performance ceiling is always set by the best SFT model. SFT is more
efficient with sufficient, high-quality data, while RL provides a safer default when principled data
selection is missing.

Remark. Our findings do not suggest that RL is useless. In practice, training data are often noisy,
heterogeneous, or subject to domain shifts, where SFT may overfit or struggle. RL, by exploiting
sequence-level rewards, provides stability and robustness under such conditions. Our findings there-
fore reconcile two perspectives in the literature: RL may not add fundamentally new capabilities
beyond SFT, but it can serve as a stability-enhancing paradigm when training on messy or poorly
curated data. In such unfavorable settings for SFT, RL can appear to generalize better—not because
it extends the capability frontier, but because it maintains robustness where SFT struggles.

6 CONCLUSION AND LIMITATIONS

In this work, we introduce a controlled map-navigation testbed to dissect extrapolative problem-
solving. spatial transfer is primarily enabled by sufficient distinct questions with high coverage
and modest diversity, while length scaling critically depends on exposure to neighboring-but-longer
examples. For training paradigms, we find that RL effectively stabilizes optimization but cannot
surpass the ceiling established by SFT. Overall, we provide clear guidelines for how data and training
choices shape spatial and length generalization.

Limitations The main limitation of our study is that all conclusions are based on a synthetic
testbed with small models, which naturally raises questions about practical relevance. We first want
to highlight that this is an unavoidable trade-off: narrowing down the problem enables rigorous and
well-controlled tests, but inevitably comes at the cost of practical realism. Despite the abundance
of practical large-scale benchmarks, the insights gained so far remain limited. Our work therefore
narrows the scope to a smaller, more concrete setting. To increase practical relevance, we ground
our setup in problem-solving tasks that widely exist in real-world scenarios, employ path data that
is closely tied to reasoning and math, and incorporate RL paradigms. In realistic contexts, training a
series of RL models is mostly infeasible since RLVR typically requires large base models and sub-
stantial compute, whereas our synthetic task (with the easy-to-verify reward) makes such systematic
experimentation tractable.

9
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A LLM USAGE

We use ChatGPT and Gemini to support writing and formatting, such as grammar and style refine-
ment, polishing figure and table captions, and other surface-level edits. Some of the code is written
with the help of GitHub Copilot and Claude, for example, in code auto-completion and providing
debugging suggestions.

B RELATED WORKS

Compositional and length generalization Our notion of extrapolative problem-solving is closely
tied to systematicity in compositional generalization (CG) and to length generalization, sometimes
referred to as productivity in CG. Compositional Generalization (CG) plays a central role in gener-
alization studies, which underpins the ability to extend learning to unseen situations (Hupkes et al.,
2023). Systematicity, the most common definition of CG, refers to the capacity to systematically
recombine known primitives and rules (Dankers et al., 2021). While Systematicity has long been
regarded as a fundamental challenge for neural networks (Liška et al., 2018; Lake & Baroni, 2018;
Loula et al., 2018; Csordás et al., 2022; Ontanon et al., 2021; Keysers et al., 2019; Lewis et al.,
2022), recent work has increasingly provided evidence that modern generative models exhibit non-
trivial Systematic CG abilities (Lepori et al., 2023; Yun et al., 2022; Okawa et al., 2023; Ramesh
et al., 2023; Abedsoltan et al., 2025; Xu et al., 2024). Further progress in understanding Systematic
CG comes from multiple perspectives: the structural side (Lepori et al., 2023; Schug et al., 2024;
Quirke & Barez, 2023; Li et al., 2023), the task side (Abedsoltan et al., 2025; Zhou et al., 2023),
and the data side (Lippl & Stachenfeld; Ahuja & Mansouri, 2024; Kamb & Ganguli, 2024; Chang
et al., 2025; Cagnetta et al., 2024). For example, (Schug et al., 2024) shows that multi-head atten-
tion can function as a hypernetwork supporting compositional behavior (e.g., encouraging learning
functions as reusable components). From the data perspective, (Ahuja & Mansouri, 2024) derives
provable guarantees for length and compositional generalization under sufficient training-set diver-
sity, while (Chang et al., 2025) frames training data coverage as a key factor in a model’s ability to
generalize to unseen combinations.

Progress on compositionality in vision object learning has become increasingly well characterized,
both empirically (Yun et al., 2022) and theoretically (Wiedemer et al., 2023b;a). In language, how-
ever, understanding remains fragmented: studies have pointed to a variety of factors (e.g., from
model-side (Kazemnejad et al., 2023; Petty et al., 2023) to data-side (Ahuja & Mansouri, 2024;
Chang et al., 2025)), but lacking an integrated account. Our work takes a data-centric perspective,
unifying the recurring factors into a coherent view of how they jointly shape the model’s systematic
extrapolation. Inspired by progress in vision, where disentangled primitives and rules have enabled
clearer advances, and to avoid prior inconclusive results in language (Lake & Baroni, 2018; Furrer
et al., 2020; Dziri et al., 2023), we design map-navigation tasks in which primitives (nodes) and rules
(mobilities) are cleanly disentangled, allowing us to directly assess the influence of data properties
on generalization performance (Liang et al., 2025).

Length generalization, or Productivity, is another notion within the broader study of compositional
generalization Sinha et al. (2024). It has been widely discussed as a central challenge (Dubois
et al., 2019; Newman et al., 2020; Cai et al., 2025; Fan et al., 2024; Jelassi et al., 2023; Anil et al.,
2022), and is sometimes framed as a form of recursive composition or extrapolation Kim & Linzen
(2020); Hupkes et al. (2020); Dziri et al. (2023). For instance, in natural language tasks, longer
input sequences may correspond to recursive or nested structures of previously seen phrases Kim
& Linzen (2020). In our setting, path length provides a directly controllable axis for studying this
phenomenon: extrapolating to longer paths mirrors the core difficulty of length generalization, while
allowing us to systematically manipulate the data properties and training paradigm to probe its limits.

Graph navigation and other capabilities While our work may appear related to prior studies
that evaluate models’ graph navigation abilities Zhang et al. (2024); Wang et al. (2025a), build
powerful graph models Wang et al. (2025b); Yehudai et al. (2021), or use graph data to enhance LMs’
reasoning Zhang et al. (2025), it is in fact fundamentally different in both task setting and goal. First,
rather than treating the graph as the task itself (i.e., providing the model with many small graphs in
prompts and training it to solve specific navigation task on future graphs), our work considers the
large map and treats each map as an independent vocabulary world. Instead of explicitly describing
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the graph structure, we require the model to learn the connections and the map itself, analogous to
how LLMs acquire word semantics during pretraining. The map is sufficiently complex that it cannot
be memorized or learned within a single prompt. Second, our goal is not to test whether models
can perform navigation tasks, nor to improve navigation performance by modifying architectures
or training pipelines. Instead, we seek to understand models’ compositionality/extrapolation under
varying data distributional properties. To ensure that our focus remains on distributional effects,
we even restrict ourselves to tasks that are already proven to be learnable Cohen et al. (2025);
Dai et al. (2024). Therefore, our work is also orthogonal to studies that examine whether models
can perform specific capabilities with certain heuristics under narrowly defined tasks Quirke et al.
(2024); Nikankin et al. (2024); Cohen et al. (2025).

C ADDITIONAL RESULTS

C.1 IMPLEMENTATION AND LICENSING.

Our LLaMA-style models are based on the standard implementations in the Hugging Face
transformers library (Apache 2.0 license) Wolf et al. (2020). Reinforcement learning with
Dr.GRPO is conducted using the GRPOTrainer from the Hugging Face TRL library (Apache 2.0
license) (von Werra et al., 2020).

C.2 PROBING: MODEL TRACKS DISTANCE TO THE END NODE

We investigate whether the model encodes the remaining shortest-path distance to the end node,
which would allow it to apply heuristics such as “move towards the goal”. For probing, we apply a
2-layer MLP, pθ(xk

t ) = softmax
(
W1 ReLU(W2x

k
t )
)
, where xk

t denotes the hidden representation of
the t-th token at the k-th layer. The probe outputs a probability distribution over discretized distance
classes (C = 10). Although we probe at a fixed token position, the hidden state at this position
already integrates information from all previous tokens, including the traversed path. We thus train
a probe on paths of varied length from the training map for each layer, and test it on paths from
a disjoint map, grouping path lengths from 1–20 into 10 classes (granularity of 2). As shown in
Table 1, the nonlinear probe achieves high accuracy, especially in middle-to-late layers, supporting
the hypothesis that the model encodes distance-based heuristics as reusable operators for spatial
transfer. While a linear probe would provide a stronger conclusion, we have not yet identified one
that performs well in this setting.

Table 1: Probe accuracy (%) across layers.

Layer Accuracy (%)
0 35.94
1 32.78
2 57.85
3 76.58
4 83.14
5 86.29
6 85.77
7 81.55

C.3 PRETRAINING DOES NOT INTERFERE WITH DOWNSTREAM SHORTEST-PATH LEARNING

To ensure that our pretraining stage does not leak or overlap with the downstream shortest-path
task, we evaluate pretrained models directly on shortest-path generation. Both the loss distribution
analysis Figure 9 and generation performance Table 2 confirm that pretraining does not endow the
model with shortest-path capabilities, thereby ruling out interference.
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Table 2: Performance on shortest-path generation. Pretrained models cannot generate valid shortest
paths, confirming that pretraining does not interfere with downstream learning. The Avg. Length
Ratio measures the ratio between the true shortest-path length and the generated path length.

Model Trained on Valid Path Rate↑ Shortest Path Rate↑ Avg. Length Ratio↑
Pretrain 1.0 0.00 0.0707
Finetune 1.0 0.9726 0.9983

Figure 9: Loss distributions of the pretrained and fine-tuned models on test (i.e. unseen) shortest
paths. The distributions are completely disjoint, indicating that pretraining alone does not prepare
the model with shortest-path generation capabilities.

C.4 LENGTH SCALING PERFORMANCE UNDER DIFFERENT BUDGETS

For completeness, we also evaluate length scaling across different data budgets (Figure 10). For
each budget, we select the best-performing spatial-transfer model and report success rates (SR) on
holdout node pairs with longer paths between them within the training map.

Figure 10: Length scaling performance of the best spatial-transfer model under different data bud-
gets. All evaluations are conducted on holdout nodes within the training map (i.e., without spatial
transfer). Despite variation in budgets, success rate (SR) consistently deteriorates as path length
exceeds the training regime, showing that length scaling fails universally.
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C.5 RL PERFORMANCE FOR MORE TRAINING STEPS

Figure 11: Length scaling for RL under extended training for 20 epochs (1 epoch ≈ 400 steps).
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