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Figure 1: We propose Spatial-MLLM, a method that significantly enhances the visual-based spatial intelligence
of existing video MLLMs. As shown, Spatial-MLLM is capable of understanding and reasoning about the
underlying scene from video input, achieving state-of-the-art performance across a wide range of tasks.

Abstract

Recent advancements in Multimodal Large Language Models (MLLMs) have
significantly enhanced performance on 2D visual tasks. However, improving their
spatial intelligence remains a challenge. Existing 3D MLLMs always rely on
additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility
in scenarios with only 2D inputs, such as images or videos. In this paper, we
present Spatial-MLLM, a novel framework for visual-based spatial reasoning from
purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-
based visual encoders optimized for semantic understanding, our key insight is to
unleash the strong structure prior from the feed-forward visual geometry foundation
model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual
encoder to extract semantic features, and a 3D spatial encoder—initialized from
the backbone of the visual geometry model—to extract 3D structure features. A
connector then integrates both features into unified visual tokens for enhanced
spatial understanding. Furthermore, we propose a space-aware frame sampling
strategy at inference time, which selects the spatially informative frames of a
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video sequence, ensuring that even under limited token length, the model focuses
on frames critical for spatial reasoning. Beyond architecture improvements, we
construct a training dataset from multiple sources and train the model on it using
supervised fine-tuning and GRPO. Extensive experiments on various real-world
datasets demonstrate that Spatial-MLLM achieves state-of-the-art performance in
a wide range of visual-based spatial understanding and reasoning tasks. Project
page: https://diankun-wu.github.io/Spatial-MLLM/,

1 Introduction

Multimodal Large Language Models (MLLMs) [}, 2 3] have achieved significant progress in
processing multimodal inputs to generate contextually aware and semantically coherent responses.
While proprietary models such as Gemini [4] and GPT-4o [5] exhibit state-of-the-art performance,
the open-source community continues to advance the field by improving these models’ ability to
interpret diverse content modalities, including images [6, [7, 8], videos [19, [10, [11}, 12} [13} [14]], and
audio [15L16L[17]. Although these models excel at a wide range of 2D tasks, their capacity to perceive,
understand, and reason about 3D scenes, i.e., 3D spatial intelligence, remains limited 18} [19].

The requirement of spatial understanding and reasoning typically arises in two scenarios. In the first
scenario, the model has access to additional 3D or 2.5D data (e.g., point clouds, camera parameters,
or depth maps) alongside 2D visual inputs (e.g., images or videos). These supplementary modalities
enhance the model’s spatial awareness, enabling more accurate spatial reasoning. However, this setup
limits the model’s applicability in many real-world scenarios where only monocular video of the
scene is available, which is the second scenario. The model’s ability to perform spatial understanding
and reasoning under such conditions is referred to as visual-based 3D spatial intelligence [18|20]. A
major challenge in this setting is that each frame provides only a partial observation of the scene, and
no global representation (e.g., the point clouds [21} 22} 23] or posed depth maps [24. 25]) is available
as input. This requires the model to infer the global spatial layout from incomplete cues and internally
integrate these partial observations into a coherent and implicit global representation, which demands
strong spatial awareness. However, most existing video MLLMs pretrain their visual encoders on
image-text pairs—primarily image-caption data [13} |14} 26]—following the CLIP [27]] paradigm.
This makes the visual encoder excel at capturing high-level semantic content but lack structure and
spatial information when only 2D video inputs are available [28},129,30]. Consequently, current video
MLLMs generally perform worse on spatial reasoning tasks than on other tasks, such as temporal
understanding. Moreover, their performance still significantly lags behind human capabilities [18]].

In this paper, we introduce Spatial-MLLM, a method that significantly improves the visual-based
3D spatial intelligence of existing video MLLMs. To address the limitations of visual encoders in
general-purpose video MLLMSs, our key insight is to unleash the strong structure prior provided
by the feed-forward visual geometry foundation model [31} 32} 33| 34]. These models, typically
trained on pixel-point pairs, complement the general-purpose video MLLM visual encoders that
are trained primarily on image-text data [14]]. Based on this insight, we design a dual-encoder
architecture consisting of a 2D encoder—initialized from the visual encoder of a general-purpose
video MLLM—to extract 2D semantic information, and a spatial encoder—Ileveraging the VGGT
feature extractor [32]—to recover implicit 3D structural information from 2D video inputs. We then
use a connector to integrate features from both branches into unified visual tokens. The resulting
representation enables the Large Language Model (LLM) backbone to perform effective spatial
reasoning without requiring explicit 3D data as input.

Furthermore, we fully exploit the additional information provided by the introduced feed-forward
visual geometry model [32], and propose a space-aware frame sampling strategy at inference time,
which selects the most spatially informative frames from the video sequence when the total number
of input frames is limited (e.g., due to the VRAM limitation). Specifically, we first feed a relatively
large number of frames into the spatial encoder and decode the resulting 3D features into voxels.
The frame selection task is then reformulated as a maximum coverage problem over these voxels,
which we solve using a greedy algorithm. To train Spatial-MLLM, we construct a visual-based 3D
spatial question-answering dataset and perform supervised fine-tuning on it. We further apply a
simple cold-start [35] to help the model adapt to the correct reasoning format, and then train it using
Group Relative Policy Optimization (GRPO) [36}35] to enhance its long-chain-of-thought (long-
CoT) spatial reasoning capability [37]. We conduct extensive evaluations on the VSIBench [18],
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ScanQA [38], and SQA3D [39] benchmarks and demonstrate that the proposed spatial-MLLM
achieves state-of-the-art performance in a wide range of visual-based spatial understanding and
reasoning tasks.

In summary, our main contributions are:

* We introduce Spatial-MLLM, a method that significantly enhances the visual-based 3D spatial
intelligence of existing video MLLMs, demonstrating strong spatial understanding and reasoning
capabilities without requiring any 3D or 2.5D data input.

* We design a dual-encoder and connector that effectively integrates semantic information from a
standard 2D visual encoder with structural information extracted by a spatial encoder, which is
initialized using a feed-forward visual geometry foundation model.

» We fully exploit the additional information provided by the feed-forward visual geometry model
and design a space-aware frame sampling strategy that selects spatially informative frames,
thereby improving model performance under input length constraints.

* We train our model on the constructed dataset with a two-stage pipeline. Extensive experiments
demonstrate that our method achieves state-of-the-art performance on a wide range of visual-
based spatial understanding and reasoning tasks.

2 Related Work

2.1 MLLMs for Video Understanding

Multimodal Large Language Models have made significant progress in integrating vision and language.
Early works such as BLIP-2 [2] and Flamingo [[1] introduce token-level fusion (e.g., Q-Former) and
feature-level fusion (e.g., cross-attention layers) to bridge modalities. Other approaches, including
the LLaVA series [3, 40], MiniGPT-4 [41]], and subsequent models [13} 42} 43|, leverage MLPs to
project visual features into the language space. Recent advancements in MLLMs have extended
their capabilities from static images to videos, typically by introducing video-language alignment
through large-scale pretraining [9, |44]]. Later models, such as Qwen2.5-VL [14]], enhance temporal
reasoning via dynamic resolution and absolute time encoding. Although existing video MLLMs excel
at capturing high-level semantics and temporal patterns, they struggle to interpret the underlying 3D
scene from video input, which inspires our work to enhance their spatial understanding capabilities.

2.2 3D MLLMs for Scene Understanding

Recent advances in MLLMs have sparked interest in extending their capabilities from 2D to 3D
scene understanding [23} 24, 25} 45] 46\ 147} 22, 48l 149} 150, 151} 152]. LL3DA [23]] extracts scene-
level features from 3D point clouds using a Q-Former, while Grounded 3D-LLM [45]] integrates 3D
detectors to generate object proposals. Methods like Chat3D [46]], LEO [47], and Chat-Scene [22] first
segment 3D objects and encode object-centric features for LLM fusion. Alternatively, 3D-LLM [4§]]
and Scene-LLM [49] aggregate CLIP features from pre-segmented multi-view object patches into 3D
point representations, leveraging multi-view images and camera parameters. LLaVA-3D [24] projects
2D multi-view patch features into voxel space for 3D-aware aggregation, and GPT4Scene [50]
enhances 3D reasoning by first reconstructing scenes and then using BEV images as input. While
these methods advance 3D scene understanding, most of them require additional 3D or 2.5D input
data that is difficult to acquire in real-world scenarios. In contrast, our approach only requires 2D
videos as input.

2.3 Visual-based 3D Spatial Intelligence

Visual-based 3D spatial intelligence aims to enable video multimodal large language models (MLLMs)
to perceive, infer, and reason about 3D structures and spatial relationships purely from 2D visual
inputs. Despite recent advances, most existing video MLLMs are still primarily designed for 2D
understanding tasks, and their extension to visual-based 3D reasoning, e.g., 3D question answering [6}
53| and robotic manipulation [54], remains relatively underexplored. To address this limitation, a
new wave of specialized benchmarks has emerged to systematically evaluate the spatial reasoning
capabilities of these models [[18} 20, 155} 156, 157, 158]]. Among them, VSI-Bench [18] serves as a
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Figure 2: Overview of Spatial-MLLM. Our model is composed of a 2D visual encoder &>p, a 3D spatial
encoder Espaiia, Which is initialized from a feed-forward visual geometry foundation model, a connector, and a
large language model backbone. At inference time, we incorporate a space-aware frame sampling strategy to
select spatially informative frames when the number of input frames is limited due to GPU memory constraints.

pioneering benchmark that comprehensively assesses visual-spatial intelligence across multiple
dimensions. STI-Bench [20] introduces physics-aware questions, such as velocity estimation, to
quantify a model’s spatial and kinematic reasoning abilities. Ego-ST Bench [55] evaluates the model’s
spatial intelligence from an egocentric perspective, while VLM4D [56] emphasizes motion dynamics,
such as trajectory prediction, to probe 4D spatiotemporal interactions. Collectively, these benchmarks
signify a shift toward a more holistic evaluation of visual-based spatial intelligence in MLLMs.

3 Method

In this section, we introduce Spatial-MLLM. Given a video of IV frames depicting a scene, denoted as

V= {fl}f\i 1» Where f; € RIXWX3 ‘Spatial-MLLM is designed to understand spatial relationships,
perform spatial reasoning, and generate appropriate responses. We begin by describing the model
architecture in Section 3.1} which comprises a 2D visual encoder, a 3D spatial encoder, a connector,
and a lari‘language model backbone. Then we present the space aware frame sampling strategy in

Section which selects IV, spatially informative frames {f k } _,» where N < N. Finally, we
introduce the training dataset construction process and two-stage tralmng pipeline in Section[3.3]

3.1 Spatial-MLLM Architecture

In this section, we present the architecture of Spatial-MLLM, which is shown in Figure 2] We adopt
Qwen2.5-VL-3B [14] as our base model and explore strategies to enhance its spatial understanding
and reasoning capability. Before diving into the details, we first briefly introduce the key insights that
motivate our design.

What hinders visual-based spatial intelligence in existing video MLLMs? Existing video MLLMs
(14} 13 12]) typically employ a pre-trained 2D visual encoder &> p to extract 2D patch features esp.
These features are then projected into visual tokens through a lightweight connection module. A
large language model backbone fy subsequently generates the final response by conditioning on both
visual and textual tokens. A critical bottleneck in this process lies in the nature of the visual features
extracted. The required type of information varies by task: high-level semantic representations are
essential for 2D recognition and understanding, whereas fine-grained structural cues are crucial
for spatial reasoning. However, the visual encoders used in current video MLLMs are primarily
pre-trained on image-text datasets (mainly image-caption pairs) [14} 26] following the CLIP [27]
paradigm. As a result, these models predominantly capture semantic content and often lack spatial
awareness when no additional 3D or 2.5D data are available [28} [29] 30]. To address this, our key
insight is to unleash feed-forward visual geometry foundation models [32f], which are trained on
pixel-point pairs and can recover rich 3D structural information from 2D inputs, which complements
the semantic features extracted by the 2D visual encoder. We design a dual-encoder architecture that



exploits the strengths of both models and a connector to fuse semantic and structural information into
unified visual tokens. Below, we introduce the core components of our design.

Dual-Encoder. The proposed dual-encoder consists of a 2D encoder & and a 3D spatial encoder
Espatia- For the 2D encoder branch, we adopt the same design as the visual encoder of Qwen2.5-
VL [14]] to encode input frames into semantically rich features:

ep = Ep ({fz}fvzkl) , e e RV [555 < 55 o, Q)

where pyp and dpp denote the patch size and feature dimension of the 2D visual encoder, respectively.
The two consecutive frames are grouped for video input, thus Ny’ = [N, /2].

For the spatial encoder branch, we utilize the feature backbone of VGGT [32]. Specifically, given Ny,
frames of the scene video, we first patchify the input and then extract 3D features with alternating
frame-wise self-attention and global self-attention [59]]. This process allows Egpaiial t0 aggregate
spatial information across different frames to get the final 3D features:
N Npx | 2| x| 2 | xd;

€3D, €c, Cregister = gspatial ({fz zzkl) , €3 € R g LHDJ LUDJ 3D7 (2)
where e3p, €., and egiseer represent the dense 3D feature, the camera feature for each frame, and the
register tokens [60], respectively. We only use esp in the feature fusion stage as it captures the dense
structure information of the input frames.

Connector. After obtaining the 2D and 3D features, we use a connector to integrate the semantic and
structural information from both branches. Specifically, we first align e;p with epp in both spatial
and temporal dimensions:

| = W ’
e, = Rearrange(esp), €j, € R |75 75) X 3)

Here, the spatially and temporally adjacent information in esp is aggregated into the feature channel
dimension, enabling alignment with e;p. Next, we employ a lightweight connector to fuse the
information to obtain the unified visual tokens:

e = Connector(ep, €5p), 4)

where e € RS*4um denotes the final visual tokens and S = N}, x p% X L%J is the sequence

length. In practice, we adopt a MLP-based design (detailed in Section . Although more complex
feature fusion methods, e.g., cross-attention [59} 161} 51], could be applied, we find that this approach
is effective to enhance the model’s spatial understanding and reasoning capabilities. We leave the
exploration of more advanced fusion strategies for future work.

3.2 Space-Aware Frame Sampling

Due to GPU memory constraints, video MLLMs can process only a limited subset of frames from a
scene video sequence. For example, in the VSI-Bench setup [18]], only 8 to 32 frames are sampled
as input to the video MLLM, while a typical scene video in VSI-Bench contains over 2,000 frames.
A widely adopted solution is uniform frame sampling [[13} |14} [18], which is effective for general-
purpose video understanding. However, as spatial videos represent 3D scenes, the sampling strategy
for spatial understanding tasks should focus on capturing most information of the underlying scene,
which uniform sampling fails to achieve.

Benefiting from the feed-forward visual geometry foundation model, we design a straightforward
space-aware frame sampling strategy at inference time. Specifically, given a scene video V = {£;} ¥ ,,
our objective is to select Ny frames, {fi’“}f\ﬁ‘l that have most coverage of the underlying scene. To
achieve this, we first uniformly subsample N,,, frames, {flm}f\i’{, where N,,, satisfies N, < N,,, < N,
and is determined by the available GPU memory. In practice, we choose N,,, = 128 and N, =
16. We then leverage &3p to extract their corresponding 3D features e}, and camera features €.
Subsequently, we use the pretrained camera head f. and depth head f; of the VGGT model [32] to
decode a set of camera parameters and depth maps:

{E" K"} = fo(e.), and {D"}\ = fa(esp). )



This allows us to calculate the voxels V(f/*) covered by each frame f/, and formulate frame
selection as a maximum coverage problem [62], i.e., select N}, frames {f*}¥* C {f*} N such that

the total number of unique covered voxels Uf\fl V(£F) ) is maximized. In practice, we apply a greedy

algorithm to accelerate computation [63},25]. Once the N, frames are selected, it is not necessary to
recompute their 3D features e%, and the corresponding features from the precomputed set e%, can be
directly reused. We provide the complete algorithm and detailed explanation in Section[B.1]

3.3 Training

Training Data Construction. We first construct a visual-based 3D spatial question-answering
dataset. The dataset has approximately 120k QA pairs and is constructed from three sources: the
training set of ScanQA [38]], SQA3D [39], as well as additional self-created spatial QA data. All
items in our training dataset are derived from scenes in the training set of ScanNet [64] and are
each represented as a quadruple Z; = (Q;, A;, V;, M), denoting the question, answer, video (scene)
ID, and meta-information (e.g., task type), respectively. For the self-created QA data, we follow
the data processing pipeline proposed in VSI-Bench [[18]]. Specifically, we first convert ScanNet
scenes into continuous video clips at 24 FPS and 640 x 480 resolution. Then we generate spatial
reasoning QA pairs leveraging the meta-annotations of Scannet. The generated QA pairs cover
various spatial understanding and reasoning tasks, including object counting, object size, room size,
absolute distance, appearance order, relative distance, and relative direction. Since the QA pair
construction process is similar to that of VSI-Bench [[18], we exclude the QA pair Z; if its scene video
V; is used in VSI-Bench (these videos are sourced from the validation set of Scannet) to prevent data
leakage. Finally, the self-created data contains approximately 70k QA pairs in total. We provide
additional details on training data construction in the section[B.3] Figure [3|shows a brief summary of
key statistics of the training dataset.

Supervised Fine-tuning. Leveraging the constructed
training dataset, we first perform supervised fine-tuning
(SFT) on our model. Since &p and Egpaiiar are pre-trained
on large-scale image-text and pixel-point pairs, respec- )
. . .. Spatial-MLLM

tively, we freeze them to preserve their ability to extract 120K B SQA3D
rich semantic and structural information. We jointly train
the connection module and the LLM backbone to enable
the model to adaptively fuse 2D and 3D features and en-
hance its spatial understanding and reasoning capability.
During this stage, we employ the standard cross-entropy
loss L. between the model-generated answers and the
ground-truth annotations:

Lee(0) ==Y log P(o® [ oM~V g, {f;}}) (6)
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where { £ };V:’CI denotes input video frames, g denotes the Obj. Cnt.

system prompt and question, o(*) represents the i-th to-
ken in the ground-truth answer, and o1~ denotes the Figure 3: Basic statistic of training dataset.
preceding answer tokens.

RL Training. Following the SFT stage, we first perform a simple cold start [35]] to help the
model adapt to the correct reasoning format. Then we train the model using Group Relative Policy
Optimization (GRPO) [36] to enhance its long-CoT spatial reasoning capability. During training,
we first sample a set of output {01, 02, . .., 0 } for each question ¢ from the policy model 7y,,. Then
we optimize the policy model by maximizing the following objective:

old *

G
1 . 7T9(Oi ‘ q) . 779(01' | q) )
T 0) = Eqo, | = E m1n<7Ai,ch — 221+ e€)A; ) — BKL[7mo || et 7
GrPO(0) q [G — To5q (0 | q) p(ﬂeom(m D ) BKL[mo||Trer] | (7)
ri—mean(ry,ra,...,rq)

where A; = std(r1,r2,...,7G)

is the advantage function computed using the group rewards.

In GRPO, the design of the reward function is critical. In addition to a formatting reward applied
to all task types, we introduce task-dependent reward modeling to ensure that it accurately reflects



Table 1: Evaluation Results on VSI-Bench [18]. For Spatial-MLLM and Qwen2.5-VL series [[14], we use 16
frames as input and report micro average scores. For other open-source methods and GPT-4o [5], the number
of frames is the same as VSI-Bench setting (ranging from 8 to 32 frames). For Gemini-1.5 Pro [4], it samples
video frames at 1 FPS. Bold and underline denote the best-performing and second-best-performing open-source
models, respectively.

Methods | Numerical Question Multiple-Choice Question | Avg, Rank

| Obj. Cnt. Abs. Dist. Obj. Size Room Size | Rel. Dist. Rel. Dir. Route Plan Appr. Order |
Proprietary Models
GPT-4o [5] 46.2 53 43.8 38.2 37.0 413 31.5 28.5 340 7
Gemini-1.5 Pro [4] 56.2 30.9 64.1 43.6 51.3 46.3 36.0 34.6 454 2
Open-source Models
InternVL2-40B [7 349 26.9 46.5 31.8 42.1 322 34.0 39.6 360 6
LongVILA-8B [66 29.1 9.1 16.7 0.0 29.6 30.7 325 25.5 216 12
VILA-1.5-40B [67 22.4 24.8 48.7 227 40.5 25.7 31.5 329 312 9
LongVA-7B [68] 38.0 16.6 38.9 222 33.1 433 254 15.7 292 11
LLaVA-OneVision-72B [6] 435 23.9 57.6 37.5 4.5 39.9 325 44.6 402 4
LLaVA-Video-72B [12] 489 22.8 57.4 353 424 36.7 35.0 48.6 409 3
Spatial-MLLM and Qwen2.5-VL Series
Qwen2.5-VL-3B [14] 243 24.7 31.7 22.6 383 41.6 26.3 21.2 30.6 10
Qwen2.5-VL-7B [14] 40.9 14.8 434 10.7 38.6 38.5 33.0 29.8 330 8
Qwen2.5-VL-72B [14] 25.1 293 54.5 38.8 38.2 37.0 34.0 28.9 370 5
Spatial-MLLM-4B 65.3 34.8 63.1 45.1 41.3 46.2 335 46.3 484 1

the proximity between the predicted and ground-truth answers. Specifically, we categorize the data
into three types based on answer format: numeric answer questions, multiple-choice questions, and
verbal answer questions. For numeric questions, we compute the mean relative accuracy [18]]. For
multiple-choice questions, we employ an exact match reward. For verbal answer questions, we use
fuzzy matching based on Levenshtein distance. Further details on reward calculation are provided in
Section

4 Experiments

4.1 Implementation Details

Training details. Spatial-MLLM is built on Qwen2.5-VL [14] and VGGT [32] and has approximately
4.9B parameters in total. We use the visual encoder of Qwen2.5-VL [14] to initialize &p, and the
LLM backbone of it to initialize fy. We then use the feature backbone of VGGT [32]] to initialize
Espatial- During training, we use 640 x 480 resolution and limit video frames to 16. In the SFT stage,
we train the model using Adam optimizer [65] for one epoch. We set the global batch size to 16
and use a linear learning-rate schedule, with a peak value of 1072, In the cold start stage, we first
construct a small CoT dataset. Specifically, we prompt Qwen2.5-VL-72B [14] to generate multiple
thinking processes and answers according to the scene video and question. Then we use the GT
answer to filter a correct thinking-answer pair (more details are provided in Section[B.4). We use a
similar setting as in the SFT stage to train the model for 200 steps. In the RL stage, we perform 8
rollouts per question and set the default sampling temperature to 1. The KL divergence coefficient, 3,
is set to 0.04. Due to computational resource limitations, we train the model for 1,000 steps with a
learning rate of 1e-6. We show the training curve of SFT Stage and RL Stage in Figure ]

Inference Details. During inference, we set N,,, = 128 and N, = 16 for space-aware frame
sampling. Since spatial reasoning requires a certain level of determinism, we set the temperature to
0.1 and the top-p to 0.001. The default input resolution from the scene video is 640 x 480.

4.2 Comparisons on VSI-Bench

Setup. VSI-Bench [18] contains more than 5,000 question-answer pairs derived from egocentric
videos sourced from ScanNet [64], ScanNet++[69], and ARKitScenes[70]. The task types are divided
into Multiple-Choice Answer (MCA) and Numerical Answer (NA). For the MCA tasks, we compute
mean accuracy, and for the NA tasks, we calculate relative accuracy across confidence thresholds
C = {0.5,0.55...,0.95}. We report the final average score and individual metrics on eight task
types of VSI-Bench, including: (1) configurational reasoning tasks (object counting, relative direction,
absolute direction, and route planning), (2) measurement estimation tasks (object size, room size, and
absolute distance), and (3) spatiotemporal reasoning tasks (appearance order). For Spatial-MLLM



Table 2: Evaluation Results on ScanQA [38] and SQA3D [39]. We use the val set of ScanQA and test set of
SQA3D for evaluation following common practice [22} 47, 25]. Bold and underline denote the best-performing
and second-best-performing models in each model category, respectively.

| ScanQA (val) SQA3D (test) | Video-Input Only
‘BLEU—I BLEU-4 METEOR ROUGE-L CIDEr‘EM—] EM—RI‘

Methods

Task-Specific Models

ScanQA [38] 30.2 10.1 13.1 333 64.9 | 47.2 - X
SQA3D [39] 30.5 11.2 13.5 34.5 - 46.6 - X
3D-Vista [[71] - - 13.9 35.7 - 48.5 - X
3D/2.5D-Input Models

3D-LLM [48] 39.3 12.0 14.5 35.7 69.4 - - X
LL3DA [23] - 13.5 15.9 37.3 76.8 - - X
Chat-Scene [22] 43.2 14.3 18.0 41.6 87.7 | 546 575 X
3D-LLaVA [21] - 171 184 43.1 92.6 | 545 56.6 X
Video-3D LLM [25] 47.1 16.2 19.8 49.0 102.1 | 58.6 - X
Video-Input Models

Qwen2.5-VL-3B [14] 22.5 3.8 9.7 254 474 | 434 459 v
Qwen2.5-VL-7B [14] 27.8 3.0 11.4 29.3 539 | 465 4938 4
Qwen2.5-VL-72B [14]| 26.8 12.0 13.0 352 669 | 470 509 v
LLaVA-Video-7B [12] | 39.7 3.1 17.7 44.6 88.7 | 48.5 - v
Oryx-34B [53] 38.0 - 15.0 37.3 72.3 - - v
Spatial-MLLM-4B 44.4 14.8 184 45.0 91.8 | 55.9 58.7 v

and Qwen2.5-VL series, we report micro average scores in Table || and macro average scores in
Table

Baseline Models. We compare our model with a broad range of video-input MLLMSs. For proprietary
model, we include GPT-4o [3]] and Gemini-1.5 Pro [4] for comparison. For open-source video-input
MLLMs, we compare our model with InternVL2 [7], LongVILA [66], VILA [67], LongVA [68I],
LLaVA-NeXT-Video [[12]], LLaVA-OneVision [[6], and the Qwen2.5-VL [14] series. The parameter
count of the baseline models is reported in Table|T]

Results. We present the quantitative results on VSI-Bench [18]] in Table[T]and Table[5] Despite having
4.9B parameters, Spatial-MLLM significantly outperforms all proprietary and open-source MLLMs,
including those with substantially larger parameter counts (e.g., 32B or 72B). Among the remaining
models, the best-performing one is the proprietary Gemini-1.5 Pro [4]. Notably, Spatial-MLLM is
provided with only 16 input frames per video, while Gemini-1.5 Pro [4] samples videos at 1 FPS (i.e.,
an average of 85 frames per video on VSI-Bench) according to its API instructions [18]]. Despite the
significantly lower number of input frames, Spatial-MLLM still achieves higher average accuracy
than Gemini-1.5 Pro [4].

4.3 Comparison on ScanQA and SQA3D

Setup. ScanQA [38] and SQA3D [39] are two 3D question-answering benchmarks built upon
ScanNet [64]. Since the authors did not provide a test set for ScanQA, we evaluate it using the
validation set, which consists of 4,675 QA pairs focused on understanding spatial relationships
such as object alignment and orientation, as well as the ability to accurately identify objects in 3D
scenes based on textual questions. We follow standard practice [25}50] by evaluating answer quality
using the following metrics: CiDEr, BLEU-1, BLEU-4, METEOR, and ROUGE-L. For SQA3D, we
evaluate the model on its test set, which contains 3,519 QA pairs. The task requires the model to first
understand its position and orientation within the 3D scene, as described by text, then reason about
its environment and answer a question under those conditions. Since SQA3D contains definitive
answers, we use exact match accuracy (EM) and its refined version (EM-R) as evaluation metrics.
We provide the evaluation results using additional metrics for both benchmarks in Section [C.2}

Baselines. Since both the ScanQA [38]] and SQA3D [39] benchmarks provide additional 3D anno-
tations (e.g., point clouds and depth maps of the scene), we compare Spatial-MLLM with several
other model types in addition to video-input MLLM. These includes task-specific models designed
for 3D question-answering tasks, such as ScanQA [38]], SQA3D [39], 3D-VisTA [71], and LLMs
that require point clouds or depth maps as input, such as Chat-Scene [22], Video-3D LLM [25], and
3D-LLaVA [21]].
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Figure 4: Visualization of Training Curves in the SFT and RL Stages. For the SFT stage, we present the
mean token accuracy and loss curves. For the RL stage, we show the dynamics of completion length and reward.

Results. We present the quantitative results on the ScanQA [38]] and SQA3D [39] benchmarks
in Table[2] As shown, Spatial-MLLM significantly outperforms all video-input models across all
metrics on both ScanQA and SQA3D. Our model also surpasses all task-specific models. Among
models utilizing 3D or 2.5D input, only 3D-LLaVA [21]] (on ScanQA) and Video-3D-LLM [235]]
(on ScanQA and SQA3D) achieve better performance than Spatial-MLLM. However, 3D-LLaVA
requires additional point cloud input, and Video-3D-LLM depends on depth maps. Despite not
relying on any additional 3D or 2.5D input, our model still outperforms other 3D-dependent models
such as 3D-LLM [48]], LL3DA [23]], and Chat-Scene [22].

4.4 Ablation Study and Analysis

Ablation on Input Frame Number. We evaluate the effect of the number of input frames on
VSI-Bench across different models, including Spatial-MLLM, Gemini-1.5 Pro [4], and Qwen2.5-VL-
3B [[14]. The result is shown in Table.[d] For the 1 fps setting of Gemini-1.5 Pro, we upload the entire
video to the model following the VSI-Bench [18]], where the video is sampled at 1 fps according
to the API instructions. For the 0.1 fps and 0.25 fps settings, we first manually sample the video
frames and then upload these sampled frames to the model. As shown, all models exhibit improved
performance as the number of input frames increases, particularly when the number of frames is
small.

Effectiveness of Space-aware Frame Sampling. We evaluate different frame sampling configu-
rations in Table ] including 8, 16, and 32 frames using uniform sampling and space-aware frame
sampling. As shown, increasing the number of sampled frames improves performance for both
space-aware frame sampling and uniform sampling. Compared with uniform sampling, space-aware
frame sampling consistently outperforms it when the number of input frames is the same.

We further provide a visualization of our space-aware frame sampling in Fig. [5] which shows the
point maps (predicted by the VGGT [32]]) corresponding to the frames selected by different sampling
strategies. As shown, the proposed space-aware frame sampling strategy consistently yields more
spatial coverage than uniform sampling, which often overlooks transient regions that appear briefly
in the video and tends to produce redundant viewpoints when the camera remains static.

Effectiveness of RL Train-

ing. We evaluate Spatial- Taple 3: Ablation Study. We report micro average results for numerical ques-
MLLM’s performance be- tions and multiple-choice questions on VSI-Bench [18] in different settings.
fore and after GRPO train-

ing on VSI-Bench. The re- Methods Numerical Multiple-Choice Avg.
sults are presented in the  Spatial- MLLM 527 43.8 484
second (SFT + GRPO) and  Spatial-MLLM (w/o sa sampling) 51.6 423 47.1
third (SFT) rows of Tab]e@ Spatial-MLLM (w/o sa sampling & GRPO) 51.5 40.4 46.1
As shown. even though we Qwen2.5-VL-3B (SFT) ¢ 49.2 40.3 449

’ Qwen?2.5-VL-3B (SFT) 47.1 32.6 40.0
conduct only small scale RL Qwen2.5-VL-3B 4 6.9 306

training (i.e., 1,000 steps),
the GRPO-trained model
still achieves performance gains, suggesting that long chain-of-thought reasoning enhances the
spatial reasoning capabilities required by VSI-Bench [18]].

Effectiveness of the Spatial-MLLM Architecture and Training Dataset. We compare the su-
pervised fine-tuned version of Spatial-MLLM, two supervised fine-tuned versions of Qwen2.5-VL-
3B [14] (the base model of Spatial-MLLM) and original Qwen2.5-VL-3B model in Table f
denotes results obtained with the R1-V [72] training framework. ¥ denotes results which we further
apply a question token mask during the loss computation process within R1-V [72]], which aligns
better with Spatial-MLLM training process. As shown 3| both SFT versions of Qwen2.5-VL-3B
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Figure 5: Visualization of different frame sampling strategies. For clarity of visualization, we set N,,, = 128
and Nj = 8 in the visualization example.

Table 4: Ablation on Input Frame Number. We report micro average results on VSI-Bench [18] using
different input frame numbers and frame rates (FPS). For Gemini-1.5 Pro, the input frame number is averaged
over questions.

Methods Frames FPS Numerical Multiple-Choice Avg.
8 N/A 50.8 41.2 46.1

Spatial-MLLM 16 N/A 52.7 43.8 48.4
32 N/A 53.1 453 49.3

: 8 N/A 48.2 39.2 43.8

( Sf’a“al'ML%M ) 16 NA 516 23 471
W0 sa sampling 32 N/A 524 44.2 484

12.2 (avg.) 0.1 43.1 35.7 39.5

Gemini-1.5 Pro [4] 29.6 (avg.) 0.25 48.8 37.8 43.5
117.1 (avg.) 1 49.7 44.0 46.9

8 N/A 331 20.2 26.5

Qwen2.5-VL-3B 16 N/A 34.4 26.9 30.6
32 N/A 35.7 28.3 31.9

show improvements, indicating the effectiveness of our proposed dataset to enhance the model’s
spatial reasoning capabilities. Furthermore, both models underperform compared to the supervised
fine-tuned version of Spatial-MLLM, which validates the effectiveness of the proposed architecture.

5 Conclusion

We introduce Spatial-MLLM, a method that enables effective spatial understanding and reasoning
from purely 2D visual inputs. By combining a semantic 2D encoder with a structure-aware spatial
encoder initialized from a visual geometry foundation model, our dual-encoder design captures both
semantic and spatial cues. Additionally, our proposed space-aware frame sampling strategy further
enhances performance under limited input constraints. Trained on the collected dataset, our model
achieves state-of-the-art results across multiple benchmarks.

Limitations and Future Work. Although Spatial-MLLM demonstrates significant improvements
over previous video MLLMs across a wide range of visual-based spatial understanding and reasoning
tasks, there remains room to scale Spatial-MLLM further in terms of model size and training data.
Moreover, as this work primarily addresses visual-based spatial intelligence, we have trained and
evaluated our model specifically on relevant datasets and benchmarks. An interesting direction for
future work would be to explore how integrating spatial structural information might further benefit
general video understanding and reasoning tasks.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction (Sec. |1} accurately
reflect the paper’s contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss possible limitations of our method in Sec. [5]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to our method (Sec. [3)) and implementation details (Sec. ) to
reproduce our work step by step.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will release the data and code upon acceptance.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the details in Sec. [}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow conventions observed in certain prior studies, and they don’t include
error bars in their experiments. To ensure a fair comparison, we similarly have not reported
error bars in our paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

18



9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide Broader impacts in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code bases and datasets used in our work are open-source, and we strictly
follow the licenses or terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Our experiment poses no potential risks to study participants. We also adhere
to the NeurIPS Code of Ethics and the guidelines for our institution.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

A Broader Impacts

This work advances spatial reasoning in multimodal large language models by enabling 3D under-
standing purely from 2D visual inputs. Such capability may broaden the accessibility of spatially
aware Al in domains such as robotics, autonomous systems, and visual content understanding, without
requiring costly 3D data. As with other vision-language models, considerations of data privacy and
ethical deployment remain important to ensure positive social outcomes.

B Additional Method Details

B.1 Details of Space-Aware Frame Sampling

Our space-aware frame sampling algorithm consists of three stages: (1) Scene geometry preprocessing,
(2) Voxelization and coverage calculation, and (3) Greedy maximum coverage selection. Beginning
with the original video sequence V = {f;}}V,, we first perform uniform subsampling to obtain
N, = 128 candidate frames {f} . For each subsampled frame, we leverage the backbone and
head of VGGT [32]] to compute {E*, K"} and {D*} ¥ as illustrated in the main paper. Then
we reconstruct 3D point maps P;" through depth reprojection:

Pt =D K ulv1]" - B ®)
where (u, v) denote pixel coordinates. In practice, we also obtain a confidence value ¢(p) € [0, 1]

for each point p € P" from the depth head. Although VGGT [32]] can also directly decode point
maps from 3D dense features, we find that using depth and camera produces more accurate results.

The voxelization and coverage calculation process first establishes a 3D bounding box encompassing
all valid scene points:
an
Puatia = U{p € P | e(p) > 0.1 A ¢(p) > Percentile({c(p)}, 50%)}. )
i=1
We then discretize the bounding box into voxels. To handle relative scales in VGGT [32] outputs, we
use an adaptive way to set the voxel size A to % of the minimum dimension of the scene’s bounding
box:
1
A= X min(max(Pyaiia) — min(Pyaiid) ), (10)

where \ is a hyperparameter and we set it to 20. Each frame’s voxel coverage V(f/™) is then
calculated by discretizing its valid points:

V(") = { {pmlz(vahd)J ‘P eEPMN Pvalid} - (11

Finally, we can formulate frame selection as the typical maximum coverage problem [62]:
£ . =N 12
s iEJSV(, )| st S| =N, (12)

In practice, we set N, = 16 and use a greedy approach [63| 25]] to iteratively select the frame that
provides the maximum new coverage, which is illustrated in Algorithm [I]

B.2 Details of Feature Fusion

Both the 2D and 3D encoders use a spatial patch size of 14. The 2D encoder further reduces the
token sequence length by merging tokens spatially (2x2 adjacent tokens) and temporally (every 2
consecutive frames). As a result, the 2D encoder outputs exactly one-eighth the number of tokens
compared to the 3D encoder (we exclude register and camera tokens). To align these tokens, we
first apply the same spatial-temporal merging strategy as used in the 2D encoder. After merging,
we rearrange the tokens into sequence, ensuring the two sets of tokens are precisely aligned in both
position and number. Then we project both tokens into language model’s hidden dimension with a
two-layer MLP and fuse them by element-wise addition.
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Algorithm 1 Greedy Maximum Coverage Sampling

Input Frame voxel sets {V (f*)} ¥, target selection size Ny,

Output Selected frame indices S C {1, ..., N;» }

IS+ 0 > Selected frames
2: C« 0 > Covered voxels
33 R« {l,...,Nn} > Remaining candidates
4: fort <+ 1to N do

5 if R = () then

6: break > No remaining candidates
7 end if

8 i* + argmax |V () \ C| > Max coverage gain

=

9: if |V (f7?) \ C| = 0 then
10: break > No additional coverage
11: end if
12: S+ Su{i*} > Update selection
13: C+—CUV(r) > Update covered voxels
14: R+ R\ {i*} > Remove from candidates
15: end for
16: return S

B.3 Details of Dataset Construction

We follow a similar approach to that used in [18] to construct the self-created part of training
dataset. Specifically, the construction involves three main processes: video preprocessing, metadata
computation, and QA pair generation.

Video Preprocessing. In this stage, we extract frames from the raw ScanNet [64] scans and convert
them into videos at 24 FPS with a resolution of 640 x 480.

Metadata Computation. In this stage, we extract spatial and semantic metadata from raw ScanNet
scans and their associated semantic annotations. First, we align each raw scene mesh using the
provided axis alignment matrices and convert it to the Open3D [73]] point cloud. At the room level,
we compute the room size using the alpha-shape algorithm and determine the center coordinates.
At the object level, we generate oriented bounding boxes (OBBs) for each valid object instance and
assign semantic labels from the annotations, excluding structural elements (e.g., walls, floors) and
ambiguous categories (e.g., otherstructure). To ensure consistency across categories, we remap the
original ScanNet semantic labels to a new label set based on the NYU40 classes [74,[75] (which we
manually add and remove some categories to align with VSIBench [18]). In addition, we collect
the projected 2D semantic annotation of each scene video for the appearance order task. The final
metadata for each scene includes: (1) room size and center coordinates; (2) the projected 2D semantic
annotation of the scene video; (3) object instances and their OBB parameters, including rotation
matrices, extents, and centers; and (4) semantic labels for each object.

QA Pair Generation. Finally, we generate QA pairs of different tasks, including object counting,
object size, room size, absolute distance, appearance order, relative distance, and relative direction.

* Object counting (numerical): We first count how many times each object category appears in the
scene, then randomly sample a category that appears at least twice. Question template: “How
many <category>(s) are in this room?”

* Object size (numerical): We randomly sample a unique object in the scene and take the longest
side of its oriented bounding box (OBB) as the ground-truth length (in cm). Question template:
“What is the length of the longest dimension (length, width, or height) of the <category>,
measured in centimeters?”

* Room size (numerical): We use the pre-computed room size (in m?) as the ground-truth value.
Question template: “What is the size of this room (in square meters)?”

* Absolute distance (numerical): For a pair of objects, we uniformly sample points inside each
OBB and take the minimum Euclidean distance between the two point clouds as the ground-truth
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(in m). Question template: “Measuring from the closest point of each object, what is the direct
distance between the <category_A> and the <category_B> (in meters)?”

L]

Appearance Order (multiple choice): We calculate the first appearance timestamp of each cate-
gory, which is the timestamp when its visible pixel count exceeds a predefined threshold. Using
these timestamps, we generate the correct order of appearance among the categories, along with
other options. Question template: What will be the first-time appearance order of the following
categories in the video: <category_A>, <category_B>, <category_C>, <category_D>

Relative distance (multiple choice): We use an “anchor” object that is unique in the scene and then
select four additional objects while enforcing 15-30cm separation thresholds between options.
Question template: “Which of these objects (<category_A>, <category_B>, <category_C>,
<category_D>) is closest to the <anchor_category>?"

Relative direction (multiple choice): For triple {position, facing, query} of unique categories, we

compute the horizontal angle between the vectors position — facing and position — query. The
angle is then discretized into directional classes (easy: left/right, medium: left/right/back, hard:
front-left/front-right/back-left/back-right). Question template (easy example): “If I am standing
by the <position-category> and facing the <facing-category>, is the <query-category> to the
left or the right?”

B.4 Details of Cold Start

To align the model with the desired reasoning format, we perform a simple cold start for 200 steps
before GRPO training. The key to this stage is the construction of a spatial reasoning dataset with
chain-of-thought (CoT) annotations. The construction process is as follows:

Subset Sampling. We begin by sampling a subset Dy = {Z;} Y, = {(Q;, A, Vi, M)}, from
our training dataset.

Multi-path CoT Generation. For each item Z; € Dy, we utilize Qwen2.5-VL-72B [14] to generate
K independent reasoning processes ﬁ(k) and corresponding answers flgk) We then compute a reward
rgk) = Reward(A(k), A,;) for each reasoning-answer pair, where Reward(-, -) is the reward function

described in Sec Consequently, we obtain a set of outputs O; = {(ﬁ(k), Agk), rgk))}szl for
eachZ;, € Dy.

Adaptive Filtering. Since Qwen2.5-VL-72B [14] may generate incorrect reasoning processes
and answers, we apply a filtering process based on the computed rewards. While using a global
reward threshold is straightforward, it often results in an imbalance across question types in the
selected subset. To mitigate this, we adopt an adaptive filtering strategy. Specifically, for each item
T; € Dy, we first keep the output with the highest reward to get O; = {('f;(k ), Afk ), rl(k ))} where
k* = argmaxy, rfk). Let#; = rl(k ) denote the maximum reward. We then categorize all items based
on their question type and compute a question type-dependent threshold 7;(;), where ¢(7) denotes the
type of problem ¢. The item is added into the cold start set if and only if:

Ty > Tys) and 7 >0,

where the type-dependent threshold satisfies 7,(;) := Quantile({#; | ¢(j) = ¢()},0.5). This rule
preserves approximately the top 50% of generations per question type while discarding degenerate
(zero-reward) outputs. In practice, we set N, = 5000 and K = 3, and finally we get 2459 items in
the cold start set. We provide a pseudocode for this process in Algorithm 2}

B.5 Details of SFT and GRPO Training

Reward Calculation. Given predicted answer A,q and ground truth answer Ay, the reward
function Reward(Apreq, Agi) consists of a format reward R and a task-specific reward:

Rumc, multiple-choice
Reward(Apred, Agt) = A1 Riormat + A2 ¢ Rvra,  numerical (13)
RVerbal s verbal
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Algorithm 2 Cold Start Dataset Construction

Input Original dataset D

1: Qwen2.5-VL model M

2: Reward function Reward(-, )

3: Sample size N, Paths per item K
Output Filtered dataset D qjq

4: Initialize Dy < Sampling(D, N;)

5: Deotd < 0
6: for each item Z; = (Q;, A;, Vi, M;) € Dy do
7 Generate K reasoning paths: {’f;(k)}szl — M(9;,V;)
8

Compute rewards: rl(k) — Reward(/lgk), A;), Yk

9: Select best path: k* < arg maxy Tz(k)
10: Record 7; + Tfk ), O; + (ﬁ(k )7"211('k ))
11: end for

12: Group items by type: {G;} «+— GroupByType({#;})

13: for each question type ¢ do

14: Compute threshold: 7 «— Quantile({7;|j € G;},0.5)
15: end for

16: for each item Z; € Dy do

17: if 7; > Ty(s) and 7; > 0 then

18: Deotd <= Deola U {O;}

19: end if

20: end for

21: return D.yq

where \; and )\, are hyperparameters, both of which are set to 1 in our implementation. For
multiple-choice questions, we implement exact match criterion:

Rwmc (-Apreda Agt) =1 (Q/J(Apred) = w(Agl)) (14)

where 1(-) performs answer normalization through whitespace stripping and I(-) denotes the indicator
function. For numerical tasks, we compute mean relative accuracy (MRA) [18]]:

1 |o(Aprea) — a(Ag)|
Rura (Apred, Agt) = — ]I( P < (15)
pealces 420 = 77 2 o+
where «(-) normalizes numeric values, ¢ = 10~8 prevents division by zero, and 7 =

{0.50,0.55,...,0.95} defines accuracy thresholds. For verbal answer questions, we compute a
normalized similarity score using the Levenshtein ratio:

_ DLev(¢(Apred)7 ¢(Agt))
|¢(Aprea)| + |9 (Ag)|

RVerbal (-Apred7 -Agt) =1 (16)

where Dy, denotes the Levenshtein edit distance, and ¢(-) represents the text normalization function.
In practice, we use the implementation provided by the Levenshtein library. In addition to the format
and task-specific rewards, we also incorporate a reasoning length reward following Video-R1 [12]],
which encourages the model to perform more thinking before generating the final answer.

Other Details. Figure [6] presents the prompts used in the SFT and GRPO stages. For both stages,
we adopt the default system prompt of Qwen2.5-VL [14], namely, "You are a helpful assistant." In the
SFT stage, the user prompt consists of a question and a type template. In the GRPO stage, the user
prompt comprises a question, a question post string, and a type template. We conduct all experiments
on Intel(R) Xeon(R) Gold 6430 platform with 80G NVIDIA A800 GPUs.
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4 Question \( GRPO Stage N
Example 1:
Question : " How many chair(s) are in this room?" System Prompt
E e 2: “You are a helpful assistant.”
xamp'e = User Prompt

Question : " If | am standing by the sofa and facing the stove, is the
tv to my left, right, or back? \nAn object is to my back if | would have
to turn at least 135 degrees in order to face it. Options:

A. back B. right C. left"

{Question} +
“Please think about this question as if you were a human pondering
deeply. Engage in an internal dialogue using expressions such as ‘let

\ / me think’, 'wait’, ’Hmm’, ‘oh, | see’, ‘let’ s break it down’, etc, or
other natural language thought expressions. It' s encouraged to
( SFT Stage ) include self-reflection or verification in the reasoning process. * +

Type Template[‘problem type”]

System Prompt Type Template
“ You are a helpful assistant.” * Multiple choice: " Please provide your detailed reasoning between

User Prompt the <think> </think> tags, and then answer the question with the
{Question} + Type Template["problem type’] option's letter from the given choices (e.g., A, B, etc.) within the

Type Template <answer> </answer> tags."

* Multiple choice: " Please answer with the option's letter from the «  Numerical: " Please provide your detailed reasoning between the
given choices (e.g., A, B, etc.) within the <answer> </answer> <think> </think> tags, and then answer the question with the only
tags." numerical value (e.g., 42, 3.14, etc.) within the <answer> </answer>
Numerical: " Please answer with the only numerical value (e.g., tags."

42, 3.14, etc.) within the <answer> </answer> tags. " « Verbal:" Please provide your detailed reasoning between the
Verbal: " Please answer the question simply within the <answer> <think> </think> tags, and then answer the question simply within the
</answer> tags." <answer> </answer> tags"

. AN J

Figure 6: Illustration of the prompts used in the SFT and GRPO stages. We use the default
system prompt of Qwen2.5-VL [14] (i.e., , "You are a helpful assistant") for both stages. In the SFT
stage, the user prompt consists of a question and a type template. In the GRPO stage, the user prompt
includes a question, a question post string, and a type template.

Table 5: Macro average scores on VSI-Bench [[18] for Qwen2.5-VL [[14]] series and Spatial-MLLM.

Methods | Numerical Question Multiple-Choice Question | Avg
| Obj. Cnt. Abs. Dist. Obj. Size Room Size | Rel. Dist. Rel. Dir. Route Plan Appr. Order |
Qwen2.5-VL-3B [14] 24.3 24.7 31.7 22.6 38.3 42.6 26.3 21.2 29.0
Qwen2.5-VL-7B [14] 40.9 14.8 434 10.7 38.6 40.1 33.0 29.8 314
Qwen2.5-VL-72B [14] 25.1 29.3 54.5 38.8 38.2 39.3 34.0 28.9 34.3
Spatial- MLLM-4B 65.3 34.8 63.1 45.1 41.3 46.9 33.5 46.3 47.3

C Additional Experiments

C.1 Additional Results on VSI-Bench

We present qualitative examples of Spatial-MLLM on the VSI-Bench [18] dataset in Figures [7]to[10}
As illustrated, Spatial-MLLM is capable of reasoning with visual information across different task
types and producing final answers accordingly. Furthermore, it demonstrates strong abilities in
self-verification and task decomposition during the reasoning process.

C.2 Additional Results on ScanQA and SQA3D

We present additional evaluation results on the ScanQA [38] and SQA3D [39] benchmarks in Table|§|
and Table [7] As shown, our proposed method consistently outperforms all video-input models,
including LLaVA-Video-7B [12] and Oryx-34B [53]], both of which incorporate spatial reasoning
datasets such as ScanQA [38]] during training.

Despite having only 4.2 billion parameters, Spatial-MLLM significantly surpasses Qwen2.5-VL-
72B [14] on the ScanQA benchmark, achieving substantial gains across multiple metrics—for
instance, +2.3 EM-1, +17.6 BLEU-1, and +24.9 CIDEr. Similarly, on the SQA3D benchmark,
Spatial-MLLM consistently outperforms Qwen2.5-VL-72B across all question types and overall
performance, including improvements of +4.2 EM-1 and +7.8 EM-R1, with notable gains in the Is
(+15.3) and Which (+13.9) categories.
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Table 6: Additional evaluation results on ScanQA [38]] for task-specific models, 3D/2.5D input
models, and video-input models. Reported metrics include EM-1, BLEU-1 to BLEU-4, ROUGE-L,
METEOR, and CIDEr.

\ ScanQA (val)
‘EM—l BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr

Methods

Task-Specific Models

ScanQA [38] 21.1 30.2 20.4 15.1 10.1 333 13.1 64.9
3D-Vista [71] 224 - - - 10.4 35.7 13.9 69.6
3D/2.5D-Input Models

3D-LLM [48] 20.5 393 25.2 18.4 12.0 35.7 14.5 69.4
LL3DA [23] - - - - 13.5 37.3 15.9 76.8
Chat-Scene [22] 21.6 432 29.1 20.6 14.3 41.6 18.0 87.7
3D-LLaVA [21] - - - - 17.1 43.1 18.4 92.6
Video-3D LLM [25] 30.1  47.1 31.7 22.8 16.2 49.0 19.8 102.1
Video-Input Models

Qwen2.5-VL-3B [14] | 154 225 13.1 8.1 3.8 254 9.7 47.4
Qwen2.5-VL-7B [14] | 19.0  27.8 13.6 6.3 3.0 29.3 11.4 53.9
Qwen2.5-VL-72B [14]| 240  26.8 17.8 14.6 12.0 35.2 13.0 66.9
LLaVA-Video-7B [12] | - 39.7 26.6 9.3 3.1 44.6 17.7 88.7
Oryx-34B [53] - 38.0 24.6 - - 37.3 15.0 72.3
Spatial-MLLM-4B 263 444 28.8 21.9 14.8 45.0 18.4 91.8

Table 7: Additional evaluation results on SQA3D [39] for task-specific models, 3D/2.5D input
models, and video-input models. In addition to the average EM-1 and EM-R1 across all questions,
we also report the average EM-1 for different question types, including What, Is, How, Can, Which,
and Others.

Methods ‘ SQA3D (test)
\What Is How Can Which Others Avg. (EM-1) Avg. (EM-R1)

Task-Specific Models

SQA3D [39] 31.6 63.8 46.0 69.5 439 453 46.6 -
3D-Vista [71] 348 633 454 69.8 47.2 48.1 48.5 -
3D/2.5D-Input Models

Scene-LLM [49] 409 69.1 45.0[70.8| 47.2 523 54.2 -
Chat-Scene [22] 454 67.0 52.0 69.5 499 55.0 54.6 57.5

Video-3D LLM [25]  [WSTNIMI724W5550 69.8 513 11560 58.6 i
Video-Input Models

Qwen2.5-VL-3B [14] | 34.8 52.1 39.8 52.7 456 47.0 43.4 45.9
Qwen2.5-VL-7B [14] | 39.7 56.6 41.1 559 476 472 46.5 49.8
Qwen2.5-VL-72B [14] | 41.7 56.3 41.5 55.6 445 48.0 47.0 50.9
LLaVA-Video-7B [12] | 42.7 56.3 47.5 553 50.1 472 48.5 -
Spatial- MLLM-4B 459 71.6 55.1 69.5[52.0 | 53.0 559 58.7
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Video

Question
"How many chair(s) are in this room?"

Spatial-MLLM

"<think>

Let me think about this carefully. In the images provided, | need to identify any chairs present in the
room. First, I'll scan the entire room to ensure I'm not missing anything. The room appears to be a
living space with a kitchen area, a couch, a dining area, and other furniture. Now, let's break it down:
1. In the kitchen area, there is a small black stool or cushioned seat near the cabinets. This doesn't
seem like a chair.

2. There's a couch in the living room area, but that's a sofa, not a chair.

3. In the dining area, there is a small table with two chairs visible. They are wooden and have simple
designs. So, after a thorough review of the images, | can confirm that there are two chairs in the
room. Oh, | see. The question was asking for the number of chairs, and now I'm confident that there
are two.

</think>
<answer>2 </answer>"
\_ J
Figure 7: Qualitative example on VSI-Bench [18].
(. )
Video

Question
"How many sofa(s) are in this room?"

Spatial-MLLM
"<think>

Let me think about this for a moment. The images show a living room with various pieces of furniture.
As | scan through them, | notice a few clearly identifiable sofas.

First, in the initial image, there's a partially visible sofa near the window. It appears to be a traditional
design, likely made of fabric and leather. Next, in the following image, there's another sofa positioned
near the fireplace. This one seems to have a more modern design, possibly made of leather or a
similar material. Then, in the third image, there's a third sofa visible in the background, near the
bookshelf. It looks like it's a different style from the first two, possibly a sectional sofa. In the fourth
image, there's a fourth sofa visible on the left side of the room. It appears to be a single-seater sofa,
different from the others. Let's break it down:

- Traditional sofa: 1- Modern sofa: 1 - Sectional sofa: 1 - Single-seater sofa: 1

Oh, I see. There are four distinct sofas visible in these images. I should double-check to make sure I'm
not missing any, but after reviewing again, | confirm there are no additional sofas hidden or partially
obscured. Final count: 4</think>

<answer>4 <[answer>"

\.

Figure 8: Qualitative example on VSI-Bench [18].
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Question

"If I am standing by the sofa and facing the stove, is the tv to my left, right, or back?\nAn object
is to my back if | would have to turn at least 135 degrees in order to face it. Options:

A. back B. right C. left"

Spatial-MLLM

"<think>

Let me think about this for a moment. If I'm standing by the sofa and facing the stove, | need to
consider the layout of the room. The stove is in the kitchen area, which appears to be separated
from the living room area by a counter and some cabinets. Now, where is the TV? The TV is
positioned on the wall near the kitchen area, which means it's not directly in front of me but rather
to my side. Wait, the question asks if the TV is to my left, right, or back. Let's break it down: if I'm
facing the stove, and the TV is positioned in such a way that it's not in front of me, it must be either
to the left or the right. Given the layout of room, the TV is on the opposite side of the kitchen area,
which would be to the right of the stove if I'm facing it. Hmm, let's verify this. If | turn around from
the sofa and face the kitchen area, the TV is indeed to the right of the kitchen appliances. This
means that if I'm facing the stove from the sofa, the TV would be to my right. Oh, | see now. The
TV is to my right when I'm facing the stove from the sofa.

<[think><answer>B </answer>"

Figure 9: Qualitative example on VSI-Bench [18].

Question
"What will be the first-time appearance order of the following categories in the video: basket,
pillow, toilet, tv? Options:\nA. basket, pillow, toilet, tv B. pillow, tv, toilet, basket C. toilet,
pillow, tv, basket D. toilet, basket, pillow, tv"

Spatial-MLLM

"<think>Let me think about this carefully. The question asks for the first appearance order of
certain objects in a video, but | need to focus on the video that shows the bathroom. In the video, |
see various objects appear in different sequences. Let's break it down:

1. Bathroom sequence: The video starts with the bathroom, showing a toilet, sink, shower curtain,
and some shelves. There's also a basket visible in one part of the bathroom. 2. Transition to living
room: The video then transitions to a living room with a bed, which is a different space entirely.
The living room shows a bed with a pillow and some decorative items. The third part shows the
living room with a couch, TV, and other decorations.

Now, let's consider the appearance order. The toilet is in the bathroom, the basket appears in the
bathroom, the pillow is in the bedroom, and the TV is in the living room.

Let's verify this one more time: Bathroom -> toilet -> basket -> Bedroom -> Yes pillows, other
bedroom items -> Living Room -> TV."

Therefore, the correct answer is D. Toilet, basket, pillow, tv.</think><answer>D </answer>"

Figure 10: Qualitative example on VSI-Bench [18].
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