
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING REASONING CHAINS THROUGH QUASI-
GANS AND TEXTUAL GRADIENT FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently advanced reasoning in multi-agent
systems (MAS), yet existing work mainly focuses on improving forward reason-
ing accuracy, overlooking the potential of adversarial mechanisms with backward
generation of erroneous reasoning chains to enhance both accuracy and stability.
We propose a novel adversarial learning framework in which a forward generator
produces accurate reasoning chains, while a backward generator constructs adver-
sarial erroneous chains. Guided by a discriminator providing gradient feedback in
the textual domain, both generators iteratively refine their outputs through compet-
itive optimization with generative adversarial networks (GANs). This competitive
optimization reduces variability in outputs for identical queries, increases robust-
ness to prompt perturbations, and provides interpretability into the distinct roles of
the two generators by dynamically tracking the evolution of reasoning chains. Ex-
periments show that, after two to three rounds of prompt optimization, our method
improves reasoning accuracy from 73.7% to 81.6%, and reduces instability from
0.39 to 0.08. These results demonstrate the proposed framework’s ability to jointly
optimize accuracy and stability, and highlight the promise of adversarial forward-
backward mechanisms in advancing multi-agent reasoning systems.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable capabilities in reason-
ing tasks, particularly through efficient reasoning optimization methods such as Chain-of-Thought
(CoT) prompting (Kojima et al., 2022). Leveraging these advances, LLM-powered AI agents have
exhibited strong abilities in tool usage, self-reflection, and other reasoning-related functionalities.
Multi-agent systems (MAS) further amplify these capabilities by enabling collaboration among mul-
tiple AI agents, significantly improving both the efficiency and accuracy of reasoning tasks.

However, as task complexity increases, LLM-based systems often experience performance degrada-
tion, while LLM-powered MAS (LLM-MAS) exhibit notable instability in reasoning. Specifically,
for the same prompt on the same problem, the system may produce a correct reasoning chain in one
run and an incorrect one in another. Such variability undermines the overall accuracy and reliability
of the reasoning process. Most existing work focuses on improving the accuracy of forward rea-
soning chains by guiding the generation of intermediate reasoning steps. Methods include prompt
optimization engineering, model fine-tuning, supervised intermediate steps, or sampling multiple
reasoning trajectories. Nevertheless, these techniques remain sensitive to prompt-level noise. Even
small changes in the prompt can lead to divergent intermediate conclusions and even reversed final
answers. This indicates that simply extending forward reasoning chains is insufficient to achieve the
global consistency required for stable and accurate reasoning.

To address this limitation, we propose an innovative adversarial generation mechanism for LLM
reasoning. Our framework introduces generative adversarial network (GAN)-based methods, where
a backward generator deliberately produces erroneous reasoning chains, containing logical leaps,
conceptual confusions, or false assumptions, to challenge the forward generator. A discriminator
evaluates the quality of both forward and backward reasoning chains, providing targeted feedback
that enables generators to adjust their reasoning strategies accordingly. To further enhance training
effectiveness, we integrate a textual gradient technique into the discriminator, replacing conventional
numerical gradient updates with natural language feedback.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Extensive experiments have verified that our method performs excellently across multiple datasets
for common and adversarial-like non-fine-tuning reasoning enhancement methods, achieving an av-
erage accuracy of 81.6%, demonstrating stability after fewer than five iterations, while also improv-
ing explainability as the evolution of each reasoning chain becomes more transparent and traceable.

Our main contributions are summarized as follows:

• Introducing a backward generator that produces misleading reasoning chains to challenge
the forward generator substantially reduces instability in complex MAS reasoning tasks
and improves accuracy and consistency.

• Designing a transparent adversarial reasoning system enables joint optimization of for-
ward and backward generators through adversarial training. This framework improves
reasoning-chain quality, stability, and adaptability, while its transparency enables step-level
traceability and optimization via textual feedback, thereby enhancing interpretability.

2 RELATED WORK

2.1 REASONING IN LLM-BASED MULTI-AGENT SYSTEMS

Recent advancements in LLMs have motivated the development of multi-agent systems (MAS) for
complex reasoning tasks. Existing studies primarily focus on optimizing the accuracy of forward-
generated reasoning chains, employing various techniques such as Chain-of-Thought (Kojima et al.,
2022) and Self-Refine (Madaan et al., 2023) to enhance the reasoning capabilities of models. In
MAS, multiple agents collaborate through communication and role specialization, leading to more
reliable reasoning processes compared to single-agent setups. Surveys such as Guo et al. (2024);
Tran et al. (2025) have outlined the landscape of LLM-based MAS, highlighting their applications
in task solving, simulation, and evaluation.

A key direction is to design structured reasoning processes among agents. For example, Motwani
et al. (2025) introduced the MALT framework, where heterogeneous roles (generator, verifier, re-
finer) are organized into a reasoning search tree and optimized through trajectory-level updates.
From a game-theoretic perspective, Yi et al. (2025b) proposed ECON, which models rational multi-
agent decision-making as Bayesian Nash equilibria, thereby improving cooperative reasoning ef-
ficiency. Meanwhile, robustness and safety concerns have also gained attention. Ebrahimi et al.
(2025) proposed credibility scoring to mitigate the impact of malicious or low-quality agents, fur-
ther enhancing system-level reasoning.

2.2 ADVERSARIAL TRAINING MECHANISMS

Adversarial training has long been employed to improve model robustness and generalization. Clas-
sical works such as GANs (Goodfellow et al., 2020) have inspired extensions across modalities,
including StyleGAN3 (Karras et al., 2021) with frequency-domain regularization, PAIRED (Den-
nis et al., 2020) for environment-based opponent modeling, and AdvGAN (Xiao et al., 2018) for
sample-level adversarial attacks.

In the context of LLM reasoning, adversarial mechanisms have recently been applied to LLM rea-
soning, where adversarial agents generate misleading reasoning chains or counterexamples to expose
weaknesses, enhancing robustness across diverse application domains. For example, red-teaming
approaches (Perez et al., 2022; Ganguli et al., 2022) and adversarial prompting (Zhao et al., 2024b)
improve robustness in LLM reasoning, while debate-style adversarial collaboration improves factu-
ality and reduces hallucination (Yang et al., 2025b). For MAS, reasoning tasks often involve collab-
oration and information sharing among multiple agents, where traditional reasoning enhancement
methods face certain limitations. By introducing adversarial mechanisms, a backward generator can
produce misleading reasoning chains to challenge the forward reasoning process, thereby helping
the system identify potential errors and ultimately enhancing its stability and adaptability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 METHOD

3.1 REASONING CHAIN ENHANCEMENT BASED ON QUASI-GAN METHODOLOGY

We propose a reasoning chain enhancement framework based on Quasi-GAN methodology, con-
sisting of a forward generator G1 and a backward generator G2. The core idea is to improve the
robustness of G1 by challenging it with adversarial reasoning chains produced by G2.

Specifically, G1 generates forward reasoning chains aimed at solving the task, while G2 deliberately
produces erroneous chains with logical jumps or false assumptions designed to expose weaknesses
in the reasoning process of G1. During this adversarial process, a discriminator D mediates the
interaction of the dual-generator by evaluating the quality of both chains and providing natural-
language feedback rather than numeric gradients. We adopt a textual gradient optimization scheme,
where this feedback is used to indirectly update both G1 and G2, encouraging G1 to refine its
reasoning under adversarial pressure and G2 to generate more effective challenges. Additionally,
D maintains a record of the latest optimization outcomes to continuously refine its own evaluation
strategy, ensuring effective multi-round adversarial training. This adversarial architecture allows
the forward generator G1 to iteratively improve accuracy and stability, the backward generator G2

to adaptively craft harder counterexamples, and the discriminator D to evolve as a more reliable
feedback provider over time.

Figure 1: Overview of the proposed framework. The framework architecture featuring dual gener-
ators (correct and error-inducing), a discriminator evaluating reasoning quality, and gradient-based
prompt optimization. The system identifies and corrects four common reasoning error types through
progressive training stages.

3.1.1 DUAL-GENERATOR AND DISCRIMINATOR IN QUASI-GAN METHODOLOGY

Forward generator G1:

The task of G1 is to produce a reasonable, coherent, and logically consistent Chain-of-Thought
(CoT) reasoning sequence given an input question. Let the input question be denoted as Q, a general
prompt assisting G1 to produce correct answer be P1, and the reasoning chain generated by G1 be
C1, which can be formulated as:

C1 = G1(P1 +Q, θ1), (1)

where θ1 represents the parameters of G1. And G1 is prompted to generate logically consistent and
interpretable reasoning steps, thereby ensuring the quality of the reasoning chain.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Backward generator G2:

G2 aims to produce an incorrect reasoning chain that stands in contrast to the reasoning chain gener-
ated by G1, challenging G1 with reasoning chains that contain misleading or flawed reasoning steps.
Similar to G1, let the output of G2 of the same question Q and a reversed prompt P2 be denoted as
C2, which can be expressed as:

C2 = G2(P2 +Q, θ2), (2)

where θ2 corresponds to the parameters of G2. The reasoning chains C2 may involve logical leaps,
conceptual confusions, or unsupported assumptions, intentionally designed to undermine the rea-
soning capability of G1.

Discriminator D:

D is responsible for evaluating the reasoning chains generated by G1 and G2 and providing textual
gradient feedback. By analyzing the logical soundness of each reasoning chain, D generates feed-
back aimed at guiding G1 to refine its reasoning process. The outputs of the discriminator include
quality assessments for reasoning chains from both G1 and G2, formally expressed as:

F1 = D(P1 +Q,C1, θD), (3)

F2 = D(P2 +Q,C2, θD), (4)

where θD denotes the parameters of the discriminator, and F1 and F2 represent the textual gradient
feedback for the forward reasoning chain C1 and the adversarial reasoning chain C2, respectively.

3.2 ADVERSARIAL INTERFERENCE STRATEGY FOR BACKWARD GENERATOR

3.2.1 ERRONEOUS REASONING CHAIN TYPES

To effectively challenge the reasoning capability of the forward generator and encourage it to pro-
duce more rigorous reasoning chains, we define four typical reasoning error types. These error types
capture common deficiencies observed in reasoning processes, serving as a structured basis for im-
proving the generator’s robustness and accuracy when facing diverse reasoning tasks. The specific
error types are defined as follows:

(1) Jump error: Omitting critical intermediate steps and directly reaching the conclusion, encour-
aging the generator to detect missing necessary derivations in the reasoning chain. (2) Confusion
error: Mixing up concepts or variables like velocity vs. acceleration, guiding the generator to
accurately distinguish between different concepts during reasoning. (3) Fuzzy error: Using un-
certainty expressions such as “might” or “probably”, challenging the generator to maintain clarity
and determinism in the reasoning process. (4) Wrapper error: Reasoning appears plausible but is
based on false premises, leading the generator to identify potential flaws in underlying assumptions
and reinforce the logical soundness of the reasoning. By defining these four representative error
types, we not only provide clear optimization targets for the generator but also ensure progressive
improvement in reasoning quality under diverse challenges.

3.2.2 ERRONEOUS CHAIN TYPE GENERATION SCHEDULING

We design a stage-wise error-type scheduling strategy that gradually increases the complexity and
diversity of error types, thereby improving robustness and enabling the generator to handle reasoning
challenges of varying difficulty. The scheduling consists of three stages:

• Stage 1 (Iterations 1 to 2): Single error type per iteration.
At this stage, the generator focuses on addressing basic reasoning errors such as jump error
and confusion error. Starting with simple errors allows the model to build fundamental
detection and correction skills.

• Stage 2 (Iterations 3 to 5): Combination of two error types per iteration.
This stage increases training complexity and diversity, forcing the generator to maintain
consistency and accuracy under multiple simultaneous disturbances.

• Stage 3 (Iteration 6 onward): Combination of three error types per iteration.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

At this stage, the complexity of adversarial reasoning chain generation is further intensi-
fied, challenging the generator to maintain robust performance against more sophisticated
reasoning disruptions.

Through this stage-wise scheduling strategy, the forward generator is incrementally guided toward
higher-quality reasoning. Each stage focuses on addressing specific error types or combinations,
allowing the model to develop resilience to increasingly complex reasoning challenges. This not
only improves training efficiency but also prevents excessive difficulty in the early phase, ensuring
steady and reliable progress.

3.3 DISCRIMINATOR WITH TEXTUAL GRADIENT OPTIMIZATION

To optimize the dual LLM generators in our framework, we introduce a textual backpropagation
mechanism to the discriminator, implemented through the TEXTGRAD framework (Hou et al.,
2023). Inspired by the principle of automatic differentiation, textual gradient optimization combines
traditional gradient-based optimization to optimize variables or parameters within a system using
natural language feedback, particularly in the context of LLMs. Specifically, this method transforms
the AI system into a computational graph, where each node corresponds to a system variable, such
as code snippets, molecular structures, or reasoning steps. The values of these nodes are optimized
through textual gradients expressed in natural language feedback. The textual gradient backpropaga-
tion particularly consists of three stages: computational graph representation, gradient calculation,
and textual gradient descent.

Computational graph representation:

We first represent the LLM reasoning system with GAN as a computation graph, where operations
like LLM invocation and numerical solving are treated as nodes in general. For our proposed LLM
reasoning enhancement framework, we model the reasoning processes of the LLM-based generators
G1, G2, and the discriminator D into a computational graph, upon which gradient computation is
performed across variables.

Gradient calculation:

The textual gradient optimization simulates backpropagation by interpreting natural language feed-
back as a form of gradient signal. For the feedback optimization of the discriminator for the forward
generator, as shown in Eq. 1 and Eq. 3, we can compute the gradient of the feedback F1 with respect
to the forward input prompt P1 through the generation of forward chain C1 as follows:

∂F1

∂C1
= ∇D(C1, F1), (5)

which represents the gradient of the feedback of forward generator with respect to G1 generated
reasoning chain C1. Then the gradient of F1 to P1 can be computed via the chain rule:

∂F1

∂P1
=

∂F1

∂C1
◦ ∂C1

∂P1
= ∇G(P1, C1,

∂F1

∂C1
). (6)

Similarly, based on Eq. 2 and Eq. 4, the gradient of feedback for backward generator F2 to the
backward prompt P2 can be derived through the generation of adversarial chain C2:

∂F2

∂P2
=

∂F2

∂C2
◦ ∂C2

∂P2
= ∇G(P2, C2,

∂F2

∂C2
). (7)

Textual gradient descent:

To optimize the prompt for better reasoning chain generation, we apply the Textual Gradient Descent
(TGD) algorithm:

P ← TGD.step(P,
∂F

∂P
). (8)

Here, the update direction is determined by natural language feedback from the LLM, which acts as
a surrogate gradient to progressively refine the system’s objective.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 ADVERSARIAL TRAINING AND OPTIMIZATION OBJECTIVES

In our framework, the forward generator G1 and the backward generator G2 are optimized through
an adversarial mechanism, with the discriminator D serving as a judge that provides textual feed-
back. The discriminator evaluates both the correct reasoning chain C1 and the adversarial chain C2

to guide the generators in improving reasoning quality. Specifically, D provides feedback based
on the interference effect of C2, encouraging G1 to refine C1. For example, feedback on C1 may
include suggestions such as “Add more reasoning steps in Step 3” or “Include missing premises in
Step 2”, while feedback on C2 may focus on how deliberately introduced errors challenge C1, like
“Introduce a false assumption in Step 2” or “Omit a critical reasoning step in Step 3”. Both G1 and
G2 update their generation strategies according to the feedback, adjusting their prompts to iteratively
improve the quality of reasoning chains and increase robustness against interference.

3.4.1 OPTIMIZATION OBJECTIVES OF GENERATORS

We adopt a prompt optimization scheme, updating the generators’ prompts using textual feedback
from the discriminator. The forward generator G1 aims to produce a valid reasoning chain C1

that receives positive feedback from the discriminator. The backward generator G2, in contrast,
is designed to generate misleading reasoning chains C2 that maximize negative feedback from the
discriminator, thereby challenging G1. Since the discriminator D can distinguish between C1 and
C2 based on P1 and P2, it can correctly identify valid from erroneous chains, thus avoiding harm-
ful feedback caused by confusion between correct and incorrect reasoning. The objectives can be
abstractly formulated as:

L1 = EQ∼P1
[D(Q,G1(P1 +Q, θ1))] , (9)

L2 = EQ∼P2
[D(Q,G2(P2 +Q, θ2))] . (10)

Here, θ1 and θ2 denote the parameters of G1 and G2, respectively, where the most influential factor
for our method is the temperature parameter of the LLM. In particular, the temperature directly
controls the trade-off between determinism and diversity in the generated reasoning chains. A lower
temperature encourages more stable and deterministic outputs, while a higher temperature promotes
diversity and introduces more challenging or adversarial reasoning paths.

3.4.2 DISCRIMINATOR SELF-OPTIMIZATION AND FEEDBACK

To enhance the discriminator’s evaluation capability, we design a self-optimization mechanism. The
discriminator updates its prompt based on previous feedback records:

Pnew = Pold +∇PLD(FD), (11)

where Pnew and Pold denote the updated and current prompts for D, and ∇P represents the update
direction derived from discriminator feedback FD. FD not only guides the correct chain C1 but also
uses the adversarial chain C2 to interfere with the forward generator. The feedback is structured in
natural language as:

• For C1, feedback improves the rigor and coherence of reasoning (e.g., “Add more reasoning
steps in Step 3”);

• For C2, feedback intentionally introduces misleading elements to challenge G1 (e.g., “In-
sert a false assumption in Step 2”).

The dual generators update their prompts according to the feedback:

Pnew = Pold +∇P [FD(C1, C2)] , (12)

where FD(C1, C2) represents the textual feedback from D, including corrective guidance for the
correct chain and adversarial suggestions from the erroneous chain.

Through this contrastive feedback mechanism, the generators iteratively refine their prompts in each
round, thereby improving the quality of reasoning and enhancing robustness against complex adver-
sarial perturbations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

This section evaluates our GAN-based multi-agent reasoning framework’s effectiveness and gener-
alization. We compare our framework’s QA performance against existing LLM reasoning methods
across various training settings, LLM backbones, and datasets. These analyses demonstrate the
overall effectiveness of our method and the contribution of each component, with additional experi-
mental analyses presented in the appendix.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND EVALUATION

We conduct experiments on six question-answering (QA) datasets that cover a diverse range of
reasoning tasks. The MATH dataset (Hendrycks et al., 2021) tests advanced mathematical prob-
lem solving requiring complex symbolic reasoning, while GSM8K (Cobbe et al., 2021) features
grade-school level math problems that evaluate model capability in basic mathematical reasoning
and logical deduction. For assessing logical and algorithmic reasoning, we employ the Big Bench
Hard (BBH) dataset (Suzgun et al., 2023). We also incorporate MMLU-CF (Zhao et al., 2024a),
a diagnostics subset of MMLU focusing on commonsense and factual knowledge, alongside Hot-
potQA (Yang et al., 2018), which demands multi-hop question answering where models must in-
tegrate information across supporting evidence. Finally, LongBench (Bai et al., 2024) evaluates
long-context reasoning with multiple-choice questions and context lengths ranging from 8k to 2M
words, spanning diverse task categories including single-doc QA, multi-doc QA, long in-context
learning, dialogue understanding, codebase comprehension, and structured data reasoning.

Collectively, these datasets form a thorough evaluation suite across mathematical reasoning, logic,
factual knowledge, multi-hop inference, and long-context comprehension, validating our frame-
work’s effectiveness and generalizability. For all experiments, we adopt standard accuracy as the
evaluation metric, following common practice in prior works on LLM reasoning.

4.1.2 BASELINES

We evaluated our model against several baseline reasoning approaches. For standard reasoning
enhancement methods, we compared against Chain-of-Thought (CoT) (Kojima et al., 2022) utilizing
step-by-step reasoning; CoT-SC (Wang et al., 2023) with its multiple sampled reasoning paths; Self-
Refine (Madaan et al., 2023) for iterative output improvement; Analogical Prompting (Yasunaga
et al., 2024) leveraging known solution patterns; AFlow (Zhang et al., 2025) implementing feedback-
driven reasoning frameworks; FoT (Bi et al., 2025) exploring parallel reasoning branches; and AoT
(Teng et al., 2025) decomposing problems into atomic question units.

For adversarial-liked multi-agent reasoning enhancement methods, our comparison included Process
Reward Model (PRM) (Lightman et al., 2023) with its self-verification approach; Credibility Scoring
(CrS) (Ebrahimi et al., 2025) for evaluating content reliability; ECON (Yi et al., 2025a) applying
equilibrium-based agent collaboration; Multi-Agent Debate (MAD) (Liang et al., 2023) encouraging
perspective diversity; and Debate Vote (Yang et al., 2025b) combining adversarial debate with voting
mechanisms to minimize hallucinations.

4.1.3 IMPLEMENTATION DETAILS

Our framework comprises three core components: forward generator G1, backward generator G2,
and discriminator D, all powered by GPT-4o-mini (Hurst et al., 2024). This lightweight multi-modal
model offers strong reasoning capabilities and efficient computational performance, making it partic-
ularly suitable for collaborative tasks in multi-agent systems. GPT-4o-mini maintains low overhead
while generating high-quality reasoning chains in concurrent multi-turn reasoning scenarios.

The system architecture is built on LangChain, which supports seamless integration with various
LLMs through official API calls, enhancing modularity and scalability for dynamic orchestration
of generators and the discriminator based on task requirements. For reproducibility, we used stan-
dardized parameters (nucleus sampling: None, maximum token length: 2048, nucleus sampling
probability: 1.0, frequency/presence penalties: 0.0). Results reflect averages from three indepen-
dent runs, with ablation studies conducted over five trials at fixed temperature (0). For robustness

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

testing, we varied the temperature from 0.0 to 1.0 on the MATH dataset to evaluate accuracy and
stability across multiple runs.

4.2 COMPARISON EXPERIMENTS

We conduct a comparative analysis of our proposed method against multiple baselines mentioned
above, with the results presented in Table 1. As shown, our method achieves the best or near-best
performance across all datasets. By introducing a backward generator to produce adversarial rea-
soning chains that challenge the forward generator, our framework significantly enhances robustness
on complex reasoning tasks, while the integration of textual gradient optimization further strength-
ens the quality of reasoning chains. Our method achieves substantial improvements on the MATH
dataset with 86.1% accuracy compared to AoT’s 83.6%, and on BBH with 86.5% versus AoT’s
86.0%, demonstrating particular effectiveness on complex mathematical reasoning. For GSM8K,
our approach reaches 95.6%, outperforming all baselines including AoT at 95.0%. Among the
adversarial-like methods, ECON and Debate Vote both achieve 79.1% average accuracy, yet still
trail our method by 2.5 percentage points. Notably, while CoT and its variants perform reasonably
well on simpler tasks but struggle with multi-hop QA and long-context reasoning, our approach
demonstrates strong performance on these challenging tasks, achieving 81.2% on HotpotQA and
68.0% on LongBench. This consistent performance advantage across diverse reasoning domains,
with an overall average of 81.% compared to 80.8% for the strongest baseline, highlights the gener-
alizability of our bidirectional adversarial reasoning framework with textual gradient optimization.

Table 1: Performance comparison between our proposed method and representative baseline meth-
ods across six reasoning benchmarks, with percent symbol (%) omitted in all the accuracy results.

Methods MATH GSM8K BBH MMLU-CF HotpotQA LongBench Avg.
Standard Reasoning Enhancement Methods

CoT 78.3 90.9 78.3 69.6 67.2 57.6 73.6
CoT-SC 81.8 92.0 83.4 71.1 66.2 58.6 75.5
Self-Refine 78.7 91.7 80.0 69.7 68.3 58.2 74.4
AP 65.4 87.2 72.5 65.8 64.7 52.9 68.1
AFlow 83.0 94.0 82.4 70.6 66.7 59.1 75.9
FoT 82.5 94.0 82.4 70.6 66.7 59.1 75.9
AoT 83.6 95.0 86.0 70.9 80.6 68.5 80.8

Adversarial-like Reasoning Enhancement Methods
PRM 80.3 92.7 83.7 68.9 75.0 62.7 77.2
CrS 79.8 92.5 83.2 70.4 74.2 62.4 77.1
ECON 82.4 93.5 84.5 71.1 78.9 63.9 79.1
MAD 79.0 92.0 84.0 68.4 75.9 62.1 76.9
Debate Vote 84.0 94.6 84.2 69.5 77.8 64.6 79.1
Ours 86.1 95.6 86.5 72.0 81.2 68.0 81.6

4.3 PERFORMANCE EVALUATION

4.3.1 PERFORMANCE ACROSS TRAINING EPOCHS

We further present the results across different training epochs in Table 7. Performance consistently
improves on all benchmarks as the number of epochs increases, validating the effectiveness of multi-
round optimization and adversarial training with the backward generator. Accuracy increases from
78.3% to 86.1% on MATH, 90.9% to 95.7% on GSM8K, and 78.3% to 86.5% on BBH, indicating
a steady refinement of reasoning chains. On HotpotQA, accuracy improves markedly from 67.2%
to 81.2%, while on LongBench it increases more modestly from 57.6% to 68.0%, indicating ro-
bustness in long-context reasoning. The largest gains occur between the second and third epochs.
Overall, average accuracy improves from 73.6% to 81.6% with variance reduced from 1.5% to 0.5%,
confirming that multi-round optimization enhances both reasoning precision and stability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Accuracy results (%) of our method with different training epochs.

Epoch MATH GSM8K BBH MMLU-CF HotpotQA LongBench Avg.
1 (no gradient) 79.3 91.2 79.1 70.2 67.8 58.2 74.3
2 82.1 93.7 82.4 71.1 74.7 60.1 77.4
3 84.3 95.6 85.3 71.1 77.1 65.4 79.8
4 86.1 95.7 86.5 72.0 81.2 68.0 81.6
5 86.1 95.6 86.5 72.0 81.2 68.0 81.6

4.3.2 HYPERPARAMETER SENSITIVITY ANALYSIS

We examine hyperparameter influence, focusing on LLM temperature settings by training the model
across five epochs with temperatures from 0 to 1 in 0.1 increments. Table 3 shows MATH dataset ac-
curacy improves throughout training epochs, with lower temperatures yielding conservative chains
in round one, while temperatures of 0.3-0.5 achieve higher accuracy. Performance stabilizes from
round two onward, ultimately reaching 86.1% in round five, demonstrating the generator’s adapta-
tion to reasoning complexity and enhanced robustness through iterative optimization.

Table 3: Impact of LLM temperature on reasoning accuracy over multiple training epochs on the
MATH dataset.

Epoch
Temp.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1.0 Mean Variation

1 74.30 +0.3 -0.2 -0.4 +0.4 +0.2 -0.5 +0.4 -0.5 -0.4 +0.6 0.39
2 77.35 -0.2 -0.1 +0.4 -0.3 +0.3 0.0 0.0 +0.3 +0.3 -0.1 0.20
3 79.80 -0.2 +0.1 +0.3 0.0 -0.2 0.0 +0.3 +0.2 +0.2 -0.1 0.17
4 81.60 -0.1 +0.1 +0.1 0.0 0.0 0.0 +0.1 +0.2 +0.2 -0.1 0.09
5 81.60 0.0 +0.2 +0.1 0.0 +0.1 0.0 0.0 +0.1 +0.2 -0.1 0.08

4.4 ABLATION STUDIES

We conducted ablation studies to evaluate each component’s contribution. As shown in Table 4, the
baseline configuration using forward generator G1 with discriminator D achieves 80.1% accuracy.
Adding the backward generator G2 significantly improves accuracy to 84.7%, while incorporating
the error type scheduling strategy (ES) further increases it to 85.3%. Finally, integrating textual
gradient optimization (TGO) produces the best performance at 86.1% with reduced mean variation
(0.14), confirming that each component improves both reasoning quality and model robustness.

Table 4: Ablation results of different components in our proposed framework on the MATH dataset.

Model Components Accuracy(%) Mean Variation
G1 +D 80.1 0.25
G1 +G2 (w/o ES) +D 85.1 0.17
G1 +G2 (with ES) +D 85.3 0.13
G1 +G2 +D+ TGO 86.1 0.08

5 CONCLUSION

In this work, we propose a multi-agent adversarial forward-backward reasoning framework, combin-
ing a forward generator, a backward generator with an error-injection strategy, a discriminator, and
textual gradient backpropagation. Experimental studies indicate that each component contributes to
improved reasoning accuracy and stability, with the full framework achieving an average of 81.6%
accuracy and reducing average output variation to 0.08. These results demonstrate the framework’s
effectiveness in jointly optimizing reasoning accuracy and stability in multi-agent systems, and high-
light its potential for complex LLM reasoning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

Our work has made comprehensive efforts towards reproducibility. First, in the Methods Section 3,
we provide a complete description of the proposed adversarial forward-backward generation frame-
work, including the structures and interaction mechanisms of the forward generator, backward gen-
erator, discriminator, and the text gradient optimization strategy (see Sections 3.1 and 3.2). All core
assumptions, error type definitions, and scheduling strategies are clearly explained in the main text
to ensure readers can accurately understand the model design. Second, in the Experiments Section 4,
we systematically report performance on multiple public benchmarks (including MATH, GSM8K,
BBH, MMLU-CF, HotpotQA, and LongBench), and provide stability and sensitivity analyses across
different training epochs and temperature settings. Additionally, the appendix contains complete ab-
lation experiments (Table 4) and cost and stability analyses (tables 6 and 7) to verify the independent
contributions of each module and the overall robustness of the method. Experiments are based on
standardized parameter settings and results from multiple independent runs, with details provided in
Appendices A.3 and A.4.

To further support reproducibility, we provide implementation details in the supplementary materi-
als, including the LLM used (GPT-4o-mini), system architecture (based on LangChain), key hyper-
parameter settings (sampling strategies, maximum length, etc.), and explanations of the number of
experimental runs and statistical methods. We will release our code upon acceptance of the paper.

In summary, this research provides sufficient algorithmic explanations, experimental details, and
implementation information in the main text, appendix, and supplementary materials to ensure the
verifiability and reproducibility of our research results.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. In ACL (1), pp. 3119–3137, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-
time compute for enhancing llm reasoning. In Forty-second International Conference on Machine
Learning, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Sana Ebrahimi, Mohsen Dehghankar, and Abolfazl Asudeh. An adversary-resistant multi-agent llm
system via credibility scoring. arXiv preprint arXiv:2505.24239, 2025.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. CoRR, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. In IJCAI, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Bairu Hou, Jinghan Jia, Yihua Zhang, Guanhua Zhang, Yang Zhang, Sijia Liu, and Shiyu Chang.
Textgrad: Advancing robustness evaluation in nlp by gradient-driven optimization. In The
Eleventh International Conference on Learning Representations, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. In Proc. NeurIPS, 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. CoRR, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev, Philip
Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt: Improving reasoning
with multi-agent llm training. In ICLR Workshop on Reasoning and Planning for Large Language
Models, 2025.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 3419–3448, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. In ACL (Findings), 2023.

Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo. Atom of thoughts
for markov llm test-time scaling. CoRR, 2025.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating ad-
versarial examples with adversarial networks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 3905–3911, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. arXiv preprint
arXiv:2501.15383, 2025a.

Yi Yang, Yitong Ma, Hao Feng, Yiming Cheng, and Zhu Han. Minimizing hallucinations and com-
munication costs: Adversarial debate and voting mechanisms in llm-based multi-agents. Applied
Sciences, 15(7):3676, 2025b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H
Chi, and Denny Zhou. Large language models as analogical reasoners. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Xie Yi, Zhanke Zhou, Chentao Cao, Qiyu Niu, Tongliang Liu, and Bo Han. From debate to equi-
librium: Belief-driven multi-agent llm reasoning via bayesian nash equilibrium. arXiv preprint
arXiv:2506.08292, 2025a.

Xie Yi, Zhanke Zhou, Chentao Cao, Qiyu Niu, Tongliang Liu, and Bo Han. From debate to equi-
librium: Belief-driven multi-agent llm reasoning via bayesian nash equilibrium. In Forty-second
International Conference on Machine Learning, 2025b.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. In The Thirteenth International Conference on Learning Representations, 2025.

Qihao Zhao, Yangyu Huang, Tengchao Lv, Lei Cui, Qinzheng Sun, Shaoguang Mao, Xingxing
Zhang, Ying Xin, Qiufeng Yin, Scarlett Li, et al. Mmlu-cf: A contamination-free multi-task
language understanding benchmark. CoRR, 2024a.

Zheng Zhao, Emilio Monti, Jens Lehmann, and Haytham Assem. Enhancing contextual understand-
ing in large language models through contrastive decoding. In NAACL 2024, 2024b.

A SUPPLEMENTARY EXPERIMENTS

A.1 ACKNOWLEDGING THE USE OF LARGE LANGUAGE MODELS (LLMS)

This article utilized LLMs for stylistic polishing and writing assistance; however, we did not employ
LLMs for any key academic content including implementation details, methodological design, and
other critical research components.

A.2 PERFORMANCE ACROSS DIFFERENT LLM-DRIVEN IMPLEMENTATIONS

In addition to GPT-4o-mini, we further evaluate our method with alternative LLM-driven implemen-
tations, with results shown in Table 3. Across DeepSeek-V3 (Liu et al., 2024), Qwen-Turbo (Yang
et al., 2025a), and GPT-4.1-nano, the method consistently achieves strong performance, demonstrat-
ing robust generalization across different LLMs. On MATH and GSM8K, accuracies reach 90.1%,
95.2%, and 95.7%, confirming the method’s reliability on standard mathematical reasoning. On
HotpotQA and LongBench, DeepSeek-V3 and GPT-4.1-nano achieve 85.3% and 83.5%, respec-
tively, validating the framework’s effectiveness in multi-hop and long-context reasoning. These
cross-model results highlight that the framework is not tied to a single LLM but can enhance reason-
ing across diverse language model architectures, underscoring its adaptability, generalization, and
potential in multi-agent reasoning tasks.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: Performance of our method with different LLM-driven implementations across datasets,
results shown in accuracy(%).

Model MATH GSM8K BBH MMLU-CF HotpotQA LongBench
GPT-4o-mini 86.1 95.6 86.5 72.0 81.2 68.0
DeepSeek-V3 90.1 98.2 88.7 76.2 85.3 76.1
Qwen-Turbo 84.9 95.2 84.5 70.1 81.3 70.2
GPT-4.1-nano 85.3 95.7 83.4 71.2 83.5 70.1

A.3 COST ANALYSIS

As shown in Table 6, our method demonstrates a favorable balance between reasoning quality
and computational efficiency, requiring an average of 15 LLM API calls per task. While this is
marginally higher than GoT Besta et al. (2024)(14 calls), our approach remains significantly more
efficient than most advanced reasoning frameworks. Chain-of-Thought (CoT) uses only a single call
but sacrifices complex reasoning capabilities, whereas our method requires approximately 25-30%
fewer calls than comparable approaches like ToT Yao et al. (2023)(19), CrS (21), and ECON (20),
and is dramatically more efficient than PRM which demands 60 calls on average. The efficiency
advantage highlighted in Table 6 stems from our framework’s structured reasoning that eliminates
redundant computation paths while preserving comprehensive analysis capabilities, making it par-
ticularly suitable for practical applications where both reasoning quality and operational costs must
be optimized. All statistics were collected using GPT-4o-mini.

Table 6: Cost Analysis: Average LLM Call Count

Method Avg. LLM Calls (API calls)
CoT 1
ToT 19
GoT 14
AoT 22
PRM 60
CrS 21
ECON 20
MAD 20
Debate Vote 20
Ours 15

A.4 STABILITY ANALYSIS

As demonstrated in Table 7, our method exhibits superior stability across different training epochs
and temperature settings compared to other adversarial reasoning enhancement approaches. The
accuracy variation patterns reveal that our approach experiences a steady and significant decrease
in mean variance from 0.39 in epoch 1 to just 0.08 in epoch 5, indicating progressively increasing
stability. This trend of convergence is notably stronger than competing methods such as Debate
Vote, which shows a reduction from 0.32 to 0.11, and ECON, which improves from 0.44 to 0.16.
Measuring accuracy, convergence, and variance reduction across iterations provides a reliable metric
for stability assessment, as smaller variations indicate the method’s ability to consistently arrive at
the same conclusions regardless of stochastic elements in the reasoning process. The accuracy
fluctuations across different temperature settings diminish substantially as training progresses for
our method, with variations becoming minimal by epoch 5. While all methods show some degree
of stabilization over training epochs, our approach achieves the most consistent performance across
temperature settings in later epochs. This superior stability across both dimensions suggests that our
method becomes increasingly resilient to parameter adjustments during inference, making it more
reliable in practical applications where consistent performance is required under varying temperature
configurations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 7: Accuracy results (%) of different methods across training epochs and temperature settings.

Method Epoch Avg.
Temperature Variation

Mean Var.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ours

1 74.3 +0.3 -0.2 -0.4 +0.4 +0.2 -0.5 +0.4 -0.5 -0.4 +0.6 0.39
2 77.35 -0.2 -0.1 +0.4 -0.3 +0.3 0 0 +0.3 +0.3 -0.1 0.20
3 79.8 -0.2 +0.1 +0.3 0 -0.2 0 +0.3 +0.2 +0.2 -0.1 0.16
4 81.6 -0.1 +0.1 +0.1 0 0 0 +0.1 +0.2 +0.2 -0.1 0.09
5 81.6 0 +0.2 +0.1 0 +0.1 0 0 +0.1 +0.2 -0.1 0.08

Debate Vote

1 74.2 +0.5 -0.4 +0.7 +0.7 -0.4 -0.5 -0.1 +0.8 0 +0.4 0.45
2 77.1 +0.4 +0.3 -0.5 +0.3 +0.4 -0.3 -0.2 -0.2 -0.4 +0.2 0.32
3 78.0 +0.3 -0.4 0 +0.5 -0.2 +0.4 -0.2 -0.4 -0.3 +0.1 0.28
4 78.7 +0.1 +0.2 -0.1 0 +0.1 +0.3 -0.1 -0.1 -0.2 +0.3 0.15
5 79.1 0 +0.3 -0.1 -0.1 +0.2 +0.1 0 0 +0.2 -0.1 0.11

ECON

1 74.7 +0.2 -0.5 +0.4 -0.6 -0.3 -0.5 +0.4 -0.5 -0.4 +0.6 0.44
2 76.8 +0.4 0 -0.6 +0.4 -0.4 +0.5 +0.2 -0.4 -0.3 +0.5 0.37
3 78.0 +0.1 0 +0.4 +0.3 +0.4 -0.4 +0.3 +0.3 +0.4 -0.2 0.28
4 78.6 +0.2 -0.2 0 +0.1 +0.2 -0.3 +0.2 +0.3 -0.3 +0.4 0.22
5 78.9 0 -0.2 +0.2 +0.1 -0.1 +0.3 +0.3 +0.1 +0.1 +0.2 0.16

MAD

1 73.1 +0.4 +0.4 -0.6 +0.7 -0.5 +0.4 +0.4 -0.6 +0.4 -0.5 0.49
2 74.9 +0.3 +0.4 +0.6 +0.4 -0.2 +0.3 -0.1 +0.3 +0.4 -0.5 0.35
3 75.4 +0.3 +0.4 -0.2 0 -0.2 +0.6 -0.4 +0.3 +0.3 -0.4 0.31
4 76.5 0 -0.3 -0.2 +0.4 -0.2 -0.3 -0.2 +0.4 +0.3 -0.3 0.26
5 76.9 +0.2 +0.2 -0.1 +0.4 0 -0.2 +0.1 -0.1 +0.1 +0.2 0.16

PRM - 77.2 +0.3 -0.2 +0.4 +0.1 -0.1 +0.2 +0.4 -0.2 +0.5 +0.4 0.28
CrS - 77.1 0 +0.1 -0.2 0 +0.4 +0.5 +0.4 +0.3 -0.4 +0.2 0.25

B OUTPUT EXAMPLES

B.1 MULTI-STEP PROMPT OPTIMIZATION OUTPUTS

Tables tables 8 to 11 illustrate our systematic approach to prompt optimization for enhancing math-
ematical reasoning. Table 8 presents the initial G1 prompt with its LLM response, revealing critical
reasoning deficiencies: failure to verify interval consistency for candidate solution x = 5 (which
falls outside the specified range 1/2 ≤ x < 3) and incomplete verification for solution x = −1.
Table 9 demonstrates our novel G2 Misleader Strategy, which deliberately constructs adversarial
prompts that induce these specific reasoning failures, providing valuable training examples without
computational overhead. Table 10 introduces our Discriminator module which systematically ana-
lyzes both the original and adversarial reasoning chains, identifying precise textual gradient recom-
mendations focusing on critical point identification, interval verification enforcement, and solution
validation requirements. Finally, Table 11 showcases the optimized D prompt incorporating these
targeted recommendations, resulting in a fully rigorous solution that correctly identifies the solution
set {−1, 11/3} through structured verification at each step. The tables demonstrate the effective-
ness of our discriminator-guided framework in eliminating mathematical reasoning errors through
precise prompt modifications rather than costly model retraining.

B.2 FOUR TYPES OF ERRORS AND OPTIMIZATION EXAMPLES

We demonstrated the identification and optimization of reasoning errors through a structured analy-
sis framework across multiple tables. In Table B.2, we present examples of unoptimized reasoning
outputs from the Forward generator G1, which will be used to generate four types of errors for our
specified optimization process. In Tables section B.2, we respectively presented concrete examples
of jumping error, confusion error, fuzzy error, and wrapper error in Nim game reasoning, showcasing
how these errors manifest in practice and lead to incorrect conclusions. The jumping error example
illustrated reasoning that leapt from premises to conclusion without intermediate steps; the con-
fusion error demonstrated concept misapplication; the fuzzy error showcased ambiguous language
usage; and the wrapper error presented reasoning built on incorrect foundational assumptions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In Tables section B.2, we then provided the corresponding optimized reasoning paths for each error
type, highlighting the specific correction techniques and their effects on reasoning quality. Through
this comparative analysis, we showed how filling logical gaps transformed jumping errors into com-
plete reasoning chains; how consistent concept application resolved confusion errors; how replacing
probabilistic language with deterministic statements addressed fuzzy errors; and how re-examining
foundational assumptions corrected wrapper errors. Our analysis demonstrates that through targeted
optimization techniques for each error type, reasoning quality significantly improves, transforming
flawed arguments into robust logical structures that correctly identify the winning strategy for the
first player in the Nim game with 15 coins.

Before Optimization - G1
Prompt: You are a rigorous reasoning expert. Please solve the equation: |x−3|+ |2x−1| = 7
step by step, following these requirements:
1. Clearly list necessary variables, symbols, and premises;
2. State the formulas/rules used and their applicable conditions;
3. Provide step-by-step derivation ensuring clear reasoning;
4. Conduct reasonability checks before concluding (substitution, boundaries, monotonicity);
5. Output only necessary reasoning and conclusions, avoiding redundancy.
LLM Response: The critical points for absolute values are x = 1/2 and x = 3.

(I) When x < 1/2:
Take |x− 3| = 3− x, |2x− 1| = 1− 2x, so
(3− x) + (1− 2x) = 7→ 4− 3x = 7→ −3x = 3→ x = −1.
(The substitution is reasonable in this interval; skipping further verification, keeping as can-

didate.)

(II) When 1/2 ≤ x < 3:
Take |x− 3| = 3− x, |2x− 1| = 2x− 1, so
(3− x) + (2x− 1) = 7→ 2 + x = 7→ x = 5.
Since this equation is linear with a unique solution, we count x = 5 as a solution.

(III) When x ≥ 3:
Take |x− 3| = x− 3, |2x− 1| = 2x− 1, so
(x− 3) + (2x− 1) = 7→ 3x− 4 = 7→ 3x = 11→ x = 11/3.
This value is within the interval, so it’s also a solution.

The solution set is: {−1, 5, 11/3}.
Error Analysis:
Error A (Critical = Jump-type): In section (II), after obtaining x = 5, no interval consistency
check was performed before adding it to the solution set; but x = 5 /∈ [1/2, 3), which is an
error caused by omitting a critical step.
Error B (Only imprecise): In section (I), after obtaining x = −1, there’s no verification by
substitution/explicit justification for the symbols (although the substitution is correct and the
solution is valid), constituting incomplete reasoning rather than an incorrect conclusion.

Table 8: Before optimization prompt, LLM response, and error analysis for equation solving task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

G2 - Misleader Prompt Strategy
Prompt: You are a misleader whose goal is to generate a deceptively incorrect reasoning chain
to challenge the rigor of reasoning models.
Error type: Jump-type (skipping key steps, drawing direct conclusions that seem reasonable
but lack rigorous derivation)
Requirements:
1. Construct a seemingly reasonable but actually incorrect reasoning chain by skipping neces-
sary derivation steps, providing only final conclusions.
2. The error should not be easily detected through conventional thinking; the reasoning must
appear to follow mathematical rules while omitting key details.
3. Clearly state the deficiencies you’ve embedded for the discriminator to identify.
LLM Response: The critical points for absolute values are x = 1/2 and x = 3.

(I) When x < 1/2:
Take |x− 3| = 3− x, |2x− 1| = 1− 2x, so
(3− x) + (1− 2x) = 7→ 4− 3x = 7→ −3x = 3→ x = −1.
Here I’m ignoring subsequent verification and strict interval checking, but the result is rea-

sonable, so I’ll keep it as a candidate.

(II) When 1/2 ≤ x < 3:
Take |x− 3| = 3− x, |2x− 1| = 2x− 1, so
(3− x) + (2x− 1) = 7→ 2 + x = 7→ x = 5.
This solution follows linear derivation; temporarily ignoring interval consistency check, as-

suming it’s correct.

(III) When x ≥ 3:
Take |x− 3| = x− 3, |2x− 1| = 2x− 1, so
(x− 3) + (2x− 1) = 7→ 3x− 4 = 7→ 3x = 11→ x = 11/3.
This solution is within the interval, so it’s included.

The solution set is: {−1, 5, 11/3}.
Error analysis:
- In section (II), x = 5 was not checked for interval consistency (since x = 5 /∈ [1/2, 3)), but
was directly included in the solution set.
- In section (I), after obtaining x = −1, no verification by substitution was performed; though
correct in that interval, the reasoning lacks completeness.

Table 9: Misleader prompt strategy, LLM response, and error analysis.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D - Discriminator Strategy
Prompt: You are a discriminator. Please evaluate the following two reasoning chains:
- C1: Forward reasoning chain from G1 (initial reasoning chain, containing errors).
- C2: Adversarial reasoning chain from G2 (jump-type error chain).

Historical optimization records: []

Tasks:
1. Locate weaknesses in C1: Check for omitted steps or jump issues in the reasoning and
provide suggestions.
2. Analyze C2’s misleading strategy: Identify steps omitted in C2 and how they mislead the
reasoning process.
3. Optimize G1’s prompt through Textual Gradients to make the reasoning chain more rigorous
and complete.

Output format (JSON):
{

”C1 weakness”: [...],
”C2 attack review”: [...],
”TG for G1”: [...]
}
LLM Response:
{

”C1 weakness”: [
”C1’s reasoning jump issue: In section (II), x = 5 was obtained but no interval consistency

check was performed. Since x = 5 doesn’t satisfy 1/2 ≤ x < 3, this solution is invalid.”,
”C1’s insufficient verification: In section (I), after obtaining x = −1, no substitution veri-

fication was performed. Although x = −1 is correct in that interval, the complete verification
process is missing.”

],
”C2 attack review”: [

”C2 employs a jump-type error: In section (II), it erroneously includes x = 5 as a solution,
omitting the interval consistency check, thereby misleading the reasoning process.”,

”In C2, C1’s error (x = 5 being invalid) is hidden, making the reasoning chain appear correct
while actually containing an invalid solution.”,

”Therefore, C1’s error is caused by omitting the interval consistency check (jump-type er-
ror). The discriminator needs to strengthen constraints on interval verification and substitution
checks for each derivation segment.”

],
”TG for G1”: [

”Must explicitly state the critical points and explain the basis for symbol judgments in each
segment, ensuring each derivation step is well-founded.”,

”In each interval’s solution process, must check if candidate solutions are within that
interval, eliminating invalid solutions.”,

”Perform substitution verification for each retained solution, confirming the original equa-
tion holds, avoiding unverified incorrect solutions.”,

”Conclusions should follow a c̈andidate → filtering → verifications̈tructure, ensuring each
solution undergoes thorough validation and logical checks.”
]
}

Table 10: Discriminator strategy, analysis, and textual gradient recommendations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

After Optimization - G1
Prompt: You are a rigorous reasoning expert. Please solve the equation |x− 3|+ |2x− 1| = 7
step by step. Follow these guidelines:
1. Clearly identify critical points x = 1/2, x = 3, and for each segment (x < 1/2, 1/2 ≤
x < 3, x ≥ 3), explicitly state the basis for sign determinations of |x− 3| and |2x− 1| before
substitution and derivation;
2. For each candidate solution within a segment, you must perform interval consistency checks
(whether the solution falls within that segment) and eliminate invalid solutions;
3. Verify retained candidate solutions by substituting back into the original equation to confirm
the equality holds;
4. Structure your conclusion using the ”candidate → interval filtering → substitution verifica-
tion” checklist format, without skipping steps due to ”similarity/linearity” justifications.
LLM Output:
The critical points are x = 1/2 and x = 3. Let’s analyze each segment:
(I) x < 1/2:

Here, 2x− 1 < 0 and x− 3 < 0,
So |x− 3| = 3− x, |2x− 1| = 1− 2x.
Substituting: (3− x) + (1− 2x) = 7→ 4− 3x = 7→ −3x = 3→ x = −1.
Interval check: −1 < 1/2, satisfied; Verification:
| − 1− 3|+ |2(−1)− 1| = 4 + 3 = 7 (valid).

Candidate retained: x = −1.
(II) 1/2 ≤ x < 3:

Here, 2x− 1 ≥ 0 and x− 3 < 0,
So |x− 3| = 3− x, |2x− 1| = 2x− 1.
Substituting: (3− x) + (2x− 1) = 7→ 2 + x = 7→ x = 5.
Interval check: requires 1/2 ≤ x < 3, but 5 /∈ [1/2, 3)⇒ eliminated.
No solution in this segment.

(III) x ≥ 3:
Here, 2x− 1 ≥ 0 and x− 3 ≥ 0,
So |x− 3| = x− 3, |2x− 1| = 2x− 1.
Substituting: (x− 3) + (2x− 1) = 7→ 3x− 4 = 7→ 3x = 11→ x = 11/3.
Interval check: 11/3 ≥ 3 is satisfied; Verification:
|11/3− 3|+ |2 · 11/3− 1| = 2/3 + 19/3 = 21/3 = 7 (valid).

Candidate retained: x = 11/3.
Conclusion (candidate → filtering → verification):
- Retained: x = −1, x = 11/3 (both passed interval and substitution checks)
- Final solution set: {−1, 11/3}.

Table 11: Optimized mathematical reasoning approach with rigorous interval analysis

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Forward Reasoning Chain
Forward Reasoning Chain

This is a classic variant of the Nim game, and we can analyze the winning and
losing positions for the first player by calculating the initial number of coins modulo
4. The key point is that if a player can leave the number of coins as a multiple of 4 at
the end of their turn, they can force their opponent into a losing position.

The initial number of coins is 15. The remainder of 15 divided by 4 is 3. This
means that the first player, Alice, is in a disadvantageous position because the remain-
der is not 0. The second player, Bob, can mimic the first player’s strategy. No matter
whether Alice takes 1, 2, or 3 coins on her first turn, she will leave 14, 13, or 12 coins.
Bob can always take a certain number of coins to leave a total that is a multiple of 4.
For example, if Alice takes 1 (leaving 14), Bob can take 2 (leaving 12); if Alice takes
2 (leaving 13), Bob can take 1 (leaving 12); if Alice takes 3 (leaving 12), Bob can take
3 (leaving 9). Once Bob establishes the pattern of multiples of 4, he will be able to
maintain it until the end. When the number of coins decreases to 4, it will be Alice’s
turn, and no matter whether she takes 1, 2, or 3 coins, Bob will be able to take the
remaining coins and win.

Therefore, since the initial count of 15 modulo 4 leaves a remainder of 3, the first
player, Alice, cannot control the situation, and the second player, Bob, will win.

Table 13: Jumping Error Output Example
Jumping Error

To solve this problem, we need to determine whether the first or second player
has a winning strategy when both play optimally. A winning strategy is to leave your
opponent in a ”losing” position when facing a pile of coins.

Through backward analysis, we can deduce the following:
• When there are 1, 2, or 3 coins left, the current player can take all of them

and win.
• When there are 4 coins left, no matter whether the current player takes 1, 2,

or 3 coins, they will leave their opponent with 3, 2, or 1 coins, allowing the
opponent to win. Thus, the player facing 4 coins loses.

• From this, we can infer that when facing 5, 6, or 7 coins, the player can take
1, 2, or 3 coins, respectively, leaving their opponent with 4 coins, which is a
losing position, thereby winning for themselves.

• Similarly, when facing 8 coins, no matter what the player does, they will
leave their opponent with 7, 6, or 5 coins, all of which are winning positions
for the opponent. Thus, 8 is a losing position.

Observing this pattern, we find that losing positions are 4, 8, 12, 16... which are
multiples of 4. Since 15 is not a multiple of 4, the first player, Alice, is facing a
winning position. S with 12 coins, which is a losing position. Then, no matter how
many coins Bob takes (for example, if he takes 2 coins, leaving 10), Alice must take 2
coins (because 10 - 2 = 8) to force Bob back into a losing position (8). Bob will then
take coins again, say 1 coin, leaving 7 coins, and Alice will take 3 coins, leaving 4
coins. Ultimately, when Bob faces 4 coins, he cannot avoid losing. Since Bob is the
one who takes the last coin, he wins the game.

Therefore, even though Alice goes first and tries to control the situation, it is Bob
who ultimately emerges as the winner.

Therefore, even though Alice goes first and tries to control the situation, it is Bob
who ultimately emerges as the winner.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 14: Jumping Error Optimized Output Example
Jumping Error Optimization

This is a classic variant of the Nim game, and we can determine the winning and
losing positions for the first player through backward analysis. The key is to identify
”losing positions,” which are positions where, no matter how the current player plays,
the opponent can win.

First, let’s define the base cases:
• When there are 1, 2, or 3 coins remaining, the current player can take all the

coins and win. Therefore, these are ”winning positions.”
• When there are 4 coins remaining, the current player, regardless of whether

they take 1, 2, or 3 coins, will leave the opponent with 3, 2, or 1 coins, all of
which are winning positions for the opponent. Thus, 4 is a ”losing position.”

• Based on this, when there are 5, 6, or 7 coins remaining, the current player
can take 1, 2, or 3 coins, respectively, leaving the opponent with 4 coins (a
losing position), thus winning for themselves. So, 5, 6, and 7 are winning
positions.

• When there are 8 coins remaining, the current player will leave the oppo-
nent with 7, 6, or 5 coins (winning positions), allowing the opponent to win.
Therefore, 8 is a losing position.

Continuing this pattern, we find that losing positions are 4, 8, 12, 16... which are
all multiples of 4. Now, analyzing the initial number of coins, 15, we see that 15 is not
a multiple of 4, so the first player, Alice, is facing a winning position. Theoretically,
Alice can take 3 coins on her first turn, leaving 12 coins, thereby placing Bob in a
losing position.

However, we need to verify Bob’s response strategy. Suppose Bob takes 2 coins,
leaving 10 coins. At this point, Alice must take 2 coins (because 10 - 2 = 8) to put Bob
back in a losing position (8). Bob will then take 1 coin, leaving 7 coins. Alice takes
3 coins, leaving 4 coins. Now, Bob faces 4 coins (a losing position), and no matter
what, he will leave Alice with coins that allow her to win.

However, there is a key point: when Bob faces 4 coins, he takes k coins (where
k = 1, 2, 3), leaving 4 − k coins, and then Alice takes all the remaining coins. This
means Alice takes the last coin and wins. This contradicts our initial analysis, since
15 modulo 4 leaves a remainder of 3, suggesting the first player has the advantage.

To reconcile this, we re-examine Bob’s initial response. If Alice takes 3 coins,
leaving 12, Bob might take 3 coins instead, leaving 9 coins. Alice must then take 1
coin, leaving 8 coins (a losing position) for Bob. Bob takes 3 coins, leaving 5 coins.
Alice takes 1 coin, leaving 4 coins. Bob then faces 4 coins, takes 1 coin, and Alice
eventually wins by taking the last coins.

However, if Alice takes 1 or 2 coins on her first turn, Bob can exploit the situation.
For example, if Alice takes 1 coin, leaving 14, Bob can take 2 coins, leaving 12 (a
multiple of 4), thus putting Alice in a losing position. Similarly, if Alice takes 2 coins,
leaving 13, Bob can take 1 coin, leaving 12, and again, Bob wins.

Therefore, Alice can only win if she takes 3 coins on her first turn, but this depends
on Bob making a mistake. If Bob plays optimally, he will force Alice into a losing
position. Since 15 modulo 4 leaves a remainder of 3, it is in a ”marginal” position,
and the first player’s victory depends on the second player’s choices.

In summary, since Alice must make a perfect first move while Bob can respond
optimally, the second player, Bob, has a higher probability of winning. Thus, when
both play optimally, Bob will win.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 15: Confusion Error Output Example
Confusion Error

To solve this problem, we need to determine whether the first or second player
has a winning strategy when both play optimally. A winning strategy is to leave the
opponent in a ”losing position.” However, here we have confused winning positions
with losing positions, leading to a different reasoning outcome.

Through backward analysis:
• When there are 1, 2, or 3 coins remaining, the current player can take all the

coins and win. Therefore, we consider these as losing positions.
• When there are 4 coins remaining, the current player, regardless of whether

they take 1, 2, or 3 coins, will leave the opponent with 3, 2, or 1 coins, all of
which allow the opponent to win. Thus, 4 is a winning position.

• Therefore, when facing 5, 6, or 7 coins, the current player can only push the
opponent to the winning position of 4, making 5, 6, and 7 losing positions.

• Similarly, when facing 8 coins, the current player can push the opponent to 7
(a losing position), so 8 is a winning position.

Observing this pattern, we conclude that winning positions are 4, 8, 12, 16... while
other situations are losing positions. Since the initial count of 15 is not a multiple of
4, it is a losing position. No matter how many coins Alice takes on her first turn, she
will push Bob into a winning position. For example, if Alice takes 3 coins, leaving 12,
Bob will enter a winning position and be able to control the game. Ultimately, Bob
will maintain the advantage and win the game.

Table 16: Confusion Error Optimized Output Example
Confusion Error Optimized

This is a classic variant of the Nim game, and we can determine the winning and
losing positions for the first player through backward analysis. The key is to dis-
tinguish between winning positions and losing positions. By correcting the previous
confusion, we can derive the correct patterns.

• When there are 1, 2, or 3 coins remaining, the current player can take all the
coins and win directly. Therefore, these are winning positions.

• When there are 4 coins remaining, the current player, regardless of whether
they take 1, 2, or 3 coins, will leave the opponent with 3, 2, or 1 coins, all of
which allow the opponent to win. Thus, 4 is a losing position.

• Therefore, when facing 5, 6, or 7 coins, the current player can take 1, 2, or
3 coins, leaving the opponent with 4 (a losing position), making 5, 6, and 7
winning positions.

• When facing 8 coins, the current player, no matter how many coins they take,
will leave the opponent with 7, 6, or 5 (winning positions), so 8 is a losing
position.

From this, we derive the pattern: losing positions are 4, 8, 12, 16... while winning
positions are all other numbers.

Now considering the initial situation of 15 coins. Since 15 is not a multiple of
4, it is a winning position. Alice only needs to take 3 coins on her first turn, leaving
12, putting Bob at a disadvantage. After that, regardless of how Bob plays, Alice can
maintain Bob in a losing position by using a ”make 4” strategy. For example:

• If Bob takes 1 coin from 12, leaving 11, Alice takes 3, leaving 8.
• If Bob takes 2 coins, leaving 10, Alice takes 2, leaving 8.
• If Bob takes 3 coins, leaving 9, Alice takes 1, leaving 8.

Ultimately, Bob will face 4 coins and will inevitably lose. Therefore, when the
initial number of coins is 15, the first player, Alice, has a winning strategy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 17: Fuzzy Error Output Example
Fuzzy Error

To solve this problem, we need to identify losing positions and winning positions.
However, during the analysis, there might be some areas that are not entirely clear,
requiring situational judgment.

First:
• When there are 1, 2, or 3 coins remaining, the current player can likely take

all the coins and win directly, so these situations can be considered winning
positions.

• When there are 4 coins remaining, regardless of how many the current player
takes, it seems they will leave the opponent with a position from which they
can win directly. Thus, 4 should be a losing position.

• When facing 5, 6, or 7 coins, the current player can likely push the opponent
to 4 with the right choice, so these situations are probably winning positions.

• When there are 8 coins, the situation becomes a bit more complex; it may
be that no matter how many coins are taken, the opponent will still have
opportunities to win, so 8 might be a losing position.

Based on this reasoning, losing positions seem to be 4, 8, 12, 16... The initial
position of 15 is not among them, so it might be a winning position. In this case, Alice
could simply take 3 coins on her first turn, leaving 12 and putting Bob in a losing
position. After that, both players might continue following this pattern, and Alice
could maintain her advantage until the end.

However, there is also a possibility that if Bob chooses different moves in certain
situations, he might be able to turn the tables. Therefore, overall, the initial position of
15 coins seems to favor Alice, but the final outcome could still result in Bob winning.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 18: Fuzzy Error Optimized Output Example
Fuzzy Error Optimized

This is a classic variant of the Nim game, and we can clarify the winning and losing
positions for both the first and second players through backward analysis. The key is
to eliminate ambiguous speculations and strictly define winning and losing positions.

First, let’s define the base cases:
• When there are 1, 2, or 3 coins remaining, the current player can take all the

coins and win immediately. Therefore, these are winning positions.
• When there are 4 coins remaining, regardless of whether the current player

takes 1, 2, or 3 coins, they will leave the opponent with 3, 2, or 1 coins, all of
which allow the opponent to win. Thus, 4 is a losing position.

Next, we reason step by step:
• When there are 5, 6, or 7 coins remaining, the current player can take 1, 2,

or 3 coins respectively, forcing the opponent to face 4 (a losing position).
Therefore, 5, 6, and 7 are all winning positions.

• When there are 8 coins remaining, no matter how many coins the current
player takes, they will leave the opponent with 7, 6, or 5 coins, all of which
are winning positions. Thus, 8 is a losing position.

Continuing this reasoning, we establish a clear pattern: all multiples of 4 (4, 8, 12,
16. . .) are losing positions, while all other numbers are winning positions.

Now, let’s analyze the initial position of 15 coins. Since 15 is not a multiple of 4,
it is a winning position. Alice has a winning strategy: she simply needs to take 3 coins
on her first turn, leaving 12 (a losing position).

We can verify Bob’s possible responses:
• If Bob takes 1 coin from 12, leaving 11, Alice takes 3, leaving 8.
• If Bob takes 2 coins, leaving 10, Alice takes 2, leaving 8.
• If Bob takes 3 coins, leaving 9, Alice takes 1, leaving 8.

In any case, Alice can always use the strategy of making the total number of coins
taken by both players equal to 4, pushing Bob back to a losing position.

Ultimately, the situation will arrive at 4 coins. At this point, Bob faces a losing
position:

• If he takes 1 coin, 3 remain, and Alice takes the rest.
• If he takes 2 coins, 2 remain, and Alice takes the rest.
• If he takes 3 coins, 1 remains, and Alice takes the last coin.

Thus, Bob cannot avoid losing, and Alice will take the last coin and win.
In conclusion, through systematic backward reasoning, it is clear that the initial

position of 15 coins is a winning position. The first player, Alice, can win by fol-
lowing the correct strategy. The ambiguous terms ”possibly” and ”likely” have been
eliminated through strict analysis, making the conclusion entirely certain.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 19: Wrapper Error Output Example
Wrapper Error

To solve this problem, we need to reason through backward analysis to determine
winning and losing positions. First, we assume that whoever faces an odd number
of coins initially is at a disadvantage. This is because an odd number will eventually
force a player into a situation with 1 coin. Based on this premise, we proceed with the
deductions.

• When there is 1 coin remaining, the current player can take it and win, but
since 1 is odd, it is a losing position.

• When there are 2 or 3 coins remaining, the current player can take all the
coins and win, so these are winning positions.

• When there are 4 coins remaining, regardless of how many the current player
takes, they will leave the opponent with 3, 2, or 1 coins, where 3 is a winning
position and 1 is a losing position. Therefore, overall, 4 is a winning position.

Continuing this reasoning:
• When there are 5 coins remaining, the current player can only leave the op-

ponent with 4 (a winning position), so 5 is a losing position.
• When there are 6 or 7 coins remaining, the current player can take 1 or 2

coins, respectively, leaving the opponent with 5 (a losing position), so 6 and
7 are winning positions.

• When there are 8 coins remaining, no matter how many the current player
takes, they will leave the opponent with 7, 6, or 5 coins, where 6 and 7 are
winning positions, so 8 is a losing position.

Thus, we arrive at the pattern: all odd positions are losing positions, while even
positions are winning positions.

Now, considering the initial position of 15 coins. Since 15 is odd, according to our
premise, it is a losing position. No matter what Alice does on her first turn, she will
leave Bob in an even position (a winning situation). Therefore, under optimal play
from both sides, Bob will always be able to maintain his advantage and ultimately
win.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 20: Wrapper Error Optimized Output Example
Wrapper Error Optimized

This is a classic variant of the Nim game, and we can determine the correct win-
ning and losing positions through backward analysis. The previous reasoning was
flawed because it assumed that ”parity determines winning or losing,” which is not a
valid premise. In fact, the correct premise is that losing positions occur at multiples of
4.

Let’s reanalyze:
• When there are 1, 2, or 3 coins remaining, the current player can take all the

coins and win, so these are winning positions.
• When there are 4 coins remaining, regardless of whether the current player

takes 1, 2, or 3 coins, they will leave the opponent with 3, 2, or 1 coins, all of
which are winning positions. Therefore, 4 is a losing position.

• When there are 5, 6, or 7 coins remaining, the current player can force the
opponent into 4 (a losing position), so 5, 6, and 7 are winning positions.

• When there are 8 coins remaining, no matter how many coins the current
player takes, they will leave the opponent with 7, 6, or 5 coins, which are all
winning positions. Thus, 8 is a losing position.

From this, we can conclude that all multiples of 4 are losing positions, while all
other numbers are winning positions.

Returning to the initial position of 15 coins: since 15 is not a multiple of 4, it is a
winning position. Alice can take 3 coins on her first turn, leaving 12 (a losing position)
and forcing Bob into a disadvantage. After that, as long as Alice employs the ”sum
to 4 strategy,” she can keep Bob in losing positions. Eventually, Bob will face 4 coins
and cannot avoid losing.

Therefore, in the case of an initial 15 coins, the first player, Alice, is indeed the
one with a guaranteed winning strategy.

25

	Introduction
	Related Work
	Reasoning in LLM-based Multi-Agent Systems
	Adversarial Training Mechanisms

	Method
	Reasoning Chain Enhancement based on Quasi-GAN Methodology
	Dual-Generator and Discriminator in Quasi-GAN Methodology

	Adversarial Interference Strategy for Backward Generator
	Erroneous reasoning chain types
	Erroneous chain type generation scheduling

	Discriminator with Textual Gradient Optimization
	Adversarial Training and Optimization Objectives
	Optimization Objectives of Generators
	Discriminator Self-Optimization and Feedback

	Experiments
	Experimental Setup
	Datasets and Evaluation
	Baselines
	Implementation Details

	Comparison Experiments
	Performance Evaluation
	Performance Across Training Epochs
	Hyperparameter Sensitivity Analysis

	Ablation Studies

	Conclusion
	Reproducibility Statement
	Supplementary Experiments
	Acknowledging the Use of Large Language Models (LLMs)
	Performance Across Different LLM-Driven Implementations
	Cost Analysis
	Stability Analysis

	Output Examples
	Multi-Step Prompt Optimization Outputs
	Four Types of Errors and Optimization Examples

