

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING REASONING CHAINS THROUGH QUASI-GANs AND TEXTUAL GRADIENT FEEDBACK

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently advanced reasoning in multi-agent systems (MAS), yet existing work mainly focuses on improving forward reasoning accuracy, overlooking the potential of adversarial mechanisms with backward generation of erroneous reasoning chains to enhance both accuracy and stability. We propose a novel adversarial learning framework in which a forward generator produces accurate reasoning chains, while a backward generator constructs adversarial erroneous chains. Guided by a discriminator providing gradient feedback in the textual domain, both generators iteratively refine their outputs through competitive optimization with generative adversarial networks (GANs). This competitive optimization reduces variability in outputs for identical queries, increases robustness to prompt perturbations, and provides interpretability into the distinct roles of the two generators by dynamically tracking the evolution of reasoning chains. Experiments show that, after two to three rounds of prompt optimization, our method improves reasoning accuracy from 73.7% to 81.6%, and reduces instability from 0.39 to 0.08. These results demonstrate the proposed framework’s ability to jointly optimize accuracy and stability, and highlight the promise of adversarial forward-backward mechanisms in advancing multi-agent reasoning systems.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable capabilities in reasoning tasks, particularly through efficient reasoning optimization methods such as Chain-of-Thought (CoT) prompting (Kojima et al., 2022). Leveraging these advances, LLM-powered AI agents have exhibited strong abilities in tool usage, self-reflection, and other reasoning-related functionalities. Multi-agent systems (MAS) further amplify these capabilities by enabling collaboration among multiple AI agents, significantly improving both the efficiency and accuracy of reasoning tasks.

However, as task complexity increases, LLM-based systems often experience performance degradation, while LLM-powered MAS (LLM-MAS) exhibit notable instability in reasoning. Specifically, for the same prompt on the same problem, the system may produce a correct reasoning chain in one run and an incorrect one in another. Such variability undermines the overall accuracy and reliability of the reasoning process. Most existing work focuses on improving the accuracy of forward reasoning chains by guiding the generation of intermediate reasoning steps. Methods include prompt optimization engineering, model fine-tuning, supervised intermediate steps, or sampling multiple reasoning trajectories. Nevertheless, these techniques remain sensitive to prompt-level noise. Even small changes in the prompt can lead to divergent intermediate conclusions and even reversed final answers. This indicates that simply extending forward reasoning chains is insufficient to achieve the global consistency required for stable and accurate reasoning.

To address this limitation, we propose an innovative adversarial generation mechanism for LLM reasoning. Our framework introduces generative adversarial network (GAN)-based methods, where a backward generator deliberately produces erroneous reasoning chains, containing logical leaps, conceptual confusions, or false assumptions, to challenge the forward generator. A discriminator evaluates the quality of both forward and backward reasoning chains, providing targeted feedback that enables generators to adjust their reasoning strategies accordingly. To further enhance training effectiveness, we integrate a textual gradient technique into the discriminator, replacing conventional numerical gradient updates with natural language feedback.

Extensive experiments have verified that our method performs excellently across multiple datasets for common and adversarial-like non-fine-tuning reasoning enhancement methods, achieving an average accuracy of 81.6%, demonstrating stability after fewer than five iterations, while also improving explainability as the evolution of each reasoning chain becomes more transparent and traceable.

Our main contributions are summarized as follows:

- Introducing a backward generator that produces misleading reasoning chains to challenge the forward generator substantially reduces instability in complex MAS reasoning tasks and improves accuracy and consistency.
- Designing a transparent adversarial reasoning system enables joint optimization of forward and backward generators through adversarial training. This framework improves reasoning-chain quality, stability, and adaptability, while its transparency enables step-level traceability and optimization via textual feedback, thereby enhancing interpretability.

2 RELATED WORK

2.1 REASONING IN LLM-BASED MULTI-AGENT SYSTEMS

Recent advancements in LLMs have motivated the development of multi-agent systems (MAS) for complex reasoning tasks. Existing studies primarily focus on optimizing the accuracy of forward-generated reasoning chains, employing various techniques such as Chain-of-Thought (Kojima et al., 2022) and Self-Refine (Madaan et al., 2023) to enhance the reasoning capabilities of models. In MAS, multiple agents collaborate through communication and role specialization, leading to more reliable reasoning processes compared to single-agent setups. Surveys such as Guo et al. (2024); Tran et al. (2025) have outlined the landscape of LLM-based MAS, highlighting their applications in task solving, simulation, and evaluation.

A key direction is to design structured reasoning processes among agents. For example, Motwani et al. (2025) introduced the MALT framework, where heterogeneous roles (generator, verifier, refiner) are organized into a reasoning search tree and optimized through trajectory-level updates. From a game-theoretic perspective, Yi et al. (2025b) proposed ECON, which models rational multi-agent decision-making as Bayesian Nash equilibria, thereby improving cooperative reasoning efficiency. Meanwhile, robustness and safety concerns have also gained attention. Ebrahimi et al. (2025) proposed credibility scoring to mitigate the impact of malicious or low-quality agents, further enhancing system-level reasoning.

2.2 ADVERSARIAL TRAINING MECHANISMS

Adversarial training has long been employed to improve model robustness and generalization. Classical works such as GANs (Goodfellow et al., 2020) have inspired extensions across modalities, including StyleGAN3 (Karras et al., 2021) with frequency-domain regularization, PAIRED (Dennis et al., 2020) for environment-based opponent modeling, and AdvGAN (Xiao et al., 2018) for sample-level adversarial attacks.

In the context of LLM reasoning, adversarial mechanisms have recently been applied to LLM reasoning, where adversarial agents generate misleading reasoning chains or counterexamples to expose weaknesses, enhancing robustness across diverse application domains. For example, red-teaming approaches (Perez et al., 2022; Ganguli et al., 2022) and adversarial prompting (Zhao et al., 2024b) improve robustness in LLM reasoning, while debate-style adversarial collaboration improves factuality and reduces hallucination (Yang et al., 2025b). For MAS, reasoning tasks often involve collaboration and information sharing among multiple agents, where traditional reasoning enhancement methods face certain limitations. By introducing adversarial mechanisms, a backward generator can produce misleading reasoning chains to challenge the forward reasoning process, thereby helping the system identify potential errors and ultimately enhancing its stability and adaptability.

108

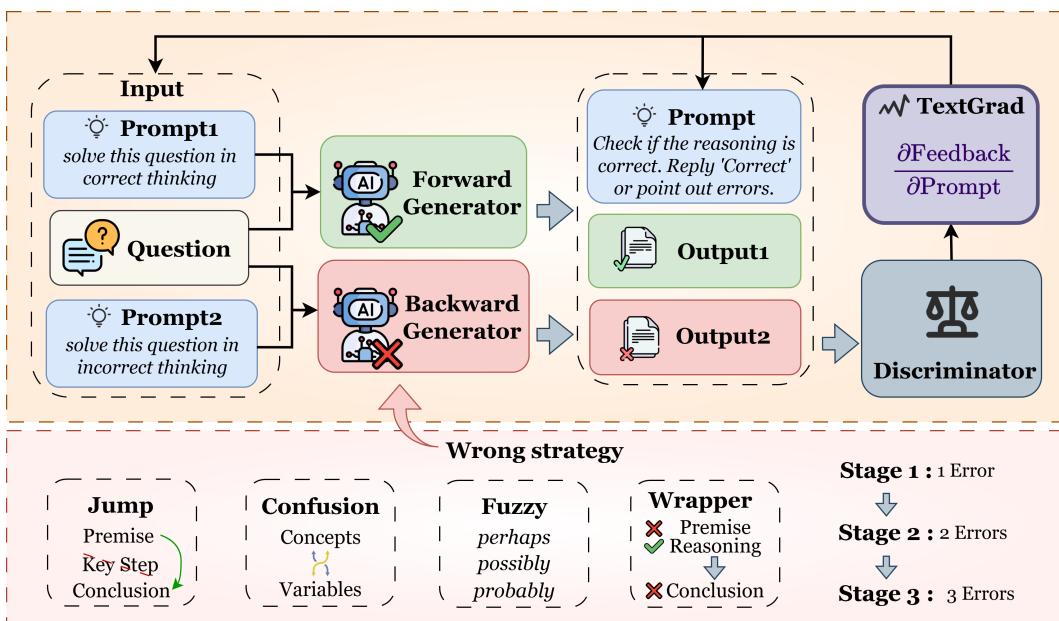
3 METHOD

109

3.1 REASONING CHAIN ENHANCEMENT BASED ON QUASI-GAN METHODOLOGY

110 We propose a reasoning chain enhancement framework based on Quasi-GAN methodology, consisting of a forward generator G_1 and a backward generator G_2 . The core idea is to improve the robustness of G_1 by challenging it with adversarial reasoning chains produced by G_2 .

111 Specifically, G_1 generates forward reasoning chains aimed at solving the task, while G_2 deliberately produces erroneous chains with logical jumps or false assumptions designed to expose weaknesses in the reasoning process of G_1 . During this adversarial process, a discriminator D mediates the interaction of the dual-generator by evaluating the quality of both chains and providing natural-language feedback rather than numeric gradients. We adopt a textual gradient optimization scheme, where this feedback is used to indirectly update both G_1 and G_2 , encouraging G_1 to refine its reasoning under adversarial pressure and G_2 to generate more effective challenges. Additionally, D maintains a record of the latest optimization outcomes to continuously refine its own evaluation strategy, ensuring effective multi-round adversarial training. This adversarial architecture allows the forward generator G_1 to iteratively improve accuracy and stability, the backward generator G_2 to adaptively craft harder counterexamples, and the discriminator D to evolve as a more reliable feedback provider over time.



147 Figure 1: Overview of the proposed framework. The framework architecture featuring dual generators (correct and error-inducing), a discriminator evaluating reasoning quality, and gradient-based 148 prompt optimization. The system identifies and corrects four common reasoning error types through 149 progressive training stages.

150

3.1.1 DUAL-GENERATOR AND DISCRIMINATOR IN QUASI-GAN METHODOLOGY

151

Forward generator G_1 :

152 The task of G_1 is to produce a reasonable, coherent, and logically consistent Chain-of-Thought 153 (CoT) reasoning sequence given an input question. Let the input question be denoted as Q , a general 154 prompt assisting G_1 to produce correct answer be P_1 , and the reasoning chain generated by G_1 be 155 C_1 , which can be formulated as:

$$C_1 = G_1(P_1 + Q, \theta_1), \quad (1)$$

156 where θ_1 represents the parameters of G_1 . And G_1 is prompted to generate logically consistent and 157 interpretable reasoning steps, thereby ensuring the quality of the reasoning chain.

162 **Backward generator** G_2 :

164 G_2 aims to produce an incorrect reasoning chain that stands in contrast to the reasoning chain generated by G_1 , challenging G_1 with reasoning chains that contain misleading or flawed reasoning steps.
 165 Similar to G_1 , let the output of G_2 of the same question Q and a reversed prompt P_2 be denoted as
 166 C_2 , which can be expressed as:

$$167 \quad C_2 = G_2(P_2 + Q, \theta_2), \quad (2)$$

169 where θ_2 corresponds to the parameters of G_2 . The reasoning chains C_2 may involve logical leaps,
 170 conceptual confusions, or unsupported assumptions, intentionally designed to undermine the rea-
 171 soning capability of G_1 .

172 **Discriminator** D :

174 D is responsible for evaluating the reasoning chains generated by G_1 and G_2 and providing textual
 175 gradient feedback. By analyzing the logical soundness of each reasoning chain, D generates feed-
 176 back aimed at guiding G_1 to refine its reasoning process. The outputs of the discriminator include
 177 quality assessments for reasoning chains from both G_1 and G_2 , formally expressed as:

$$178 \quad F_1 = D(P_1 + Q, C_1, \theta_D), \quad (3)$$

$$179 \quad F_2 = D(P_2 + Q, C_2, \theta_D), \quad (4)$$

181 where θ_D denotes the parameters of the discriminator, and F_1 and F_2 represent the textual gradient
 182 feedback for the forward reasoning chain C_1 and the adversarial reasoning chain C_2 , respectively.

184 3.2 ADVERSARIAL INTERFERENCE STRATEGY FOR BACKWARD GENERATOR

186 3.2.1 ERRONEOUS REASONING CHAIN TYPES

187 To effectively challenge the reasoning capability of the forward generator and encourage it to pro-
 188 duce more rigorous reasoning chains, we define four typical reasoning error types. These error types
 189 capture common deficiencies observed in reasoning processes, serving as a structured basis for im-
 190 proving the generator’s robustness and accuracy when facing diverse reasoning tasks. The specific
 191 error types are defined as follows:

192 (1) **Jump error**: Omitting critical intermediate steps and directly reaching the conclusion, encour-
 193 aging the generator to detect missing necessary derivations in the reasoning chain. (2) **Confusion**
 194 **error**: Mixing up concepts or variables like velocity vs. acceleration, guiding the generator to
 195 accurately distinguish between different concepts during reasoning. (3) **Fuzzy error**: Using un-
 196 certainty expressions such as “might” or “probably”, challenging the generator to maintain clarity
 197 and determinism in the reasoning process. (4) **Wrapper error**: Reasoning appears plausible but is
 198 based on false premises, leading the generator to identify potential flaws in underlying assumptions
 199 and reinforce the logical soundness of the reasoning. By defining these four representative error
 200 types, we not only provide clear optimization targets for the generator but also ensure progressive
 201 improvement in reasoning quality under diverse challenges.

202 3.2.2 ERRONEOUS CHAIN TYPE GENERATION SCHEDULING

204 We design a stage-wise error-type scheduling strategy that gradually increases the complexity and
 205 diversity of error types, thereby improving robustness and enabling the generator to handle reasoning
 206 challenges of varying difficulty. The scheduling consists of three stages:

- 208 • **Stage 1** (Iterations 1 to 2): Single error type per iteration.

209 At this stage, the generator focuses on addressing basic reasoning errors such as jump error
 210 and confusion error. Starting with simple errors allows the model to build fundamental
 211 detection and correction skills.

- 212 • **Stage 2** (Iterations 3 to 5): Combination of two error types per iteration.

213 This stage increases training complexity and diversity, forcing the generator to maintain
 214 consistency and accuracy under multiple simultaneous disturbances.

- 215 • **Stage 3** (Iteration 6 onward): Combination of three error types per iteration.

216 At this stage, the complexity of adversarial reasoning chain generation is further intensified,
 217 challenging the generator to maintain robust performance against more sophisticated
 218 reasoning disruptions.
 219

220 Through this stage-wise scheduling strategy, the forward generator is incrementally guided toward
 221 higher-quality reasoning. Each stage focuses on addressing specific error types or combinations,
 222 allowing the model to develop resilience to increasingly complex reasoning challenges. This not
 223 only improves training efficiency but also prevents excessive difficulty in the early phase, ensuring
 224 steady and reliable progress.
 225

226 3.3 DISCRIMINATOR WITH TEXTUAL GRADIENT OPTIMIZATION

227 To optimize the dual LLM generators in our framework, we introduce a textual backpropagation
 228 mechanism to the discriminator, implemented through the TEXTGRAD framework (Hou et al.,
 229 2023). Inspired by the principle of automatic differentiation, textual gradient optimization combines
 230 traditional gradient-based optimization to optimize variables or parameters within a system using
 231 natural language feedback, particularly in the context of LLMs. Specifically, this method transforms
 232 the AI system into a computational graph, where each node corresponds to a system variable, such
 233 as code snippets, molecular structures, or reasoning steps. The values of these nodes are optimized
 234 through textual gradients expressed in natural language feedback. The textual gradient backpropagation
 235 particularly consists of three stages: computational graph representation, gradient calculation,
 236 and textual gradient descent.
 237

238 Computational graph representation:

239 We first represent the LLM reasoning system with GAN as a computation graph, where operations
 240 like LLM invocation and numerical solving are treated as nodes in general. For our proposed LLM
 241 reasoning enhancement framework, we model the reasoning processes of the LLM-based generators
 242 G_1 , G_2 , and the discriminator D into a computational graph, upon which gradient computation is
 243 performed across variables.
 244

245 Gradient calculation:

246 The textual gradient optimization simulates backpropagation by interpreting natural language feed-
 247 back as a form of gradient signal. For the feedback optimization of the discriminator for the forward
 248 generator, as shown in Eq. 1 and Eq. 3, we can compute the gradient of the feedback F_1 with respect
 249 to the forward input prompt P_1 through the generation of forward chain C_1 as follows:
 250

$$\frac{\partial F_1}{\partial C_1} = \nabla_D(C_1, F_1), \quad (5)$$

251 which represents the gradient of the feedback of forward generator with respect to G_1 generated
 252 reasoning chain C_1 . Then the gradient of F_1 to P_1 can be computed via the chain rule:
 253

$$\frac{\partial F_1}{\partial P_1} = \frac{\partial F_1}{\partial C_1} \circ \frac{\partial C_1}{\partial P_1} = \nabla_G(P_1, C_1, \frac{\partial F_1}{\partial C_1}). \quad (6)$$

254 Similarly, based on Eq. 2 and Eq. 4, the gradient of feedback for backward generator F_2 to the
 255 backward prompt P_2 can be derived through the generation of adversarial chain C_2 :
 256

$$\frac{\partial F_2}{\partial P_2} = \frac{\partial F_2}{\partial C_2} \circ \frac{\partial C_2}{\partial P_2} = \nabla_G(P_2, C_2, \frac{\partial F_2}{\partial C_2}). \quad (7)$$

263 Textual gradient descent:

264 To optimize the prompt for better reasoning chain generation, we apply the Textual Gradient Descent
 265 (TGD) algorithm:
 266

$$P \leftarrow \text{TGD.step}(P, \frac{\partial F}{\partial P}). \quad (8)$$

267 Here, the update direction is determined by natural language feedback from the LLM, which acts as
 268 a surrogate gradient to progressively refine the system’s objective.
 269

270 3.4 ADVERSARIAL TRAINING AND OPTIMIZATION OBJECTIVES
271

272 In our framework, the forward generator G_1 and the backward generator G_2 are optimized through
273 an adversarial mechanism, with the discriminator D serving as a judge that provides textual feed-
274 back. The discriminator evaluates both the correct reasoning chain C_1 and the adversarial chain C_2
275 to guide the generators in improving reasoning quality. Specifically, D provides feedback based
276 on the interference effect of C_2 , encouraging G_1 to refine C_1 . For example, feedback on C_1 may
277 include suggestions such as “Add more reasoning steps in Step 3” or “Include missing premises in
278 Step 2”, while feedback on C_2 may focus on how deliberately introduced errors challenge C_1 , like
279 “Introduce a false assumption in Step 2” or “Omit a critical reasoning step in Step 3”. Both G_1 and
280 G_2 update their generation strategies according to the feedback, adjusting their prompts to iteratively
281 improve the quality of reasoning chains and increase robustness against interference.
282

283 3.4.1 OPTIMIZATION OBJECTIVES OF GENERATORS
284

285 We adopt a prompt optimization scheme, updating the generators’ prompts using textual feedback
286 from the discriminator. The forward generator G_1 aims to produce a valid reasoning chain C_1
287 that receives positive feedback from the discriminator. The backward generator G_2 , in contrast,
288 is designed to generate misleading reasoning chains C_2 that maximize negative feedback from the
289 discriminator, thereby challenging G_1 . Since the discriminator D can distinguish between C_1 and
290 C_2 based on P_1 and P_2 , it can correctly identify valid from erroneous chains, thus avoiding harm-
291 ful feedback caused by confusion between correct and incorrect reasoning. The objectives can be
292 abstractly formulated as:

$$\mathcal{L}_1 = \mathbb{E}_{Q \sim P_1} [D(Q, G_1(P_1 + Q, \theta_1))], \quad (9)$$

$$\mathcal{L}_2 = \mathbb{E}_{Q \sim P_2} [D(Q, G_2(P_2 + Q, \theta_2))]. \quad (10)$$

293 Here, θ_1 and θ_2 denote the parameters of G_1 and G_2 , respectively, where the most influential factor
294 for our method is the temperature parameter of the LLM. In particular, the temperature directly
295 controls the trade-off between determinism and diversity in the generated reasoning chains. A lower
296 temperature encourages more stable and deterministic outputs, while a higher temperature promotes
297 diversity and introduces more challenging or adversarial reasoning paths.
298

300 3.4.2 DISCRIMINATOR SELF-OPTIMIZATION AND FEEDBACK
301

302 To enhance the discriminator’s evaluation capability, we design a self-optimization mechanism. The
303 discriminator updates its prompt based on previous feedback records:
304

$$P_{new} = P_{old} + \nabla_P \mathcal{L}_D(F_D), \quad (11)$$

305 where P_{new} and P_{old} denote the updated and current prompts for D , and ∇_P represents the update
306 direction derived from discriminator feedback F_D . F_D not only guides the correct chain C_1 but also
307 uses the adversarial chain C_2 to interfere with the forward generator. The feedback is structured in
308 natural language as:
309

- 310 • For C_1 , feedback improves the rigor and coherence of reasoning (e.g., “Add more reasoning
311 steps in Step 3”);
- 312 • For C_2 , feedback intentionally introduces misleading elements to challenge G_1 (e.g., “In-
313 sert a false assumption in Step 2”).
314

316 The dual generators update their prompts according to the feedback:
317

$$P_{new} = P_{old} + \nabla_P [F_D(C_1, C_2)], \quad (12)$$

318 where $F_D(C_1, C_2)$ represents the textual feedback from D , including corrective guidance for the
319 correct chain and adversarial suggestions from the erroneous chain.
320

321 Through this contrastive feedback mechanism, the generators iteratively refine their prompts in each
322 round, thereby improving the quality of reasoning and enhancing robustness against complex adver-
323 sarial perturbations.
324

324

4 EXPERIMENTS

325
326 This section evaluates our GAN-based multi-agent reasoning framework’s effectiveness and gener-
327 alization. We compare our framework’s QA performance against existing LLM reasoning methods
328 across various training settings, LLM backbones, and datasets. These analyses demonstrate the
329 overall effectiveness of our method and the contribution of each component, with additional experi-
330 mental analyses presented in the appendix.331
332

4.1 EXPERIMENTAL SETUP

333
334

4.1.1 DATASETS AND EVALUATION

335 We conduct experiments on six question-answering (QA) datasets that cover a diverse range of
336 reasoning tasks. The MATH dataset (Hendrycks et al., 2021) tests advanced mathematical prob-
337 lem solving requiring complex symbolic reasoning, while GSM8K (Cobbe et al., 2021) features
338 grade-school level math problems that evaluate model capability in basic mathematical reasoning
339 and logical deduction. For assessing logical and algorithmic reasoning, we employ the Big Bench
340 Hard (BBH) dataset (Suzgun et al., 2023). We also incorporate MMLU-CF (Zhao et al., 2024a),
341 a diagnostics subset of MMLU focusing on commonsense and factual knowledge, alongside Hot-
342 potQA (Yang et al., 2018), which demands multi-hop question answering where models must in-
343 tegrate information across supporting evidence. Finally, LongBench (Bai et al., 2024) evaluates
344 long-context reasoning with multiple-choice questions and context lengths ranging from 8k to 2M
345 words, spanning diverse task categories including single-doc QA, multi-doc QA, long in-context
346 learning, dialogue understanding, codebase comprehension, and structured data reasoning.347 Collectively, these datasets form a thorough evaluation suite across mathematical reasoning, logic,
348 factual knowledge, multi-hop inference, and long-context comprehension, validating our frame-
349 work’s effectiveness and generalizability. For all experiments, we adopt standard accuracy as the
350 evaluation metric, following common practice in prior works on LLM reasoning.351
352

4.1.2 BASELINES

353 We evaluated our model against several baseline reasoning approaches. For standard reasoning
354 enhancement methods, we compared against Chain-of-Thought (CoT) (Kojima et al., 2022) utilizing
355 step-by-step reasoning; CoT-SC (Wang et al., 2023) with its multiple sampled reasoning paths; Self-
356 Refine (Madaan et al., 2023) for iterative output improvement; Analogical Prompting (Yasunaga
357 et al., 2024) leveraging known solution patterns; AFlow (Zhang et al., 2025) implementing feedback-
358 driven reasoning frameworks; FoT (Bi et al., 2025) exploring parallel reasoning branches; and AoT
359 (Teng et al., 2025) decomposing problems into atomic question units.360 For adversarial-like multi-agent reasoning enhancement methods, our comparison included Process
361 Reward Model (PRM) (Lightman et al., 2023) with its self-verification approach; Credibility Scoring
362 (CrS) (Ebrahimi et al., 2025) for evaluating content reliability; ECON (Yi et al., 2025a) applying
363 equilibrium-based agent collaboration; Multi-Agent Debate (MAD) (Liang et al., 2023) encouraging
364 perspective diversity; and Debate Vote (Yang et al., 2025b) combining adversarial debate with voting
365 mechanisms to minimize hallucinations.366
367

4.1.3 IMPLEMENTATION DETAILS

368 Our framework comprises three core components: forward generator G_1 , backward generator G_2 ,
369 and discriminator D , all powered by GPT-4o-mini (Hurst et al., 2024). This lightweight multi-modal
370 model offers strong reasoning capabilities and efficient computational performance, making it partic-
371 ularly suitable for collaborative tasks in multi-agent systems. GPT-4o-mini maintains low overhead
372 while generating high-quality reasoning chains in concurrent multi-turn reasoning scenarios.373 The system architecture is built on LangChain, which supports seamless integration with various
374 LLMs through official API calls, enhancing modularity and scalability for dynamic orchestration
375 of generators and the discriminator based on task requirements. For reproducibility, we used stan-
376 dardized parameters (nucleus sampling: None, maximum token length: 2048, nucleus sampling
377 probability: 1.0, frequency/presence penalties: 0.0). Results reflect averages from three indepen-
378 dent runs, with ablation studies conducted over five trials at fixed temperature (0). For robustness

378 testing, we varied the temperature from 0.0 to 1.0 on the MATH dataset to evaluate accuracy and
 379 stability across multiple runs.
 380

381 4.2 COMPARISON EXPERIMENTS 382

383 We conduct a comparative analysis of our proposed method against multiple baselines mentioned
 384 above, with the results presented in Table 1. As shown, our method achieves the best or near-best
 385 performance across all datasets. By introducing a backward generator to produce adversarial rea-
 386 soning chains that challenge the forward generator, our framework significantly enhances robustness
 387 on complex reasoning tasks, while the integration of textual gradient optimization further strength-
 388 ens the quality of reasoning chains. Our method achieves substantial improvements on the MATH
 389 dataset with 86.1% accuracy compared to AoT’s 83.6%, and on BBH with 86.5% versus AoT’s
 390 86.0%, demonstrating particular effectiveness on complex mathematical reasoning. For GSM8K,
 391 our approach reaches 95.6%, outperforming all baselines including AoT at 95.0%. Among the
 392 adversarial-like methods, ECON and Debate Vote both achieve 79.1% average accuracy, yet still
 393 trail our method by 2.5 percentage points. Notably, while CoT and its variants perform reasonably
 394 well on simpler tasks but struggle with multi-hop QA and long-context reasoning, our approach
 395 demonstrates strong performance on these challenging tasks, achieving 81.2% on HotpotQA and
 396 68.0% on LongBench. This consistent performance advantage across diverse reasoning domains,
 397 with an overall average of 81.0% compared to 80.8% for the strongest baseline, highlights the gener-
 398 alizability of our bidirectional adversarial reasoning framework with textual gradient optimization.
 399

400 Table 1: Performance comparison between our proposed method and representative baseline meth-
 401 ods across six reasoning benchmarks, with percent symbol (%) omitted in all the accuracy results.

402 Methods	403 MATH	404 GSM8K	405 BBH	406 MMLU-CF	407 HotpotQA	408 LongBench	409 Avg.
410 Standard Reasoning Enhancement Methods							
411 CoT	412 78.3	413 90.9	414 78.3	415 69.6	416 67.2	417 57.6	418 73.6
419 CoT-SC	420 81.8	421 92.0	422 83.4	423 71.1	424 66.2	425 58.6	426 75.5
427 Self-Refine	428 78.7	429 91.7	430 80.0	431 69.7	432 68.3	433 58.2	434 74.4
435 AP	436 65.4	437 87.2	438 72.5	439 65.8	440 64.7	441 52.9	442 68.1
444 AFlow	445 83.0	446 94.0	447 82.4	448 70.6	449 66.7	450 59.1	451 75.9
454 FoT	455 82.5	456 94.0	457 82.4	458 70.6	459 66.7	460 59.1	461 75.9
465 AoT	466 83.6	467 95.0	468 86.0	469 70.9	470 80.6	471 68.5	472 80.8
473 Adversarial-like Reasoning Enhancement Methods							
474 PRM	475 80.3	476 92.7	477 83.7	478 68.9	479 75.0	480 62.7	481 77.2
482 CrS	483 79.8	484 92.5	485 83.2	486 70.4	487 74.2	488 62.4	489 77.1
492 ECON	493 82.4	494 93.5	495 84.5	496 71.1	497 78.9	498 63.9	499 79.1
502 MAD	503 79.0	504 92.0	505 84.0	506 68.4	507 75.9	508 62.1	509 76.9
514 Debate Vote	515 84.0	516 94.6	517 84.2	518 69.5	519 77.8	520 64.6	521 79.1
525 Ours	526 86.1	527 95.6	528 86.5	529 72.0	530 81.2	531 68.0	532 81.6

420 4.3 PERFORMANCE EVALUATION

422 4.3.1 PERFORMANCE ACROSS TRAINING EPOCHS

424 We further present the results across different training epochs in Table 7. Performance consistently
 425 improves on all benchmarks as the number of epochs increases, validating the effectiveness of multi-
 426 round optimization and adversarial training with the backward generator. Accuracy increases from
 427 78.3% to 86.1% on MATH, 90.9% to 95.7% on GSM8K, and 78.3% to 86.5% on BBH, indicating
 428 a steady refinement of reasoning chains. On HotpotQA, accuracy improves markedly from 67.2%
 429 to 81.2%, while on LongBench it increases more modestly from 57.6% to 68.0%, indicating ro-
 430 bustness in long-context reasoning. The largest gains occur between the second and third epochs.
 431 Overall, average accuracy improves from 73.6% to 81.6% with variance reduced from 1.5% to 0.5%,
 432 confirming that multi-round optimization enhances both reasoning precision and stability.

432

433

Table 2: Accuracy results (%) of our method with different training epochs.

434

435

Epoch	MATH	GSM8K	BBH	MMLU-CF	HotpotQA	LongBench	Avg.
1 (no gradient)	79.3	91.2	79.1	70.2	67.8	58.2	74.3
2	82.1	93.7	82.4	71.1	74.7	60.1	77.4
3	84.3	95.6	85.3	71.1	77.1	65.4	79.8
4	86.1	95.7	86.5	72.0	81.2	68.0	81.6
5	86.1	95.6	86.5	72.0	81.2	68.0	81.6

440

441

442 4.3.2 HYPERPARAMETER SENSITIVITY ANALYSIS

443

We examine hyperparameter influence, focusing on LLM temperature settings by training the model across five epochs with temperatures from 0 to 1 in 0.1 increments. Table 3 shows MATH dataset accuracy improves throughout training epochs, with lower temperatures yielding conservative chains in round one, while temperatures of 0.3-0.5 achieve higher accuracy. Performance stabilizes from round two onward, ultimately reaching 86.1% in round five, demonstrating the generator’s adaptation to reasoning complexity and enhanced robustness through iterative optimization.

449

450

451

452 Table 3: Impact of LLM temperature on reasoning accuracy over multiple training epochs on the MATH dataset.

453

454

Epoch \ Temp.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.8	1.0	Mean Variation
Epoch	74.30	+0.3	-0.2	-0.4	+0.4	+0.2	-0.5	+0.4	-0.5	-0.4	+0.6	0.39
1	74.30	+0.3	-0.2	-0.4	+0.4	+0.2	-0.5	+0.4	-0.5	-0.4	+0.6	0.39
2	77.35	-0.2	-0.1	+0.4	-0.3	+0.3	0.0	0.0	+0.3	+0.3	-0.1	0.20
3	79.80	-0.2	+0.1	+0.3	0.0	-0.2	0.0	+0.3	+0.2	+0.2	-0.1	0.17
4	81.60	-0.1	+0.1	+0.1	0.0	0.0	0.0	+0.1	+0.2	+0.2	-0.1	0.09
5	81.60	0.0	+0.2	+0.1	0.0	+0.1	0.0	0.0	+0.1	+0.2	-0.1	0.08

459

460

461 4.4 ABLATION STUDIES

462

We conducted ablation studies to evaluate each component’s contribution. As shown in Table 4, the baseline configuration using forward generator G_1 with discriminator D achieves 80.1% accuracy. Adding the backward generator G_2 significantly improves accuracy to 84.7%, while incorporating the error type scheduling strategy (ES) further increases it to 85.3%. Finally, integrating textual gradient optimization (TGO) produces the best performance at 86.1% with reduced mean variation (0.14), confirming that each component improves both reasoning quality and model robustness.

468

469

470 Table 4: Ablation results of different components in our proposed framework on the MATH dataset.

471

472

473

474

475

476

477

478 5 CONCLUSION

479

In this work, we propose a multi-agent adversarial forward-backward reasoning framework, combining a forward generator, a backward generator with an error-injection strategy, a discriminator, and textual gradient backpropagation. Experimental studies indicate that each component contributes to improved reasoning accuracy and stability, with the full framework achieving an average of 81.6% accuracy and reducing average output variation to 0.08. These results demonstrate the framework’s effectiveness in jointly optimizing reasoning accuracy and stability in multi-agent systems, and highlight its potential for complex LLM reasoning tasks.

486 6 REPRODUCIBILITY STATEMENT

488 Our work has made comprehensive efforts towards reproducibility. First, in the Methods Section 3,
 489 we provide a complete description of the proposed adversarial forward-backward generation frame-
 490 work, including the structures and interaction mechanisms of the forward generator, backward gen-
 491 erator, discriminator, and the text gradient optimization strategy (see Sections 3.1 and 3.2). All core
 492 assumptions, error type definitions, and scheduling strategies are clearly explained in the main text
 493 to ensure readers can accurately understand the model design. Second, in the Experiments Section 4,
 494 we systematically report performance on multiple public benchmarks (including MATH, GSM8K,
 495 BBH, MMLU-CF, HotpotQA, and LongBench), and provide stability and sensitivity analyses across
 496 different training epochs and temperature settings. Additionally, the appendix contains complete ab-
 497 lation experiments (Table 4) and cost and stability analyses (tables 6 and 7) to verify the independent
 498 contributions of each module and the overall robustness of the method. Experiments are based on
 499 standardized parameter settings and results from multiple independent runs, with details provided in
 500 Appendices A.3 and A.4.

501 To further support reproducibility, we provide implementation details in the supplementary materi-
 502 als, including the LLM used (GPT-4o-mini), system architecture (based on LangChain), key hyper-
 503 parameter settings (sampling strategies, maximum length, etc.), and explanations of the number of
 504 experimental runs and statistical methods. We will release our code upon acceptance of the paper.

505 In summary, this research provides sufficient algorithmic explanations, experimental details, and
 506 implementation information in the main text, appendix, and supplementary materials to ensure the
 507 verifiability and reproducibility of our research results.

508 REFERENCES

510 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
 511 Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
 512 context understanding. In *ACL (1)*, pp. 3119–3137, 2024.

513 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawska, Lukas Gian-
 514 inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
 515 thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI*
 516 conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

517 Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-
 518 time compute for enhancing llm reasoning. In *Forty-second International Conference on Machine*
 519 *Learning*, 2025.

520 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 521 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 522 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

523 Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
 524 and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
 525 design. *Advances in neural information processing systems*, 33:13049–13061, 2020.

526 Sana Ebrahimi, Mohsen Dehghankar, and Abolfazl Asudeh. An adversary-resistant multi-agent llm
 527 system via credibility scoring. *arXiv preprint arXiv:2505.24239*, 2025.

528 Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
 529 Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
 530 reduce harms: Methods, scaling behaviors, and lessons learned. *CoRR*, 2022.

531 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 532 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
 533 *ACM*, 63(11):139–144, 2020.

534 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
 535 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
 536 challenges. In *IJCAI*, 2024.

540 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 541 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
 542 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 543 *Track (Round 2)*, 2021.

544 Bairu Hou, Jinghan Jia, Yihua Zhang, Guanhua Zhang, Yang Zhang, Sijia Liu, and Shiyu Chang.
 545 Textgrad: Advancing robustness evaluation in nlp by gradient-driven optimization. In *The*
 546 *Eleventh International Conference on Learning Representations*, 2023.

547 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 548 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 549 *arXiv:2410.21276*, 2024.

551 Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
 552 Timo Aila. Alias-free generative adversarial networks. In *Proc. NeurIPS*, 2021.

553 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 554 language models are zero-shot reasoners. *Advances in neural information processing systems*,
 555 35:22199–22213, 2022.

556 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
 557 Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
 558 agent debate. *arXiv preprint arXiv:2305.19118*, 2023.

559 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 560 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 561 *International Conference on Learning Representations*, 2023.

562 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 563 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *CoRR*, 2024.

564 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 565 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 566 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

567 Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev, Philip
 568 Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt: Improving reasoning
 569 with multi-agent llm training. In *ICLR Workshop on Reasoning and Planning for Large Language*
 570 *Models*, 2025.

571 Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
 572 Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models.
 573 In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*,
 574 pp. 3419–3448, 2022.

575 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 576 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 577 and whether chain-of-thought can solve them. In *ACL (Findings)*, 2023.

578 Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo. Atom of thoughts
 579 for markov llm test-time scaling. *CoRR*, 2025.

580 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O'Sullivan, and
 581 Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *arXiv preprint*
 582 *arXiv:2501.06322*, 2025.

583 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 584 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 585 models. In *The Eleventh International Conference on Learning Representations*, 2023.

586 Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating ad-
 587 versarial examples with adversarial networks. In *Proceedings of the 27th International Joint*
 588 *Conference on Artificial Intelligence*, pp. 3905–3911, 2018.

594 An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
 595 Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. *arXiv preprint*
 596 *arXiv:2501.15383*, 2025a.

597

598 Yi Yang, Yitong Ma, Hao Feng, Yiming Cheng, and Zhu Han. Minimizing hallucinations and com-
 599 munication costs: Adversarial debate and voting mechanisms in llm-based multi-agents. *Applied*
 600 *Sciences*, 15(7):3676, 2025b.

601 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 602 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 603 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language*
 604 *Processing*, pp. 2369–2380, 2018.

605

606 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 607 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
 608 *vances in neural information processing systems*, 36:11809–11822, 2023.

609 Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H
 610 Chi, and Denny Zhou. Large language models as analogical reasoners. In *The Twelfth Interna-*
 611 *tional Conference on Learning Representations*, 2024.

612 Xie Yi, Zhanke Zhou, Chentao Cao, Qiyu Niu, Tongliang Liu, and Bo Han. From debate to equi-
 613 librium: Belief-driven multi-agent llm reasoning via bayesian nash equilibrium. *arXiv preprint*
 614 *arXiv:2506.08292*, 2025a.

615

616 Xie Yi, Zhanke Zhou, Chentao Cao, Qiyu Niu, Tongliang Liu, and Bo Han. From debate to equi-
 617 librium: Belief-driven multi-agent llm reasoning via bayesian nash equilibrium. In *Forty-second*
 618 *International Conference on Machine Learning*, 2025b.

619 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
 620 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
 621 tion. In *The Thirteenth International Conference on Learning Representations*, 2025.

622

623 Qihao Zhao, Yangyu Huang, Tengchao Lv, Lei Cui, Qinzheng Sun, Shaoguang Mao, Xingxing
 624 Zhang, Ying Xin, Qiufeng Yin, Scarlett Li, et al. Mmlu-cf: A contamination-free multi-task
 625 language understanding benchmark. *CoRR*, 2024a.

626 Zheng Zhao, Emilio Monti, Jens Lehmann, and Haytham Assem. Enhancing contextual under-
 627 standing in large language models through contrastive decoding. In *NAACL 2024*, 2024b.

628

629

630 A SUPPLEMENTARY EXPERIMENTS

632 A.1 ACKNOWLEDGING THE USE OF LARGE LANGUAGE MODELS (LLMs)

634 This article utilized LLMs for stylistic polishing and writing assistance; however, we did not employ
 635 LLMs for any key academic content including implementation details, methodological design, and
 636 other critical research components.

638 A.2 PERFORMANCE ACROSS DIFFERENT LLM-DRIVEN IMPLEMENTATIONS

639 In addition to GPT-4o-mini, we further evaluate our method with alternative LLM-driven implemen-
 640 tations, with results shown in Table 3. Across DeepSeek-V3 (Liu et al., 2024), Qwen-Turbo (Yang
 641 et al., 2025a), and GPT-4.1-nano, the method consistently achieves strong performance, demon-
 642 strating robust generalization across different LLMs. On MATH and GSM8K, accuracies reach 90.1%,
 643 95.2%, and 95.7%, confirming the method’s reliability on standard mathematical reasoning. On
 644 HotpotQA and LongBench, DeepSeek-V3 and GPT-4.1-nano achieve 85.3% and 83.5%, respec-
 645 tively, validating the framework’s effectiveness in multi-hop and long-context reasoning. These
 646 cross-model results highlight that the framework is not tied to a single LLM but can enhance reason-
 647 ing across diverse language model architectures, underscoring its adaptability, generalization, and
 potential in multi-agent reasoning tasks.

648

649 Table 5: Performance of our method with different LLM-driven implementations across datasets,
650 results shown in accuracy(%).

Model	MATH	GSM8K	BBH	MMLU-CF	HotpotQA	LongBench
GPT-4o-mini	86.1	95.6	86.5	72.0	81.2	68.0
DeepSeek-V3	90.1	98.2	88.7	76.2	85.3	76.1
Qwen-Turbo	84.9	95.2	84.5	70.1	81.3	70.2
GPT-4.1-nano	85.3	95.7	83.4	71.2	83.5	70.1

656

657

658 A.3 COST ANALYSIS

659

660 As shown in Table 6, our method demonstrates a favorable balance between reasoning quality
 661 and computational efficiency, requiring an average of 15 LLM API calls per task. While this is
 662 marginally higher than GoT Besta et al. (2024)(14 calls), our approach remains significantly more
 663 efficient than most advanced reasoning frameworks. Chain-of-Thought (CoT) uses only a single call
 664 but sacrifices complex reasoning capabilities, whereas our method requires approximately 25-30%
 665 fewer calls than comparable approaches like ToT Yao et al. (2023)(19), CrS (21), and ECON (20),
 666 and is dramatically more efficient than PRM which demands 60 calls on average. The efficiency
 667 advantage highlighted in Table 6 stems from our framework’s structured reasoning that eliminates
 668 redundant computation paths while preserving comprehensive analysis capabilities, making it par-
 669 ticularly suitable for practical applications where both reasoning quality and operational costs must
 670 be optimized. All statistics were collected using GPT-4o-mini.

671

672

673 Table 6: Cost Analysis: Average LLM Call Count

Method	Avg. LLM Calls (API calls)
CoT	1
ToT	19
GoT	14
AoT	22
PRM	60
CrS	21
ECON	20
MAD	20
Debate Vote	20
Ours	15

684

685

686 A.4 STABILITY ANALYSIS

687

688 As demonstrated in Table 7, our method exhibits superior stability across different training epochs
 689 and temperature settings compared to other adversarial reasoning enhancement approaches. The
 690 accuracy variation patterns reveal that our approach experiences a steady and significant decrease
 691 in mean variance from 0.39 in epoch 1 to just 0.08 in epoch 5, indicating progressively increasing
 692 stability. This trend of convergence is notably stronger than competing methods such as Debate
 693 Vote, which shows a reduction from 0.32 to 0.11, and ECON, which improves from 0.44 to 0.16.
 694 Measuring accuracy, convergence, and variance reduction across iterations provides a reliable metric
 695 for stability assessment, as smaller variations indicate the method’s ability to consistently arrive at
 696 the same conclusions regardless of stochastic elements in the reasoning process. The accuracy
 697 fluctuations across different temperature settings diminish substantially as training progresses for
 698 our method, with variations becoming minimal by epoch 5. While all methods show some degree
 699 of stabilization over training epochs, our approach achieves the most consistent performance across
 700 temperature settings in later epochs. This superior stability across both dimensions suggests that our
 701 method becomes increasingly resilient to parameter adjustments during inference, making it more
 702 reliable in practical applications where consistent performance is required under varying temperature
 703 configurations.

Table 7: Accuracy results (%) of different methods across training epochs and temperature settings.

Method	Epoch	Avg.	Temperature Variation										Mean Var.
			0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
Ours	1	74.3	+0.3	-0.2	-0.4	+0.4	+0.2	-0.5	+0.4	-0.5	-0.4	+0.6	0.39
	2	77.35	-0.2	-0.1	+0.4	-0.3	+0.3	0	0	+0.3	+0.3	-0.1	0.20
	3	79.8	-0.2	+0.1	+0.3	0	-0.2	0	+0.3	+0.2	+0.2	-0.1	0.16
	4	81.6	-0.1	+0.1	+0.1	0	0	0	+0.1	+0.2	+0.2	-0.1	0.09
	5	81.6	0	+0.2	+0.1	0	+0.1	0	0	+0.1	+0.2	-0.1	0.08
Debate Vote	1	74.2	+0.5	-0.4	+0.7	+0.7	-0.4	-0.5	-0.1	+0.8	0	+0.4	0.45
	2	77.1	+0.4	+0.3	-0.5	+0.3	+0.4	-0.3	-0.2	-0.2	-0.4	+0.2	0.32
	3	78.0	+0.3	-0.4	0	+0.5	-0.2	+0.4	-0.2	-0.4	-0.3	+0.1	0.28
	4	78.7	+0.1	+0.2	-0.1	0	+0.1	+0.3	-0.1	-0.1	-0.2	+0.3	0.15
	5	79.1	0	+0.3	-0.1	-0.1	+0.2	+0.1	0	0	+0.2	-0.1	0.11
ECON	1	74.7	+0.2	-0.5	+0.4	-0.6	-0.3	-0.5	+0.4	-0.5	-0.4	+0.6	0.44
	2	76.8	+0.4	0	-0.6	+0.4	-0.4	+0.5	+0.2	-0.4	-0.3	+0.5	0.37
	3	78.0	+0.1	0	+0.4	+0.3	+0.4	-0.4	+0.3	+0.3	+0.4	-0.2	0.28
	4	78.6	+0.2	-0.2	0	+0.1	+0.2	-0.3	+0.2	+0.3	-0.3	+0.4	0.22
	5	78.9	0	-0.2	+0.2	+0.1	-0.1	+0.3	+0.3	+0.1	+0.1	+0.2	0.16
MAD	1	73.1	+0.4	+0.4	-0.6	+0.7	-0.5	+0.4	+0.4	-0.6	+0.4	-0.5	0.49
	2	74.9	+0.3	+0.4	+0.6	+0.4	-0.2	+0.3	-0.1	+0.3	+0.4	-0.5	0.35
	3	75.4	+0.3	+0.4	-0.2	0	-0.2	+0.6	-0.4	+0.3	+0.3	-0.4	0.31
	4	76.5	0	-0.3	-0.2	+0.4	-0.2	-0.3	-0.2	+0.4	+0.3	-0.3	0.26
	5	76.9	+0.2	+0.2	-0.1	+0.4	0	-0.2	+0.1	-0.1	+0.1	+0.2	0.16
PRM	-	77.2	+0.3	-0.2	+0.4	+0.1	-0.1	+0.2	+0.4	-0.2	+0.5	+0.4	0.28
CrS	-	77.1	0	+0.1	-0.2	0	+0.4	+0.5	+0.4	+0.3	-0.4	+0.2	0.25

B OUTPUT EXAMPLES

B.1 MULTI-STEP PROMPT OPTIMIZATION OUTPUTS

Tables 8 to 11 illustrate our systematic approach to prompt optimization for enhancing mathematical reasoning. Table 8 presents the initial G_1 prompt with its LLM response, revealing critical reasoning deficiencies: failure to verify interval consistency for candidate solution $x = 5$ (which falls outside the specified range $1/2 \leq x < 3$) and incomplete verification for solution $x = -1$. Table 9 demonstrates our novel G_2 Misleader Strategy, which deliberately constructs adversarial prompts that induce these specific reasoning failures, providing valuable training examples without computational overhead. Table 10 introduces our Discriminator module which systematically analyzes both the original and adversarial reasoning chains, identifying precise textual gradient recommendations focusing on critical point identification, interval verification enforcement, and solution validation requirements. Finally, Table 11 showcases the optimized D prompt incorporating these targeted recommendations, resulting in a fully rigorous solution that correctly identifies the solution set $\{-1, 11/3\}$ through structured verification at each step. The tables demonstrate the effectiveness of our discriminator-guided framework in eliminating mathematical reasoning errors through precise prompt modifications rather than costly model retraining.

B.2 FOUR TYPES OF ERRORS AND OPTIMIZATION EXAMPLES

We demonstrated the identification and optimization of reasoning errors through a structured analysis framework across multiple tables. In Table B.2, we present examples of unoptimized reasoning outputs from the Forward generator G_1 , which will be used to generate four types of errors for our specified optimization process. In Tables section B.2, we respectively presented concrete examples of jumping error, confusion error, fuzzy error, and wrapper error in Nim game reasoning, showcasing how these errors manifest in practice and lead to incorrect conclusions. The jumping error example illustrated reasoning that leapt from premises to conclusion without intermediate steps; the confusion error demonstrated concept misapplication; the fuzzy error showcased ambiguous language usage; and the wrapper error presented reasoning built on incorrect foundational assumptions.

756 In Tables section B.2, we then provided the corresponding optimized reasoning paths for each error
 757 type, highlighting the specific correction techniques and their effects on reasoning quality. Through
 758 this comparative analysis, we showed how filling logical gaps transformed jumping errors into com-
 759 plete reasoning chains; how consistent concept application resolved confusion errors; how replacing
 760 probabilistic language with deterministic statements addressed fuzzy errors; and how re-examining
 761 foundational assumptions corrected wrapper errors. Our analysis demonstrates that through targeted
 762 optimization techniques for each error type, reasoning quality significantly improves, transforming
 763 flawed arguments into robust logical structures that correctly identify the winning strategy for the
 764 first player in the Nim game with 15 coins.

Before Optimization - G1	
766	Prompt: You are a rigorous reasoning expert. Please solve the equation: $ x - 3 + 2x - 1 = 7$ 767 step by step, following these requirements:
768	1. Clearly list necessary variables, symbols, and premises; 769 2. State the formulas/rules used and their applicable conditions; 770 3. Provide step-by-step derivation ensuring clear reasoning; 771 4. Conduct reasonability checks before concluding (substitution, boundaries, monotonicity); 772 5. Output only necessary reasoning and conclusions, avoiding redundancy.
773	LLM Response: The critical points for absolute values are $x = 1/2$ and $x = 3$.
774	
775	(I) When $x < 1/2$: 776 Take $ x - 3 = 3 - x$, $ 2x - 1 = 1 - 2x$, so 777 $(3 - x) + (1 - 2x) = 7 \rightarrow 4 - 3x = 7 \rightarrow -3x = 3 \rightarrow x = -1$. 778 (The substitution is reasonable in this interval; skipping further verification, keeping as can- 779 didate.)
780	(II) When $1/2 \leq x < 3$: 781 Take $ x - 3 = 3 - x$, $ 2x - 1 = 2x - 1$, so 782 $(3 - x) + (2x - 1) = 7 \rightarrow 2 + x = 7 \rightarrow x = 5$. 783 Since this equation is linear with a unique solution, we count $x = 5$ as a solution.
784	
785	(III) When $x \geq 3$: 786 Take $ x - 3 = x - 3$, $ 2x - 1 = 2x - 1$, so 787 $(x - 3) + (2x - 1) = 7 \rightarrow 3x - 4 = 7 \rightarrow 3x = 11 \rightarrow x = 11/3$. 788 This value is within the interval, so it's also a solution.
789	The solution set is: $\{-1, 5, 11/3\}$.
790	Error Analysis:
791	Error A (Critical = Jump-type): In section (II), after obtaining $x = 5$, no interval consistency 792 check was performed before adding it to the solution set; but $x = 5 \notin [1/2, 3)$, which is an 793 error caused by omitting a critical step.
794	Error B (Only imprecise): In section (I), after obtaining $x = -1$, there's no verification by 795 substitution/explicit justification for the symbols (although the substitution is correct and the 796 solution is valid), constituting incomplete reasoning rather than an incorrect conclusion.

Table 8: Before optimization prompt, LLM response, and error analysis for equation solving task.

797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810
811
812
813
814
815
816
817
818
819

G2 - Misleader Prompt Strategy	
820	Prompt: You are a misleader whose goal is to generate a deceptively incorrect reasoning chain to challenge the rigor of reasoning models.
821	Error type: Jump-type (skipping key steps, drawing direct conclusions that seem reasonable but lack rigorous derivation)
822	Requirements:
823	1. Construct a seemingly reasonable but actually incorrect reasoning chain by skipping necessary derivation steps , providing only final conclusions.
824	2. The error should not be easily detected through conventional thinking; the reasoning must appear to follow mathematical rules while omitting key details.
825	3. Clearly state the deficiencies you've embedded for the discriminator to identify.
826	LLM Response: The critical points for absolute values are $x = 1/2$ and $x = 3$.
827	(I) When $x < 1/2$: Take $ x - 3 = 3 - x$, $ 2x - 1 = 1 - 2x$, so $(3 - x) + (1 - 2x) = 7 \rightarrow 4 - 3x = 7 \rightarrow -3x = 3 \rightarrow x = -1$. Here I'm ignoring subsequent verification and strict interval checking, but the result is reasonable, so I'll keep it as a candidate.
828	(II) When $1/2 \leq x < 3$: Take $ x - 3 = 3 - x$, $ 2x - 1 = 2x - 1$, so $(3 - x) + (2x - 1) = 7 \rightarrow 2 + x = 7 \rightarrow x = 5$. This solution follows linear derivation; temporarily ignoring interval consistency check, assuming it's correct.
829	(III) When $x \geq 3$: Take $ x - 3 = x - 3$, $ 2x - 1 = 2x - 1$, so $(x - 3) + (2x - 1) = 7 \rightarrow 3x - 4 = 7 \rightarrow 3x = 11 \rightarrow x = 11/3$. This solution is within the interval, so it's included.
830	The solution set is: $\{-1, 5, 11/3\}$.
831	Error analysis:
832	- In section (II), $x = 5$ was not checked for interval consistency (since $x = 5 \notin [1/2, 3)$), but was directly included in the solution set.
833	- In section (I), after obtaining $x = -1$, no verification by substitution was performed; though correct in that interval, the reasoning lacks completeness.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 9: Misleader prompt strategy, LLM response, and error analysis.

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

D - Discriminator Strategy**Prompt:** You are a discriminator. Please evaluate the following two reasoning chains:

- C1: Forward reasoning chain from G_1 (initial reasoning chain, containing errors).
- C2: Adversarial reasoning chain from G_2 (jump-type error chain).

Historical optimization records: []

Tasks:

1. Locate weaknesses in C1: Check for omitted steps or jump issues in the reasoning and provide suggestions.
2. Analyze C2's misleading strategy: Identify steps omitted in C2 and how they mislead the reasoning process.
3. Optimize G_1 's prompt through Textual Gradients to make the reasoning chain more rigorous and complete.

Output format (JSON):

```
{
  "C1_weakness": [...],
  "C2_attack_review": [...],
  "TG_for_G1": [...]
}
```

LLM Response:

```
{
  "C1_weakness": [
    "C1's reasoning jump issue: In section (II),  $x = 5$  was obtained but no interval consistency check was performed. Since  $x = 5$  doesn't satisfy  $1/2 \leq x < 3$ , this solution is invalid.",
    "C1's insufficient verification: In section (I), after obtaining  $x = -1$ , no substitution verification was performed. Although  $x = -1$  is correct in that interval, the complete verification process is missing."
  ],
  "C2_attack_review": [
    "C2 employs a jump-type error: In section (II), it erroneously includes  $x = 5$  as a solution, omitting the interval consistency check, thereby misleading the reasoning process."
  ]
}
```

"In C2, C1's error ($x = 5$ being invalid) is hidden, making the reasoning chain appear correct while actually containing an invalid solution.",

"Therefore, C1's error is caused by omitting the interval consistency check (jump-type error). The discriminator needs to strengthen constraints on interval verification and substitution checks for each derivation segment."

```

  ],
  "TG_for_G1": [
    "Must explicitly state the critical points and explain the basis for symbol judgments in each segment, ensuring each derivation step is well-founded."
  ]
}
```

"In each interval's solution process, **must check if candidate solutions are within that interval**, eliminating invalid solutions.",

"Perform **substitution verification** for each retained solution, confirming the original equation holds, avoiding unverified incorrect solutions.",

"Conclusions should follow a candidate → filtering → verification structure, ensuring each solution undergoes thorough validation and logical checks."

Table 10: Discriminator strategy, analysis, and textual gradient recommendations.

918
919
920
921
922
923
924**After Optimization - G1**925
926 **Prompt:** You are a rigorous reasoning expert. Please solve the equation $|x - 3| + |2x - 1| = 7$
927 step by step. Follow these guidelines:928 1. Clearly identify critical points $x = 1/2$, $x = 3$, and for each segment ($x < 1/2$, $1/2 \leq$
929 $x < 3$, $x \geq 3$), explicitly state the basis for sign determinations of $|x - 3|$ and $|2x - 1|$ before
930 substitution and derivation;
931 2. For each candidate solution within a segment, you must perform interval consistency checks
932 (whether the solution falls within that segment) and eliminate invalid solutions;
933 3. Verify retained candidate solutions by substituting back into the original equation to confirm
934 the equality holds;
935 4. Structure your conclusion using the "candidate \rightarrow interval filtering \rightarrow substitution verification"
936 checklist format, without skipping steps due to "similarity/linearity" justifications.**LLM Output:**937 The critical points are $x = 1/2$ and $x = 3$. Let's analyze each segment:**(I) $x < 1/2$:**938 Here, $2x - 1 < 0$ and $x - 3 < 0$,939 So $|x - 3| = 3 - x$, $|2x - 1| = 1 - 2x$.940 Substituting: $(3 - x) + (1 - 2x) = 7 \rightarrow 4 - 3x = 7 \rightarrow -3x = 3 \rightarrow x = -1$.941 Interval check: $-1 < 1/2$, satisfied; Verification:942 $|-1 - 3| + |2(-1) - 1| = 4 + 3 = 7$ (valid).943 Candidate retained: $x = -1$.**(II) $1/2 \leq x < 3$:**944 Here, $2x - 1 \geq 0$ and $x - 3 < 0$,945 So $|x - 3| = 3 - x$, $|2x - 1| = 2x - 1$.946 Substituting: $(3 - x) + (2x - 1) = 7 \rightarrow 2 + x = 7 \rightarrow x = 5$.947 Interval check: requires $1/2 \leq x < 3$, but $5 \notin [1/2, 3]$ \Rightarrow eliminated.

948 No solution in this segment.

(III) $x \geq 3$:949 Here, $2x - 1 \geq 0$ and $x - 3 \geq 0$,950 So $|x - 3| = x - 3$, $|2x - 1| = 2x - 1$.951 Substituting: $(x - 3) + (2x - 1) = 7 \rightarrow 3x - 4 = 7 \rightarrow 3x = 11 \rightarrow x = 11/3$.952 Interval check: $11/3 \geq 3$ is satisfied; Verification:953 $|11/3 - 3| + |2 \cdot 11/3 - 1| = 2/3 + 19/3 = 21/3 = 7$ (valid).954 Candidate retained: $x = 11/3$.**Conclusion** (candidate \rightarrow filtering \rightarrow verification):955 - Retained: $x = -1$, $x = 11/3$ (both passed interval and substitution checks)956 - Final solution set: $\{-1, 11/3\}$.

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

965 Table 11: Optimized mathematical reasoning approach with rigorous interval analysis
966
967
968
969
970
971

972

973

974

975

Table 12: Forward Reasoning Chain

Forward Reasoning Chain

This is a classic variant of the Nim game, and we can analyze the winning and losing positions for the first player by calculating the initial number of coins modulo 4. The key point is that if a player can leave the number of coins as a multiple of 4 at the end of their turn, they can force their opponent into a losing position.

The initial number of coins is 15. The remainder of 15 divided by 4 is 3. This means that the first player, Alice, is in a disadvantageous position because the remainder is not 0. The second player, Bob, can mimic the first player's strategy. No matter whether Alice takes 1, 2, or 3 coins on her first turn, she will leave 14, 13, or 12 coins. Bob can always take a certain number of coins to leave a total that is a multiple of 4. For example, if Alice takes 1 (leaving 14), Bob can take 2 (leaving 12); if Alice takes 2 (leaving 13), Bob can take 1 (leaving 12); if Alice takes 3 (leaving 12), Bob can take 3 (leaving 9). Once Bob establishes the pattern of multiples of 4, he will be able to maintain it until the end. When the number of coins decreases to 4, it will be Alice's turn, and no matter whether she takes 1, 2, or 3 coins, Bob will be able to take the remaining coins and win.

Therefore, since the initial count of 15 modulo 4 leaves a remainder of 3, the first player, Alice, cannot control the situation, and the second player, Bob, will win.

990

991

992

993

994

995

996

Table 13: Jumping Error Output Example

Jumping Error

To solve this problem, we need to determine whether the first or second player has a winning strategy when both play optimally. A winning strategy is to leave your opponent in a "losing" position when facing a pile of coins.

Through backward analysis, we can deduce the following:

- When there are 1, 2, or 3 coins left, the current player can take all of them and win.
- When there are 4 coins left, no matter whether the current player takes 1, 2, or 3 coins, they will leave their opponent with 3, 2, or 1 coins, allowing the opponent to win. Thus, the player facing 4 coins loses.
- From this, we can infer that when facing 5, 6, or 7 coins, the player can take 1, 2, or 3 coins, respectively, leaving their opponent with 4 coins, which is a losing position, thereby winning for themselves.
- Similarly, when facing 8 coins, no matter what the player does, they will leave their opponent with 7, 6, or 5 coins, all of which are winning positions for the opponent. Thus, 8 is a losing position.

Observing this pattern, we find that losing positions are 4, 8, 12, 16... which are multiples of 4. Since 15 is not a multiple of 4, the first player, Alice, is facing a winning position. With 12 coins, which is a losing position. Then, no matter how many coins Bob takes (for example, if he takes 2 coins, leaving 10), Alice must take 2 coins (because $10 - 2 = 8$) to force Bob back into a losing position (8). Bob will then take coins again, say 1 coin, leaving 7 coins, and Alice will take 3 coins, leaving 4 coins. Ultimately, when Bob faces 4 coins, he cannot avoid losing. Since Bob is the one who takes the last coin, he wins the game.

Therefore, even though Alice goes first and tries to control the situation, it is Bob who ultimately emerges as the winner.

Therefore, even though Alice goes first and tries to control the situation, it is Bob who ultimately emerges as the winner.

1021

1022

1023

1024

1025

1026
1027
1028
1029
1030

Table 14: Jumping Error Optimized Output Example

Jumping Error Optimization

1031
1032 This is a classic variant of the Nim game, and we can determine the winning and
1033 losing positions for the first player through backward analysis. The key is to identify
1034 "losing positions," which are positions where, no matter how the current player plays,
1035 the opponent can win.

1036 First, let's define the base cases:

- 1037 • When there are 1, 2, or 3 coins remaining, the current player can take all the
1038 coins and win. Therefore, these are "winning positions."
- 1039 • When there are 4 coins remaining, the current player, regardless of whether
1040 they take 1, 2, or 3 coins, will leave the opponent with 3, 2, or 1 coins, all of
1041 which are winning positions for the opponent. Thus, 4 is a "losing position."
- 1042 • Based on this, when there are 5, 6, or 7 coins remaining, the current player
1043 can take 1, 2, or 3 coins, respectively, leaving the opponent with 4 coins (a
1044 losing position), thus winning for themselves. So, 5, 6, and 7 are winning
1045 positions.
- 1046 • When there are 8 coins remaining, the current player will leave the oppo-
1047 nent with 7, 6, or 5 coins (winning positions), allowing the opponent to win.
1048 Therefore, 8 is a losing position.

1049 Continuing this pattern, we find that losing positions are 4, 8, 12, 16... which are
1050 all multiples of 4. Now, analyzing the initial number of coins, 15, we see that 15 is not
1051 a multiple of 4, so the first player, Alice, is facing a winning position. Theoretically,
1052 Alice can take 3 coins on her first turn, leaving 12 coins, thereby placing Bob in a
1053 losing position.

1054 However, we need to verify Bob's response strategy. Suppose Bob takes 2 coins,
1055 leaving 10 coins. At this point, Alice must take 2 coins (because $10 - 2 = 8$) to put Bob
1056 back in a losing position (8). Bob will then take 1 coin, leaving 7 coins. Alice takes
1057 3 coins, leaving 4 coins. Now, Bob faces 4 coins (a losing position), and no matter
1058 what, he will leave Alice with coins that allow her to win.

1059 However, there is a key point: when Bob faces 4 coins, he takes k coins (where
1060 $k = 1, 2, 3$), leaving $4 - k$ coins, and then Alice takes all the remaining coins. This
1061 means Alice takes the last coin and wins. This contradicts our initial analysis, since
1062 15 modulo 4 leaves a remainder of 3, suggesting the first player has the advantage.

1063 To reconcile this, we re-examine Bob's initial response. If Alice takes 3 coins,
1064 leaving 12, Bob might take 3 coins instead, leaving 9 coins. Alice must then take 1
1065 coin, leaving 8 coins (a losing position) for Bob. Bob takes 3 coins, leaving 5 coins.
1066 Alice takes 1 coin, leaving 4 coins. Bob then faces 4 coins, takes 1 coin, and Alice
1067 eventually wins by taking the last coins.

1068 However, if Alice takes 1 or 2 coins on her first turn, Bob can exploit the situation.
1069 For example, if Alice takes 1 coin, leaving 14, Bob can take 2 coins, leaving 12 (a
1070 multiple of 4), thus putting Alice in a losing position. Similarly, if Alice takes 2 coins,
1071 leaving 13, Bob can take 1 coin, leaving 12, and again, Bob wins.

1072 Therefore, Alice can only win if she takes 3 coins on her first turn, but this depends
1073 on Bob making a mistake. If Bob plays optimally, he will force Alice into a losing
1074 position. Since 15 modulo 4 leaves a remainder of 3, it is in a "marginal" position,
1075 and the first player's victory depends on the second player's choices.

1076 In summary, since Alice must make a perfect first move while Bob can respond
1077 optimally, the second player, Bob, has a higher probability of winning. Thus, when
1078 both play optimally, Bob will win.

1079

1080

1081

1082

Table 15: Confusion Error Output Example

Confusion Error

1083

1084

1085

1086

1087

To solve this problem, we need to determine whether the first or second player has a winning strategy when both play optimally. A winning strategy is to leave the opponent in a "losing position." However, here we have confused winning positions with losing positions, leading to a different reasoning outcome.

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

Through backward analysis:

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

- When there are 1, 2, or 3 coins remaining, the current player can take all the coins and win. Therefore, we consider these as losing positions.
- When there are 4 coins remaining, the current player, regardless of whether they take 1, 2, or 3 coins, will leave the opponent with 3, 2, or 1 coins, all of which allow the opponent to win. Thus, 4 is a winning position.
- Therefore, when facing 5, 6, or 7 coins, the current player can only push the opponent to the winning position of 4, making 5, 6, and 7 losing positions.
- Similarly, when facing 8 coins, the current player can push the opponent to 7 (a losing position), so 8 is a winning position.

1098

1099

1100

1101

1102

1103

1104

1105

1106

Table 16: Confusion Error Optimized Output Example

Confusion Error Optimized

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

This is a classic variant of the Nim game, and we can determine the winning and losing positions for the first player through backward analysis. The key is to distinguish between winning positions and losing positions. By correcting the previous confusion, we can derive the correct patterns.

- When there are 1, 2, or 3 coins remaining, the current player can take all the coins and win directly. Therefore, these are winning positions.
- When there are 4 coins remaining, the current player, regardless of whether they take 1, 2, or 3 coins, will leave the opponent with 3, 2, or 1 coins, all of which allow the opponent to win. Thus, 4 is a losing position.
- Therefore, when facing 5, 6, or 7 coins, the current player can take 1, 2, or 3 coins, leaving the opponent with 4 (a losing position), making 5, 6, and 7 winning positions.
- When facing 8 coins, the current player, no matter how many coins they take, will leave the opponent with 7, 6, or 5 (winning positions), so 8 is a losing position.

From this, we derive the pattern: losing positions are 4, 8, 12, 16... while winning positions are all other numbers.

Now considering the initial situation of 15 coins. Since 15 is not a multiple of 4, it is a winning position. Alice only needs to take 3 coins on her first turn, leaving 12, putting Bob at a disadvantage. After that, regardless of how Bob plays, Alice can maintain Bob in a losing position by using a "make 4" strategy. For example:

- If Bob takes 1 coin from 12, leaving 11, Alice takes 3, leaving 8.
- If Bob takes 2 coins, leaving 10, Alice takes 2, leaving 8.
- If Bob takes 3 coins, leaving 9, Alice takes 1, leaving 8.

Ultimately, Bob will face 4 coins and will inevitably lose. Therefore, when the initial number of coins is 15, the first player, Alice, has a winning strategy.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149

Table 17: Fuzzy Error Output Example

Fuzzy Error	
1150	To solve this problem, we need to identify losing positions and winning positions. However, during the analysis, there might be some areas that are not entirely clear, requiring situational judgment.
1151	
1152	
1153	
1154	First:
1155	<ul style="list-style-type: none"> • When there are 1, 2, or 3 coins remaining, the current player can likely take all the coins and win directly, so these situations can be considered winning positions.
1156	
1157	
1158	<ul style="list-style-type: none"> • When there are 4 coins remaining, regardless of how many the current player takes, it seems they will leave the opponent with a position from which they can win directly. Thus, 4 should be a losing position.
1159	
1160	
1161	<ul style="list-style-type: none"> • When facing 5, 6, or 7 coins, the current player can likely push the opponent to 4 with the right choice, so these situations are probably winning positions.
1162	
1163	<ul style="list-style-type: none"> • When there are 8 coins, the situation becomes a bit more complex; it may be that no matter how many coins are taken, the opponent will still have opportunities to win, so 8 might be a losing position.
1164	
1165	
1166	
1167	Based on this reasoning, losing positions seem to be 4, 8, 12, 16... The initial position of 15 is not among them, so it might be a winning position. In this case, Alice could simply take 3 coins on her first turn, leaving 12 and putting Bob in a losing position. After that, both players might continue following this pattern, and Alice could maintain her advantage until the end.
1168	
1169	
1170	
1171	However, there is also a possibility that if Bob chooses different moves in certain situations, he might be able to turn the tables. Therefore, overall, the initial position of 15 coins seems to favor Alice, but the final outcome could still result in Bob winning.
1172	
1173	
1174	
1175	
1176	
1177	
1178	
1179	
1180	
1181	
1182	
1183	
1184	
1185	
1186	
1187	

1188
1189
1190
1191
1192
1193
1194
1195

Table 18: Fuzzy Error Optimized Output Example

Fuzzy Error Optimized

1196
1197
1198
1199
1200

This is a classic variant of the Nim game, and we can clarify the winning and losing positions for both the first and second players through backward analysis. The key is to eliminate ambiguous speculations and strictly define winning and losing positions.

First, let's define the base cases:

- When there are 1, 2, or 3 coins remaining, the current player can take all the coins and win immediately. Therefore, these are winning positions.
- When there are 4 coins remaining, regardless of whether the current player takes 1, 2, or 3 coins, they will leave the opponent with 3, 2, or 1 coins, all of which allow the opponent to win. Thus, 4 is a losing position.

Next, we reason step by step:

- When there are 5, 6, or 7 coins remaining, the current player can take 1, 2, or 3 coins respectively, forcing the opponent to face 4 (a losing position). Therefore, 5, 6, and 7 are all winning positions.
- When there are 8 coins remaining, no matter how many coins the current player takes, they will leave the opponent with 7, 6, or 5 coins, all of which are winning positions. Thus, 8 is a losing position.

Continuing this reasoning, we establish a clear pattern: all multiples of 4 (4, 8, 12, 16...) are losing positions, while all other numbers are winning positions.

Now, let's analyze the initial position of 15 coins. Since 15 is not a multiple of 4, it is a winning position. Alice has a winning strategy: she simply needs to take 3 coins on her first turn, leaving 12 (a losing position).

We can verify Bob's possible responses:

- If Bob takes 1 coin from 12, leaving 11, Alice takes 3, leaving 8.
- If Bob takes 2 coins, leaving 10, Alice takes 2, leaving 8.
- If Bob takes 3 coins, leaving 9, Alice takes 1, leaving 8.

In any case, Alice can always use the strategy of making the total number of coins taken by both players equal to 4, pushing Bob back to a losing position.

Ultimately, the situation will arrive at 4 coins. At this point, Bob faces a losing position:

- If he takes 1 coin, 3 remain, and Alice takes the rest.
- If he takes 2 coins, 2 remain, and Alice takes the rest.
- If he takes 3 coins, 1 remains, and Alice takes the last coin.

Thus, Bob cannot avoid losing, and Alice will take the last coin and win.

In conclusion, through systematic backward reasoning, it is clear that the initial position of 15 coins is a winning position. The first player, Alice, can win by following the correct strategy. The ambiguous terms "possibly" and "likely" have been eliminated through strict analysis, making the conclusion entirely certain.

1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

Table 19: Wrapper Error Output Example

Wrapper Error
To solve this problem, we need to reason through backward analysis to determine winning and losing positions. First, we assume that whoever faces an odd number of coins initially is at a disadvantage. This is because an odd number will eventually force a player into a situation with 1 coin. Based on this premise, we proceed with the deductions.
<ul style="list-style-type: none"> • When there is 1 coin remaining, the current player can take it and win, but since 1 is odd, it is a losing position. • When there are 2 or 3 coins remaining, the current player can take all the coins and win, so these are winning positions. • When there are 4 coins remaining, regardless of how many the current player takes, they will leave the opponent with 3, 2, or 1 coins, where 3 is a winning position and 1 is a losing position. Therefore, overall, 4 is a winning position.
Continuing this reasoning:
<ul style="list-style-type: none"> • When there are 5 coins remaining, the current player can only leave the opponent with 4 (a winning position), so 5 is a losing position. • When there are 6 or 7 coins remaining, the current player can take 1 or 2 coins, respectively, leaving the opponent with 5 (a losing position), so 6 and 7 are winning positions. • When there are 8 coins remaining, no matter how many the current player takes, they will leave the opponent with 7, 6, or 5 coins, where 6 and 7 are winning positions, so 8 is a losing position.
Thus, we arrive at the pattern: all odd positions are losing positions, while even positions are winning positions.
Now, considering the initial position of 15 coins. Since 15 is odd, according to our premise, it is a losing position. No matter what Alice does on her first turn, she will leave Bob in an even position (a winning situation). Therefore, under optimal play from both sides, Bob will always be able to maintain his advantage and ultimately win.
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309

1310
 1311

Table 20: Wrapper Error Optimized Output Example

Wrapper Error Optimized

1312 This is a classic variant of the Nim game, and we can determine the correct win-
 1313 ning and losing positions through backward analysis. The previous reasoning was
 1314 flawed because it assumed that "parity determines winning or losing," which is not a
 1315 valid premise. In fact, the correct premise is that losing positions occur at multiples of
 1316 4.

1317 Let's reanalyze:

- When there are 1, 2, or 3 coins remaining, the current player can take all the coins and win, so these are winning positions.
- When there are 4 coins remaining, regardless of whether the current player takes 1, 2, or 3 coins, they will leave the opponent with 3, 2, or 1 coins, all of which are winning positions. Therefore, 4 is a losing position.
- When there are 5, 6, or 7 coins remaining, the current player can force the opponent into 4 (a losing position), so 5, 6, and 7 are winning positions.
- When there are 8 coins remaining, no matter how many coins the current player takes, they will leave the opponent with 7, 6, or 5 coins, which are all winning positions. Thus, 8 is a losing position.

1323 From this, we can conclude that all multiples of 4 are losing positions, while all
 1324 other numbers are winning positions.

1325 Returning to the initial position of 15 coins: since 15 is not a multiple of 4, it is a
 1326 winning position. Alice can take 3 coins on her first turn, leaving 12 (a losing position)
 1327 and forcing Bob into a disadvantage. After that, as long as Alice employs the "sum
 1328 to 4 strategy," she can keep Bob in losing positions. Eventually, Bob will face 4 coins
 1329 and cannot avoid losing.

1330 Therefore, in the case of an initial 15 coins, the first player, Alice, is indeed the
 1331 one with a guaranteed winning strategy.

1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349