
Continuous Spatiotemporal Transformer

Antonio Henrique de Oliveira Fonseca 1 Emanuele Zappala 2 Josue Ortega Caro 3 4 David van Dijk 2 5 6 4

Abstract
Modeling spatiotemporal dynamical systems is
a fundamental challenge in machine learning.
Transformer models have been very successful
in NLP and computer vision where they provide
interpretable representations of data. However, a
limitation of transformers in modeling continuous
dynamical systems is that they are fundamentally
discrete time and space models and thus have no
guarantees regarding continuous sampling. To
address this challenge, we present the Continu-
ous Spatiotemporal Transformer (CST), a new
transformer architecture that is designed for mod-
eling of continuous systems. This new framework
guarantees a continuous and smooth output via op-
timization in Sobolev space. We benchmark CST
against traditional transformers as well as other
spatiotemporal dynamics modeling methods and
achieve superior performance in a number of tasks
on synthetic and real systems, including learning
brain dynamics from calcium imaging data.

1. Introduction
The theory of dynamical systems has found profound appli-
cations throughout the sciences, both theoretical and applied.
Traditionally, dynamical system analysis aims to find the
rules that govern the dynamics of an underlying system.
In this setting, we first obtain a model that describes the
given system, either through theoretical principles (model-
based) or through experimental data (data-driven) (Ghadami
& Epureanu, 2022), and then study the mathematical prop-
erties of it. Having a model of the dynamical system grants

1Interdepartmental Neuroscience Program, Yale University,
New Haven, CT, USA 2Department of Computer Science, Yale
University, New Haven, CT, USA 3Department of Neuroscience,
Yale University, New Haven, CT, USA 4Wu Tsai Institute,
Yale University, New Haven, CT, USA 5Department of Internal
Medicine (Cardiology), Yale University, New Haven, CT, USA
6Interdepartmental Program in Computational Biology & Bioinfor-
matics, Yale University, New Haven, CT, USA. Correspondence
to: David van Dijk <david.vandijk@yale.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

a deeper understanding of the phenomena, allowing for pre-
dictions of the system state continuously in time (Ghadami
& Epureanu, 2022; Krishnapriyan et al., 2022). Such dy-
namical systems can be found throughout engineering and
science. In biology, the brain is a notably complex dynami-
cal system (Wang & Kennedy, 2016). The spiking activity
of neurons within the neural population produces complex
spatiotemporal patterns (Muller et al., 2018). These neural
activity patterns represent a dynamical system that evolves
over time, where the state of the system is defined in terms
of the joint firing patterns of the neural populations (Vyas
et al., 2020). For complex systems such as the brain, model-
based approaches for learning dynamics are not amenable,
thus the dynamics have to be learned directly from collected
data. However, learning continuous dynamics from dis-
cretely sampled data is challenging and is an active area of
study in machine learning (Willard et al., 2020).

Among the continuous time model approaches, Neural
ODEs (Chen et al., 2018; Rubanova et al., 2019) have found
important applications. While effective in modeling tempo-
ral dynamics, these models are unable to capture long-range
spatiotemporal relations in the data and do not provide in-
terpretable models (Zappala et al., 2022). In the meantime,
Transformers (Vaswani et al., 2017) have become state-of-
the-art in several tasks across domains (Lu et al., 2021a),
wherein their performance is mainly attributed to their ca-
pacity to capture long-range dependencies in the data as
well as their training scalability (Bertasius et al., 2021).

Despite their widespread use across domains (Lu et al.,
2021a), Transformers are still restricted to discrete space
and time applications. In this work, we demonstrate that
the standard Transformer has limitations in modeling con-
tinuous systems. To address this, we introduce new regu-
larizations to the Transformer architecture, resulting in a
new framework hereafter called Continuous Spatiotempo-
ral Transformer (CST). We show that CST is capable of
modeling continuous data, resulting in smooth output and
good interpolation performance. To showcase our method,
we first validate CST on a toy-dataset and different popu-
lar benchmark datasets. Finally, we test CST in modeling
dynamics in neural experimental data. We compare CST
to other commonly used methods for modeling sequential
data in three tasks: 1) modeling 2D spirals generated by
integral equations (Sec. 4.1); 2) modeling a benchmark

1

Continuous Spatiotemporal Transformers

Figure 1. Diagram of CST’s workflow. (A) The model receives a
mix of real and ”dummy” data points. These points are initialized
via a linear interpolation of the real data points. (B) All points are
perturbed with Gaussian noise. (C) Each point is treated as a token
of the sequence. The points and their positional information are
encoded to a latent space and fed to a multi-head self-attention
module. (D) The model’s output is a prediction for each input
coordinate. The model is trained to minimize the Sobolev loss.

video-dataset (KITTI) (Sec. 4.2); 3) modeling fluid dynam-
ics (Sec. 4.3); and finally 4) extracting behaviorally mean-
ingful latent representations of the dynamics from widefield
calcium imaging recordings.

We summarize our contributions as follows:

• We show the limitations of Transformers in modeling
continuous data.

• We introduce a new framework that allows the applica-
tion of Transformers to continuous systems.

• We show that our method provides accurate interpola-
tion of both data and attention weights.

• Finally, we use our method to model brain activity
recordings and show that the attention weights encode
meaningful information about the dynamics.

2. Background and Related work
2.1. Operator learning

Learning operators, i.e. mappings between function spaces,
is a machine learning task with fundamental applications to
spatiotemporal dynamical systems (Kovachki et al., 2021;
Zappala et al., 2022; Cao, 2021). In fact, several dynamical
systems are modeled through ordinary differential equations
(ODEs), partial differential equations (PDEs), or integral
equations (IEs), and one is interested in finding the opera-
tors corresponding to the equations governing the dynamics.
However, in practice, we do not have a mathematical model
that describes the behavior of the system, but we rather
have data sampled from instances of the system. In such
circumstances, we are interested in learning an operator that
corresponds to the system. An example could be learning an
operator that maps the function representing a system at time
t = 0 to the system at later time points. This is the setting
of operator learning problems, and several approaches, in-
cluding using deep learning, have been presented (Kovachki
et al., 2021; Lu et al., 2021b; Li et al., 2020a;b; Cao, 2021).
Operator learning problems are often formulated on finite
grids, and passing to the continuous limit is a significant
issue. Moreover, in practical cases such as in physics, it is
of interest to be able to compute derivatives of the model’s
output, in which case smoothness is needed. Our main goal
and contribution in this article are to introduce an operator
learning framework for continuous and smooth functions on
space-time domains.

2.2. Sobolev spaces

Sobolev spaces were introduced as a framework for solv-
ing differential equations (Brezis & Brézis, 2011). In such
spaces, one studies weak solutions for differential equations,
i.e. solutions that hold almost everywhere with respect to
the integral over the domain of interest. Then, for regular
enough solutions, the equation is also a strong solution, i.e.
a solution in the usual sense where equality holds for each
point of the domain without the sign of integral. The study
of such spaces also leads to the notion of weak differen-
tiability and the Sobolev norm, which is a norm that takes
into account the function itself as well as its derivatives.
Sobolev spaces are a fundamental object of study in func-
tional analysis, especially in relation to differential equation
theory. More recently, they have found important applica-
tions in machine learning, where minimizing the Sobolev
norm with respect to target data as well as its derivatives has
shown good regularization effects (Czarnecki et al., 2017;
Son et al., 2021; Kissel & Diepold, 2020; Cardona & Hecht,
2022; Fischer & Steinwart, 2020; Vlassis & Sun, 2021).
Our optimization task is formulated in the Sobolev space
to ensure that the learned operator outputs functions that
are both continuous and smooth. However, our approach

2

Continuous Spatiotemporal Transformers

Figure 2.Continuous sampling of Transformer and CST. The Transformer shows step-like behavior whereas CST is smooth. A) Example
of model �ts to 2D spirals. B) Individual spiral dimensions over time. Both CST and the Transformer were trained to �t the data sampled
from the spirals ('Train' blue points). During inference, the models were evaluated at 1000 coordinates along the spiral (lines shown for
CST (red) and the Transformer (blue)) (see Figure 7 for more examples). C) Zoomed-in view, emphasizing the difference in smoothness
between CST and the Transformer. D) The interpolation error (L2-norm) for the test points (green) shows that CST has signi�cantly
(P < 0:0001) better interpolation than the Transformer.

differs with respect to previous methods in that we do not
use the derivatives of the target data functions explicitly, but
we rather minimize thep-norm of the higher derivatives on
sampled points, without directly comparing them to data.
Therefore, our approach does not require extra knowledge
or computation of the derivatives of data.

2.3. Continuous time models

A fundamental issue in machine learning is that of modeling
continuous systems from discretely sampled data. Mathe-
matical modeling of dynamical systems in the sciences and
engineering, in fact, is performed through continuous and
differentiable functions, due to their favorable analytical
properties. We are therefore interested in machine learning
models whose output is continuous and smooth, and that
can therefore be interpolated with accuracy even when the
data set is irregularly sampled. Several methods have been
proposed, e.g. (Chen et al., 2018; Rubanova et al., 2019;
Poli et al., 2020; Zappala et al., 2022), based on the idea
of solvers. In contrast, our approach combines operator
learning techniques based on transformers (Vaswani et al.,
2017) and Sobolev norm (Brezis & Brézis, 2011) to obtain
an operator that outputs smooth functions with a high degree
of accuracy on interpolation tasks for irregularly sampled
data.

2.4. Transformers

The self-attention mechanism and Transformers models
were introduced in Vaswani et al. (2017) and have shown
exquisite performance in sequence modeling problems, such
as natural language processing (NLP). Since its �rst appear-
ance, Transformers have excelled in several domains (Lu
et al., 2021a). The Transformer uses self-attention mecha-
nisms to learn the relationship between the elements of a

sequence and use this information to make contextualized
predictions. When trained on large corpora, Transformers
can learn to abstract semantics from the text (Devlin et al.,
2018). The state-of-the-art performance of Transformers
in NLP is attributed to their capacity to capture long-range
dependencies among words (i.e. extract contextual mean-
ing) as well as their training scalability (Bertasius et al.,
2021). More recently, studies focused on the computation
performed by self-attention have shown it acts as a learnable
integral kernel with non-local properties. This makes the
Transformer especially �t for learning complex sequential
data with long-range dependencies (Cao, 2021; Cao et al.,
2022), while also being computationally ef�cient for long
sequences (Choromanski et al., 2020).

2.5. Modeling brain dynamics

Modeling brain dynamics has been a focal point of neu-
roscience since its start (Hodgkin & Huxley, 1952; Rall,
1959). However, until recently, technological limitations
have signi�cantly hindered the �eld in two perspectives: 1)
Dif�culties in collecting high-throughput data, and 2) com-
putational limitations to model complex non-linear dynam-
ics (Stevenson & Kording, 2011). Recently, several neural-
network-based methods have been developed to model the
temporal dynamics of neuronal circuits. One framework
is based on inferring latent neural dynamics via dynamic
models. Within this framework, LFADS has shown great
success in spiking neuronal datasets. This model consists of
a sequential variational autoencoder that is tasked with re-
constructing its input from a low-dimensional set of factors
(Pandarinath et al., 2018; Zhu et al., 2022). For continuous
models, PLNDE has been successful in modeling spiking
neuronal dynamics via a Poisson neural differential equa-
tion model (Kim et al., 2021). Another approach has been
to use encoding models to understand how neurons repre-

3

Continuous Spatiotemporal Transformers

sent sensory inputs (Sinz et al., 2018; Walker et al., 2019;
Bashiri et al., 2021). These models are trained to reconstruct
neuronal activity based on inputs such as images or sound
sequences. This approach has been applied to spiking and
2-photon calcium data. However, it has not been used for
whole-brain 1-photon calcium dynamics. Another category
consists of goal-driven models, which are models trained
to perform tasks that require human-like cognition in or-
der to produce outputs that are correlated to neuronal brain
dynamics (Yamins et al., 2014; Yamins & DiCarlo, 2016;
Tang et al., 2018; Cadena et al., 2019; Li et al., 2022). While
such models have been widely employed to predict neuronal
activity, they require complex experimental validations to
infer meaningfulness.

3. Method

One of the essential components of the Transformer model
is the positional encoding function, which speci�es the order
of the elements (or `tokens') in the sequence and combines it
with the encoded representation of the tokens. This is a suc-
cessful approach for NLP and computer vision tasks, but too
restrictive for datasets that are intrinsically continuous such
as brain activity. Thus, we redesigned the Transformer to
work more appropriately on the continuous domain. These
modi�cations result in a new framework, called Continu-
ous Spatiotemporal Transformer (CST1) (Figure 1). During
training, the model receives a mix of real (i.e., sampled
data) and randomly sampled in-between-data (“dummy”)
coordinates. The dummy points are initialized via a linear
interpolation �tted on the sampled data points and evaluated
at the dummy coordinates (Figure 1A). Next, this sequence
of points is augmented via the addition of Gaussian noise
(Figure 1B). Each point of the sequence is treated as a token,
which is encoded via a linear encoder to a latent space and
then fed into the Multi-Head Attention module (Figure 1C),
which computes the self-attention between the tokens of
the sequence (Vaswani et al., 2017). We make use of the
linear attention from Xiong et al. (2021) which hasO(n)
complexity, resulting in a linear increase of computational
cost with the number of added points (Figure 15). Finally,
a linear decoder projects the tokens of the sequence from
latent space to data space, resulting in the model's predic-
tion. The model is optimized to minimize a Sobolev loss
where thep-norm is computed between output and target
data, while simultaneously minimizing thep-norm of higher
derivatives. This prevents the formation of cusp points and
other singularities in the interpolation output. During infer-
ence, no augmentation is performed and the model can be
evaluated at any desired continuous coordinates within the
data domain.

To better elucidate the aforementioned Sobolev loss opti-

1https://github.com/vandijklab/CST

mization, �rst recall that a functionf 2 C([a; b]) is said to
be weakly differentiable if there exists an integrable function
f 0 such that

Rb
a f � 0 = �

Rb
a f 0� for all differentiable func-

tions� 2 C1([a; b]). Note that if a function is differentiable
in the usual sense, then its weak derivative is easily seen to
coincide with the notion of weak derivative (see e.g. Brezis
& Brézis (2011)). For higher dimensional spaces a similar
de�nition can be introduced as well. Then, the Sobolev
spaceW k;p is inductively de�ned as the space of (weakly)
(k � 1)-differentiable functionsf with f 0 2 W k � 1;p , and
with norm given by

jj f jjp
W k;p = jj f jjp

p +
kX

q=1

jjD qf jjp
p; (1)

whereD denotes the differential operatorD q(f) := @q f (x)
@xq .

As base of the induction de�nition, the casek = 1 is de�ned
as the space of weakly differentiable functions and equipped
with norm given by

jj f jjp
W 1;p = jj f jjp

p + jj f 0jjp
p; (2)

wheref 0 indicates the weak derivative. When the domain
space
 2 Rn is higher dimensional, the de�nition is the
same as above, but we take into account all the partial deriva-
tives indexed by multi-indicesq. See Appendix A.

Our optimization is performed in the Sobolev space, where
we minimize the lossL de�ned as

L (y ; D)p = jjyD jjp
p + � �

kX

j q j=1

jjD q (y)jjp
p; (3)

wherey is the output of the model,D indicates the data,yD

is the function obtained asyD := y � D and� is a hyperpa-
rameter that regulates the contribution of higher derivatives
to the optimization. Here we have used the multi-index no-
tationq = (q1; : : : ; qr) 2 Nr , andD q := @q1 ��� @qr

@xq1
1 ��� @xqr

r
. For

example, fory (x1; x2; x3), we haveD (1 ;0;3) y := @1@3
3y ,

where we have used the notation@k
j := @k

@xkj
. This param-

eter determines the wanted trade-off between accuracy for
the model to �t the data, and the bound on the derivatives.
In addition,k andp are also hyperparameters that de�ne
the Sobolev space in which the optimization is performed.
Observe that while the zero term takes into account the data,
the higher degree terms do not refer to the data contrary
to other approaches such as (Czarnecki et al., 2017). This
allows us to sample arbitrarily many points from the domain
for the evaluation of the derivatives, for which we do not
have data points.

While it is conceptually desirable to have a model whose
output, and its derivatives, can be sampled continuously,
we also demonstrate by means of experimentation (see Sec-
tion 4 below) that simply interpolating the output of a model

4

Continuous Spatiotemporal Transformers

Figure 3.CST can accurately up-sample self-attention weights. Shown are, from left to right, attention maps for: ground truth data,
down-sampled input data, up-sampling via CST, and up-sampling via linear interpolation (as performed in Caron et al. (2021)). We
observe that CST provides up-sampled self-attention weights that more closely match the ground truth (P < 0:0001) compared to linear
interpolation (Figure 12). More examples are shown in Figure 11.

does not necessarily give good interpolation results. In
fact, in the presence of noise or irregularly sampled data,
interpolating the output of the model using traditional poly-
nomial methods can be negatively affected by �uctuations
that cause overshooting. Our approach shows that when
CST outputs the interpolated points through evaluation of
the model itself, a lower interpolation error is obtained. As
a further conceptual gain in our approach with CST, we can
upsample the attention weights of CST via evaluation at any
arbitrary point within the domain. As the model is shown
to accurately predict the interpolated points, this attention
results in a meaningful upsampling.

Because CST combines both content and positional infor-
mation of the data points to make predictions, the training
forces the in-between coordinates to carry meaningful in-
formation about the modeled data. This allows us to use
discretely sampled data to make predictions while gener-
alizing for any arbitrary time point. This is important for
computing smooth transitions between data points, facili-
tating interpolations, and eliminating the dependence upon
regularly sampled data.

4. Experiments

To benchmark CST with respect to continuity and smooth-
ness, we have considered several synthetic and real-world
datasets for which we have evaluated the interpolation error.
Our experiments consistently show that while all models can
�t the given datasets, CST outperforms them in interpolation
tasks for noisy and irregularly sampled data.

4.1. Synthetic 2D spirals dataset

To clearly show-case the properties of CST in comparison
to the conventional Transformer, we use both methods for
modeling 2D spirals generated by integral equations. This

data consists of 500 2D spirals of 100-time points each. The
data was split into 70% of the spirals for training and 30%
for validation. For training, 10 data points were sampled
from each curve while the remaining points were reserved
for the interpolation test. Details about the data generation
are described in Appendix C and an example of a curve
from this dataset is shown in Figure 6.

To train the Transformer model, we used the training pro-
cedure used by the authors of BERT (Devlin et al., 2018).
At each training step, we randomly select 30% of the points
for masking. The selected points are either replaced by a
constant (80% of the time), replaced by another random
point (10% of the time), or not replaced at all (10% of the
time). The model is trained to predict the data point selected
for masking. Both CST and the Transformer have 4 layers,
4 heads, anddmodel =32 (see Table 5 for more details).

To inspect the models, we sampled 1000 new time coor-
dinates within the time interval of the data. The results
obtained for CST and the Transformer model are shown in
Figure 2. We show that a Transformer model trained with
the framework used in language modeling results in a step-
like output, which yields poor interpolation performance.
On the other hand, CST provides an output that better rep-
resents the original data. To evaluate the performance of
both models in learning the dynamics of the dataset, we use
the trained models to interpolate for the unseen data coor-
dinates and compute the mean of the error per interpolated
point. We show that CST has a signi�cantly lower interpo-
lation error (P < 0:0001, N=150 spirals of the validation
dataset) than the Transformer (Figure 2C and D, Table 4).
To illustrate that the lower interpolation error achieved by
CST is not simply due to the augmentation during training,
we performed the same augmentation for the Transformer
model. The results show that the data augmentation with
Gaussian noise harms the Transformer and induces higher

5

Continuous Spatiotemporal Transformers

interpolation error (Figure 9).

Next, we compare CST's interpolation performance to com-
mon interpolation methods, such as linear and cubic spline
interpolations. While simply performing interpolation is not
our primary goal, we show that CST is more robust to noise
than commonly used interpolation methods. To test this,
we perturb the spirals with Gaussian noiseN (0; 0:1). We
show that CST has a signi�cantly lower interpolation error
(P < 0:0001, N=150 spirals of the validation dataset, Fig-
ure 10) than linear and cubic spline interpolation. Examples
of outputs are shown in Figure 8.

Next, we show that CST can up-sample self-attention
weights better than up-sampling via interpolation. To test
this, we use a model trained with 10 real points and 10
randomly sampled dummy points. During inference, we
provide the same 10 points used during training and extra
10 �xed-coordinate points with their real values, thus provid-
ing a ground truth self-attention between the input points, as
illustrated in Figure 3 for a given input. To up-sample self-
attention with CST, we provide the 10 points used during
training and the time coordinates of the extra 10 points. We
use CST to obtain outputs for all 20 points with their respec-
tive self-attention as described in Sec. 3. The self-attention
obtained is illustrated in Figure 3 (upsampled) for the same
curve as in Figure 3. Another commonly used approach
to up-sample attention is the use of interpolation methods
(Caron et al., 2021). Here we use linear interpolation to
up-sample the self-attention weights of the model's output
for the 10 training points to 20 points. The result is shown
in Figure 3. More examples are shown in Figure 11. We
evaluate the up-sampling performance of both approaches
in terms of the attention error for the time coordinates not
used during training. Figure 12 shows the error distribution
for CST and the linear interpolation in the up-sampling task
for the validation curves. We observe that CST signi�cantly
(P < 0:0001) outperforms the linear interpolation in terms
of lower approximation error of self-attention up-sampling.

4.2. Modeling dynamics in a video dataset

Video recordings are a common type of data that bene�ts
from continuous modeling. Although frames are discrete in
time, they represent samples of a continuous process, and
therefore, the dynamics in videos is conveniently modeled
as such. In this section, we use CST to model dynamics in
the KITTI video dataset (Geiger et al., 2013). This dataset
consists of recordings captured by a vehicle moving in the
city of Karlsruhe. We utilized the version of the dataset pre-
sented in PredNet (Lotter et al., 2016) and split the dataset
into 70% for training and 30% for validation. We modi�ed
the task to make it a video inpainting task by extracting 10
frames of the video sequence and adding gaussian noise
(N (0; � = 0 :5)) to 40-60% of each frame, this noise per-

Table 1.Mean Squared Error on Video Inpainting Task for KITTI
Dataset.

MEAN SQUARED ERROR

CONVGRU 0.363
V IV IT 0.3651
3D-VIT 0.2505
CST 0.1138

turbs the information in the frames (see Figure 14 for an
example of a video sequence). Then, we trained the model to
reconstruct the uncorrupted sequence based on the masked
input.

We compared CST to other neural-networks-based models
that are able to model spatiotemporal dynamics: ConvGRU
(Ballas et al., 2015), 3D-ViT and ViViT (Arnab et al., 2021)
(see Table 6 for architecture details). ConvGRU was trained
to recursively predict the frames from a single frame as
input for every timepoint. 3D-ViT is a model based on the
transformer architecture, and has 3-dimensional tokens for
a 3d-tensor input. The ViViT model was trained following
their factorized-encoder approach, wherein space and time
are modeled by two separate Transformers. All models
were trained on an RTX 3090 NVIDIA GPU for up to 150
epochs or until convergence. In Table 1 the validation mean
squared error of the models trained on the video inpainting
task is reported. We can observe that CST has a lower
validation mean squared error compared to all other models.
Furthermore, the reconstructed frames generated by CST
have a lot more high-frequency similarities to the initial
frame compared to other models (see examples in Figure
14).

4.3. Navier-Stokes equations

We consider a(2 + 1) D PDE system, namely the Navier-
Stokes equation (Chorin, 1968; Fefferman, 2000), to evalu-
ate the capability of CST to continuously model dynamical
systems. The dataset consists of5K instances of numerical
solutions of the Navier-Stokes equation with random initial
conditions. Further details on the dataset can be found in
Appendix C.2. We trained CST on1K dynamics and then
tested the model on300unseen noisy dynamics. Training is
performed on10 time points of the dynamics, while testing
is performed on a time sequence that includes10additional
time points that were unseen during training. Therefore, this
is both an extrapolation task (with respect to the new initial
condition of the dynamics), and an interpolation task (with
respect to the unseen time points).

We compare CST with a Transformer model whose output
is interpolated to obtain the predictions at data points be-
tween the given frames, and FNO2D and FNO3D (Li et al.,

6

