
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ED2RM: EQUIVARIANT DENOISING DIFFUSION MODELS BASED ON RIEMANNIAN MORPHOLOGICAL PDEs

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have recently emerged and demonstrated remarkable capabilities in high-quality image synthesis and data generation. This work addresses two key issues in recent Denoising Diffusion Probabilistic Models (DDPMs), inspired by nonequilibrium thermodynamics: geometric feature extraction and equivariance. To tackle these challenges, we introduce a geometric approach to the prediction network of DDPMs by designing equivariant morphological partial differential equations (PDEs) for group convolutional neural networks (G-CNNs), referred to as PDE-G-CNNs. These PDEs are formulated on Riemannian manifolds to better capture nonlinearities, represent thin geometrical structures, and incorporate symmetries into the learning process. Our method achieves this by considering a system of two PDEs: a convection term and a first-order Hamilton–Jacobi-type PDE that acts as morphological multiscale dilations and erosions. Preliminary experiments on MNIST and RotoMNIST indicate significant performance gains compared to baseline DDPMs.

1 INTRODUCTION

In recent years, deep generative models have experienced rapid growth, with applications ranging from realistic image generation Goodfellow et al. (2014); Kingma & Welling (2013); Kingma et al. (2014); Dhariwal & Nichol (2021); Ho et al. (2020) to audio synthesis Chen et al. (2020); Popov et al. (2021), and even molecular modeling Simonovsky & Komodakis (2018); Gebauer et al. (2019); Simm et al. (2020); Hoogeboom et al. (2022). Among these approaches, diffusion probabilistic models (DPM) Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020); Song et al. (2021); Croitoru et al. (2023) have emerged as particularly influential with impressive generative capabilities. DPM can be grouped into three broad categories: denoising DPM (DDPM) Sohl-Dickstein et al. (2015); Ho et al. (2020) inspired by the theory of nonequilibrium thermodynamics, noise conditioned score networks (NCSNs) Song & Ermon (2019) based on generative models through a multi-scale denoising score matching objective, and stochastic differential equations (SDEs) Song et al. (2021); Huang et al. (2021). In particular, in the field of image generation, DDPM Ho et al. (2020) have demonstrated a remarkable ability to produce high-quality samples. Their principle relies on two complementary steps. The first, known as the forward diffusion process, consists in progressively adding Gaussian noise to the data until their distribution approaches an isotropic normal law. The second, the reverse or denoising process, aims to invert this procedure by learning, through a deep neural network, the noise that must be removed in order to reconstruct the original data. Training is performed within a probabilistic framework, by optimizing a variational lower bound (ELBO) of the likelihood, which ensures the theoretical soundness of the model. Compared to other families of generative models, such as variational autoencoders Kingma & Welling (2013); Rezende et al. (2014) or generative adversarial networks (GANs) Goodfellow et al. (2014); Goodfellow (2017), DPMs stand out for the stability of their training and the diversity of the generated samples. DPM had been extended in Riemannian manifolds by deriving a Riemannian continuous-time ELBO Huang et al. (2022). A Riemannian extension of DDPM have been recently proposed for learning distributions on submanifolds of \mathbb{R}^n Liu et al. (2025). Score-based matching models have also been extended to Riemannian manifolds Bortoli et al. (2022). A generalized strategy for

054 numerically computing the heat kernel on Riemannian symmetric spaces in the context of denoising
055 score matching was also proposed Lou et al. (2023).
056

057 Equivariance plays an important role in most neural networks architectures. Equivariance means that
058 the operation of performing a transformation of the input data then passing them through the net-
059 work is the same as passing the input data through the network and then performing a transformation
060 of the output. It can be used to learn the symmetries in data. Such a principle has recently been used
061 for molecule generation by combining $E(n)$ equivariant graph neural networks (EGNNs) Satorras
062 et al. (2021) and the equivariance in $E(3)$ of the denoising distribution in the diffusion process of
063 DDPM Hoogeboom et al. (2022). A similar equivariant approach was proposed for 3D molecule
064 generation Cornet et al. (2024) with a learnable forward process. An equivariant diffusion model
065 was also proposed Brehmer et al. (2023) with a $SE(3) \times \mathbb{Z} \times S_n$ invariance of distribution over
066 trajectories. An $E(3)$ equivariant model was proposed Igashov et al. (2024) with an $O(3)$ invariance in
067 the conditional diffusion model, which was used for molecular linker design. Deep neural networks
068 are inherently invariant under translation transformations. To extend this invariance to other types
069 of transformations, group-convolution (G-CNN) were introduced Cohen & Welling (2016); Bekkers
070 et al. (2018); Cohen et al. (2019) and generalize CNNs so that symmetries are integrated during the
071 learning process. G-CNN were shown to noticeably improved traditional CNN Winkels & Cohen
072 (2018); Cohen et al. (2018); Bekkers (2019). A PDE framework, termed PDE-G-CNN, was recently
073 introduced Smets et al. (2022); Bellaard et al. (2023) as a generalization of G-CNN. In Diop et al.
074 (2024), equivariant PDE-G-CNN were integrated into GAN models and had shown significant gains
075 in the quality of sample generation, as well as an increase of the robustness to data under geometric
076 transformations.
077

078 **Contributions** Contrary to existing Riemannian extensions of DPMs, we propose here a proper
079 Riemannian extension of DDPM by considering a Riemannian manifold endowed with a general
080 Riemannian metric. Also, the equivariance property is introduced differently. We consider here
081 a Lie group as the group of symmetries in order to take advantage of the group structure, on the
082 one hand, and to benefit from the Riemannian metric, on the other hand. We summarize our main
083 contributions as follows:
084

- 085 • Introduction of an equivariant denoising diffusion model (ED2RM) that integrates morpho-
086 logical PDEs into the prediction network. (See Fig. 1)
- 087 • Design of a diffusion model that is equivariant to translations, rotations, reflections, and
088 permutations, ensuring that data symmetries are preserved throughout the learning process.
- 089 • Construction of a prediction network based on PDE-G-CNNs defined on Riemannian mani-
090 folds, which allows the model to better capture nonlinearities and fine geometric structures.
- 091 • Geometric interpretability of the proposed ED2RM framework, as its operations corre-
092 spond to well-understood PDEs such as convection and Hamilton–Jacobi equations for
093 multiscale dilations and erosions.
- 094 • Improvement of key geometric feature extraction within the denoising step, enhancing the
095 overall robustness of the model.
- 096 • Improvement in the quality of image generation, demonstrated through experiments on
097 MNIST and RotoMNIST, where ED2RM shows faster convergence and better FID scores
098 compared to baseline DDPMs.

099 2 PRELIMINARIES

100 2.1 PROBABILISTIC DIFFUSION MODELS

101 Diffusion models are generative models based on the progressive addition of random noise to real
102 data, followed by learning the inverse process that removes this noise (denoising) using a neural
103 network. Additional details on this section are provided in Appendix A.
104

105 **Forward Process.** The forward process gradually adds noise to the variables n_t , for $t \in$
106 $\{0, \dots, T\}$, i.e., $n_{t+1} = n_t + \text{noise}$, with random noise. A conditional distribution then models
107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

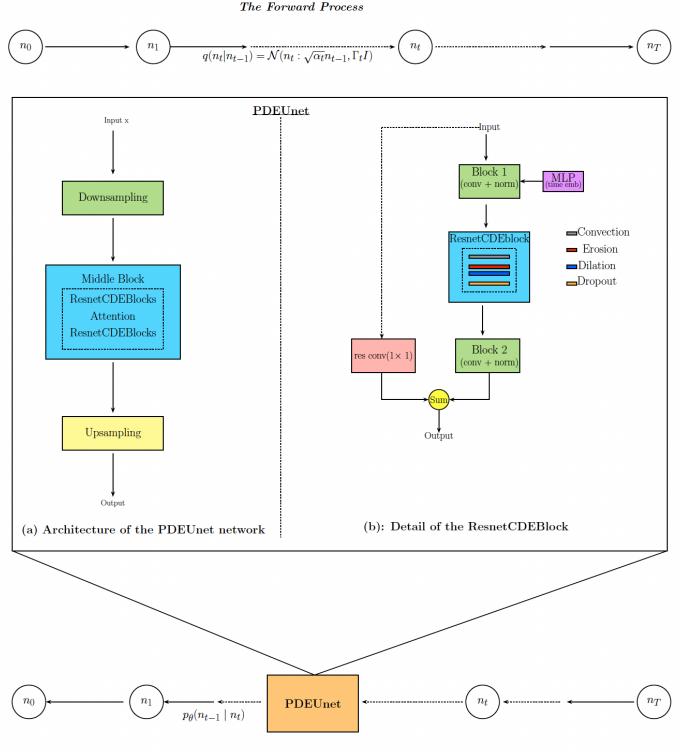


Figure 1: Our ED2RM approach uses PDEs-based equivariant layers in the denoising network. These layers enforce symmetry with respect to translations, rotations, reflections, and permutations, while also improving the extraction of fine geometric structures.

the probability of obtaining n_{t+1} given n_t , denoted $q(n_{t+1} | n_t)$, which follows the Gaussian distribution:

$$q(n_t | n_{t-1}) = N(n_t : \sqrt{\alpha_t} n_{t-1}, \Gamma_t I) \quad (1)$$

where α_t is defined according to the variance-preserving process proposed by Ho et al. (2020), i.e., $\alpha_t = 1 - \Gamma_t$. This parameter controls the amount of signal retained, and $\Gamma_t \in (0, 1)$ represents the noise level added at each step t . It acts progressively, so that the mean $\alpha_t n_{t-1}$ increasingly deviates from the already noised data n_{t-1} .

Inverse Generative Process. The diffusion process, or inverse generative process, generates data progressively from noise by following the true denoising process, denoted $P(n_{t-1} | n_t)$, which defines the probability of obtaining n_{t-1} from n_t . This distribution is Gaussian, similarly to the forward process.

Since x_0 is unknown during denoising, a neural network ϕ parameterized by θ is used to approximate the inverse Gaussian conditional distribution, denoted $p_\theta(n_{t-1} | n_t)$, defined as:

$$p_\theta(n_{t-1} | n_t) = N(n_{t-1} : \mu_\theta(n_t, t), \Sigma_\theta(n_t, t)) \quad (2)$$

where $\mu_\theta \in \mathbb{R}^d$ and $\Sigma_\theta \in \mathbb{R}^{d \times d}$ represent the mean and covariance matrix of the distribution at iteration t , respectively. For simplicity, as proposed in Ho et al. (2020), we set $\Sigma_\theta(n_t, t) = \sigma_t^2 I$, with constants σ_t^2 that depend on time but are not learned.

Variational Lower Bound of the Likelihood. The optimization problem for the Evidence Lower Bound (ELBO) with respect to θ is given by:

$$\underset{\theta}{\text{minimize}} \sum_{t=2}^T \text{KL}(q(n_{t-1} | n_t, n_0) \| p_\theta(n_{t-1} | n_t)) - \mathbb{E}_{q(n_{1:T} | n_0)}[\log p_\theta(n_0 | n_1)]. \quad (3)$$

162 This equation trains the inverse distribution $p_\theta(n_{t-1} | n_t)$ to match the true denoising distribution
163 $q(n_{t-1} | n_t, n_0)$ by minimizing their KL divergence. It can therefore be used as a loss function for
164 a neural network parameterized by θ , emphasizing the alignment between these two distributions.
165 Details leading to Equation 3 are provided in Appendix A.

166

167 2.2 EQUIVARIANCE

168

169 **Definition 2.1** Let G be a connected Lie group with identity element e and $(\mathcal{M}, \mathbf{g})$ a connected
170 Riemannian manifold \mathcal{M} with metric \mathbf{g} . A left action of G on $(\mathcal{M}, \mathbf{g})$ is a map $\varphi : G \times (\mathcal{M}, \mathbf{g}) \rightarrow$
171 $(\mathcal{M}, \mathbf{g})$ satisfying:

172

- 173 1. $\varphi(e, x) = x, \forall x \in (\mathcal{M}, \mathbf{g})$.
- 174 2. $\varphi(g, \varphi(h, x)) = \varphi(gh, x), \forall g, h \in G \text{ and } \forall x \in (\mathcal{M}, \mathbf{g})$.

175

176 Let $\varphi : G \times (\mathcal{M}, \mathbf{g}) \rightarrow (\mathcal{M}, \mathbf{g})$ be a left action of G on $(\mathcal{M}, \mathbf{g})$. For a fixed $g \in G$, we define
177 $\varphi_g : (\mathcal{M}, \mathbf{g}) \rightarrow (\mathcal{M}, \mathbf{g})$ by $x \mapsto \varphi_g(x) = \varphi(g, x)$.

178 The map $\varphi : G \times (\mathcal{M}, \mathbf{g}) \rightarrow (\mathcal{M}, \mathbf{g})$ is a left action if, for all $g, h \in G$, we have:

179 $\varphi_e = id_{\mathcal{M}}$ and $\varphi_g \circ \varphi_h = \varphi_{gh}$.

180 Let $\varphi_h : (\mathcal{M}, \mathbf{g}) \rightarrow (\mathcal{M}, \mathbf{g})$ denote the left group action (considered here as a multiplication) by
181 an element $h \in G$, defined for every $x \in (\mathcal{M}, \mathbf{g})$ by: $\varphi_h(x) = h \cdot x$.

182 Let \mathcal{L}_h denote the left regular representation of G on functions f defined on \mathcal{M} , given by
183 $(\mathcal{L}_h f)(x) = f(\varphi_{h^{-1}}(x))$, where h^{-1} is the inverse of $h \in G$.

185 We view a layer in a neural network as an operator. To ensure network equivariance, we require the
186 operator to be equivariant with respect to the group actions on the corresponding function spaces.

187 Let x_0 be an arbitrary fixed point on the connected Riemannian manifold $(\mathcal{M}, \mathbf{g})$. Let $\pi : G \rightarrow$
188 $(\mathcal{M}, \mathbf{g})$ denote the projection defined by associating to each element h of G a point in $(\mathcal{M}, \mathbf{g})$ as
189 follows: $\forall h \in G, \pi(h) = \varphi_h(x_0)$. In other words, once a reference point $x_0 \in (\mathcal{M}, \mathbf{g})$ is chosen,
190 the projection $\pi(h)$ associates to each element h of G the unique point in $(\mathcal{M}, \mathbf{g})$ to which h sends
191 x_0 under the action φ_h .

193 Let us consider a connected Lie group G acting transitively on the connected Riemannian manifold
194 $(\mathcal{M}, \mathbf{g})$. This means that for any points $x, y \in (\mathcal{M}, \mathbf{g})$, there exists an element $h \in G$ such that
195 $\varphi_h(x) = y$, which corresponds to the definition of a homogeneous space under G .

196 **Definition 2.2** Let G be a connected Lie group with homogeneous spaces \mathcal{M} and \mathcal{N} . Let ϕ be an
197 operator mapping functions from \mathcal{M} to \mathcal{N} . We say that ϕ is equivariant with respect to G if, for all
198 functions f , we have: $\forall h \in G, (\phi \circ \mathcal{L}_h)f = (\mathcal{L}_h \circ \phi)f$.

200 **Proposition 2.1** Let $x, y \in (\mathcal{M}, \mathbf{g})$ such that $\varphi_h(y)$ lies outside the cut locus of $\varphi_h(x)$. Then, for
201 all $h \in G$, we have: $d_{\mathbf{g}}(x, y) = d_{\mathbf{g}}(\varphi_h(x), \varphi_h(y))$.

203 **Proof** See Appendix C.

204

205 3 PROPOSED ED2RM DIFFUSION MODEL

206

208 ED2RM maintains the DDPM forward process and the ELBO. The reverse process consists in leveraging
209 PDE-GCNs to obtain an equivariant network for noise prediction.

211

3.1 EQUIVARIANT PDES LAYERS-BASED MODEL PREDICTION

212

213 PDE-G-CNNs were formally introduced in homogeneous spaces with G -invariant tensor metric
214 fields on quotient spaces Diop et al. (2024). Building on this foundational approach, the proposed
215 model relies on a combination of traditional CNNs and morphological Hamilton-Jacobi PDE layers
on Riemannian manifolds, and is composed of the following PDEs:

216 • **Convection term:**

217

$$\frac{\partial u}{\partial t} + \alpha u = 0 \text{ in } (\mathcal{M}, \mathbf{g}) \times (0, \infty); \quad u(\cdot, 0) = f \text{ on } (\mathcal{M}, \mathbf{g}), \quad (4)$$

218

219 where α is a G -invariant vector field on $(\mathcal{M}, \mathbf{g})$.

220

221 **Proposition 3.1** *The solution of (4) is obtained with the method of characteristics and is given by:*

222

223

$$u(x, t) = (\mathcal{L}_{h_x^{-1}} f)(\gamma_c(t)^{-1} x_0) = f(h_x \gamma_c(t)^{-1} x_0) = f(h_x \gamma_{-c}(t) x_0), \quad (5)$$

224

225 where $h_x \in G$ satisfying $h_x x_0 = x$ for a fixed $x_0 \in M$, and $\gamma_c : \mathbb{R} \rightarrow G$ being the exponential curve such that $\gamma_c(0) = e$ and

226

227

$$\frac{\partial}{\partial t}(\gamma_c(t)x)(t) = c(\gamma_c(t)x). \quad (6)$$

228

229 **Proof** See Smets et al. (2022).

230

231 The convection (4) is left-invariant under the action of G .

232

233 • **Multiscale morphological erosions and dilations:**

234

235

$$\frac{\partial u}{\partial t} \pm \|\nabla_{\mathbf{g}} u\|_{\mathbf{g}}^k = 0 \text{ in } (\mathcal{M}, \mathbf{g}) \times (0, \infty); \quad u(\cdot, 0) = f \text{ on } (\mathcal{M}, \mathbf{g}), \quad (7)$$

236

237 with $k > 1$, where the positive (+) sign (*resp.* negative (-)) stands for erosions (*resp.* dilations).
238 The morphological operations are also equivariant with respect to G , ensuring the equivariance of
239 our PDEs layers, and so for our PDEs-based network.

240

241 The output of the network is obtained as a linear combination of the outputs of each PDE layer. The
242 above PDE system represents our stepwise PDE model solved using operator splitting, where each
243 step corresponds to one of the above PDEs.

244

245 The connection between multi-scale morphological dilations and erosions had already been estab-
246 lished by solving a first-order Hamilton–Jacobi type PDE in \mathbb{R}^n . Their extensions in Riemannian
247 manifolds can be provided by properly defining the related Hamiltonian.

248

249 Let $(\mathcal{M}, \mathbf{g})$ be a compact, connected Riemannian manifold equipped with a metric \mathbf{g} , and let
250 $f, b : (M, \mathbf{g}) \rightarrow \mathbb{R}$. Let $T\mathcal{M}$ denote the tangent bundle of $(\mathcal{M}, \mathbf{g})$, and let $L : T\mathcal{M} \rightarrow \mathbb{R}$ be
251 a Lagrangian function. Let $T^*\mathcal{M}$ denote the cotangent bundle of $(\mathcal{M}, \mathbf{g})$, and let us define the
252 Hamiltonian $H : T^*\mathcal{M} \rightarrow \mathbb{R}$ associated with the Lagrangian L by:

253

$$H(x, q) = \sup_{v \in T_x \mathcal{M}} \{q(v) - L(x, v)\}.$$

254

255 The Hamilton–Jacobi PDE can be extended to Riemannian manifolds as follows:

256

$$\frac{\partial u}{\partial t} + H(x, \nabla u) = 0 \quad \text{in } (\mathcal{M}, \mathbf{g}) \times (0, +\infty); \quad u(\cdot, 0) = f \text{ on } (\mathcal{M}, \mathbf{g}). \quad (8)$$

257

258 PDE (8) admits viscosity solutions Fathi (2008); Diop et al. (2021). Multi-scale morphological
259 erosions (*resp.* dilations) are obtained by setting $H = \|\nabla_{\mathbf{g}} u\|_{\mathbf{g}}^k$ (*resp.* $H = -\|\nabla_{\mathbf{g}} u\|_{\mathbf{g}}^k$) in equation 8.

260

261 **Proposition 3.2** *Let $k > 1$ and let $f \in C^0((\mathcal{M}, \mathbf{g}), \mathbb{R})$ be a continuous function. The viscosity
262 solutions to the Cauchy problem:*

263

264

$$\frac{\partial u}{\partial t} + \|\nabla_{\mathbf{g}} u\|_{\mathbf{g}}^k = 0 \quad \text{in } (\mathcal{M}, \mathbf{g}) \times (0, +\infty); \quad u(\cdot, 0) = f \text{ on } (\mathcal{M}, \mathbf{g}), \quad (9)$$

265

266 are given by:

267

268

$$u(t, x) = \inf_{h \in G} \left\{ f(\varphi_h(x_0)) + c_k \frac{d_{\mathbf{g}}(\varphi_{h^{-1}}(x), x_0)^{\frac{k}{k-1}}}{t^{\frac{1}{k-1}}} \right\}, \quad \text{where } c_k = \frac{k-1}{k^{\frac{k}{k-1}}}. \quad (10)$$

269

270 **Proof** See Diop et al. (2024).
 271

272 Morphological multi-scale Riemannian dilations at scale t are obtained by reversing the time:
 273

$$274 \quad \frac{\partial w}{\partial t} - \|\nabla_{\mathbf{g}} w\|_{\mathbf{g}}^k = 0 \quad \text{in } (\mathcal{M}, \mathbf{g}) \times (0, +\infty); \quad w(\cdot, 0) = f \text{ on } (\mathcal{M}, \mathbf{g}). \quad (11)$$

275 The viscosity solutions of the Cauchy problem are obtained in a similar way as:
 276

$$277 \quad w(t, x) = \sup_{h \in G} \left\{ f(\varphi_h(x_0)) - c_k \frac{d_{\mathbf{g}}(\varphi_{h^{-1}}(x), x_0)^{\frac{k}{k-1}}}{t^{\frac{1}{k-1}}} \right\}. \quad (12)$$

278 Let us consider the family of functions (b_t^k) defined by: $b_t^k = c_k \frac{d_{\mu}(x_0, \cdot)^{\frac{k}{k-1}}}{t^{\frac{1}{k-1}}}$. The case $k = 2$
 279 corresponds to quadratic structuring functions. Letting $k > 1$ allows us to deal with more general
 280 structuring functions than quadratic ones, leading to a better handling of thin image (data) structures.
 281 Let us introduce the notion of group Riemannian morphological convolution as follows:
 282

283 **Definition 3.1** *The group morphological convolution \diamond between b and f is defined for all $x \in$
 284 $(\mathcal{M}, \mathbf{g})$ by:*

$$285 \quad b \diamond f(x) = \inf_{p \in G} \{f(\varphi_p(x_0)) + b(\varphi_{p^{-1}}(x))\}.$$

286 Thanks to Definition 3.1, morphological multi-scale Riemannian erosions (10) and dilations (12) at
 287 scale t can respectively write:
 288

$$289 \quad u(t, x) = b_t^k \diamond f(x) \text{ and } w(t, x) = -(b_t^k \diamond (-f))(x). \quad (13)$$

290 3.2 EXAMPLE OF COMPACT RIEMANNIAN MANIFOLD \mathcal{M} : HYPERBOLIC BALL 291

292 We choose, as an example of a Riemannian manifold \mathcal{M} , the hyperbolic ball and use it for our
 293 numerical experiments, as it provides a natural framework to represent equivariance with respect to
 294 the group $E(n)$. Its negatively curved geometry allows for effective capture of hierarchical and non-
 295 local relationships between points, while ensuring that distances, invariant under the transformations
 296 of the group $E(n)$ (reflections, rotations, and permutations), are preserved. This facilitates the
 297 definition of stable equivariant operators and improves learning in neural networks based on PDE-
 298 GCNNs.
 299

300 Let us consider the hyperbolic ball defined by:
 301

$$302 \quad \mathbb{B}^n = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i=0}^n x_i^2 < 1 \right\}. \quad (14)$$

303 In next steps, we endow \mathbb{B}^n with a metric g , and we show that the hyperbolic distance $d_{\mathbb{B}^n}$ is
 304 invariant under translations, rotations, reflections, and permutations. We also show an embedding
 305 of \mathbb{R}^n into \mathbb{B}^n , which will preserve data (here image) structures within the hyperbolic ball \mathbb{B}^n ,
 306 enabling the desired equivariance. For the numerical computations, we take $\mathcal{M} = \mathbb{B}^2$.
 307

308 Let us consider the following metric g in \mathbb{B}^n :
 309

$$310 \quad g = \frac{4(dx_1^2 + \dots + dx_n^2)}{(1 - \|x\|^2)^2}, \quad (15)$$

311 where $\|\cdot\|$ represents the Euclidean norm in \mathbb{R}^n . The length of a curve $\gamma : [a, b] \rightarrow \mathbb{B}^n$ is given by:
 312

$$313 \quad L(\gamma) = \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} dt = \int_a^b 2 \frac{\sqrt{\gamma_1'(t)^2 + \dots + \gamma_n'(t)^2}}{\sqrt{1 - (\gamma_1(t)^2 + \dots + \gamma_n(t)^2)}} dt, \quad (16)$$

314 where $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$. The distance between two points $x, y \in \mathbb{B}^n$ is the infimum over
 315 all curves that join x and y . Then, the hyperbolic distance $d_{\mathbb{B}^n}(x, y)$ between x and y is given by:
 316

$$317 \quad \cosh d_{\mathbb{B}^n}(x, y) = 1 + \frac{2\|x - y\|^2}{(1 - \|x\|^2)(1 - \|y\|^2)}, \quad (17)$$

324 and thus, we derive:

$$326 \quad d_{\mathbb{B}^n}(x, y) = \text{Argcosh} \left(1 + \frac{2\|x - y\|^2}{(1 - \|x\|^2)(1 - \|y\|^2)} \right). \quad (18)$$

329 The group $E(n)$ consists of translations, rotations, reflections, and permutations in \mathbb{R}^n . Since $d_{\mathbb{B}^n}$
330 depends only on the Euclidean norm, which is invariant under Euclidean isometries, $d_{\mathbb{B}^n}$ is invariant
331 under all elements of $E(n)$.

332 **Proposition 3.3** $d_{\mathbb{B}^n}$ is invariant under Euclidean transformations.

334 **Proof** See Appendix D.

336 Let Φ be the mapping defined from \mathbb{R}^n to \mathbb{B}^n by:

$$337 \quad \Phi : \mathbb{R}^n \longrightarrow \mathbb{B}^n; x \mapsto \frac{x}{\sqrt{1 + \|x\|^2}}, \quad (19)$$

340 where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^n . Φ is well-defined because, $\forall x \in \mathbb{R}^n$, we have:

$$341 \quad \|\Phi(x)\|^2 = \frac{\|x\|^2}{1 + \|x\|^2} < 1. \quad (20)$$

344 **Proposition 3.4** Φ is an embedding of \mathbb{R}^n into \mathbb{B}^n .

346 **Proof** See Appendix E.

348 3.3 PDEUNET NETWORK ARCHITECTURE

350 Our architecture (Fig. 1(a)) is based on a classical U-Net structure, as used for noise prediction in
351 DDPM Ho et al. (2020), but we integrate our previously defined PDE layer in order to obtain a new
352 network that is equivariant with respect to the group $E(n)$.

353 A diffusion U-Net typically consists of three main components: an encoder (*Downsampling*), a de-
354 coder (*Upsampling*), and a middle block (*Middle Block*). The latter, located between the encoder
355 and the decoder, corresponds to the lowest spatial resolution and the highest number of channels.
356 It plays a crucial role in merging, transforming, and refining the representations extracted by the
357 encoder before their reconstruction by the decoder. It often consists of residual blocks for deeper
358 feature extraction and may include an attention module to capture long-range dependencies. In
359 ED2RM, we propose a novel modification in the middle block. Specifically, we replace the clas-
360 sical ResNetBlocks, commonly used in standard U-Nets, with *ResnetCDEBlocks*. As illustrated
361 in Fig. 1(b), these blocks enhance predictive capacity while introducing explicit equivariance with
362 respect to the group $E(n)$.

363 To the best of our knowledge, such a combination of a diffusion U-Net with residual blocks of
364 the CDE type (Convection, Dilatation, and Erosion) has not yet been reported in the literature. This
365 architecture therefore represents an original contribution aimed at strengthening both the robustness
366 and expressiveness of diffusion models.

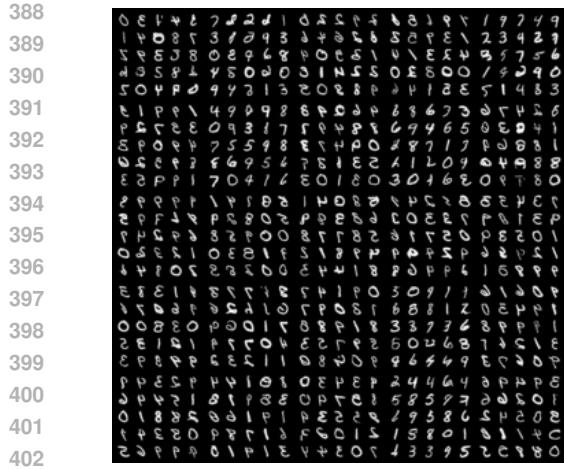
367 4 EXPERIMENTS

370 To evaluate the performance of our diffusion model on the MNIST and Rotated MNIST datasets,
371 we trained the model with a batch size of 64 images over a total of 60,000 iterations. Optimization
372 was performed using the Adam algorithm ($\beta_1 = 0.9, \beta_2 = 0.99$) with a learning rate of 1×10^{-4} .
373 An Exponential Moving Average (EMA) update was applied every 10 iterations with a decay factor
374 of 0.995 to stabilize training and improve the quality of the generated images.

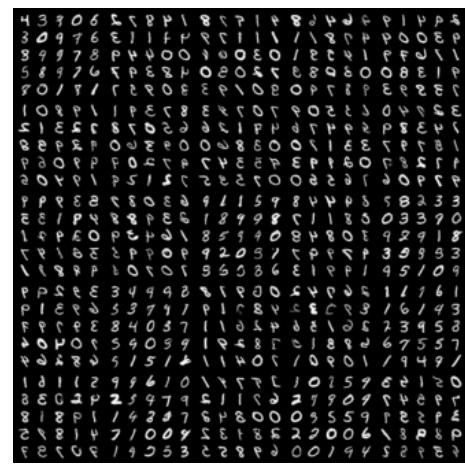
375 Test image generation was conducted every 100 samples, with each sample producing 25 images, in
376 order to monitor both the visual and quantitative evolution of quality. FID scores were computed at
377 each step over 2,500 images to assess the fidelity and diversity of the generated samples. We also
employed additional metrics to further evaluate both models.

378 In this study, we chose to compare our approach only with the baseline DDPM model. This choice
 379 is motivated by two main reasons. First, DDPM is the foundational model of diffusion-based
 380 approaches and serves as a reference in the majority of works in the literature. It therefore provides
 381 a relevant baseline for objectively evaluating the improvements introduced by our method. Second,
 382 our objective is not to outperform all existing variants of diffusion models, but rather to quantify the
 383 specific impact of incorporating equivariance and PDE-G-CNNs on the performance of the original
 384 model. By restricting our comparison to this baseline, we are able to more rigorously isolate and
 385 analyze the actual contribution of our approach.

386 In the following, we present the results in the form of tables and graphs, along with a set of generated
 387 image samples from each dataset and using each model.



403 (a) ED2RM: FID = 30.94



403 (b) DDPM: FID = 36.41

404 Figure 2: Generated samples using ED2RM vs. DDPM on MNIST.

405 Fig. 2 shows the samples with the best FID scores during training using ED2RM (Fig. 2a) and
 406 DDPM (Fig. 2b). Visual inspection indicates that the quality of the generated samples is generally
 407 similar, with respective FID scores of 30.94 and 36.41. These results suggest that the ED2RM model
 408 achieves slightly better generation performance on the MNIST dataset.

409 We report on Table 1 the quantitative results obtained using different metrics, namely FID and mean
 410 IS of the generated samples. Obtained ED2RM and DDPM Results show comparable performance
 411 in terms of quality and diversity on MNIST. We can notice that ED2RM achieves a slightly lower
 412 mean FID (45.14) compared to DDPM (46.91). In addition, Fig. 4a illustrates the FID evolution
 413 during training, and it highlights that ED2RM produces higher-quality samples during the first thirty
 414 training steps. The DDPM model subsequently reaches a comparable level of quality after the
 415 thirtieth step. This indicates that ED2RM converges faster towards generating high-quality samples,
 416 while DDPM requires more iterations to reach similar performance.

417 Metric	418 MNIST		419 ROTOMNIST	
	420 ED2RM	421 DDPM	422 ED2RM	423 DDPM
424 FID	425 45.14	426 46.91	427 49.30	428 173.44
429 IS	430 1.207 ± 0.242	431 1.207 ± 0.242	432 1.327 ± 0.175	433 1.298 ± 0.139

434 Table 1: ED2RM vs. DDPM on MNIST and ROTOMNIST.

435 On the RotoMNIST dataset, as shown in Fig. 3, the samples generated using ED2RM (Fig. 3a) ex-
 436 hibit significantly higher quality, with an FID score of 35.75, whereas DDPM (Fig. 3b) presents a
 437 much higher FID of 150.17. This discrepancy is further confirmed in Table 1, which shows that
 438 ED2RM achieves superior FID and IS values, demonstrating its ability to generate samples that are
 439 both higher in quality and more diverse than those produced by DDPM.

440 Moreover, Fig. 4b, illustrating the FID evolution throughout the training steps on the RotoMNIST
 441 dataset, highlights a substantial performance gap between the two models over the course of train-
 442 ing. It can be observed that ED2RM effectively adapts to the RotoMNIST data and maintains a

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

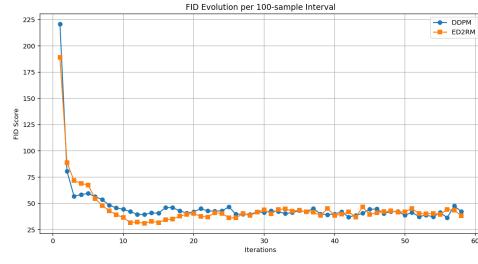
(a) ED2RM: FID = 35.75

(b) DDPM: FID = 150.17

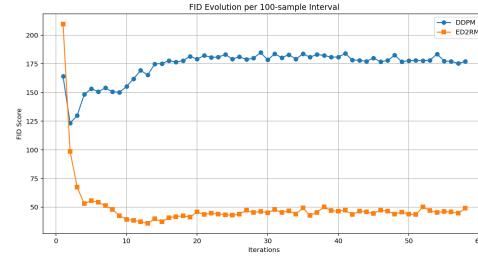
447 Figure 3: Generated samples using ED2RM vs. DDPM on RotoMNIST.
448
449
450
451

452 performance level comparable to that achieved on the MNIST dataset. In contrast, DDPM fails to
453 sustain similar performance with an equivalent number of training steps.

454 In conclusion, both models achieve similar results on the MNIST dataset, although DDPM requires
455 more training steps to reach performance levels comparable to ED2RM. However, on the RotoM-
456 NIST dataset, DDPM does not maintain the performance observed on MNIST, while ED2RM pre-
457 serves nearly the same generation quality across both datasets. This stability can be attributed to
458 ED2RM’s inherent equivariance to group transformations.



(a) FID evolution on MNIST



(b) FID evolution on RotoMNIST

470 Figure 4: FID evolution during training using ED2RM vs. DDPM on MNIST and RotoMNIST.
471
472
473

474 5 CONCLUSION

475 We have proposed here an equivariant denoising diffusion model (ED2RM) that integrates morpho-
476 logical PDEs within group-equivariant CNNs on Riemannian manifolds. By leveraging convection
477 and Hamilton–Jacobi PDEs, the framework not only preserves key data symmetries—translations,
478 rotations, reflections, and permutations—but also enhances geometric feature extraction in the
479 denoising process. Our experiments on MNIST and RotoMNIST confirmed that ED2RM achieves
480 faster convergence, superior FID scores, and improved robustness compared to standard DDPM,
481 particularly under geometric transformations. These results highlight the potential of combining
482 PDE-based equivariant architectures with diffusion models to produce more interpretable and
483 resilient generative frameworks. Future work will explore real image synthesis and scaling ED2RM
484 to higher-dimensional datasets and extending its applicability to 3D shape generation and molecular
485 modeling.

486 REFERENCES

487

488 E. N. Barron. A survey of Hopf-Lax Formulas and Quasiconvexity in PDEs. *Trudy Instituta*
489 *Matematiki i Mekhaniki UrO RAN*, 27(3):237–245, September 2021. ISSN 2658-4786. doi:
490 10.21538/0134-4889-2021-27-3-237-245.

491 E. Bekkers. B-Spline CNNs on Lie Groups. In *International Conference on Learning Representa-*
492 *tions*, 2019.

493 Erik J Bekkers, Maxime W Lafarge, Mitko Veta, Koen AJ Eppenhof, Josien PW Pluim, and Remco
494 Duits. Roto-translation covariant convolutional networks for medical image analysis. In *Medi-*
495 *cal Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International*
496 *Conference, Proceedings, Part I*, pp. 440–448, Granada, Spain, September 2018.

497 Gijs Bellaard, Daan LJ Bon, Gautam Pai, Bart MN Smets, and Remco Duits. Analysis of (sub-
498)Riemannian PDE-G-CNNs. *Journal of Mathematical Imaging and Vision*, pp. 1–25, 2023.

500 Valentin De Bortoli, Émile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
501 Arnaud Doucet. Riemannian score-based generative modelling. *Advances in neural information*
502 *processing systems*, 35:2406–2422, 2022.

503 Johann Brehmer, Joey Bose, Pim de Haan, and Taco Cohen. Edgi: Equivariant Diffusion for Plan-
504 ning with Embodied Agents. In *Conference on Neural Information Processing Systems*, 2023.

505 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
506 grad: Estimating gradients for waveform generation. *arXiv preprint arXiv:2009.00713*, 2020.

507 Taco Cohen and Max Welling. Group Equivariant Convolutional Networks. In *International con-*
508 *ference on machine learning*, pp. 2990–2999. PMLR, 2016.

509 Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In *International*
510 *Conference on Learning Representations*, 2018.

511 Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homo-
512 geneous spaces. *Advances in neural information processing systems*, 32, 2019.

513 François Cornet, Grigory Bartosh, Mikkel N. Schmidt, and Christian A. Naesseth. Equivariant
514 Neural Diffusion for Molecule Generation. In *Conference on Neural Information Processing*
515 *Systems*, 2024.

516 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion Models
517 in Vision: A Survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
518 10850–10869, September 2023. ISSN 1939-3539. doi: 10.1109/tpami.2023.3261988.

519 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
520 *in neural information processing systems*, 34:8780–8794, 2021.

521 El Hadji S. Diop, Alioune Mbengue, Bakary Manga, and Diaraf Seck. Extension of Mathematical
522 Morphology in Riemannian Spaces. In *Lecture Notes in Computer Science*, pp. 100–111. Springer
523 International Publishing, 2021.

524 El Hadji S. Diop, Thierno Fall, Alioune Mbengue, and Mohamed Daoudi. *GM-GAN: Geometric*
525 *Generative Models Based on Morphological Equivariant PDEs and GANs*, pp. 310–325. Springer
526 Nature Switzerland, December 2024. ISBN 9783031783890. doi: 10.1007/978-3-031-78389-0-
527 21.

528 Daniela Di Donato. The intrinsic hopf-lax semigroup vs. the intrinsic slope. *Journal of Mathematical*
529 *Analysis and Applications*, 523(2):127051, jul 2023. doi: 10.1016/j.jmaa.2023.127051.

530 Albert Fathi. *The Weak KAM Theorem in Lagrangian Dynamics*. Cambridge University Press, 2008.

531 Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d point
532 sets for the targeted discovery of molecules. *Advances in neural information processing systems*,
533 32, 2019.

540 Ian Goodfellow. Generative Adversarial Networks. In *NIPS*, pp. 57, 2017.
541

542 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
543 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
544 *processing systems*, 27, 2014.

545 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
546 *neural information processing systems*, 33:6840–6851, 2020.
547

548 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
549 sion for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–
550 8887. PMLR, 2022.

551 Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A Variational Perspective on Diffusion-
552 Based Generative Models and Score Matching. In *Conference on Neural Information Processing*
553 *Systems (NeurIPS 2021)*, San Diego, CA, December 2021.

554

555 Chin-Wei Huang, Milad Aghajohari, Avishek Joey BosePrakash Panangaden, and Aaron Courville.
556 Riemannian Diffusion Models. In *Conference on Neural Information Processing Systems Con-*
557 *ference on Neural Information Processing Systems*, 2022.

558 Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal
559 Frossard, Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3D-conditional diffu-
560 sion model for molecular linker design. *Nature Machine Intelligence*, 6(4):417–427, April 2024.
561 ISSN 2522-5839. doi: 10.1038/s42256-024-00815-9.

562

563 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
564 *arXiv:1312.6114*, 2013.

565

566 Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
567 learning with deep generative models. *Advances in neural information processing systems*, 27,
568 2014.

569

570 Zichen Liu, Wei Zhang, Christof Schütte, and Tiejun Li. Riemannian Denoising Diffusion Proba-
571 *bilistic Models*. May 2025. doi: 10.48550/ARXIV.2505.04338.

572

573 Aaron Lou, Minkai Xu, Adam Farris, and Stefano Ermon. Scaling Riemannian Diffusion Models.
574 In *Conference on Neural Information Processing Systems*, 2023.

575

576 Fernand Meyer and Petros Maragos. Nonlinear scale-space representation with morphological lev-
577 *elings*. *Journal of Visual Communication and Image Representation*, 11:245–265, 2000.

578

579 Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
580 *tts*: A diffusion probabilistic model for text-to-speech. In *International conference on machine*
581 *learning*, pp. 8599–8608. PMLR, 2021.

582

583 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and
584 Approximate Inference in Deep Generative Models. In *Proceedings of the International Confer-
585 ence on MachineLearning*, Beijing, China, 2014.

586

587 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) Equivariant Graph Neural Net-
588 *works*. In *International Conference on MachineLearning*, pp. 9323–9332. PMLR, 2021. doi:
589 10.48550/ARXIV.2102.09844.

590

591 Martin Schmidt and Joachim Weickert. Morphological counterparts of linear shift-invariant scale-
592 *spaces*. *Journal of Mathematical Imaging and Vision*, 56(2):352–366, apr 2016.

593

594 Gregor NC Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-Lobato. Symmetry-
595 aware actor-critic for 3d molecular design. *arXiv preprint arXiv:2011.12747*, 2020.

596

597 Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
598 variational autoencoders. In *International conference on artificial neural networks*, pp. 412–422.
599 Springer, 2018.

594 Bart M. N. Smets, Jim Portegies, Erik J. Bekkers, and Remco Duits. PDE-Based Group Equivariant
 595 Convolutional Neural Networks. *Journal of Mathematical Imaging and Vision*, 65(1):209–239,
 596 2022.

597 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
 598 vised learning using nonequilibrium thermodynamics. In *ICML'15: Proceedings of the 32nd In-
 599 ternational Conference on International Conference on Machine Learning*, volume 37, pp. 2256
 600 – 2265, Lille, France, July 2015.

601 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 602 In *Proceedings of the 33rd International Conference on Neural Information Processing Systems*,
 603 pp. 11918 – 1193, Vancouver, Canada, December 2019.

604 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
 605 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
 606 *International Conference on Learning Representations*, Vienna, Austria, May 2021.

607 Marysia Winkels and Taco S. Cohen. 3d G-CNNs for pulmonary nodule detection. In *Medical
 608 Imaging with Deep Learning*, 2018.

609

610 **A DETAILS ON PROBABILISTIC DIFFUSION MODELS**

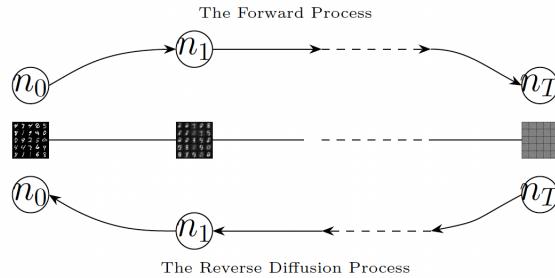


Figure 5: Illustration of the forward noising process and the inverse denoising process.

Given observations $x \sim q(x)$, the model operates on latent variables n_0, \dots, n_T of the same dimension as x , where n_0 corresponds to the observation x and n_T represents standard Gaussian noise (see Fig. 5).

Forward Process. The forward process is Markovian; thus, for all $t \in \{0, \dots, T\}$, n_t depends only on n_{t-1} and not on earlier variables :

$$q(n_t | n_{t-1}, n_{t-2}, \dots, n_0) = q(n_t | n_{t-1}) \quad (21)$$

Hence, the joint distribution of this process can be written as:

$$q(n_1, n_2, \dots, n_T | n_0) = \prod_{t=1}^T q(n_t | n_{t-1}) \quad (22)$$

For any $t > s$, the transition distribution from step s to t can be defined using the Gaussian reparameterization of ?, considering a standard Gaussian $\varepsilon \sim \mathcal{N}(0, I)$. Thus, Equation (1) can be rewritten as:

$$n_t = \sqrt{\alpha_t} n_{t-1} + \sqrt{1 - \alpha_t} \varepsilon \quad (23)$$

Consequently, for any $t > s$, we have:

$$q(n_t | n_s) = \mathcal{N}(n_t : \sqrt{\alpha_{t/s}} n_s, \Gamma_{t/s} I) \quad (24)$$

with $\alpha_{t/s} = \prod_{i=s+1}^t \alpha_i$ and $\Gamma_{t/s} = 1 - \alpha_{t/s}$. Relative to the initial data n_0 :

$$q(n_t | n_0) = \mathcal{N}(n_t : \sqrt{\bar{\alpha}} n_0, \bar{\Gamma} I) \quad (25)$$

where $\bar{\alpha} = \prod_{i=1}^t \alpha_i$ and $\bar{\Gamma} = 1 - \bar{\alpha}$.

648
649
650
651
652
653
654
655
656
657

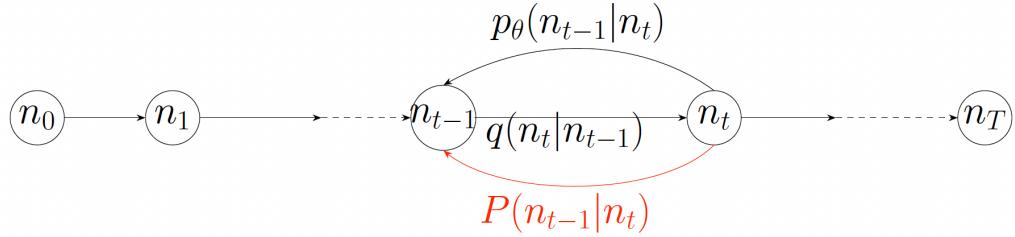


Figure 6: Conditional distributions in the forward and generative processes of the diffusion model.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Inverse Generative Process. The generative process is also modeled as a first-order Markov chain, i.e.,

$$P(n_{t-1} | n_t, n_{t+1}, \dots, n_T) = P(n_{t-1} | n_t) \quad (26)$$

Thus, the joint distribution of the generative process can be written as:

$$p_\theta(n_{0:T}) = P(n_T) \prod_{t=1}^T p_\theta(n_{t-1} | n_t) \quad (27)$$

with $P(n_T)$ typically defined as standard Gaussian noise:

$$P(n_T) = \mathcal{N}(0, I) \quad (28)$$

The true distribution is similarly defined as in Equation (eq: eq10):

$$P(n_{t-1} | n_t, n_0) = \mathcal{N}(n_{t-1} : \tilde{\mu}(n_t, n_0), \tilde{\sigma}^2 I) \quad (29)$$

Using the same reparameterization technique as in the forward case (see Equation (23)), we can sample from a standard Gaussian $\varepsilon \sim \mathcal{N}(0, I)$. Then, the mean in Equation (29) can be expressed as:

$$\tilde{\mu}(n_t, n_0) = \frac{1}{\sqrt{\alpha_t}} \left(n_t - \frac{\Gamma_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon \right) \quad (30)$$

Similarly, an expression for $\mu_\theta(n_t, t)$ in Equation (2) is given. Since the learned denoising process is defined from the true denoising process, we have:

$$\mu_\theta(n_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(n_t - \frac{\Gamma_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_\theta(n_t, t) \right) \quad (31)$$

where $\varepsilon_\theta(n_t, t) = \phi(n_t, t)$ is the output of the neural network ϕ at iteration t .

Variational Lower Bound of the Likelihood. As mentioned earlier, diffusion models introduce a sequence of latent variables. The data likelihood is written as:

$$p_\theta(n_0) = \int p_\theta(n_0, n_{1:T}) dn_{1:T}.$$

Direct maximization of this likelihood is intractable; therefore, diffusion models optimize a variational lower bound (ELBO) on the data likelihood:

$$\mathcal{L} := \mathbb{E}_{q(n_{1:T} | n_0)} [\log p_\theta(n_0 | n_{1:T})] - \text{KL}(q(n_{1:T} | n_0) \| p_\theta(n_{1:T})) \leq \log p_\theta(n_0), \quad (32)$$

where $\mathbb{E}[\cdot]$ denotes expectation and $\text{KL}(\cdot \| \cdot)$ is the Kullback–Leibler divergence.

Expanding, we obtain an equivalent expression (see Ho et al. (2020); Sohl-Dickstein et al. (2015)):

$$\begin{aligned} \mathcal{L}(\theta) = -\text{KL}(q(n_T | n_0) \| p(n_T)) - \sum_{t=2}^T \text{KL}(q(n_{t-1} | n_t, n_0) \| p_\theta(n_{t-1} | n_t)) \\ + \mathbb{E}_{q(n_{1:T} | n_0)} [\log p_\theta(n_0 | n_1)]. \end{aligned}$$

The ELBO must be maximized with respect to θ . The first KL divergence is independent of θ and can therefore be ignored during optimization. Hence, maximizing \mathcal{L} reduces to:

$$\underset{\theta}{\text{minimize}} \sum_{t=2}^T \text{KL}(q(n_{t-1} | n_t, n_0) \| p_\theta(n_{t-1} | n_t)) - \mathbb{E}_{q(n_{1:T} | n_0)}[\log p_\theta(n_0 | n_1)]. \quad (33)$$

This equation trains the inverse distribution $p_\theta(n_{t-1} | n_t)$ to match the true denoising distribution $q(n_{t-1} | n_t, n_0)$ by minimizing their KL divergence. It can thus be used as a loss function for a neural network parameterized by θ , emphasizing the alignment between these two distributions.

In other words, optimizing the ELBO forces the model to learn a denoising process capable of reversing the progressive diffusion of noise. Training consists of bringing the learned inverse process p_θ closer to the true denoising process q , while maximizing the likelihood of the observed data.

B BACKGROUND ON MORPHOLOGICAL OPERATORS AND PDES

Let $b : \mathbb{R}^2 \rightarrow \bar{\mathbb{R}}$ be a concave function, known also as the structuring function or convolution kernel. Let us consider the subset \mathbb{E} of \mathbb{Z}^2 and the function $f : \mathbb{E} \rightarrow \bar{\mathbb{R}}$.

Definition B.1 *Morphological dilation and erosion are respectively defined as:*

$$f \oplus b(x) = \sup_{y \in \mathbb{E}} [f(y) + b(x - y)] \quad (34)$$

$$f \ominus b(x) = \inf_{y \in \mathbb{E}} [f(y) - b(y - x)]. \quad (35)$$

Let $B \subseteq \mathbb{E}$ be a bounded set. A flat structuring function (SF) satisfies $b(x) = 0$ if $x \in B$ and $b(x) = -\infty$ if $x \in B^c$. The flat morphological dilation and erosion respectively write:

$$f \oplus B(x) = \sup_{y \in B} [f(x - y)] \text{ and } f \ominus B(x) = \inf_{y \in B} [f(x + y)]. \quad (36)$$

As for an interpretation, erosion shrinks positive peaks, and peaks thinner than the structuring function disappear. One has the dual effects for morphological flat dilation. Both the morphological dilation and erosion are translation invariant.

Definition B.2 *Let \mathcal{F} be a family of real functions defined on $\Omega \subseteq \mathbb{R}^2$. We say that $T : \mathcal{F} \rightarrow \mathcal{F}$ is said to be increasing (monotone) if and only if it satisfies:
 $\forall f_1, f_2 \in \mathcal{F}$ such that $(f_1 \geq f_2 \text{ on } \Omega)$ implies $(T(f_1) \geq T(f_2) \text{ on } \Omega)$.*

Proposition B.1 *Morphological dilation and erosion satisfy the following duality and adjunction properties:*

1. *duality:* $f \oplus b = -(-f \ominus b)$
2. *adjunction:* $(f_1 \oplus b \leq f_2 \text{ on } E) \iff (f_1 \leq f_2 \ominus b \text{ on } E)$.

Let $(b_t)_{t \geq 0}$ the family of structuring functions defined by using the SF b , as follows:

$$b_t(x) = \begin{cases} tb(x/t) & \text{for } t > 0 \\ 0 & \text{for } t = 0, x = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

The family $(b_t)_{t \geq 0}$ satisfies the semi-group property:

$$\forall s, t \geq 0, (b_s \oplus b_t)(x) = b_{s+t}(x, y).$$

Definition B.3 *Morphological multiscale dilations and erosions are defined as follows:*

$$(f \oplus b_t)(x) = \sup_{y \in \mathbb{E}} [f(y) + b_t(x - y)] \quad (37)$$

$$(f \ominus b_t)(x) = \inf_{y \in \mathbb{E}} [f(y) - b_t(y - x)]. \quad (38)$$

756 Considering flat structuring function (SF), morphological multiscale dilations and erosions are
757 obtained equivalently by considering $B_t = tB$ as multiscale SFs.
758

759 The link between morphological scale-spaces and PDEs was established by running the following
760 PDE that performs multiscale flat dilations and erosions on a given image f Meyer & Maragos
761 (2000); Schmidt & Weickert (2016):
762

$$\partial_t u \pm \|\nabla u\| = 0; u(\cdot, 0) = f. \quad (39)$$

763 Depending on the shape of SF, different PDEs can be obtained. For instance, considering the sets
764 $S_p = \{x = (x_1, x_2) \in \mathbb{R}^2 : |x|_p \leq 1\}$, where $|\cdot|_p$ is the L^p norm, one gets:
765

- 766 • for a square S_1 : $\partial_t u \pm \|\nabla u\|_1 = 0$; $u(\cdot, 0) = f$
- 767 • for a dis S_2 : $\partial_t u \pm \|\nabla u\|_2 = 0$; $u(\cdot, 0) = f$
- 768 • for a rhombus S_∞ : $\partial_t u \pm \|\nabla u\|_\infty = 0$; $u(\cdot, 0) = f$.

771 Notice that PDE (39) is a special case of first order Hamilton-Jacobi equation type, which can be
772 formulated in a more general form as follows:
773

$$\begin{cases} \frac{\partial u(x, t)}{\partial t} + H(x, \nabla u(x, t)) = 0 \text{ on } \mathbb{R}^n \times (0, +\infty) \\ u(\cdot, 0) = f \text{ on } \mathbb{R}^n. \end{cases} \quad (40)$$

774 General Hamilton-Jacobi equation is studied in a viscosity sense, because there is no classical so-
775 lution for such equations. For a convex Hamiltonian H and some regularity on f , the viscosity
776 solution is given by Hopf-Lax formulas Barron (2021); Donato (2023):
777

$$u(x, t) = \inf_{y \in \mathbb{R}^n} \left\{ f(y) + tL\left(\frac{x-y}{t}\right) \right\}, \quad (41)$$

783 where L is the Lagrangian, defined as the Legendre-Fenchel transform of H .
784

785 C PROOF OF PROPOSITION 2.1

786 For all $x \in (M, g)$, we refer to G -invariance of vector fields $X : x \mapsto T_x M$ if $\forall h \in G$ and for all
787 differentiable functions f , one has:
788

$$X(x)f = X(\varphi_h(x))[\mathcal{L}_h f]. \quad (42)$$

789 **Definition C.1** A vector field X on (M, g) is invariant with respect to G if $\forall h \in G$ and $\forall x \in$
790 (M, g) , one has:
791

$$X(\varphi_h(x)) = (\varphi_h)_* X(x). \quad (43)$$

792 **Definition C.2** A $(0, 2)$ -tensor field g on M is G -invariant if $\forall h \in G$, $\forall x \in M$ and $\forall v, w \in$
793 $T_x M$, one has:
794

$$g|_h(v, w) = g|_{\varphi_h(x)}((\varphi_h)_* v, (\varphi_h)_* w). \quad (44)$$

795 It follows from Definition C.2 that properties derived from metric tensor field G invariance and
796 vector field G invariance are the same.
797

801 **Definition C.3** Let (M, g) a connected Riemannian manifold, $x, y \in (M, g)$. The distance between
802 x and y is defined as follows:
803

$$d_g(x, y) = \inf_{\gamma \in \Gamma_t(x, y)} \int_0^t \sqrt{g|_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt, \quad (45)$$

807 with $\Gamma_t(x, y) = \{\gamma : [0, t] \rightarrow (M, g) \text{ of class } C^1, \gamma(0) = x \text{ and } \gamma(t) = y\}.$
808

809 **Definition C.4** The cut locus is defined as the set of points $x \in M$ (or $h \in G$) from which the
810 distance map is not smooth (except at x or h).
811

810 **Proof** Let us perform a left multiplication by h in one direction and by h^{-1} in the other direction.
 811 A bijection can then be established between C^1 curves connecting x to y and connecting $\varphi_h(x)$ to
 812 $\varphi_h(y)$. Thus, we have:

$$\begin{aligned}
 814 \quad d_g(\varphi_h(x), \varphi_h(y)) &= \inf_{\beta \in \Gamma_t(\varphi_h(x), \varphi_h(y))} \int_0^t \sqrt{g|_{\beta(t)}(\dot{\beta}(t), \dot{\beta}(t))} dt, \\
 815 \\
 816 \quad &= \inf_{h\gamma \in \Gamma_t(\varphi_h(x), \varphi_h(y))} \int_0^t \sqrt{g|_{h\gamma(t)}(\varphi_h(\dot{\gamma}(t)), \varphi_h(\dot{\gamma}(t)))} dt \quad \text{with } \gamma \in \Gamma_t(\varphi_h(x), \varphi_h(y)) \\
 817 \\
 818 \quad &= \inf_{h\gamma \in \Gamma_t(\varphi_h(x), \varphi_h(y))} \int_0^t \sqrt{g|_{h\gamma(t)}((\varphi_h)_*\dot{\gamma}(t), (\varphi_h)_*\dot{\gamma}(t))} dt \\
 819 \\
 820 \quad &= \inf_{h\gamma \in \Gamma_t(\varphi_h(x), \varphi_h(y))} \int_0^t \sqrt{g|_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt \quad \text{by equation 44} \\
 821 \\
 822 \quad &= \inf_{\gamma \in \Gamma_t(x, y)} \int_0^t \sqrt{g|_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} dt = d_g(x, y) \quad \blacksquare
 823 \\
 824 \\
 825
 \end{aligned}$$

D PROOF OF PROPOSITION 3.3

826 **Proof** The case $n = 2$ is trivial. Let us prove the result for $n = 3$; the general case follows the
 827 same way.

• Rotations and Reflections

834 Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an orthonormal basis of \mathbb{R}^3 . Define R_θ in this basis as:

$$836 \quad R = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}, \quad (46)$$

838 which represents an anti-rotation by angle θ around \vec{u} (a composition of rotation and reflection).
 Applying R_θ to $X = (x, y, z)$ yields:

$$841 \quad R_\theta X = \begin{pmatrix} -x \\ y \cos \theta - z \sin \theta \\ y \sin \theta + z \cos \theta \end{pmatrix}. \quad (47)$$

844 Its Euclidean norm satisfies:

$$845 \quad \|R_\theta X\|^2 = \|X\|^2, \quad (48)$$

846 and similarly $\|R_\theta X - R_\theta Y\| = \|X - Y\|$. Substituting these into the expression for $d_{\mathbb{B}^3}$, we obtain:

$$847 \quad d_{\mathbb{B}^3}(R_\theta X, R_\theta Y) = d_{\mathbb{B}^3}(X, Y). \quad (49)$$

• Permutations

852 Let us represent the group of permutations of $\{1, 2, 3\}$ as follows:

$$853 \quad \sigma = \begin{pmatrix} 1 & 2 & 3 \\ \sigma(1) & \sigma(2) & \sigma(3) \end{pmatrix}, \quad (50)$$

855 with $\sigma(1) = 2, \sigma(2) = 3, \sigma(3) = 1$. It follows that $\|\sigma X\| = \|X\|$ and $\|\sigma X - \sigma Y\| = \|X - Y\|$,
 856 hence:

$$857 \quad d_{\mathbb{B}^3}(\sigma X, \sigma Y) = d_{\mathbb{B}^3}(X, Y). \quad \blacksquare \quad (51)$$

E PROOF OF PROPOSITION 3.4

861 **Proof** Φ is well-defined and continuous. Next, we show that Φ is an injection and a C^k -
 862 diffeomorphism.

864 • **Injectivity of P**
 865

866 Let $x, y \in \mathbb{R}^n$. We assume that $\Phi(x) = \Phi(y)$, we need to show that $x = y$.
 867

$$\begin{aligned} 868 \quad \Phi(x) = \Phi(y) &\implies \frac{x}{\sqrt{1 + \|x\|^2}} = \frac{y}{\sqrt{1 + \|y\|^2}} \\ 869 \quad &\implies \frac{\|x\|}{\sqrt{1 + \|x\|^2}} = \frac{\|y\|}{\sqrt{1 + \|y\|^2}} \\ 870 \quad &\implies \|x\|^2 = \|y\|^2 \\ 871 \quad &\implies x = y. \\ 872 \quad & \\ 873 \quad & \\ 874 \quad & \\ 875 \quad & \\ 876 \quad & \end{aligned}$$

Hence, Φ is injective.
 876

877 • **\mathcal{C}^k -diffeomorphism property of Φ :**
 879

880 For $x = (x_i)_{i=1}^n \in \mathbb{R}^n$, we have
 881

$$\Phi(x) = \frac{x}{\sqrt{1 + \|x\|^2}} = \left(\frac{x_i}{\sqrt{1 + \|x\|^2}} \right)_{i=1}^n, \quad (52)$$

882 and we denote $\Phi_i(x) = \frac{x_i}{\sqrt{1 + \|x\|^2}}$. Then:
 883

$$\frac{\partial}{\partial x_j} \Phi_i(x) = \frac{\delta_{ij}}{\sqrt{1 + \|x\|^2}} - \frac{x_i x_j}{(1 + \|x\|^2)^{3/2}},$$

884 where
 885

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise,} \end{cases} \quad (53)$$

886 is the Kronecker symbol. Thus, the Jacobian matrix of Φ is:
 887

$$J_{\Phi(x)} = \frac{1}{\sqrt{1 + \|x\|^2}} \left(I - \frac{x \otimes x}{1 + \|x\|^2} \right),$$

888 where \otimes denotes the tensor product. In \mathbb{R}^3 , we obtain:
 889

$$\det(J_{\Phi(x)}) = 1 - \frac{\|x\|^2}{\sqrt{1 + \|x\|^2}} \neq 0 \quad \forall x \in \mathbb{R}^3,$$

890 which shows that $J_{\Phi(x)}$ is invertible. Hence, Φ is a diffeomorphism onto its image, and therefore, it
 891 is an embedding of \mathbb{R}^n into \mathbb{B}^n . ■
 892

903 F ADDITIONAL QUALITATIVE RESULTS
 904

905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918
919
920
921
922

9 9 4 3 9 2 9 8 4 3 2 3 0 0 8 0 7 9 7 3 9 8 1 6 2 9
2 9 7 9 3 0 9 5 1 6 2 0 8 8 0 8 8 7 4 6 8 0 4 9 2 8
1 9 1 9 8 4 9 8 0 0 1 1 2 4 7 2 7 4 3 0 9 1 1 1 0 1
4 1 0 9 7 2 7 0 9 1 1 3 1 9 1 1 3 5 7 0 1 1 4 2 5 8 2
2 0 4 3 3 5 7 5 1 1 8 1 0 9 4 4 7 9 2 4 8 2 4 0 4
1 5 8 0 0 0 0 5 7 1 2 2 9 9 8 9 9 7 4 1 1 7 4 6 1
7 3 9 6 9 5 0 8 2 0 1 1 2 4 7 1 9 9 6 0 7 3 6 1 1 7
4 7 9 9 9 2 1 5 4 9 9 2 8 1 5 9 1 5 4 9 1 5 7 6 7
9 9 1 8 1 4 9 2 6 7 1 4 0 8 6 2 4 3 4 0 9 8 1 6 0
3 8 8 7 5 5 1 1 3 4 1 1 9 1 7 0 1 2 9 3 1 5 9 9 3
2 1 2 9 3 7 3 0 9 2 6 2 9 9 2 2 9 1 8 7 8 5 1 8 2
8 9 4 3 9 4 4 9 8 1 0 9 3 5 6 0 2 9 1 1 4 1 1 2 4
0 8 0 1 6 0 2 8 9 1 1 2 4 9 8 2 9 1 6 9 9 8 2 3 9
4 7 8 7 1 1 2 2 3 4 1 9 6 0 1 6 2 0 9 1
/ 3 1 9 6 9 8 1 2 2 4 6 3 5 1 4 1 6 4 2 6 4 2
9 9 4 9 2 1 1 6 2 0 9 8 2 8 1 9 9 8 0 7 4 8 9 9
1 9 1 8 0 1 1 6 2 0 9 8 2 8 1 9 9 8 0 7 4 8 9 9
0 9 1 8 9 8 2 8 1 9 9 8 0 2 2 2 2 8
8 0 1 8 8 3 1 9 2 0 9 1 4 1 7 8 9 8 1 1 2 0 2 8
9 2 1 9 4 2 2 1 2 1 0 0 8 9 9 9 3 3 2 0 4 7 9
1 7 9 5 3 8 2 8 6 0 4 9 1 7 8 1 2 8 9 6 8 3 9 7 9
3 1 2 5 1 3 9 5 9 2 1 1 1 1 8 8 1 4 9 8 0 9 9 2
1 7 8 9 6 9 9 9 2 0 8 8 9 6 4 9 8 2 8 8 9 3 8 2 9
6 9 7 4 0 8 6 9 2 8 0 8 4 8 1 0 5 8 0 0 9 8 5 8 5
9 9 9 8 5 1 7 8 1 5 1 8 7 8 1 2 1 1 2 8 2 0 4 2 0

(a) ED2RM: FID = 36.31

0 9 9 4 8 1 9 7 1 3 4 0 4 9 0 7 8 1 3 4 0 5 8 9 4
6 9 5 0 8 7 3 1 9 8 2 7 3 8 8 0 1 4 9 2 8 9 6
7 3 0 7 1 8 9 7 0 9 4 9 8 5 9 0 8 2 8 0 3 7 5 2 2 0
4 0 9 9 3 8 2 9 7 1 5 1 2 9 3 8 2 5 0 4 3 2 1 4 9 2 8
2 5 8 5 3 4 9 1 8 1 9 7 0 1 0 8 2 1 1 4 9 2 8
6 9 7 3 3 4 2 6 4 7 0 9 9 0 6 0 4 1 9 0 7 7 6 7 9
4 2 5 1 9 4 1 1 9 6 3 0 3 4 3 2 8 1 4 6 2 0 4 7 3
5 5 1 0 9 8 9 1 6 4 7 9 1 5 8 7 2 9 2 8 0 9 9 7 9 0
6 7 7 1 8 8 7 2 8 0 6 9 1 8 1 9 8 2 8 4 9 8 9 9 7
3 2 4 3 2 1 3 8 9 9 1 7 9 7 6 1 8 0 1 0 9 9 8 8 5
9 8 0 2 2 1 1 2 9 4 6 4 3 4 0 0 9 0 2 4 7 8 4 8 6
9 9 9 7 1 8 9 8 6 8 2 8 1 4 0 3 0 3 4 3 2 8 1 4 1 1 7
8 9 1 8 9 3 8 2 8 3 4 2 8 2 2 0 0 8 2 2 0 1 9 8 3 8
1 2 2 8 1 1 2 9 8 6 2 6 0 2 8 1 0 1 0 2 7 6 0 2 8 0
8 9 5 6 1 1 2 8 8 2 4 9 8 2 1 2 9 8 2 1 1 7 4 9 8 5
1 1 0 0 2 2 6 4 1 2 0 0 9 2 5 4 6 9 2 7 0 6 4 0 2 8
8 9 0 0 8 1 3 8 0 2 4 9 7 4 3 1 0 3 3 3 7 7 9 8 2 9
4 2 8 4 2 1 1 1 4 1 1 8 8 2 8 1 1 1 9 5 8 2 8 2 7 4
8 8 4 2 2 0 5 9 8 8 2 4 9 9 1 9 9 2 0 3 7 8 9 9 0
1 0 0 9 1 1 8 8 4 8 1 4 9 3 0 1 4 1 3 9 1 8 0 1 8
9 6 7 1 3 3 4 4 0 6 4 4 8 8 3 0 0 7 0 3 8 1 1 1
0 1 9 2 0 1 3 5 3 9 4 5 2 1 5 2 6 1 6 1 9 0 9 3 3
3 9 7 4 9 1 3 7 4 7 8 2 4 8 1 8 9 7 5 6 8 2 8 4 1
3 6 3 1 9 9 1 0 7 8 2 8 4 8 0 7 2 2 6 1 5 7 7 7 7
6 2 9 6 7 1 1 7 0 2 4 7 1 8 9 3 8 9 1 5 9 7 6 3 3

(b) DDPM: FID = 41.39

939 Figure 7: Generated image samples from our ED2RM model and the DDPM baseline on the MNIST
940 dataset (Sample 30).

941
942
943
944
945
946
947
948
949

950 3 0 4 0 3 1 7 1 9 8 3 0 1 9 8 6 9 2 8 4 9 3 6 9 8
9 9 4 6 7 9 6 1 0 9 0 8 5 6 3 9 6 9 2 9 1 0 3 8 1 9
0 8 5 9 7 1 1 2 9 2 8 1 9 6 5 6 9 8 9 3 4 6 8 9 3
2 5 0 7 6 7 9 0 1 4 0 1 2 0 4 7 8 7 9 1 4 0 9 1 0
3 8 3 8 9 6 2 4 3 3 8 0 9 2 9 1 1 2 8 9 8 4 4 0 0 6 3
1 8 2 9 7 8 0 9 8 2 3 2 0 6 4 9 8 8 2 8 4 9 1 4 9 7
1 8 3 8 1 1 8 0 1 9 9 7 0 6 1 4 8 5 8 4 5 2 7 2
0 9 1 9 1 1 0 8 0 3 9 0 4 4 7 2 1 8 0 7 1 0 9
1 8 2 0 5 2 2 8 9 1 7 9 0 9 2 2 1 9 4 5 8 1 9 2 5 9
1 5 9 7 1 1 0 8 1 1 7 3 5 4 1 8 0 8 1 2 9 6 7 4
8 2 4 9 9 8 0 6 6 1 1 4 0 9 1 7 4 9 7 7 9 4 0 6 7
0 3 5 4 1 1 7 5 3 2 9 5 3 8 3 9 2 1 5 2 2 9 6 1
8 3 0 2 3 1 6 9 4 9 4 2 4 9 0 8 2 9 4 8 4 9 1 3 8
1 0 9 9 3 3 9 1 1 7 9 1 1 6 7 0 9 4 3 4 5 3 5 3
2 6 2 4 1 4 9 3 8 1 3 0 1 9 0 7 6 1 5 3 1 3 0 3 1
0 2 9 4 1 5 8 1 5 2 9 4 8 6 0 7 4 5 9 1 6 7 1 5 0
P 8 2 8 2 8 2 9 1 2 6 8 3 8 4 8 3 9 4 1 0 9 7 8 0
8 4 2 8 8 9 4 0 8 1 8 2 9 8 1 7 8 2 8 8 6 9 0 9 0
1 8 5 8 6 6 5 1 9 8 1 8 1 8 6 0 8 9 1 0 5 2 2 9
1 8 3 0 8 0 9 9 7 2 1 9 9 8 8 4 8 0 1 2 2 3 5 3
1 5 0 4 0 9 0 9 7 2 2 6 3 4 9 3 8 9 3 8 4 1 4 2 8
1 6 9 3 7 8 4 0 3 9 0 7 4 7 9 1 9 3 4 9 8 0 2 8 0
8 9 7 5 9 8 7 9 9 7 4 7 0 8 1 3 6 1 3 2 9 3 4 3
8 2 9 9 3 1 8 2 9 2 9 3 0 9 3 4 7 7 8 2 1 0 0 9 8 6
9 9 9 9 5 3 9 9 6 7 4 7 3 7 1 1 5 7 6 0 0 2 9 0

(a) ED2RM: FID = 42.20

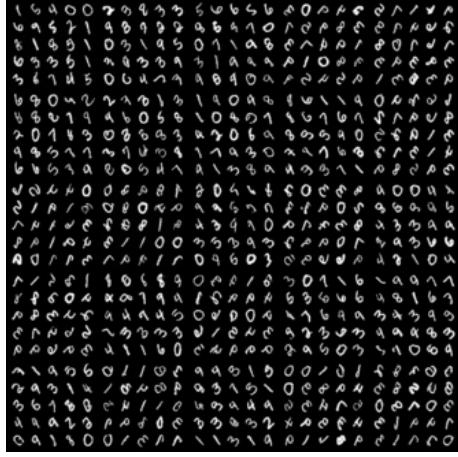
0 9 9 4 8 1 9 7 1 3 4 0 4 9 0 7 8 1 3 4 0 5 8 9 4
6 9 5 0 8 7 3 1 9 8 2 7 3 8 8 0 1 4 9 2 8 9 6
7 3 0 7 1 8 9 7 0 9 4 9 8 5 9 0 8 2 8 0 3 7 5 2 2 0
4 0 9 9 3 8 2 9 7 1 5 1 2 9 3 8 2 5 0 4 3 2 1 4 9 2 8
2 5 8 5 3 4 9 1 8 1 9 7 0 1 0 8 2 1 1 4 9 2 8
6 9 7 3 3 4 2 6 4 7 0 9 9 0 6 0 4 1 9 0 7 7 6 7 9
4 2 5 1 9 4 1 1 9 6 3 0 3 4 3 2 8 1 4 6 2 0 4 7 3
5 5 1 0 9 8 9 1 6 4 7 9 1 5 8 7 2 9 2 8 0 9 9 7 9 0
6 7 7 1 8 8 7 2 8 0 6 9 1 8 1 9 8 2 8 4 9 8 9 9 7
3 2 4 3 2 1 3 8 9 9 1 7 9 7 6 1 8 0 1 0 9 9 8 8 5
9 8 0 2 2 1 1 2 9 4 6 4 3 4 0 0 9 0 2 4 7 8 4 8 6
9 9 9 7 1 8 9 8 6 8 2 8 1 4 0 3 0 3 4 3 2 8 1 4 1 1 7
8 9 1 8 9 3 8 2 8 3 4 2 8 2 2 0 0 8 2 2 0 1 9 8 3 8
1 2 2 8 1 1 2 9 8 6 2 6 0 2 8 1 0 1 0 2 7 6 0 2 8 0
8 9 0 0 8 1 3 8 0 2 4 9 7 4 3 1 0 3 3 3 7 7 9 8 2 9
4 2 8 4 2 1 1 1 4 1 1 8 8 2 8 1 1 1 9 5 8 2 8 2 7 4
8 8 4 2 2 0 5 9 8 8 2 4 9 9 1 9 9 2 0 3 7 8 9 9 0
1 0 0 9 1 1 8 8 4 8 1 4 9 3 0 1 4 1 3 9 1 8 0 1 8
9 6 7 1 3 3 4 4 0 6 4 4 8 8 3 0 0 7 0 3 8 1 1 1
0 1 9 2 0 1 3 5 3 9 4 5 2 1 5 2 6 1 6 1 9 0 9 3 3
3 9 7 4 9 1 3 7 4 7 8 2 4 8 1 8 9 7 5 6 8 2 8 4 1
3 6 3 1 9 9 1 0 7 8 2 8 4 8 0 7 2 2 6 1 5 7 7 7 7
6 2 9 6 7 1 1 7 0 2 4 7 1 8 9 3 8 9 1 5 9 7 6 3 3

(b) DDPM: FID = 38.86

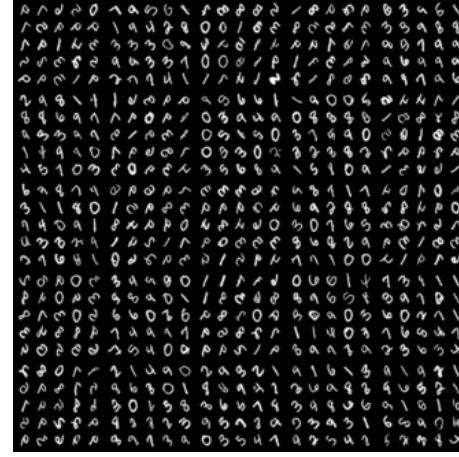
966 Figure 8: Generated image samples from our ED2RM model and the DDPM baseline on the MNIST
967 dataset (Sample 50).

968
969
970
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990



(a) ED2RM: FID = 45.07

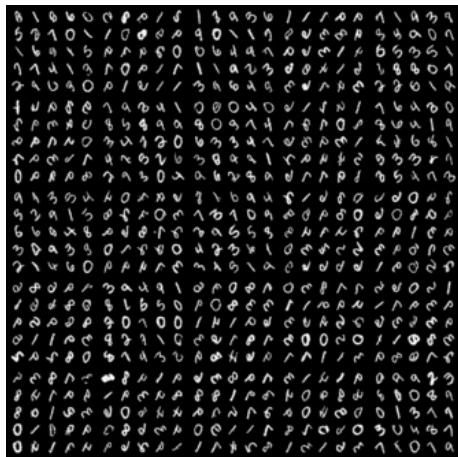


(b) DDPM: FID = 178.49

991
992

Figure 9: Generated image samples from ED2RM and the standard DDPM on the RotoMNIST dataset(Sample 30).

995
996
997
998
999
1000
1001
1002
1003



(a) ED2RM: FID = 43.79

(b) DDPM: FID = 177.66

1020
1021
1022
1023
1024
1025

Figure 10: Generated image samples from ED2RM and the standard DDPM on the RotoMNIST dataset (sample 50).