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ABSTRACT

Diffusion models have recently emerged and demonstrated remarkable capabili-
ties in high-quality image synthesis and data generation. This work addresses two
key issues in recent Denoising Diffusion Probabilistic Models (DDPMs), inspired
by nonequilibrium thermodynamics: geometric feature extraction and equivari-
ance. To tackle these challenges, we introduce a geometric approach to the predic-
tion network of DDPMs by designing equivariant morphological partial differen-
tial equations (PDEs) for group convolutional neural networks (G-CNNs), referred
to as PDE-G-CNNSs. These PDEs are formulated on Riemannian manifolds to bet-
ter capture nonlinearities, represent thin geometrical structures, and incorporate
symmetries into the learning process. Our method achieves this by considering
a system of two PDEs: a convection term and a first-order Hamilton—Jacobi-type
PDE that acts as morphological multiscale dilations and erosions. Preliminary
experiments on MNIST and RotoMNIST indicate significant performance gains
compared to baseline DDPMs.

1 INTRODUCTION

In recent years, deep generative models have experienced rapid growth, with applications ranging
from realistic image generation |(Goodfellow et al. (2014)); Kingma & Welling (2013)); Kingma et al.
(2014); IDhariwal & Nichol (2021); |Ho et al.| (2020) to audio synthesis |Chen et al.| (2020); Popov
et al.|(2021)), and even molecular modeling/Simonovsky & Komodakis|(2018));|Gebauer et al.[(2019);
Simm et al.[(2020);|Hoogeboom et al.[(2022). Among these approaches, diffusion probabilistic mod-
els (DPM) Sohl-Dickstein et al.| (2015);|Song & Ermon| (2019); |Ho et al.| (2020); Song et al.| (2021));
Croitoru et al.| (2023)) have emerged as particularly influential with impressive generative capabil-
ities. DPM can be grouped into three broad categories: denoising DPM (DDPM) Sohl-Dickstein
et al.|(2015);|Ho et al.[(2020) inspired by the theory of nonequilibrium thermodynamics, noise con-
ditioned score networks (NCSNs) [Song & Ermon| (2019) based on generative models through a
multi-scale denoising score matching objective, and stochastic differential equations (SDEs) |[Song
et al.| (2021); Huang et al.| (2021)). In particular, in the field of image generation, DDPM |Ho et al.
(2020) have demonstrated a remarkable ability to produce high-quality samples. Their principle
relies on two complementary steps. The first, known as the forward diffusion process, consists in
progressively adding Gaussian noise to the data until their distribution approaches an isotropic nor-
mal law. The second, the reverse or denoising process, aims to invert this procedure by learning,
through a deep neural network, the noise that must be removed in order to reconstruct the original
data. Training is performed within a probabilistic framework, by optimizing a variational lower
bound (ELBO) of the likelihood, which ensures the theoretical soundness of the model. Compared
to other families of generative models, such as variational autoencoders Kingma & Welling| (2013));
Rezende et al.| (2014)) or generative adversarial networks (GANs) |Goodfellow et al.| (2014); |Good-
fellow| (2017), DPMs stand out for the stability of their training and the diversity of the generated
samples. DPM had been extended in Riemannian manifolds by deriving a Riemannian continuous-
time ELBO [Huang et al.| (2022)). A Riemannian extension of DDPM have been recently proposed
for learning distributions on submanifolds of R™ |[Liu et al.| (2025)). Score-based matching models
have also been extended to Riemannian manifolds Bortoli et al.| (2022). A generalized strategy for



numerically computing the heat kernel on Riemannian symmetric spaces in the context of denoising
score matching was also proposed Lou et al.|(2023)).

Equivariance plays an important role in most neural networks architectures. Equivariance means that
the operation of performing a transformation of the input data then passing them through the net-
work is the same as passing the input data through the network and then performing a transformation
of the output. It can be used to learn the symmetries in data. Such a principle has recently been used
for molecule generation by combining E(n) equivariant graph neural networks (EGNNs) |Satorras
et al[(2021)) and the equivariance in E(3) of the denoising distribution in the diffusion process of
DDPM |Hoogeboom et al|(2022). A similar equivariant approach was proposed for 3D molecule
generation |Cornet et al.| (2024) with a learnable forward process. An equivariant diffusion model
was also proposed |Brehmer et al.| (2023) with a SE(3) x Z x S,, invariance of distribution over tra-
jectories. An E(3) equivariant model was proposed Igashov et al.|(2024) with an O(3) invariance in
the conditional diffusion model, which was used for molecular linker design. Deep neural networks
are inherently invariant under translation transformations. To extend this invariance to other types
of transformations, group-convolution (G-CNN) were introduced Cohen & Welling|(2016); Bekkers
et al.|(2018)); |Cohen et al.|(2019) and generalize CNNs so that symmetries are integrated during the
learning process. G-CNN were shown to noticeably improved traditional CNN |Winkels & Cohen
(2018);|Cohen et al.| (2018)); Bekkers| (2019). A PDE framework, termed PDE-G-CNN, was recently
introduced |Smets et al.| (2022); Bellaard et al.| (2023)) as a generalization of G-CNN. In Diop et al.
(2024), equivariant PDE-G-CNN were integrated into GAN models and had shown significant gains
in the quality of sample generation, as well as an increase of the robustness to data under geometric
transformations.

Contributions Contrary to existing Riemannian extensions of DPMs, we propose here a proper
Riemannian extension of DDPM by considering a Riemannian manifold endowed with a general
Riemannian metric. Also, the equivariance property is introduced differently. We consider here
a Lie group as the group of symmetries in order to take advantage of the group structure, on the
one hand, and to benefit from the Riemannian metric, on the other hand. We summarize our main
contributions as follows:

* Introduction of an equivariant denoising diffusion model (ED2RM) that integrates morpho-
logical PDEs into the prediction network. (See Fig.

* Design of a diffusion model that is equivariant to translations, rotations, reflections, and
permutations, ensuring that data symmetries are preserved throughout the learning process.

* Construction of a prediction network based on PDE-G-CNNs defined on Riemannian mani-
folds, which allows the model to better capture nonlinearities and fine geometric structures.

* Geometric interpretability of the proposed ED2RM framework, as its operations corre-
spond to well-understood PDEs such as convection and Hamilton—Jacobi equations for
multiscale dilations and erosions.

* Improvement of key geometric feature extraction within the denoising step, enhancing the
overall robustness of the model.

* Improvement in the quality of image generation, demonstrated through experiments on
MNIST and RotoMNIST, where ED2RM shows faster convergence and better FID scores
compared to baseline DDPMs.

2 PRELIMINARIES

2.1 PROBABILISTIC DIFFUSION MODELS

Diffusion models are generative models based on the progressive addition of random noise to real
data, followed by learning the inverse process that removes this noise (denoising) using a neural
network. Additional details on this section are provided in Appendix [A]

Forward Process. The forward process gradually adds noise to the variables n;, for ¢t €
{0,...,T}, ie., ngy1 = ng + noise, with random noise. A conditional distribution then models
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Figure 1: Our ED2RM approach uses PDEs-based equivariant layers in the denoising network.
These layers enforce symmetry with respect to translations, rotations, reflections, and permutations,
while also improving the extraction of fine geometric structures.

the probability of obtaining n;,1 given n;, denoted q(n;+1 | n¢), which follows the Gaussian distri-
bution:

q(ne | ne—1) = N(ng : agng—1,TI) (D
where « is defined according to the variance-preserving process proposed by |Ho et al.[(2020), i.e.,
a; = 1 — T';. This parameter controls the amount of signal retained, and 'y € (0, 1) represents the
noise level added at each step t. It acts progressively, so that the mean a;n;—1 increasingly deviates
from the already noised data n;_.

Inverse Generative Process. The diffusion process, or inverse generative process, generates data
progressively from noise by following the true denoising process, denoted P(n;—1 | n;), which
defines the probability of obtaining n;_; from n,. This distribution is Gaussian, similarly to the
forward process.

Since x is unknown during denoising, a neural network ¢ parameterized by 6 is used to approximate
the inverse Gaussian conditional distribution, denoted py(n¢—1 | n¢), defined as:

po(ne—1 | ne) = N (g1 2 po(na, t), o (ne, t)) 2)
where 9 € R? and ¥y € R¥*? represent the mean and covariance matrix of the distribution at

iteration t, respectively. For simplicity, as proposed in [Ho et al.| (2020), we set ¥g(n¢,t) = O’?I R
with constants o7 that depend on time but are not learned.

Variational Lower Bound of the Likelihood. The optimization problem for the Evidence Lower
Bound (ELBO) with respect to € is given by:
T

miniemize ZKL(q (ne—1 [ ne,m0) (| po (ne—1 | t)) = Eq(nyoring) log po (no [ n1)] . (3)
t=2



This equation trains the inverse distribution pg(ns—1 | n¢) to match the true denoising distribution
q(nt—1 | nt, ng) by minimizing their KL divergence. It can therefore be used as a loss function for
a neural network parameterized by 6, emphasizing the alignment between these two distributions.
Details leading to Equation [3]are provided in Appendix [A]

2.2 EQUIVARIANCE

Definition 2.1 Let G be a connected Lie group with identity element e and (M, g) a connected
Riemannian manifold M with metric g . A left action of G on (M, g) isamap ¢ : G X (M, g) —
(M, g) satisfying:

1. g(e,z)=z,Vze(M,g).
2. ¢(g,0(h,z)) = ¢(gh,x),V g,h € GandV z € (M, g).

Let ¢ : G x (M,g) — (M,g) be a left action of G on (M, g). For a fixed g € G, we define
Qg : (M, g) = (M, g) by z — ¢4(z) = ©(g, 7).

The map ¢ : G x (M, g) — (M, g) is a left action if, for all g, h € G, we have:

Ye = idpr and pg © p = Qgp.

Let ¢p, : (M,g) — (M, g) denote the left group action (considered here as a multiplication) by
an element h € G, defined for every z € (M, g) by: pp(z) = h - .

Let £, denote the left regular representation of G' on functions f defined on M, given by
(Lnf)(x) = f(pn-1(x)), where h~! is the inverse of h € G.

We view a layer in a neural network as an operator. To ensure network equivariance, we require the
operator to be equivariant with respect to the group actions on the corresponding function spaces.

Let z( be an arbitrary fixed point on the connected Riemannian manifold (M, g). Let 7 : G —
(M, g) denote the projection defined by associating to each element i of G a point in (M, g) as
follows: V h € G, w(h) = p(xo). In other words, once a reference point xg € (M, g) is chosen,
the projection 7(h) associates to each element h of G the unique point in (M, g) to which h sends
zo under the action gy,.

Let us consider a connected Lie group G acting transitively on the connected Riemannian manifold
(M, g). This means that for any points z,y € (M,g), there exists an element & € G such that
on(x) = y, which corresponds to the definition of a homogeneous space under G.

Definition 2.2 Let G be a connected Lie group with homogeneous spaces M and N'. Let ¢ be an
operator mapping functions from M to N. We say that ¢ is equivariant with respect to G if, for all
functions f, we have: Y h € G, (po Lp)f = (Lno @) f.

Proposition 2.1 Let z,y € (M, g) such that @y (y) lies outside the cut locus of pp(x). Then, for
all h € G, we have: dg(z,y) = dg(pn(x), n(y)).

Proof See Appendix|[C]

3 PROPOSED ED2RM DIFFUSION MODEL

ED2RM maintains the DDPM forward process and the ELBO. The reverse process consists in lever-
aging PDE-GCNN:Ss to obtain an equivariant network for noise prediction.

3.1 EQUIVARIANT PDES LAYERS-BASED MODEL PREDICTION

PDE-G-CNNs were formally introduced in homogeneous spaces with G-invariant tensor metric
fields on quotient spaces [Diop et al.[(2024). Building on this foundational approach, the proposed
model relies on a combination of traditional CNNs and morphological Hamilton-Jacobi PDE layers
on Riemannian manifolds, and is composed of the following PDEs:



e Convection term:
%+au:0in (M,g) x (0, ); u(-,0)= fon(M,g), 4)

where « is a G-invariant vector field on (M, g).

Proposition 3.1 The solution of (4)) is obtained with the method of characteristics and is given by:
u(@,t) = (L1 f) (e) " o) = fhae(t) " 20) = f(har—c(t)ao), 5

where h, € G satisfying hyxo = x for a fixed xo € M, and . : R — G being the exponential
curve such that ~.(0) = e and

0
a (P)/c(t)x) (t) = C(’yc(t)ﬁ). (6)
Proof See|Smets et al.|(2022).

The convection (@) is left-invariant under the action of G.

e Multiscale morphological erosions and dilations:

ou .

o * |Vgulls = 0in (M,g) x (0, 00); u(-,0) = f on (M,g), (7)
with k£ > 1, where the positive (+) sign (resp. negative (—)) stands for erosions (resp. dilations).
The morphological operations are also equivariant with respect to G, ensuring the equivariance of
our PDEs layers, and so for our PDEs-based network.

The output of the network is obtained as a linear combination of the outputs of each PDE layer. The
above PDE system represents our stepwise PDE model solved using operator splitting, where each
step corresponds to one of the above PDEs.

The connection between multi-scale morphological dilations and erosions had already been estab-
lished by solving a first-order Hamilton—Jacobi type PDE in R™. Their extensions in Riemannian
manifolds can be provided by properly defining the related Hamiltonian.

Let (M,g) be a compact, connected Riemannian manifold equipped with a metric g, and let
fib: (M,g) — R. Let T M denote the tangent bundle of (M,g), and let L : TM — R be
a Lagrangian function. Let 7" M denote the cotangent bundle of (M, g), and let us define the
Hamiltonian H : T* M — R associated with the Lagrangian L by:

H(z,q) = veS;pM{q(v) — L(z,v)}.

The Hamilton-Jacobi PDE can be extended to Riemannian manifolds as follows:

0 .

871: + H(z,Vu) =0 in(M,g) x (0,+00); u(-,0)= fon(M,g). (8)
PDE @) admits viscosity solutions [Fathi| (2008)); Diop et al.| (2021). Multi-scale morphological
erosions (resp. dilations) are obtained by setting H = [[Vgul|£ (resp. H = —||Vgu||%) in equation

Proposition 3.2 Let k > 1 and let f € C°((M,g),R) be a continuous function. The viscosity
solutions to the Cauchy problem:

0
5+ [ Vgully =0 in (M.g) x (0,+50);  u(-,0) = f on (M.sg), ©)

are given by:
k
d —1(x), ) F T k-1
g(soh () O) , where ¢, = ——. (10)

tﬁ krE—1

u(t,xz) = égfg f(en(zo)) + ck



Proof See Diop et al.|(2024).

Morphological multi-scale Riemannian dilations at scale ¢ are obtained by reversing the time:

0
S~ IVawl =0 in (M.g) x (0,+00); w(-,0) = fon (M,g). (an

The viscosity solutions of the Cauchy problem are obtained in a similar way as:

w(t,z) = sup { f(on(wo)) — cx dg (on-1(z),20) **

— (12)
heG tE—1

d NF-T
Let us consider the family of functions (b¥) defined by: bF = ckM. The case k = 2
k—1

corresponds to quadratic structuring functions. Letting £ > 1 allows us to deal with more general
structuring functions than quadratic ones, leading to a better handling of thin image (data) structures.
Let us introduce the notion of group Riemannian morphological convolution as follows:

Definition 3.1 The group morphological convolution { between b and f is defined for all © €
(M, g) by: _
b0 () = InE {F(2p(x0)) + bl2y1 (1)}

Thanks to Definition [3.1] morphological multi-scale Riemannian erosions (I0) and dilations (12) at
scale ¢ can respectively write:

u(t,z) = b f(x) and w(t, ) = —(b; O(—f)) (). (13)
3.2 EXAMPLE OF COMPACT RIEMANNIAN MANIFOLD M: HYPERBOLIC BALL

We choose, as an example of a Riemannian manifold M, the hyperbolic ball and use it for our
numerical experiments, as it provides a natural framework to represent equivariance with respect to
the group E(n). Its negatively curved geometry allows for effective capture of hierarchical and non-
local relationships between points, while ensuring that distances, invariant under the transformations
of the group E(n) (reflections, rotations, and permutations), are preserved. This facilitates the
definition of stable equivariant operators and improves learning in neural networks based on PDE-
GCNNeE.

Let us consider the hyperbolic ball defined by:

B":{(;cl,...,xn)eR"|Zx§<1}. (14)
=0

In next steps, we endow B" with a metric g, and we show that the hyperbolic distance dg~ is
invariant under translations, rotations, reflections, and permutations. We also show an embedding
of R™ into B™, which will preserve data (here image) structures within the hyperbolic ball B™,
enabling the desired equivariance. For the numerical computations, we take M = B2

Let us consider the following metric g in B™:
4(dx? + ...+ dz2)
g= )
(1 —[l]*)?

where ||-|| represents the Euclidean norm in R™. The length of a curve 7y : [a, b] — B" is given by:

b b 7 /
L) = [ Ve = [ 2 VAP L @ )

o V1= +.. +7m(1)?)

where y(t) = (71(t),...,va(t)). The distance between two points x,y € B"™ is the infimum over
all curves that join x and y. Then, the hyperbolic distance dp- (, y) between x and y is given by:

2|z — yl|?
@ =lzlI?) (X = lyl*)’

5)

coshdgn (z,y) =1+ (17



and thus, we derive:

2]z — yl|? >
dgn (2,) = Argcosh (1 + : 8
a0 (2,y) = Argeos ( (=)~ llylI*) "

The group E(n) consists of translations, rotations, reflections, and permutations in R™. Since dgn
depends only on the Euclidean norm, which is invariant under Euclidean isometries, dg~ is invariant
under all elements of E(n).

Proposition 3.3 dp- is invariant under Euclidean transformations.

Proof See Appendix

Let @ be the mapping defined from R" to B" by:

x
®: R*" — B 2~ —m—,
T+ ol 4
where || - || denotes the Euclidean norm in R™. ® is well-defined because, Vx € R™, we have:
[Edls
()| = ———5 < L 20
%) = 0)

Proposition 3.4 ® is an embedding of R™ into B".

Proof See Appendix [E|

3.3 PDEUNET NETWORK ARCHITECTURE

Our architecture (Fig. [I(a)) is based on a classical U-Net structure, as used for noise prediction in
DDPM Ho et al.| (2020), but we integrate our previously defined PDE layer in order to obtain a new
network that is equivariant with respect to the group E(n).

A diffusion U-Net typically consists of three main components: an encoder (Downsampling), a de-
coder (Upsampling), and a middle block (Middle Block). The latter, located between the encoder
and the decoder, corresponds to the lowest spatial resolution and the highest number of channels.
It plays a crucial role in merging, transforming, and refining the representations extracted by the
encoder before their reconstruction by the decoder. It often consists of residual blocks for deeper
feature extraction and may include an attention module to capture long-range dependencies. In
ED2RM, we propose a novel modification in the middle block. Specifically, we replace the clas-
sical ResNetBlocks, commonly used in standard U-Nets, with ResnetCDEBlocks. As illustrated
in Fig. [I{b), these blocks enhance predictive capacity while introducing explicit equivariance with
respect to the group E(n).

To the best of our knowledge, such a combination of a diffusion U-Net with residual blocks of
the CDE type (Convection, Dilation, and Erosion) has not yet been reported in the literature. This
architecture therefore represents an original contribution aimed at strengthening both the robustness
and expressiveness of diffusion models.

4 EXPERIMENTS

To evaluate the performance of our diffusion model on the MNIST and Rotated MNIST datasets,
we trained the model with a batch size of 64 images over a total of 60,000 iterations. Optimization
was performed using the Adam algorithm (31 = 0.9, 32 = 0.99) with a learning rate of 1 x 107%.
An Exponential Moving Average (EMA) update was applied every 10 iterations with a decay factor
of 0.995 to stabilize training and improve the quality of the generated images.

Test image generation was conducted every 100 samples, with each sample producing 25 images, in
order to monitor both the visual and quantitative evolution of quality. FID scores were computed at
each step over 2,500 images to assess the fidelity and diversity of the generated samples. We also
employed additional metrics to further evaluate both models.



In this study, we chose to compare our approach only with the baseline DDPM model. This choice
is motivated by two main reasons. First, DDPM is the foundational model of diffusion-based ap-
proaches and serves as a reference in the majority of works in the literature. It therefore provides
a relevant baseline for objectively evaluating the improvements introduced by our method. Second,
our objective is not to outperform all existing variants of diffusion models, but rather to quantify the
specific impact of incorporating equivariance and PDE-G-CNNs on the performance of the original
model. By restricting our comparison to this baseline, we are able to more rigorously isolate and
analyze the actual contribution of our approach.

In the following, we present the results in the form of tables and graphs, along with a set of generated
image samples from each dataset and using each model.
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(a) ED2RM: FID = 30.94 (b) DDPM: FID = 36.41

Figure 2: Generated samples using ED2RM vs. DDPM on MNIST.

Fig. 2] shows the samples with the best FID scores during training using ED2RM (Fig. [2a) and
DDPM (Fig. [2b). Visual inspection indicates that the quality of the generated samples is generally
similar, with respective FID scores of 30.94 and 36.41. These results suggest that the ED2RM model
achieves slightly better generation performance on the MNIST dataset.

We report on Table[T|the quantitative results obtained using different metrics, namely FID and mean
IS of the generated samples. Obtained ED2RM and DDPM Results show comparable performance
in terms of quality and diversity on MNIST. We can notice that ED2RM achieves a slightly lower
mean FID (45.14) compared to DDPM (46.91). In addition, Fig. [4a] illustrates the FID evolution
during training, and it highlights that ED2RM produces higher-quality samples during the first thirty
training steps. The DDPM model subsequently reaches a comparable level of quality after the
thirtieth step. This indicates that ED2RM converges faster towards generating high-quality samples,
while DDPM requires more iterations to reach similar performance.

Metric MNIST ROTOMNIST
ED2RM DDPM ED2RM DDPM
FID 45.14 46.91 49,30 173,44
IS 1.207 £ 0.242 1.207 £ 0.242 1.327 £ 0.175 1.298 £ 0.139

Table 1: ED2RM vs. DDPM on MNIST and ROTOMNIST.

On the RotoMNIST dataset, as shown in Fig. [3] the samples generated using ED2RM (Fig. [3a) ex-
hibit significantly higher quality, with an FID score of 35.75, whereas DDPM (Fig. presents a
much higher FID of 150.17. This discrepancy is further confirmed in Table [If which shows that
ED2RM achieves superior FID and IS values, demonstrating its ability to generate samples that are
both higher in quality and more diverse than those produced by DDPM.

Moreover, Fig. [4b] illustrating the FID evolution throughout the training steps on the RotoMNIST
dataset, highlights a substantial performance gap between the two models over the course of train-
ing. It can be observed that ED2RM effectively adapts to the RotoMNIST data and maintains a
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(a) ED2RM: FID = 35.75 (b) DDPM: FID = 150.17

Figure 3: Generated samples using ED2RM vs. DDPM on RotoMNIST.

performance level comparable to that achieved on the MNIST dataset. In contrast, DDPM fails to
sustain similar performance with an equivalent number of training steps.

In conclusion, both models achieve similar results on the MNIST dataset, although DDPM requires
more training steps to reach performance levels comparable to ED2RM. However, on the RotoM-
NIST dataset, DDPM does not maintain the performance observed on MNIST, while ED2RM pre-
serves nearly the same generation quality across both datasets. This stability can be attributed to
ED2RM’s inherent equivariance to group transformations.
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(a) FID evolution on MNIST (b) FID evolution on RotoMNIST

Figure 4: FID evolution during training using ED2RM vs. DDPM on MNIST and RotoMNIST.

5 CONCLUSION

We have proposed here an equivariant denoising diffusion model (ED2RM) that integrates morpho-
logical PDEs within group-equivariant CNNs on Riemannian manifolds. By leveraging convection
and Hamilton—Jacobi PDEs, the framework not only preserves key data symmetries—translations,
rotations, reflections, and permutations—but also enhances geometric feature extraction in the de-
noising process. Our experiments on MNIST and RotoMNIST confirmed that ED2RM achieves
faster convergence, superior FID scores, and improved robustness compared to standard DDPM,
particularly under geometric transformations. These results highlight the potential of combining
PDE-based equivariant architectures with diffusion models to produce more interpretable and re-
silient generative frameworks. Future work will explore real image synthetis and scaling ED2RM
to higher-dimensional datasets and extending its applicability to 3D shape generation and molecular
modeling.
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A DETAILS ON PROBABILISTIC DIFFUSION MODELS

The Forward Process

The Reverse Diffusion Process
Figure 5: Illustration of the forward noising process and the inverse denoising process.

Given observations x ~ ¢(z), the model operates on latent variables nq, . . ., ny of the same dimen-
sion as x, where ng corresponds to the observation x and nr represents standard Gaussian noise

(see Fig. ).

Forward Process. The forward process is Markovian; thus, for all ¢ € {0,...,T}, ns depends
only on n;_; and not on earlier variables ?:

q(ne | ne—1,me—2,...,n0) = q(ng | Ne—1) 21

Hence, the joint distribution of this process can be written as:

T
q(ni,na,...,nr [ no) = [[a(ne | ne-v) (22)
t=1

For any t > s, the transition distribution from step s to ¢ can be defined using the Gaussian reparam-
eterization of ?, considering a standard Gaussian ¢ ~ N(0, I). Thus, Equation (1)) can be rewritten

as:
ng = /oagng_1 +vV1—oe (23)

Consequently, for any ¢ > s, we have:

q(ne [ ng) = N(ng 2 \Jagssns, Tyys) (24)
with ay /g = HZ:SH a;and 'y /s = 1 — ;. Relative to the initial data ng:
q(ns | no) = N(ng : Vang, TT) (25)

wherea = [[|_, s andT =1 — &
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q(n¢|ni—1)
P(ng-1|ny)
Figure 6: Conditional distributions in the forward and generative processes of the diffusion model.

Inverse Generative Process. The generative process is also modeled as a first-order Markov
chain, i.e.,
P(Tlt_l | nt,nH_l,...,nT) :P(nt_l | nt) (26)

Thus, the joint distribution of the generative process can be written as:

pa(no T nt 1 | nt 27

n,’:]%

with P(nr) typically defined as standard Gaussian noise:

P(nr) = N(0,1) (28)

The true distribution is similarly defined as in Equation (eq:eq10):
P(ni_1 | ng,mo) = N(ng_1 : ji(ng, o), 521) (29)

Using the same reparameterization technique as in the forward case (see Equation (23)), we can
sample from a standard Gaussian € ~ A (0, I). Then, the mean in Equation (29) can be expressed

as:
1 r
fi(ne, mo) = @<nt— \/1_‘;%8) (30)

Similarly, an expression for pg(ny,t) in Equation (2)) is given. Since the learned denoising process
is defined from the true denoising process, we have:

1 I
po(ne, t) = \/77 (nt - \/l—tiatge(nht)) 31

where £9(ns,t) = ¢(ny, t) is the output of the neural network ¢ at iteration t.

Variational Lower Bound of the Likelihood. As mentioned earlier, diffusion models introduce a
sequence of latent variables. The data likelihood is written as:

po (no) = /pe (no, n1.T) dni.r.

Direct maximization of this likelihood is intractable; therefore, diffusion models optimize a varia-
tional lower bound (ELBO) on the data likelihood:

L :=Eqn,.rno)l0gpo (no | n1.7)] — KL(q (n1.7 | n0) || po (n1:7)) < logpe (no), (32)
where E[-] denotes expectation and KL(-||-) is the Kullback-Leibler divergence.
Expanding, we obtain an equivalent expression (see Ho et al.| (2020); Sohl-Dickstein et al.|(2015)):

L(0) = —KL(q (nr [ no) || p (nr)) ZKL q(ni—1 [ ne;no) || po (ne—1 | n))

+]Eq(n1:T\no)[logp9 (no | Tll)] .
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The ELBO must be maximized with respect to 6. The first KL divergence is independent of 6 and
can therefore be ignored during optimization. Hence, maximizing £ reduces to:
T

minié)mize ZKL(q (ni—1 | ne,m0) || po (ne—1 | 1t)) = Eg(nyirino) log po (no | n1)]. (33)
=2

This equation trains the inverse distribution pg(n:—1 | n¢) to match the true denoising distribution
q(n¢—1 | n¢,no) by minimizing their KL divergence. It can thus be used as a loss function for a
neural network parameterized by €, emphasizing the alignment between these two distributions.

In other words, optimizing the ELBO forces the model to learn a denoising process capable of
reversing the progressive diffusion of noise. Training consists of bringing the learned inverse process
pp closer to the true denoising process g, while maximizing the likelihood of the observed data.

B BACKGROUND ON MORPHOLOGICAL OPERATORS AND PDESs

Letd : R2 — R be a concave function, known also as the structuring function or convolution kernel.
Let us consider the subset IE of Z? and the function f : E — R.

Definition B.1 Morphological dilation and erosion are respectively defined as:

febla)= sgg[f (y) + b(z — y)] (34)
fOb(x) = inf[f(y) — by — 2)]. (35)

Let B C TE be a bounded set. A flat structuring function (SF) satisfies b(z) = 0 if z € B and
b(x) = —oc if € B€. The flat morphological dilation and erosion respectively write:

f®B(z)= Slelg[f(fv —y)land f & B(x) = inf[f(z +y)]. (36)

As for an interpretation, erosion shrinks positive peaks, and peaks thinner than the structuring func-
tion disappear. One has the dual effects for morphological flat dilation. Both the morphological
dilation and erosion are translation invariant.

Definition B.2 Let F be a family of real functions defined on Q2 C R2. We say that T : F — F is
said to be increasing (monotone) if and only if it satisfies:
Y f1, fa € F such that (f1 > fo on Q) implies (T'(f1) > T(f2) on Q).

Proposition B.1 Morphological dilation and erosion satisfy the following duality and adjunction
properties:

1. duality: f b= —(—f&b)
2. adjunction: (f1 ®b< foonE) <= (f1 < fo&bon E).

Let (b;)¢>0 the family of structuring functions defined by using the SF b, as follows:

th(x/t) fort >0
b(x) = 0 fort =0, 2=0
—oo  otherwise.

The family (b;);>0 satisfies the semi-group property:
V5,620, (bs ©b:)(2) = bsre(,y).

Definition B.3 Morphological multiscale dilations and erosions are defined as follows:

(f®b)(z) = sgg[f(y) +be(z — y)] (37)
(fob)(x) = ;g]g[f(y) —bi(y — z)]. (38)
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Considering flat structuring function (SF), morphological multiscale dilations and erosions are
obtained equivalently by considering B; = ¢t B as multiscale SFs.

The link between morphological scale-spaces and PDEs was established by running the following
PDE that performs multiscale flat dilations and erosions on a given image f Meyer & Maragos
(2000); \Schmidt & Weickert (2016):

Byu ||Vul = 0; u(-,0) = f. (39)
Depending on the shape of SF, different PDEs can be obtained. For instance, considering the sets
Sy ={x = (x1,22) € R?: |z|, < 1}, where ||, is the L” norm, one gets:

* for a square S1: Opu £ ||Vull; = 0; u(-,0) = f

o for a dis So: Gyu £ | Vull2 = 0; u(-,0) = f

* for arhombus So.: dyu £ ||Vulle = 0; u(-,0) = f.

Notice that PDE is a special case of first order Hamilton-Jacobi equation type, which can be
formulated in a more general form as follows:

Ou(z,t) B "
{ 5 + H (z,Vu(z,t)) =0on R"” x (0, +00) (40)
u(-,0) = fonR™

General Hamilton-Jacobi equation is studied in a viscosity sense, because there is no classical so-
lution for such equations. For a convex Hamiltonian H and some regularity on f, the viscosity
solution is given by Hopf-Lax formulas Barron| (2021)); |Donato| (2023):

ua.) = inf {f(y)—i—tL (x;y)} 1)

where L is the Lagrangian, defined as the Legendre-Fenchel transform of H.

C PROOF OF PROPOSITION [2_1]

For all x € (M, g), we refer to G-invariance of vector fields X : x +— T, M if V h € G and for all
differentiable functions f, one has:

X(z)f = X(on(@))[Lnf] 42)
Definition C.1 A vector field X on (M, g) is invariant with respect to G if V' h € G andV © €
(M, g), one has:

X(on(x)) = (on)sX (). 43)

Definition C.2 A (0, 2)-tensor field g on M is G-invariant if Vh € G,V € M and ¥ v,w €
T, (M), one has:

gln(v,w) = gle, () ((@n)v, (@z)w). (44)

It follows from Definition [C.2] that properties derived from metric tensor field G invariance and
vector field G invariance are the same.

Definition C.3 Ler (M, g) a connected Riemannian manifold, x,y € (M, g). The distance between
x and y is defined as follows:

dg(x inf / 45
olmy)=_ b )bl (45)
with Ty (z,y) = {7 :[0,t] — (M, g) of class C*,~(0) =z and ~v(t) = y}.

Definition C.4 The cut locus is defined as the set of points x € M (or h € G) from which the
distance map is not smooth (except at x or h).
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Proof Let us perform a left multiplication by % in one direction and by h~! in the other direction.
A bijection can then be established between C'! curves connecting z to y and connecting ¢y, () to
©n(y). Thus, we have:

t . .
dyn@anm) =t ol (B A0

t
- inf (A0, on (1))t with v € Ty(on (), on
ot oo (oG G 0) 7 € Tuon@). on(v)

t
= inf A1), (on) () ) dt
h’yel“f,(xoh(x),cph(y))/o \/g|h7(t)(((ph) ’7( ) (wh) ’y( ))
t
= inf Y(t),y(t))dt by equation |44
et / Jaho G040 y eq
t
— i / Vol G, 50)dt = dy(z,y) I
v €T(zy) Jo

D PROOF OF PROPOSITION [3.3]

Proof The case n = 2 is trivial. Let us prove the result for n = 3; the general case follows the
same way.

o Rotations and Reflections

Let {@, ¥, W} be an orthonormal basis of R?. Define Ry in this basis as:
-1 0 0
R=[ 0 cosf —sinf |, (406)
0 sinf cosf

which represents an anti-rotation by angle 6 around « (a composition of rotation and reflection).
Applying Ry to X = (x,y, z) yields:

—x
Ry X = (y cosf — zsin 9) . 47
ysinf + z cos b
Its Euclidean norm satisfies:
[Ro X" = ]| X%, (48)
and similarly ||Ry X — RyY'|| = || X —Y||. Substituting these into the expression for dgs, we obtain:
dps (Re X, RpY) = ds (X, Y). (49)

o Permutations

Let us represent the group of permutations of {1, 2, 3} as follows:

02(0(11) 0(22) U?S))’ (50)

with 0(1) = 2,0(2) = 3,0(3) = 1. It follows that ||c X | = || X|| and |[cX — oY || = | X = Y|,
hence:
das(0X,0Y) = dgs(X,Y). B (51)

E PROOF OF PROPOSITION

Proof ® is well-defined and continuous. Next, we show that ® is an injection and a C*-
diffeomorphism.
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e Injectivity of P

Let z,y € R™. We assume that ®(z) = ®(y), we need to show that x = y.

O(z) =

z y
(y) = =
VIHl2 1+ [yl
=l __ [yl :
VI+z2 o 1+l
= ||| = ||y|I?
==z =y.

Hence, @ is injective.
o C*-diffeomorphism property of ®:

For z = (z;)7_; € R™, we have

O(r) = ——r =< il ) : (52)
V14 z]? VIl ).,

Li

and we denote P; = ———— . Then:
N W= ATr
i(l)(x)— (Sij _ TiTj
Ox; VI+z?2 (14 [J2]?)%/?

where

1 ifi=j
0;i = ) 53
J {0 otherwise, (53)

is the Kronecker symbol. Thus, the Jacobian matrix of ® is:

1 TR x
V1 ] L+ |l
where ® denotes the tensor product. In R3, we obtain:
[J]|*
V1t z|?

which shows that Jg ) is invertible. Hence, @ is a diffeomorphism onto its image, and therefore, it
is an embedding of R™ into B". |}

det(Jp(p) =1— £0 VzeR3,

F ADDITIONAL QUALITATIVE RESULTS
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(a) ED2RM: FID = 45.07 (b) DDPM: FID = 178.49

Figure 9: Generated image samples from ED2RM and the standard DDPM on the RotoMNIST
dataset(Sample 30).
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Figure 10: Generated image samples from ED2RM and the standard DDPM on the RotoMNIST
dataset (sample 50).
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