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On the Importance of Expert Knowledge to Improve
Foundation Models for Retinal Fundus Images
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Abstract

Foundation models are currently revolutionizing the medical image analysis community.
Pre-trained on large data sources, such networks provide efficient transferability to down-
stream tasks. In this context, a myriad of foundation models leveraging large amounts of
general medical data and increasing network sizes are appearing in the literature. In this
short paper, we study the importance of incorporating domain-specific expert knowledge
during pre-training of specialized foundation models in the context of fundus retina im-
ages. In particular, we focus on introducing the expert knowledge-driven vision-language
model FLAIR (Silva-Rodriguez et al., 2023), comparing its benefits to larger-scale gener-
alists and domain-specific self-supervised models. The pre-trained model is available at:
https://github.com/jusiro/FLAIR .
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1. Introduction

Vision-language models (VLMs), particularly CLIP (Radford et al., 2021), exploit large
text-supervised data during pre-training. Nevertheless, natural image VLMs like CLIP may
not capture fine-grained features and class hierarchies of medical images, which might be
highly specialized concepts. Recently, medical VLMs have started to emerge. In particular,
generalist models aim to assemble different medical image modalities (mostly radiology), to
pre-train medical VLMs (Zhang et al., 2023). These datasets might contain limited data on
specific modalities, such as fundus retina imaging, where text information is scarce and most
datasets are categorically labeled. For this imaging modality, self-supervised pre-training
has been the quick-fix solution to develop domain-specific foundation models (Azizi et al.,
2023; Zhou et al., 2023). We argue that, even for categorically labeled images, VLMs are an
appealing solution to integrate domain-specific expert knowledge, such as the dependencies
between the categories, into visual representations.

2. Methods

FLAIR (Silva-Rodriguez et al., 2023) is a vision-language foundation model pre-trained at
an assembly of 38 fundus open-access datasets with 288K samples and 101 conditions. Dp =
{(Xn; Yn, Tn)}iyzl is composed of paired images, labels, and text descriptions, respectively.
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Vision-language-label pre-training. The architecture is composed by a vision encoder,
6, that projects images into L%-normalized features, u, and a text encoder, ¢, that analo-
gously produces normalized embeddings, v, from text descriptions. Pre-training consists of
optimizing both encoders in mini-batches, B, to align paired image and text descriptions
with the same label category, following the next contrastive objectives:
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where 7 € R, is a trainable scaling parameter, | - | denotes the cardinality of a set and
P, (i) and Py, (j) contain indices of similar-category subsets obtained by image labels.

Expert knowledge. Fundus datasets rarely contain text supervision. Therefore, we
introduce a mapping function, which generates domain expert knowledge descriptions from
the categorical labels based on clinical ophthalmology literature. This transformation maps
a given category, y*, to an ensemble of descriptions of relevant findings or inter-category
relationships such that {T*}¥ = 7mpg(y*). For example, a text description of category
“proliferative DR” would be “contains neovascularization”, while the category “ezudates”
could be described as “small white or yellowish-white deposits with sharp margins”.

3. Experiments

Datasets. A wide range of color fundus analysis tasks is addressed: diabetic retinopathy
grading using MESSIDOR (Decenciere et al., 2014) and DeepDRID (Liu et al., 2022), mul-
tiple diseases in FIVES (Jin et al., 2022), glaucoma detection in REFUGE (Orlando et al.,
2019), myopic maculopathy grading in MMAC (Li et al., 2024), and bi-disease differentia-
tion in FLAIR’s partitions 20x3 (Cen et al., 2021) and ODIRgpox3. The evaluation is carried
out using a 5-fold cross-validation with 20% of testing data and balanced average accuracy.

Baselines. We employ recently released foundation models. We include CLIP models
(Radford et al., 2021), vision-language models pre-trained on large natural image sources.
Also, we include a medical generalist model, i.e. BioMedCLIP (Zhang et al., 2023), pre-
trained on 15M heterogeneous medical image and text pairs. Also, RETFound (Zhou et al.,
2023), a domain-specific, self-supervised model for fundus retina images, is evaluated. This
model is pre-trained on 800K images via Masked Autoencoder loss.

Transferability. First, vision-language models are evaluated at Zero-Shot (ZS) classi-
fication, using an assembly of text prompts per class. Second, the transferability of the
pre-trained visual representations is assessed by Linear Probing (LP), using the same
multi-class logistic regression optimizer as in CLIP, i.e., L-BFGS (Nocedal, 1980). Finally,
we evaluate the effect of fully Fine-Tuning (FT) the pre-trained model on the target task.
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4. Results and discussion

Results. Table 1(a) shows that, albeit BiomedCLIP outperforms Zero-Shot CLIP, it
does not provide meaningful predictions on domain-specific fine-grained tasks. In contrast,
FLAIR largely outperforms such methods across all tasks. Regarding Linear Probing,
Table 1(b) delves into the limitations of generalist medical models such as BiomedCLIP,
which shows worse transferability than natural image pre-trained models. Interestingly, this
is also the case of the recently popularized RETFound. In contrast, FLAIR can be efficiently
adapted with a lightweight LP across all tasks, even if target diseases have not appeared used
during pre-training, e.g., ODIRggox3, or MMAC. Domain-specific self-supervised models
such as RETFound largely rely on Fine-Tuning during adaptation. We show in Figure
1 that this strategy might provide good results on in-distribution data, but potentially
deteriorate the generalization performance on OOD distributions (Kumar et al., 2022).

Table 1: Transferabilitity results.

(a) Zero-shot MESSIDOR FIVES REFUGE 20x3 ODIR200x3 MMAC Avg.
CLIP ViT-B/32 0.200 0.256 0.433 0.333 0.480 0.183 0.314
BiomedCLIP  ViT-B/16 0.207 0.415 0.624 0.617 0.583 0.274 0.453
FLAIR RN50 0.604 0.735 0.883 0.983 0.667 0.400 0.712

(b) Linear Probing

ImageNet RN50 0.424 0.741 0.733 0.983 0.887 0.631 0.733
CLIP ViT-B/32 0.491 0.800 0.720 0.950 0.917 0.642 0.753
BiomedCLIP  ViT-B/16 0.433 0.654 0.776 0.866 0.883 0.678 0.715
RETFound ViT-B/16 0.457 0.765 0.747 0.950 0.887 0.547 0.725
FLAIR RN50 0.719 0.879 0.843 1.000 0.935 0.740 0.852
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Figure 1: Fine-Tuning and Domain Generalization.

Discussion. Recently introduced foundation models based on large generalist medical
sources or unsupervised domain-specific pre-training fail to provide efficient transferability
on fine-grained fundus retinal diagnosis tasks. If such models require full Fine-Tuning,
they lose the underlying benefit of the foundation models: the data- and resource-efficient
adaptation to challenging clinical contexts. Thus, introducing available open-access domain-
specific knowledge via labels and text descriptions provides a more appealing direction.
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