
HELM: Hyperbolic Large Language Models
via Mixture-of-Curvature Experts

Neil He⋆ Rishabh Anand⋆ Hiren Madhu Ali Maatouk

Smita Krishnaswamy Leandros Tassiulas Menglin Yang† Rex Ying
Yale University, USA ⋆Equal Contribution

Open-source code: github.com/Graph-and-Geometric-Learning/helm

Abstract

Frontier large language models (LLMs) have shown great success in text modeling
and generation tasks across domains. However, natural language exhibits inherent
semantic hierarchies and nuanced geometric structure, which current LLMs do not
capture completely owing to their reliance on Euclidean operations such as dot-
products and norms. Furthermore, recent studies have shown that not respecting
the underlying geometry of token embeddings leads to training instabilities and
degradation of generative capabilities. These findings suggest that shifting to
non-Euclidean geometries can better align language models with the underlying
geometry of text. We thus propose to operate fully in Hyperbolic space, known for
its expansive, scale-free, and low-distortion properties. To this end, we introduce
HELM, a family of HypErbolic Large Language Models, offering a geometric
rethinking of the Transformer-based LLM that addresses the representational
inflexibility, missing set of necessary operations, and poor scalability of existing
hyperbolic LMs. We additionally introduce a Mixture-of-Curvature Experts model,
HELM-MICE, where each expert operates in a distinct curvature space to encode
more fine-grained geometric structure from text, as well as a dense model, HELM-
D. For HELM-MICE, we further develop hyperbolic Multi-Head Latent Attention
(HMLA) for efficient, reduced-KV-cache training and inference. For both models,
we further develop essential hyperbolic equivalents of rotary positional encodings
and root mean square normalization. We are the first to train fully hyperbolic
LLMs at billion-parameter scale, and evaluate them on well-known benchmarks
such as MMLU and ARC, spanning STEM problem-solving, general knowledge,
and commonsense reasoning. Our results show consistent gains from our HELM
architectures – up to 4% – over popular Euclidean architectures used in LLaMA
and DeepSeek with superior semantic hierarchy modeling capabilities, highlighting
the efficacy and enhanced reasoning afforded by hyperbolic geometry in large-scale
language model pretraining.

1 Introduction

Contemporary Large Language Models (LLMs) [18, 42, 9, 1] fundamentally operate within Euclidean
space. This manifests in their reliance on Euclidean operations such as dot products and norms
applied to token embeddings. However, this architecture presents a potential mismatch with the
intrinsic structure of natural language data. Existing works have shown that textual data, particularly
token inputs to LLMs, exhibit an inherent semantic hierarchy [48, 47, 21, 35], thus requiring a

†Correspondence Author; work done while at Yale University, USA.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Graph-and-Geometric-Learning/helm

space that can naturally accommodate these relationships. An ideal LLM architecture would possess
geometric alignment with the underlying structure of the data it aims to represent.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Ollivier-Ricci Curvature

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

Llama-2-7B
Gemma-2-2B
DeepSeek-MoE

Figure 1: Ricci curvature distribution of token embeddings
from decoder-only LLMs showing substantial variation of
negative curvature, implying higher local hyperbolicity.

To further illustrate the unique geometry of text data, we
show in Figure 1 the distribution of Ricci Curvature of
token embeddings from popular decoder-only LLMs on
1000 diverse samples from RedPajama [46]2. We ob-
serve that the vast majority of tokens exhibit a wide range
of negative curvatures. This has also been observed by
Robinson et al. [38], who investigate the subspace of to-
ken embeddings and its inherent non-Euclidean structure.
As Ricci curvature measures the local geometry of a man-
ifold, these empirical observations suggest hierarchical
token structures, while the variation in curvature values
suggest complex token geometry that cannot be captured
by single curvature approaches. Robinson et al. [38] also
show that not respecting the geometry of tokens will harm
a Transformer-based LLM’s generative capabilities while
introducing undue training instabilities. He et al. [21]
also document power law distributions of token frequencies, implying hierarchy among tokens. We
thus propose a geometric rethinking of the transformer-based LLM: operate fully in hyperbolic space,
where the negative curvature results in exponentially increasing volume w.r.t. distance. Hyperbolic
space is expansive, scale-free, and yields low distortion, and has shown success in numerous settings,
particularly in Transformer architectures [48, 5, 19, 6, 39]. It provides token embeddings more
“breathing room” in the network, better aligning with the underlying structure of the text data.

However, previous works that study hyperbolic Transformers and pre-trained models have several
major shortcomings: (1) Inflexible geometric spaces. They assign each Transformer block a
single hyperbolic manifold, embedding entire token sequences in fixed-curvature spaces. This
approach does not align with the observed substantial variant in curvature values as noted above, thus
limiting the expressiveness of hidden representations. (2) Lack of essential operations. They omit
widely-used LLM components such as rotary positional encoding and RMS normalization, and lack
theoretical guarantees of LLM modules in Euclidean settings; (3) Poor scalability. They focus on
low-dimensional settings and use quadratic hyperbolic self-attention mechanisms that do not scale
comparably to modern Euclidean foundation models [18, 10]. In this work, we address the limitations
of both Euclidean LLMs and prior hyperbolic Transformers through the following contributions:

• To alleviate limitation (1), we introduce hyperbolic Mixture-of-Curvature Experts (MICE), where
each expert operates in a distinct curvature space, enabling the model to encode fine-grained
geometric structure from text. The mixed-curvature strategy employed by MICE captures the
range of negative curvatures prevalent among token embeddings, mitigating previous hyperbolic
Transformers’ representational inflexibility.

• To resolve limitation (2), we introduce several novel hyperbolic modules to develop hyperbolic
LLMs: Hyperbolic Rotary Positional Encodings (HOPE) and Hyperbolic RMSNorm, bridging
the gap between hyperbolic Transformers and modern Euclidean LLMs. Additionally, we provide
extensive theoretical analysis that provides similar guarantees as in the Euclidean case.

• To address limitation (3), we propose Hyperbolic Multi-head Latent Attention (HMLA) to
perform efficient inference with a reduced-footprint KV cache and reduce active memory during
training, thereby bridging the scalability gap between previous hyperbolic Transformers and
current Euclidean LLMs.

• Finally, we introduce HELM, the first attempt at building a family of fully HypErbolic Large
Language Models. We are the first to train at billion parameter scale and outperform popular
Euclidean architectures on a diverse set of benchmarks.

2Ricci Curvature is a metric of how strongly or loosely connected a region of space is. The more negative the
curvature, the more hyperbolic the space is. We describe the metric in Appendix A.1.

2

2 Related Work

Hyperbolic Transformers. Hyperbolic geometry has emerged as a powerful embedding space
for representational learning, particularly in domains characterized by hierarchical and scale-free
structures [16, 34, 15]. Hyperbolic Neural Networks (HNN) [15] and their extension HNN++ [39]
have shown that operating in hyperbolic spaces increases representational capacity. Several works
have incorporated hyperbolic geometry into Transformers to better capture semantic relationships.
HAT [19], HNN++ [39], and HyboNet [5] all propose equivalent formulations of hyperbolic attention
in different models of hyperbolic space. HypFormer [48] developed several essential modules that
were lacking in previous works, showing improved performance for structured and hierarchical
datasets. Although work on hyperbolic pre-trained language models exist [6], they ignore essen-
tial components required to train large language models, such as normalization layers, residual
connections, roatry positional encodings. Furthermore, these works suffer from the limitations
mentioned in Section 1. Previous work have also considered mixed-curvature Transformers [7],
however, they only using different curvature values in each attention head and relying on tangent
space methods that are prone to mapping errors and numerical stability [5, 48, 20, 3]. Further related
works include LResNet [23] who introduces an efficient hyperbolic residual connection method
that mitigated numerical instability and tangent space mappings. Some works have devised hybrid
approaches by incorporating hyperbolic components to existing pre-trained Euclidean LLMs and
vision models [12, 36, 47, 17, 49, 31]. However, these works do not develop and pre-train hyperbolic
LLMs from scratch. Our work advances this line of research by developing and scaling hyperbolic
architectures to large-scale pretraining setups, and additionally introducing novel components for
efficient and expressive language modeling in hyperbolic space.

Open Large Language Models. The recent surge in open LLMs has democratized access to cutting-
edge NLP capabilities, enabling broader research and application development. Notable among
these is LLaMA [44], which introduced a family of efficient and powerful models trained on diverse,
large-scale corpora. Llama models employ several optimizations such as rotary positional embeddings
and grouped query attention, making them competitive across various downstream tasks. Building
on these ideas, Gemma [42] introduced further improvements for better data curation, advanced
pertaining techniques, and careful model scaling strategies. In parallel, Mixture-of-Experts (MoE)
architectures have emerged as a prominent design to enhance model capacity without a proportional
increase in computation cost. DeepSeek-MoE [11] introduces an efficient routing mechanism to
dynamically activate a subset of experts per input, significantly improving inference throughput
compared to other MoE models such as Mixtral [27]. However, all these models are inherently
Euclidean, and while effective, may not align well with the geometry of the token subspace.

3 Preliminary

We introduce the relevant background required to understand the building blocks of HELM, including
hyperbolic geometry, hyperbolic self-attention, and other useful hyperbolic modules.

3.1 Lorentz Hyperbolic Geometry
There are several isometric models of hyperbolic space employed in previous research [45, 19, 43,
34, 48, 5, 3]. In this study, we choose the Lorentz model: its special space-time interactions allow
for fully hyperbolic operations, offering enhanced expressiveness and empirical stability from an
optimization perspective [5, 48, 33]. Nevertheless, our methods can be easily reformulated for other
models of hyperbolic geometry via isometric mappings.

Lorentz model. An n-dimensional Lorentz model, denoted as LK,n, is a Riemannian manifold Ln
equipped with the Riemannian metric tensor gKn = diag(−1, 1, . . . , 1) and defined by a constant
negative curvature K < 0. Each point x ∈ LK,n has a parametrized form [xt,xs]

T , where xt ∈ R
is the time-like dimension and xs ∈ Rn is the space-like dimension. For points x,y ∈ LK,n, their
Lorentzian inner product ⟨x,y⟩L is given by ⟨x,y⟩L = −xtyt + xTs ys = xT gKn y. Hence, the
Lorentzian norm |∥x∥|L :=

√
|⟨x,x⟩L|. Formally, the point set Ln := {x ∈ Rn+1 : ⟨x,x⟩L =

1/K, xt > 0}. The origin o ∈ LK,n is the point [
√

−1/K, 0, . . . , 0]T .

Tangent space. The tangent space at a point x ∈ LK,n is set of points orthogonal to x, defined as
TxLK,n = {y ∈ Rn+1 : ⟨x,y⟩L = 0}. Notably, the tangent space is isomorphic to Euclidean space.

3

3.2 Hyperbolic Neural Network Modules
Extensive work has been done to develop hyperbolic neural network modules [48, 5, 3, 45, 23, 15,
39, 19], which we introduce below.

Lorentz Linear Layer. Given curvatures K1,K2, and parameters W ∈ R(n+1)×m and b ∈ Rm, the
Lorentzian linear transformation with curvature [48] is the map HLT : LK1,n → LK2,m given by,

HLT(x;W,b) =

√
K2

K1
·
[√

∥W⊤x+ b∥2 − 1/K2,W
⊤x+ b

]
. (1)

Lorentz Residual Connection. Let x, f(x) ∈ LK,n where x is an input vector and f(x) is the
output of a neural network f . Then, the Lorentzian residual connection [23] is given by,

x⊕L f(x) = α1x+ α2y, αi = wi/
(√

−K|∥w1x+ w2f(x)∥L|
)

for i ∈ {0, 1}, (2)

where α1, α2 are weights parametrized by constants (w1, w2) ∈ R2 \ {(0, 0)}.

Hyperbolic self-attention. Hyperbolic self-attention is defined equivalently in different models
through manifold midpoints [39, 19, 5]. Given T tokens X where xi ∈ LK,n, WQ,WK,WV ∈
R(n+1)×d, then the Lorentzian self-attention [5, 48] is given by

AttL(x)i =

∑T
j=1 νi,jvj√

−K|∥
∑T
l=1 νi,kvl∥|L

, where νi,j =
exp

(
−d2L(qi,kj)/

√
m
)∑T

l=1 exp (−d2L(qi,kl)/
√
m)

(3)

where dL is the Lorentzian distance and Q = HLT(X;WQ,bQ),K = HLT(X;WK,bK),V =
HLT(X;WV,bV) are the queries, keys, and values respectively.

4 Method

In this section, we propose several novel hyperbolic modules that serve as building blocks for HELM.
We then introduce the overall architecture of HELM: a Mixture-of-Curvature variant, HELM-MICE,
and a dense variant, HELM-D, for comparison.

4.1 Hyperbolic Rotary Positional Encoding

Previous works that proposed positional encoding methods in hyperbolic space [5, 48, 22] are
confined to only learning relative encodings. However, contemporary LLMs [18, 10, 4] have instead
shifted towards Rotary Positional Encodings (RoPE) [40], a scalable alternative that incorporates
aspects from both absolute and relative encoding methods, improving length generalization and
downstream performance. We thus propose a novel hyperbolic rotary positional encoding (HOPE)
to construct positional encodings in hyperbolic space, and prove the same theoretical guarantees
as RoPE. Given T tokens X, where xi ∈ LK,d (d even), let Q,K be the queries and keys as in
Equation (3). The hyperbolic rotary positional encoding applied to the i-th token is,

HoPE(zi) =

[√
∥Ri,Θ(zi)s∥2 − 1/K

Ri,Θ(zi)s

]
;Ri,Θ =


Ri,θ1 0 0 . . . 0
0 Ri,θ2 0 . . . 0
...

...
. 0

0 0 Ri,θd/2

 , (4)

where Ri,θl is the 2D rotation matrix parameterized by angle iθl and z can be a query qi or key kj .

Next, we study the theoretical aspects of HOPE; all proofs can be found in Appendix A. First note that
since Ri,Θ is an Euclidean rotation matrix, it isometrically preserves the (Euclidean) norm of vectors.
Given the definition of the Lorentz model (Section 3.1), an equivalent expression for Equation (4) is

HoPE(zi) =

(
1 0
0 Ri,Θ

)
zi, making HoPE a valid Lorentzian rotation operation (see, e.g., [5]).

Validity. A defining characteristic for the Euclidean RoPE is that the inner product of the encoded
keys and queries is a function of only the word embeddings and their relative position. Thus, only
the relative positional information is encoded [40]. For hyperbolic attention in Equation (3), the
analogous is defined with −d2L instead, which we formalize below.

4

Proposition 4.1. Let X be T tokens with xi ∈ LK,d. Let Q,K be queries and keys as in Equation (3).
Then −d2L (HoPE (qa) ,HoPE (kb))) = g(xa,xb; a− b) for some function g.

HOPE only encodes relative positional information based on Proposition 4.1 similar to RoPE, which
establishes its validity as a RoPE operation.

Long-term decay. A desiring property of RoPE is long-term decay, where the attention score between
a key-query pair decays when the relative position increases. HOPE has the same property as well, as
shown by the following proposition.

Proposition 4.2. Let Q,K be as defined in Equation (3), then the negative square Lorentz distance
−dL (HoPE (qi) ,HoPE(kj)) can be upper bounded by f(qi,kj)g(i − j) < 0, where f has no
dependencies on position, and g depends entirely on relative position and scales inversely w.r.t. i− j.

Thus, HOPE ensures far-apart tokens have weaker connections based on Proposition 4.2, a property
not guaranteed by previous learned encoding methods.

Robustness to arbitrary token distances. Barbero et al. [2] recently show that decaying token
dependency (Proposition 4.2) may not be the primary reason for RoPE’s success, but rather it enables
LLMs to attend to specific relative distances. Our formulation of HOPE also ensures this property:

Proposition 4.3. Let Q,K be as defined in Equation (3), then HOPE can be maximal at an arbitrary
distance, i.e., for any relative distance r ∈ Z, there exists a key kj such that the softmax value is
maximum at distance r.

HOPE thus provides hyperbolic transformers the flexibility to decay token dependencies while also
ensuring robust attention across arbitrary relative distances.

Positional attention. Barbero et al. [2] also prove that using RoPE can help capture purely positional
relationships via diagonal attention patterns, where tokens only attend to themselves, and off-diagonal
attention patterns, where tokens attend only to their preceding neighbor. HOPE also allows for this:

Proposition 4.4. Attention heads with HOPE can learn diagonal or off-diagonal attention patterns.

We provide ablations comparing HOPE to prior hyperbolic positional encodings in Appendix D.

4.2 Hyperbolic Mixture-of-Curvature Module
Previous hyperbolic Transformer architectures fix each block to a single hyperbolic manifold, forcing
the entire sequence to be embedded with a fixed curvature, restricting the flexibility of the hidden
representations. Mixture-of-Experts (MoE) [26] used in Euclidean LLMs [10, 30, 13, 27, 9], where
the model selectively activates only a subset of specialized "experts" for each token, enables LLMs to
learn more diverse data patterns while remaining computationally efficient. However, the experts
are still limited to one geometric space, restricting the collective granularity the experts can learn.
Accommodating variable curvatures calls for a more flexible treatment: we propose the first Mixture-
of-Curvature Experts (MICE) module, where each expert operates on a distinct curvature space.
Let xt ∈ LK1,n be the t-th token input, then MiCENs

Nr
: xt ∈ LK,n → xt ∈ LK,n, where Nr is the

number of routed experts and Ns is the number of shared experts. First, we pass xt through a gating
module to obtain the gating scores for each routed expert, denoted as gt,i for 1 ≤ Nr, given as,

gt,i =
g′t,i∑Nr

j=1 gt,j
; st,j = act((xt)

⊤
s yj); g

′
t,j =

{
st,j , st,j ∈ Topk({st,k}k≤Nr ,Kr)

0 otherwise . (5)

Here, st,j is the token-expert affinity with activation function act, yj is the centroid vector of
the i-th routed expert, Topk(S,A) picks the top A values from set S, and Kr is the number of
activated experts. Then, the token is passed through each shared and routed expert. Let HFFNr,i :
LKr,i,m → LKr,i,m be the routed experts and HFFNs,i : LKs,i,m → LKs,i,m be the shared experts,
defined through hyperbolic feedforward networks. Here, the value of Kr,i and Ks,i can vary for
each expert, i.e., each expert lives on a distinct manifold. To align the input’s manifold and the
experts’ manifolds, first we project the tokens to the expert manifolds via st,i =

√
K/Ks,ixt and

rt,i =
√
K/Kr,ixt. The projected token is passed through each expert and projected back to the input

manifold, where we obtain yt,i =
√
Ks,i/KHFFNr,i (st,i) and zt,i =

√
Kr,i/KHFFNr,i (rt,i).

5

(a) MICE module architecture. Routed experts are
selected through a gating module. The token are
project from input manifold to expert manifold and
then passed through each expert. The output of each
expert are then project back to the input manifold and
merged together through Lorentzian centroid. This
modules allows experts to learn from distinct curva-
ture spaces to allow for more granularity.

(b) HMLA framework. The embeddings are
projected into latent space and then upward
projected into queries, keys, and values. Ad-
ditional decoupled queries and a shared key
are created for hyperbolic positional encoding
through HOPE. The queries and keys are con-
catenated together before performing hyperbolic
self-attention.

Figure 2: Mixture-of-Curvature Experts (MICE) and hyperbolic Multi-Head Latent Attention
(HMLA).

The output of MiCENs

Nr
is given by,

MiCENs

Nr
(xt) = xt⊕L

(∑Ns

i=1 yt,i +
∑Nr

i=1 zt,i√
−K|∥

∑Ns

i=1 yt,i +
∑Nr

i=1 zt,i∥|L

)
. (6)

The constants
√
Ks,i/K,

√
Kr,i/K project from the experts’ manifolds to the input manifold,

ensuring that the output of each shared and routed expert lives on the same manifold. The outputs
are then combined through the Lorentzian centroid [29], before performing a Lorentzian residual
connection. Note that MICE is indeed a valid hyperbolic module, which we expand on in Appendix B.

4.3 Efficiency via Hyperbolic Multi-Head Latent Attention

Previous hyperbolic Transformers for natural language applications focus mainly on hyperbolic self-
attention, synonymous to naive dot-product attention mechanism in Euclidean LLMs. However, recent
Euclidean LLMs have gradually adopted more efficient attention methods for enhanced scalability.
The quadratic attention mechanism and the extant hyperbolic self-attention formulation suffer from
heavy memory challenges for large-scale training. In this section, we propose hyperbolic Multi-Head
Latent Attention (HMLA) to alleviate this bottleneck. Inspired by Euclidean MLA [11, 10], HMLA
reduces the size of the KV cache during inference and the active memory consumption during training.
We provide a high-level description of HMLA; detailed formulation can be found in Appendix B.2.

Let xt ∈ LK,nhn be the t-token, where n is the embedding dimension and hn is the number of heads.
First, we project xt via HLT to latent queries and key-value vectors, obtaining cQt , c

KV
t of dimen-

sions nq, nkv respectively such that nq, nkv ≪ nhn. We then upward-project the latent vectors back
to hn heads of dimension n each via HLT, obtaining [kCt,i]i≤hn

, [vCt,i]i≤hn
from cKVt , and [qCt,i]i≤hn

from cQt . Then the projected keys are processed by positional encodings. Following previous works
[11, 10], as RoPE is incompatible with MLA due to position coupling, we employ a decoupled
HOPE scheme with HMLA. Through HLT, we project cQt to additional query vectors, [qRt,i]i≤hn

,
and cKVt to a shared key, kRt , of dimension nrhn and nr respectively (nr ≪ nhn). The queries
vectors, qCt,i,q

R
t,i, and the key vectors, kCt,i,k

R
t , are then concatenated together through Lorentzian

concatenation [37, 48] for each i, where we obtain the final query and key vectors qt,i,kt,i. The atten-
tion score and output are computed using Equation (3) with [qt,i]t≤hn

, [kt,i]t≤hn
, [vCt,i]t≤hn

as the
queries, keys, and values, before concatenating all the heads together with Lorentzian concatenation.
The concatenated result is passed through a final projection layer with HLT.

Memory complexity. During inference, HMLA only requires caching the latent key-value pairs.
As a result, the memory footprint for HMLA is O((nkv + nr)L), where L is the number of layers.

6

INPUT

Text tokens

H
yp

er
bo

lic
Em

be
dd

in
gs

Hyperbolic
Multi-head Latent

Attention

Hyperbolic
Multi-head
Attention

or

Lo
re

nt
z

R
M

S
N

or
m

Lo
re

nt
z

R
M

S
N

or
m

Mixture-of-
Curvature

Experts (MiCE)

Hyperbolic
Feed-Forward

Network

or Lo
re

nt
z

R
M

S
N

or
m

Lo
gi
ts

Figure 3: HELM architecture. The input tokens are mapped to hyperbolic word embeddings before
being processed by a series of L decoder blocks, comprising an attention block and an FFN block.
The attention block (blue) can either be hyperbolic self-attention or HMLA, while the FFN block
(yellow) can either be a HFFN or MICE layer. The output of the decoder blocks is mapped to logits.
Residual connections are omitted for brevity.

In contrast, the hyperbolic self-attention used in previous hyperbolic Transformers (Equation (3))
requires storing the full-sized keys and values, resulting in a memory complexity of O(2nnhL). By
choosing nkv, nr ≪ nnh, we have (nkv+nr) ≪ 2nnh, resulting in a significantly smaller memory
footprint while maintaining the same time complexity of O((nnh)

2). Additionally, the latent query
projection also results in smaller active footprint during training. This collective mechanism enables
far greater scalability.

4.4 Hyperbolic RMSNorm

Previous works have not implemented hyperbolic root mean square normalization (RMSNorm),
which is widely used in popular Euclidean LLMs [18, 11, 10] due to its stability and robustness in
both forward and backward passes. Here, we propose hyperbolic RMSNorm to fill the gap:

RMSNormL(x) =
[√

∥RMSNorm(xs)∥ − 1/K,RMSNorm(xs)
]⊤

. (7)

Here, RMSNorm denotes the corresponding Euclidean operation. Equation (7) is equivalent to
passing RMSNorm into the HRC functions from Hypformer [48]. This formulation is chosen over
other methods of defining normalization layers through hyperbolic midpoint and tangent space
operations [45, 3] for better numerical stability and computational efficiency.

Invariance to input scaling. Our formulation of hyperbolic RMSNorm is invariant to a scaling of
inputs, giving us similar guarantees as Euclidean RMSNorm in terms of gradient stability during
backpropagation and enhanced robustness to perturbations. We provide proofs for these guarantees
in Appendix A.7.

Proposition 4.5. RMSNormL is invariant to scaling of inputs x during both the forward and
backward passes.

4.5 Overall Architecture for Hyperbolic Large Language Models (HELM)

We introduce the framework for hyperbolic LLMs (HELM) based on the modules we introduced and
developed in Section 4. In particular, we develop hyperbolic LLMs with Mixture-of-Curvature
Experts (HELM-MICE), a class of hyperbolic LLMs with MoE modules where each expert functions
in a distinct curvature space. We also construct hyperbolic dense LLMs (HELM-D), which
resembles classic decoder-only LLMs such as Llama [18].

The overall architecture is as follows (see Figure 3): tokenized text is first mapped to learned
hyperbolic word embeddings, which are then passed through a series of hyperbolic decoder blocks,
each consisting of two components: 1) the attention component, where the embeddings are normalized
by a RMSNormL layer, then processed by an attention block such as HMLA or self-attention, and
finally added to the embeddings through Equation (2); and 2) the HFFN component, where the
processed embeddings are again normalized by RMSNormL before being passed through a HFFN
block and residually added to the output of the attention block (Equation (2)). For HELM-MICE, the

7

Table 1: Multichoice question-answering accuracy (%) of HELM models and their Euclidean
counterparts. Bold denotes highest accuracy and underline denotes second-highest. HELM models
consistently outperform their Euclidean counterparts, with HELM-MICE achieving the highest
accuracy overall. The 100M model performances are average over 3 runs.
Model # Params CommonsenseQA HellaSwag OpenbookQA MMLU ARC-Challenging Avg

0-Shot 0-Shot 0-Shot 5-Shot 5-Shot -

LLAMA 115M 20.9± 0.3 25.1± 0.3 25.4± 0.2 23.4± 0.5 21.0± 0.2 23.2± 0.2
HELM-D 115M 20.3± 0.2 25.9± 0.1 27.1± 0.4 25.6± 0.2 21.4± 0.3 24.1± 1
DEEPSEEKV3 120M 19.3± 0.2 25.3± 0.1 24.0± 0.4 23.9± 0.3 22.2± 0.3 22.2± 0.1
HELM-MICE 120M 19.7± 0.3 25.9± 0.2 27.7± 0.4 24.4± 0.2 23.2± 0.5 24.1± 0.1
DEEPSEEKV3 1B 19.5 26.2 27.4 23.6 22.7 23.9
HELM-MICE 1B 19.8 26.5 28.4 25.9 23.7 24.9

HFFN block can either be a dense block such as HFFNSG or a MICE block as defined in Section 4.2,
where HFNNSG is a hyperbolic SwiGLU FFN we built to be consistent with Euclidean LLMs (see
Appendix B.3 for details). HELM-D contains only dense HFFN layers. The output of the final
decoder block is then normalized once again before projected to logits for next-token prediction.

5 Experiments

We evaluate both HELM variants’ ability to answer MCQ questions in two popular benchmarks,
MMLU [24] and ARC [8]. Additionally, we train an ablation HELM-MICE with constant curvature
across experts, comparing with HELM-MICE models with varying curvature across experts.

Runtime, Memory, and additional experiments. One common concern for hyperbolic models
is that they could incur significant computational overhead when compared with their Euclidean
counterparts. HELM models are within 1.55X in runtime and 1.11X in memory usage of the Euclidean
counterparts for both the 100M and 1B models. Additional details are shown in Appendix D. We also
show additional ablation and comparison with prior hyperbolic language models, for tasks such as
machine translation, in Appendix D.

5.1 Multichoice Benchmarking

We evaluate both HELM-MICE and HELM-D at 100M-parameter scales, across a variety of
benchmarks spanning STEM problem-solving, general knowledge, and commonsense reasoning.
The dense models also serve as an ablation comparison with the MICE models. We further scale
the HELM-MICE to 1B parameters as the smaller HELM-MICE model outperformed HELM-D
overall. Additional details regarding implementation and datasets can be found in Appendix B.

Training Setup. We use the LLaMA3.1-8B tokenizer [18] for all models, with a vocabulary size
of 128K. For HELM-D, we use hyperbolic self-attention and HFFNSG for the decoder block. We
use 6 heads and 6 layers for the 100M model. For HELM-MICE, we use HMLA and a mixture of
dense and MICE layers, each with 2 active experts and one shared expert. We use 6 heads, 6 layers,
and 4 experts per layer for the 100M model, and we use 14 heads, 16 layers, and 8 experts per layer
for the 1B model. The experts have curvature initiated uniformly from −0.1 to −2.0. Additionally,
we incorporate the auxiliary-loss-free load balancing scheme and complementary sequence-wise
auxiliary loss from DeepSeekV3 [10] to encourage load balancing among the experts. Each model
was trained on a cluster of 4 NVIDIA A6000 and 4 NVIDIA A800 GPUs with model and data
parallelism, where at most 4 GPUs were used by each model.

We use the English portion of the Wikipedia dataset [14] for training, comprising ∼6.4M rows of raw
text, or roughly 5B tokens.

Hyperbolic word embedding. Previous works [5, 39] directly map input tokens to trained hyperbolic
embeddings. However, we experienced model instability when training the 1B models with this
method. Therefore, we only train the space-like dimension of the Lorentz word embeddings.

Baselines. We test against two popular Euclidean models: one dense model and one MoE model. For
the dense model, we test HELM-D against LLaMA [18]. For the MoE model, we test HELM-MICE
against DeepSeekV3 [10]. We train both baselines from scratch at the same parameter scales as their
HELM counterparts, with the same dataset, tokenizer, and training setup.

8

Table 2: Ablation accuracy, where we compare HELM-MICE with a variant where all experts have
the same curvature value, denoted as MICE-CONST. Bolding denotes the highest accuracy and
underline denotes the second-highest. Euclidean DEEPSEEKV3 results are shown for reference.
Overall, HELM-MICE consistently achieves the highest accuracy, while both hyperbolic models
still outperform the Euclidean counterpart.
Model # Params CommonsenseQA HellaSwag OpenbookQA MMLU ARC-Challenging Avg

0-Shot 0-Shot 0-Shot 5-Shot 5-Shot -

DEEPSEEKV3 120M 19.2 25.2 23.4 24.2 21.8 22.8
MICE-CONST 120M 20.0 25.6 27.0 23.5 22.3 23.7
HELM-MICE 120M 19.7± 0.3 25.9± 0.2 27.7± 0.4 24.4± 0.2 23.2± 0.5 24.1± 0.1

Benchmarks. We evaluate on a variety of benchmarks, including STEM and general knowledge
reasoning benchmarks such as MMLU [24], ARC-Challenging [8], and OpenbookQA [32], and
commonsense reasoning benchmarks such as CommonsenseQA [41] ,such HellaSwag [50]. For
MMLU and ARC, we use 5-shot predictions. For CommonsenseQA, OpenbookQA, and HellaSwag,
we use 0-shot prediction.

Results. The results are shown in Table 1. We report the accuracy of the models’ abilities to answer
multiple choice questions from the benchmarks. We mainly focus on comparing models within the
same architectural sub-family, i.e., dense models and MoE models are separately tested against each
other. Both HELM variants consistently outperform their Euclidean counterparts. In particular, the
smaller HELM-D model achieves higher accuracy than LLaMA on four out of the five benchmarks,
whereas the smaller HELM-MICE model outperforms the smaller DeepSeekV3 model on all five
benchmarks. When comparing the ∼100M-scale HELM-D and HELM-MICE models, the latter
achieves comparable performance despite using overall significantly fewer active parameters. This
reflects the effectiveness of using more flexible geometry. For the larger 1B-parameter models,
HELM-MICE consistently outperforms the 1B DeepSeekV3 model, achieving the highest accuracy
overall. While we don’t provide standard deviation from multiple runs for the 1B models as is typical
of models this size, we provide results of model performance across different stages of training in
Appendix D and show that HELM-MICE consistently outperform its Euclidean counterpart.

In all cases, the hyperbolic LLMs achieve better overall scores across the five benchmarks. The
HELM models also always achieve higher accuracy on the more difficult reasoning benchmarks,
namely MMLU and ARC-Challenging. This suggests better reasoning capability afforded by in-
corporating more suitable geometries in the embedding space. Overall, our results demonstrate the
superiority of hyperbolic LLMs – in particular, the Mixture-of-Curvature Experts framework – in
answering complex multiple-choice questions across a wide range of domains.

5.2 Ablating Distinct Curvature Learning with HELM-MICE

To assess the effectiveness of each expert operating in a distinct curvature space, we train a 120M-
parameter HELM-MICE model where the curvature of each expert is fixed to −1.0, which we denote
as MICE-CONST. Consequently, MICE-CONST embeds the entire token sequence into a fixed space
of curvature −1.0 similar to a dense model. MICE-CONST is trained with the same setup as the
preceding models. We show the results in Table 2. HELM-MICE outperforms the constant-curvature
MICE-CONST in 4 out of the 5 benchmarks and achieves the higher overall accuracy, demonstrating
the effectiveness of learning more expressive presentation by setting each expert to learn within a
distinct manifold. Notably, MICE-CONST still outperforms the Euclidean DeepSeekV3 baseline
on all 5 of the benchmarks, further demonstrating the effectiveness of hyperbolic LLMs over their
Euclidean counterparts. We don’t provide statistics for ablation baselines due to the need for excessive
compute. Nevertheless, the results remain statistically significant as demonstrated in Table 2.

5.3 Qualitative Studies on Semantic Hierarchy Modeling

In this section, we qualitatively access the ability of HELM to model semantic hierarchy against
its Euclidean counterparts. Our investigation of final-layer embedding distributions have found that
HELM learns representations where more generic words tend to cluster in areas of smaller norm and
more specific words tend to have larger norms. In Table 3, we provide case studies for HELM-MICE
1B and DeepseekV3 1B, where we show embedding norm in the final layers for words of varying

9

Table 3: Case study investigate of embedding norm in the final layer of HELM (1B) and DeepseekV3
(1B). Top: embedding norm of words of varying levels of specificity; Bottom: embedding norm of a
question taken from the MMLU benchmark. For HELM-MICE, more generic words are clustered
closer to the origin than more specific words, which has a smaller norm than even more specific
words. However, this does not necessarily hold for the DeepseekV3 1B model.

Words HELM-MiCE DeepseekV3

Average Norm Range Average Norm Range

to, in, have, that, and, is, for 35.930 35.890~35.951 33.725 33.660~33.800
study, research, subject, papers, category 36.080 36.030~36.033 33.735 33.668~33.776
biology, physics, chemistry, mathematics, com-
puter science

36.155 36.033~36.270 33.720 33.658~33.776

algebra, geometry, photosynthesis, cellular respira-
tion, genetics

36.288 36.133~36.484 33.741 33.622~33.826

HELM-MiCE DeepseekV3

Words Norm Range Words Norm Range

A, How, does, if, there, have, is, any, with, of 36.031~36.396 is, a, connecting, graph, there, edges, complete,
have, of

33.668~33.768

discrete, vertices, edges, connecting, pair, graph,
complete, many, 10

36.506~36.717 discrete, 10, how, if, pair, does, with, A, vertices,
any

33.772~33.908

levels of specificity (top table) and for a sample question taken from the MMLU benchmark. For
HELM-MiCE, more generic words (e.g., subject) are clustered closer to the origin than more specific
words (e.g., biology), which has a smaller norm than even more specific words (e.g., photosynthesis).
However, this does not necessarily hold for the DeepseekV3 1B model, demonstrating how HELM-
MiCE better handles semantic hierarchies. We will provide low-dimensional visualization of these
embeddings in our revision. The hierarchical organization of the space enables the HELM models to
sometimes better navigate the embedding space and obtain better performance.

6 Conclusion

In this work, we introduce HELM, a family of fully hyperbolic large language models trained
at hundred-million and billion-parameter scales. Operating entirely in hyperbolic space, HELM
models are better aligned with the variable geometric structure of text and token distributions.
We develop MICE modules to construct HELM-MICE variants, enabling fine-grained geometric
learning and more expressive and geometrically flexible hidden representations. We further introduce
HMLA mechanism to enable HELM models to be memory efficient and improve scalability. We
also introduce the HOPE and RMSNORML modules, which are fundamental to building modern
hyperbolic LLMs, and support them with extensive theoretical analysis and guarantees. Trained on
5B tokens, HELM models outperform their Euclidean counterparts across benchmarks in STEM
reasoning, commonsense reasoning, and general knowledge. Nevertheless, the research presented
has a few limitations. Due to computational constraints, our experiments only compare HELM to
Euclidean LLMs trained on the same 5B tokens, which have less representational capacity when
compared to the commercially available LLMs trained on much more extensive data [4, 1, 18, 42, 10].
Additionally, we chose the Wikipedia dataset for its widely accepted reliability. However, the trained
models might be under-exposed to areas such as mathematical reasoning as a result. Future work
could explore incorporating scaling laws [28, 25] for hyperbolic LLMs across larger compute and
data frontiers to investigate their potential.

Acknowledgments

This work was supported in part by the National Science Foundation (NSF) IIS Div Of Information
& Intelligent Systems 2403317 and Army Research Office contract W911NF-23-1-0088. We also
acknowledge support in part from the Silicon Valley Community Foundation, an Amazon research
award, the Yale AI Engineering Research Grant from Yale Office of the Provost, and an LEAP-U
Sponsored Research from Samsung Research America. Moreover, this research has greatly benefited
from the discussions and research talks held at the IMS-NTU Joint Workshop on Applied Geometry
for Data Sciences. We also thank Ngoc Bui (Yale Univeristy) for useful feedback and discussion.

10

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar
Veličković. Round and round we go! what makes rotary positional encodings useful?, 2025.
URL https://arxiv.org/abs/2410.06205.

[3] Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural
networks for computer vision. In ICLR, 2024.

[4] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022.

[5] Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie
Zhou. Fully hyperbolic neural networks. arXiv preprint arXiv:2105.14686, 2021.

[6] Weize Chen, Xu Han, Yankai Lin, Kaichen He, Ruobing Xie, Jie Zhou, and Zhiyuan Liu.
Hyperbolic pre-trained language model. IEEE TASLP, 32, 2024.

[7] Sungjun Cho, Seunghyuk Cho, Sungwoo Park, Hankook Lee, Honglak Lee, and Moontae Lee.
Curve your attention: Mixed-curvature transformers for graph representation learning. arXiv
preprint arXiv:2309.04082, 2023.

[8] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[9] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi
Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo,
Chong Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert
specialization in mixture-of-experts language models. CoRR, abs/2401.06066, 2024. URL
https://arxiv.org/abs/2401.06066.

[10] DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

[11] DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

[12] Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakr-
ishna Vedantam. Hyperbolic image-text representations. In ICML, pages 7694–7731. PMLR,
2023.

[13] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23:1–40, 2022.

[14] Wikimedia Foundation. Wikimedia downloads. URL https://dumps.wikimedia.org.

[15] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In
NeurIPS, pages 5345–5355, 2018.

[16] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for
learning hierarchical embeddings. In ICML, pages 1646–1655. PMLR, 2018.

[17] Songwei Ge, Shlok Kumar Mishra, Simon Kornblith, Chun-Liang Li, and David Jacobs. Hyper-
bolic contrastive learning for visual representations beyond objects. ArXiv, abs/2212.00653,
2022.

11

https://arxiv.org/abs/2410.06205
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://dumps.wikimedia.org

[18] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al.
The llama 3 herd of models. arXiv:2407.21783, 2024.

[19] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic
attention networks. In ICLR, 2019.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[21] Neil He, Jiahong Liu, Buze Zhang, Ngoc Bui, Ali Maatouk, Menglin Yang, Irwin King,
Melanie Weber, and Rex Ying. Position: Beyond euclidean–foundation models should embrace
non-euclidean geometries. arXiv preprint arXiv:2504.08896, 2025.

[22] Neil He, Menglin Yang, and Rex Ying. Hypercore: The core framework for building hyperbolic
foundation models with comprehensive modules. arXiv preprint arXiv:2504.08912, 2025.

[23] Neil He, Menglin Yang, and Rex Ying. Lorentzian residual neural networks. In KDD, 2025.

[24] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

[25] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.org/
abs/2203.15556.

[26] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.
79.

[27] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
and et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[28] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

[29] Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. Lorentzian distance learning for
hyperbolic representations. In ICML, pages 3672–3681. PMLR, 2019.

[30] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations (ICLR), 2021.

[31] Paolo Mandica, Luca Franco, Konstantinos Kallidromitis, Suzanne Petryk, and Fabio Galasso.
Hyperbolic learning with multimodal large language models. arXiv preprint arXiv:2408.05097,
2024.

[32] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, pages 2381–2391.
Association for Computational Linguistics, 2018.

[33] Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of
hyperbolic representation learning, 2024. URL https://arxiv.org/abs/2211.00181.

[34] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In NeurIPS, pages 6338–6347, 2017.

12

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2211.00181

[35] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In ICML, pages 3779–3788, 2018.

[36] Avik Pal, Max van Spengler, Guido Maria D’Amely di Melendugno, Alessandro Flaborea, Fabio
Galasso, and Pascal Mettes. Compositional entailment learning for hyperbolic vision-language
models. ICLR, 2025.

[37] Eric Qu and Dongmian Zou. Autoencoding hyperbolic representation for adversarial generation.
arXiv preprint arXiv:2201.12825, 2022.

[38] Michael Robinson, Sourya Dey, and Shauna Sweet. The structure of the token space for large
language models, 2024. URL https://arxiv.org/abs/2410.08993.

[39] Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In ICLR,
2020.

[40] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

[41] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A
question answering challenge targeting commonsense knowledge. In NAACL, pages 4149–4158,
2019.

[42] Gemma Team. Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024. URL https://arxiv.org/abs/2403.08295.

[43] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic
word embeddings. arXiv preprint arXiv:1810.06546, 2018.

[44] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[45] Max van Spengler, Erwin Berkhout, and Pascal Mettes. Poincaré resnet. CVPR, 2023.

[46] Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexan-
drov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul
Chalamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish,
and Ce Zhang. Redpajama: an open dataset for training large language models, 2024. URL
https://arxiv.org/abs/2411.12372.

[47] Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. Hyperbolic
fine-tuning for large language models. ICML LLM Cognition Workshop, 2024.

[48] Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying.
Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD, pages 3770–
3781, 2024.

[49] Yun Yue, Fangzhou Lin, Kazunori D. Yamada, and Ziming Zhang. Hyperbolic contrastive
learning. arXiv preprint arXiv:2302.01409, 2023.

[50] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In ACL, pages 4791–4800, 2019.

[51] Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https:
//arxiv.org/abs/1910.07467.

13

https://arxiv.org/abs/2410.08993
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2411.12372
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467

Appendix
A Proofs and Details of Theoretical Results 14

A.1 Ollivier-Ricci Curvature . 14

A.2 HOPE is a Lorentz Rotation . 15

A.3 Proposition 4.1: HOPE is a function of embeddings and relative position only . . . 15

A.4 Proposition 4.2: HOPE decays with increasing relative position 16

A.5 Proposition 4.3: HOPE enables tokens to attend across distances 17

A.6 Proposition 4.4: Attention heads with HOPE learn special positional patterns . . . 17

A.7 Proposition 4.5: Invariance guarantees of Hyperbolic RMSNorm 19

B Additional Details 20

B.1 MICE as a Lorentzian Module . 20

B.2 Hyperbolic Multi-Head Latent Attention . 20

B.3 Hyperbolic SwiGLU Feedforward Network . 21

C Training and Evaluation Details 21

C.1 Models Setup . 22

C.2 Training Details . 22

C.3 Evaluation Details . 23

D Ablation Studies and Additional Experiments 23

D.1 Runtime and memory usage analysis . 23

D.2 Comparison with Prior Hyperbolic Language Models 24

D.3 Ablation for HMLA . 24

D.4 Ablation for HOPE . 25

D.5 Performance over Training Stages . 25

A Proofs and Details of Theoretical Results

A.1 Ollivier-Ricci Curvature

Ricci curvature is a geometric object that measures average geodesic dispersion on a Riemannian
manifold, i.e., whether straight paths on a surface remain parallel (zero curvature), converge (positive
curvature), or diverge (negative curvature). Ollivier-Ricci curvature is the discrete analog for graphs
that do not have a notion of tangent structure.

Suppose we have a graph G(V,E). For a node i ∈ V , we define probability measures µi by:

µi(j) =

{
1

deg(i) (i, j) ∈ E

0 otherwise.

For i, j ∈ V , the Ollivier-Ricci curvature is given by,

κG(i, j) = 1− WG
1 (µi, µj)

d(i, j)
.

14

Here, WG
1 is the 1-Wasserstein distance between measures, µi and µj . Intuitively, the curvature

is defined as random walks between i and j. If the random walks tend to stay at equal distances,
κ(i, j) = 0; if they diverge, κ(i, j) < 0; and if they converge, κ(i, j) > 0. Since curvature is a local
property of a Riemannian surface, for graphs, we examine local neighborhoods with a step size of 1.
We thus choose µi(j) = 1

deg(j) if (i, j) ∈ E, otherwise 0.

In our preliminary analysis of popular decoder-only LLMs (Figure 1), we draw k-nearest-neighbors
graphs with the final-layer token embeddings for a collection of prompts from RedPajama [46] to
ascertain their geometric structure. We observe a high variability of negative curvature values across
tokens, hinting at their non-Euclidean nature. Robinson et al. [38] further allude to the non-Euclidean
token subspace, necessitating language models that can accommodate this unique geometry.

A.2 HOPE is a Lorentz Rotation

Here, we expand on HOPE being a Lorentz rotation. Since Ri,Θ is a Euclidean rotation, we have
∥z∥ = ∥Ri,Θz∥. Then, since for any Lorentz vector z ∈ LK,n we have zt =

√
−1/K + ∥zs∥ ∈ R.

Computing (Ri,Θz)t =
√

−1/K + ∥Ri,Θzs∥ =
√
−1/K + ∥zs∥ = zt. Thus, HOPE does not

affect the time-like dimension of z, so we have,

HoPE(z) =

(
1 0
0 Ri,Θ

)
z,

making HOPE a valid Lorentz rotational operation.

A.3 Proposition 4.1: HOPE is a function of embeddings and relative position only

Proposition. Let X be T tokens with xi ∈ LK,d. Let Q,K be queries and keys as in Equation (3).
Then −d2L (HoPE (qa) ,HoPE (kb))) = g(xa,xb; a− b) for some function g.

Proof. We will denote HoPE(qa),HoPE(kb) as fq(xa), fk(xb) where fq, fk denotes the function
that projects the word embeddings to queries and keys, and then applying HOPE. In practice, the
projection is done through a hyperbolic linear layer, which we take to be HLT from Section 2. It
suffices to prove this proposition for the case of d = 2, since HOPE does not affect the time-like
dimension of the inputs and Ri,Θ acts independently on each 2D block. First, note that we have

−d2L(fq(xa), fk(xb)) =
2

K
− 2⟨fq(xa), fk(xb)⟩L

=
2

K
+ 2 (fq(xa)tfk(xb)t)− 2⟨fq(xa)s, fk(xb)s⟩,

where ⟨·, ·⟩L denotes Lorentzian inner product and ⟨·, ·⟩ denotes the regular Euclidean inner prod-
uct. Since HOPE is a Lorentz rotation, the term 2 (fq(xa)tfk(xb)t) is simply 2((qa)t, (kb)t) =

2
(√

WQxa − 1/K
√
WKxb − 1/K

)
, so we focus on the inner product ⟨fq(xa)s, fk(xb)s⟩. Then,

by assuming that d = 2, we have (fq(xa))s, (fk(xb))s ∈ R2; hence, we can parametrize these vec-
tors by their radial and angular components. For simplicity, denote (fq(xa))s, (fk(xb))s as a,b
respectively. Then, write ⟨a,b⟩ as a function g′. Afterwards, we parametrize the vectors as

a = φq(xa, a)e
iϑq(xa,a)

b = φk(xb, b)e
iϑk(xb,b)

g′ = φge
ϑg′ ,

(8)

where φ{q,k,g′} denote the radial component and ϑ{q,k,g′} denote the angular component. Note that
it suffice to show that under HOPE, we can express φg′ , ϑg′ as a function of the word embeddings
and relative position. To see this, note that by definition of g′ we have

φq(xa, a)φk(xb, b) = φg′

ϑq(xa, a)− ϑk(xb, b) = ϑg′ .
(9)

Now, given the fact that HOPE acts via Euclidean rotation on the time-like dimension of any
vector, we have φq(xa, a) = φq(xa, a

′), φk(xb, b) = φk(xb, b
′) for any a′, b′. In particular, when

15

a′ = b′ = 0, HOPE acts via identity since all rotation angles become 0. Hence, we have
φq(xa, a) = ∥(qa)s∥
φk(xb, b) = ∥(kb)s∥.

(10)

Furthermore, we have φg′ = ∥(qa)s∥∥(kb)s∥ = ∥WQxa∥∥WKxb∥ by plugging back into Equa-
tion (9), which is a function of just the word embeddings. Next, for the angular component, note
that given the definition of HOPE, the rotation on any 2D block of the space-like dimension of the
input at position p is simply a scaling of a fixed rotation angle by p. Letting this fixed angle be σ, the
rotation is precisely pσ. Therefore, we have

ϑq(xa, a) = θq + aσ

ϑk(xb, b) = θk + bσ,
(11)

where θq, θk denote the angular components of qa,kb. Next, given Equation (9), we have ϑg′ =
(a− b)(σ) + (θq − θk). Note that we have eiθq = WQxa

∥WQxa∥ and eiθk = WKxb

∥WKxb∥ . Consequently, ϑg′
is a function of the word embeddings and the relative position a− b. All in all, −d2L(fq(xa), fk(xb))
can be expressed with a function g(xa,xb; a− b) as desired.

A.4 Proposition 4.2: HOPE decays with increasing relative position

Proposition. Let Q,K be as defined in Equation (3), then the negative square Lorentz distance
−dL (HoPE (qa) ,HoPE(kb)) can be upper bounded by f(qa,kb)g(a − b) < 0, where f has no
dependencies on position, and g depends entirely on relative position and scales inversely w.r.t. a− b.

Proof. For simplicity, we denote qa = q,kb = k. Recall that

−d2L (HoPE (q) ,HoPE(k)) = − 2

K
− 2(qtkt) + 2q⊤

s ks.

Next, for simplicity, we denote qs,ks as a,b respectively. We group together entries of the queries
and keys, where a[2k:2k+1],b[2k:2k+1] as the 2k-th and the (2k + 1)-th entries of a,b respectively.
With this in mind, note that since we take query and key projects to be with HLT as given in Section 2,
we obtain a = WQxa and b = WKxb. To that end, we can assert that

a⊤b =
(
Ra,ΘW

Qxa
)⊤ (

Rb,ΘW
Kxb

)
= x⊤

aW
QRb−a,ΘW

Kxb

= Re

n/2∑
k=0

a[2k,2k+1]b
∗
[2k,2k+1]e

i(b−a)θk

 , (*)

where Re(x) denotes the real component of x ∈ C. Now, recall Abel’s Transformation, which allows
one to rewrite the sum of the product of two sequences as the product of the partial sums. Denote one

of the a[2k,2k+1]b
∗
[2k,2k+1] as Ak, and denote the sequence

k∑
l=0

ei(b−a)θl as El. With this in mind,

(*) can be written as Re

n/2∑
k=0

Ak(Ek+1 −Ek)

. Consequently, we obtain (recall that boundary

term An/2 = 0)

∣∣a⊤b∣∣ =
∣∣∣∣∣∣
n/2∑
k=0

Ak(Ek+1 −Ek)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n/2∑
k=0

(Ak+1 −Ak)Ek

∣∣∣∣∣∣ (Abel Transformation)

≤
n/2∑
k=0

|(Ak+1 −Ak)||Ek|

16

Now, note that the term Ak+1 − Ak has no dependency on position. The sum
n/2∑
k=0

|Ek| scales

inversely with b− a, as shown by Su et al. [40]. To that end, we have

−d2L (HoPE (q) ,HoPE(k)) = − 2

K
− 2(qtkt) + 2q⊤

s ks

≤ − 2

K
− 2(qtkt) + 2max

k
|(Ak+1 −Ak)|

n/2∑
k=0

|Ek|.

Note that Ak, qt, kt depends on only the word embeddings and Ek depends only on the position.
Thus, we have the desired result.

A.5 Proposition 4.3: HOPE enables tokens to attend across distances

Proposition. Let Q,K be as defined in Equation (3), then HOPE can be maximal at an arbitrary
distance, i.e., for any relative distance r ∈ Z, there exists a key kj such that the softmax value is
maximum at distance r.

Proof. We first restate Lemma A.1. from Barbero et al. [2]. The remainder of our proof follows a
similar layout to that of Proposition 3.1. in Barbero et al. [2].

Lemma A.1. (Barbero et al. [2]) Consider g ∈ Q with g ̸= 0 and n ∈ Z. Then, ng ≡ 0 (mod 2π)
only when n = 0. In particular, this also holds if g is algebraic.

Consider a distance r, a non-trivial query Qp = ψ ∈ LK,n, as well as a key K = HoPE(Qp).
We can represent ψ as a combination of a time and space dimension on the Lorentzian manifold,
[ψt, ψs] ∈ LK,n. Using our definition of HOPE in Section 4.1, we have

Kq =

[√
∥Rp,Θψs∥2 −

1

K
,Rp,Θψs

]
∈ LK,n.

Recall that the operator Rp,Θ is a valid Euclidean rotation in Rn while HOPE remains a valid
Lorentzian operation. Therefore, Rp,Θ does not affect the Euclidean norm in the time dimension
as it is an isometry. Instead, we can focus on the space dimension ψs ∈ Rn, on which we can use
the Euclidean dot product. Assume the query is at position i and the key is at some j ≤ i. We then
compute the following dot product:

ψ⊤
s,pHoPE(ψs,p) = ψ⊤

s R
(j−i)+r
p,Θ ψs

=
∑

l=1,··· ,n/2

(
ψ(l)
s

)⊤
R

(j−i)+r
p,θl

(
ψ(l)
s

)
=

∑
l=1,··· ,n/2

∥∥∥ψ(l)
s

∥∥∥2 cos ((j − i+ r)θl). (12)

Using Lemma A.1. from Barbero et al. [2], we observe the maximum can be achieved when j−i = −r
for j− i ≤ 0 since we are using causal masking, j ≤ i. This ensures cos (j − i+ r)θl = cos (0) = 1,
concluding the proof.

A.6 Proposition 4.4: Attention heads with HOPE learn special positional patterns

Proposition. Attention heads with HOPE can learn diagonal or off-diagonal attention patterns.

Proof. The proof follows a similar layout as that of Proposition 5.3. from Barbero et al. [2]. We start
with the diagonal case. Suppose Qi = Kj = ψ ∈ LK,d, for non-trivial ψ = [ψt, ψs]. We assume
embedding dimension d = 2, i.e., only a single rotation block Ri,θ acts on the embeddings.

17

Recall the squared Lorentzian distance for any a, b ∈ LK,d,

d2L(a, b) = ∥a− b∥2L

=
2

K
− 2⟨a, b⟩L

=
2

K
− 2(−atbt + a⊤s bs).

Without HOPE,

−d2L(Qi,Kj) = −

[
2

K
− 2(−ψtψt + ψ⊤

s ψs)

]

= −

[
2

K
+ 2ψtψt − 2ψ⊤

s ψs

]
.

Using HOPE,

−d2L(Ri,θQi,Rj,θKj) = −

[
2

K
+ 2ψ2

t − 2
(
(Ri,θψs)

⊤(Rj,θψs)
)]

= −

[
2

K
+ 2ψ2

t − 2
(
ψ⊤
s Rj−i,θψs

)]

= −

[
2

K
+ 2ψ2

t︸ ︷︷ ︸
C

−2∥ψs∥2 cos ((j − i)θ)

]

= −
[
C − 2∥ψs∥2 cos ((j − i)θ)

]
.

(13)

Using Lemma A.1. from [2], when j = i, we have (j − i)θ ≡ 0 (mod 2π). Next, let us define ai,i
as −[C − 2∥ψs∥2]. This means cos ((j − i)θ) = cos (0) = 1, and ai,j < ai,i. This gives us the
following self-attention score:

νi,i =
exp (ai,i)∑

k<i exp (ai,k) + exp (ai,i)

=
exp (−[C − 2∥ψs∥2])∑

k<i exp (−[C − 2∥ψs∥2 cos ((k − i)θ)]) + exp (−[C − 2∥ψs∥2])

=
1

1 +
∑
k<i exp (−[C − 2∥ψs∥2 cos ((k − i)θ)]− (−[C − r∥ψ2

s∥2]))

=
1

1 +
∑
k<i exp (−C + 2∥ψs∥2 cos ((k − i)θ) + C − 2∥ψs∥2)

=
1

1 +
∑
k<i exp (2∥ψs∥2(cos ((k − i)θ)− 1))

,

for all k ̸= i, cos ((k − i)θ) < 1. This means 2∥ψs∥2(cos ((k − i)θ) − 1) < 0. To that end, we
obtain

sup
∥ψs∥2→∞

1

1 +
∑
k<i exp (2∥ψs∥2(cos ((k − i)θ)− 1))

= 1.

This guarantees νi,i > 1− ϵ for ϵ > 0, where ϵ is a function of 2∥ψs∥2.

We now consider the off-diagonal pattern. Set Qi = ψ for non-trivial ψ = [ψt, ψs] ∈ LK,d. Set keys
Ki = R1,θψ and define ai,i−1 as the off-diagonal input to the softmax when computing νi,i−1. To

18

that end, we have

ai,i−1 = −d2L(Ri,θQi,Ri−1,θKi)

= −
[2
K

+ 2ψ2
t − 2

(
(Ri,θQi)

⊤(Ri−1,θKi)
)]

= −

[
2

K
+ 2ψ2

t − 2
(
(R1,θψs)

⊤(Ri−1,θR1,θψs)
)]

= −

[
2

K
+ 2ψ2

t − 2
(
(Ri,θψs)

⊤(Ri,θψs)
)]

= −

[
2

K
+ 2ψ2

t − 2
(
∥ψs∥2 cos ((i− i)θ)

)]

= −
[2
K

+ 2ψ2
t − 2∥ψs∥2

]
.

Use the same reasoning from the diagonal case to show that attention head with HOPE can learn
off-diagonal patterns. This concludes the proof.

A.7 Proposition 4.5: Invariance guarantees of Hyperbolic RMSNorm

Proposition. RMSNormL is invariant to scaling of inputs x during both the forward and backward
passes.

Proof. Euclidean RMSNorm is invariant to input-scaling, both during the forward and backward
pass. We observe similar guarantees from our formulation of hyperbolic RMSNorm. To that end, we
first prove the input-scaling invariance of Euclidean RMSNorm.

Given an input x ∈ Rn and and a feed-forward network with parameters W ∈ Rn×m,

y = σ

(
W⊤x

RMS(W⊤x)
⊙ g + b

)
, RMS(a) =

√√√√ 1

m

m∑
k=i

a2i .

Here, g is a learnable gain parameter, initially set to 1, that re-scales the standardized inputs and b is
a bias term.

Suppose the weights are scaled by a small factor, W′ = δW. First, observe that the root mean
squared operation, RMS, is input-scaling invariant: RMS(αa) = αRMS(a). It is then evident that
the final output of RMSNorm is also scale-invariant:

y′ = σ

(
(W′)⊤x

RMS((W′)⊤x)
⊙ g + b

)

= σ

(
δW⊤x

RMS(δW⊤x)
⊙ g + b

)

= σ

(
�δW

⊤x

�δRMS(W⊤x)
⊙ g + b

)
= y (14)

A similar argument can be made for a scaling of the inputs x. Since hyperbolic RMSNorm uses
Euclidean RMSNorm internally, it offers the same invariance guarantees as it operates solely on the
space dimension of the Lorentzian input.

19

Given an input x = [xt,xs] ∈ LK,n, we know RMSNorm(δx) = RMSNorm(x) for some scaling
factor δ. As such,

y′ = RMSNormL(δx)

=
[√

∥RMSNorm(δxs)∥ − 1/K,RMSNorm(δxs)
]⊤

=
[√

∥RMSNorm(xs)∥ − 1/K,RMSNorm(xs)
]⊤

= y.

Next, we analyze the gradient stability of hyperbolic RMSNorm. In Euclidean RMSNorm, for a
given loss L, we are interested in computing three gradients: ∂L∂g for the gain parameter, ∂L∂b for the
bias, and ∂L

∂W for the weights. We compute ∂L
∂g and ∂L

∂b as follows:

∂L

∂b
=
∂L

∂v
· ∂v
∂b

∂L

∂g
=
∂L

∂v
⊙ W⊤x

RMS(W⊤x)
,

where v denotes the inputs to the activation σ. These gradients are invariant to the scaling of
Euclidean inputs x and weights W, trivially for ∂L∂b , and due to the linearity established in Equation
(14) for ∂L∂g . Computing ∂L

∂W is more involved due to the quadratic computation in RMS, but also
provides invariance to input scaling as shown by Zhang and Sennrich [51].

Given an input x = [xt,xs] ∈ LK,n, we know ∂L
∂g , ∂L∂g , and ∂L

∂W are scaling-invariant in the backward
pass since hyperbolic RMSNorm uses Euclidean RMSNorm. Thus, for any scaled hyperbolic input
δx ∈ LK,n, we get scaling invariance both in the time and space dimension during the backward
pass.

B Additional Details

B.1 MICE as a Lorentzian Module

In this section, we expand on the fact that MICE is indeed a valid hyperbolic module throughout.
Note that since Equation (6) consists of the combination of a Lorentzian residual connection [23]
and Lorentzian centroid [29], it suffices to show that the projection from input manifold to expert
manifold, and the reverse projection, are valid projections between Lorentz hyperbolic spaces. In
fact, it suffices to show that given x ∈ LK1,n, we have

√
K1/K2x ∈ LK2,n. To see this, note that〈√

K1/K2x,
√
K1/K2x

〉
L
=
K1

K2
⟨x,x⟩L

=
K1

K2
· 1

K1
(x ∈ LK1,n)

=
1

K2

Thus,
√
K1/K2x ∈ LK2,n as desired. Then, each projection via scaling by

√
K/Ks,i and

√
K/Kr,i

indeed map the input vector x to the expert manifold, and the projection via
√
Ks,i/K and

√
Kr,i/K

maps the output of the experts back to the input manifold. As a result, every vector in Equation (6)
lives on the input manifold, hence the output lives in LK,n as desired.

Additionally, note that since the squared Lorentzian distance is given by d2L(x,y) = 2/K−2⟨x,y⟩ =
2/K +2xtyt− 2x⊤

s ys, it scales inversely w.r.t. x⊤
s ys. As a result, the gating score obtained through

Equation (5) is minimizing the the squared hyperbolic distance between the input token vector xt and
the vector yj (by viewing centroid vector yj as the space-like dimension of a Lorentz hyperbolic
vector). Therefore, the gating module is in fact a hyperbolic module as well.

B.2 Hyperbolic Multi-Head Latent Attention

In this section, we provide the details for hyperbolic Multi-Head Latent Attention (HMLA). Let
xt ∈ LK,nhn be the t-token, where n is the embedding dimension and hn is the number of heads.
Let WDKV ∈ R(nhn+1)×nkv be the downward projection matrix of the keys and values, and

20

WDQ ∈ R(nnh+1)×nq be the downward projection matrix of the query (nkv, nq ≪ nhn). We
first compress the token into the latent spaces via cKVt = HLT(xt;W

KV,bKV) ∈ LK,nkv , cQt =
HLT(xt;W

Q,bQ) ∈ LK,nq . We then project the latent query, key, and value vectors back to the
higher dimensional spaces. Specifically, let WUV,WUK ∈ R(nkv+1)×nhn be the upward projection
matrix of the keys and values, and let WUQ ∈ R(nq+1)×nhn be the upward projection matrix of the
query. Then, the final projected keys, values, and queries are

[kCt,1; . . . ;k
C
t,hn

] = HLT
(
cKVt ;WUK,bUK

)
; [vCt,1; . . . ;v

C
t,hn

] = HLT
(
cKVt ;WUV,bUV

)
[qCt,1; . . . ;q

C
t,hn

] = HLT
(
cQt ;W

UQ,bUQ
)
.

(15)

Following previous works [11, 10], as RoPE is incompatible with MLA due to position coupling,
we employ a decoupled HOPE scheme with HMLA, where we use additional query vectors with
a shared key. Let WQR ∈ R(nq+1)×(hnnr) and WKR ∈ R(nkv+1)×nr be the upward projection
matrix of the decoupled queries and the shared key respectively, where nr is the dimension per head.
We apply HOPE to these vectors to obtain the position-encoded vectors

[qRt,1; . . . ;q
R
t,hn

] = HoPE
(
HLT

(
cQt ;W

QR,bQR
))

; kRt = HoPE
(
HLT

(
cKt ;WKR,bKR

))
.

(16)

Then, we obtain the final query and key vectors as

qt,i = HCat(qCt,i;q
R
t,i);kt,i = HCat(kCt,i;k

R
t), (17)

where HCat denotes hyperbolic concatenation [48, 37]. The attention score is computed based on
negative squared Lorentz distance similar to Equation (3) as

ot,i =

∑N
j=1 αt,i,jv

C
t,j√

−K|∥
∑N
k=1 αt,i,kv

C
t,j∥|L

; αt,i,j =
exp

(
−d2L(qt,i,kt,j)/

√
hn + nr

)∑N
k=1 exp

(
−d2L(qt,i,kt,k)/

√
hn + nr

) . (18)

The final output of HMLA can be expressed as the concatenation of the hyperbolic vector

HMLA(Xt;hn, n, nr, nq, nkv) = HLT

([√
∥ot∥ − 1/K,ot

]⊤
;WO,bO

)
, (19)

where ot = [ot,1, . . . ,ot,hn
] and WO ∈ Rhn(n+1)×hnn is the out-project matrix. HMLA enables

HELM models to improve computational efficiency during training and inference compared to the
regular hyperbolic self-attention in Equation (3).

B.3 Hyperbolic SwiGLU Feedforward Network

In this section, we introduce hyperbolic SwiGLU feedforward networks (FFNs), whose Euclidean
formulation is widely used in LLMs [18, 10]. This differs from previous FNNs used in hyperbolic
Transformers in the need for feature multiplication and activation function [5, 6, 48]. Let x ∈ LK,n
be the input tokens, W1,W3 ∈ R(n+1)×m be the weights of internal projection layers and W2 ∈
R(m+1)×n be the weight matrix of the outward projection layer. Then, the hyperbolic SwiGLU FNN
HFFNSG : LK,n → LK,n is given by

HFNNSG(x) = HLT

([√
∥y∥ − 1/K,y

]⊤
;W2,b2

)
y = SiLUL(HLT(x;W1,b1))⊗s HLT(x;W3,b3),

(20)

where SiLUL denotes SiLU activation using the HRC activation operations from Hypformer [48]
and ⊗s denotes multiplication on the space dimention of a Lorentz vector, i.e. x⊗s y = xsys.

C Training and Evaluation Details

In this section we detail the training and evaluation setup for the experiments.

21

C.1 Models Setup

Here we detail the model setup for all the models we used in the experiments.

HELM-MICE model setup. We follow the notation in Appendix B.2 and Section 4.2. For HELM-
MICE, we used HMLA as the attention mechanism in the attention block, MICE as the sparse
feedforward network, and HFNNSG as the dense feedforward network. For both sizes, only the first
decoder block uses the dense layer and the rest of the blocks using the MICE layer. The MICE layers
use HFNNSG as well for its feedforward component. For the dense layer, we set the intermediate
dimension to be 4hnn. For the MICE layers, we set the intermediate dimension of HFNNSG as
2hnn.

For the ∼ 100M sized model, we used 6 total layers, 6 heads (nh = 6) each with n = 64, and we
set nkv = 64, nr = 16. For MICE layers, we employ 4 experts with 2 active experts per token
(Nr = 4,Kr = 2). We use one shared expert (Ns = 1). For the curvatures of the routed experts,
we set them to be uniform from −0.1 to 2.0. The curvature of the shared expert is set to be −1.
The curvature of the entire model is set to −1 as well. For HMLA layers, in practice, the upward
projection matrices do not need to project back to the full dimension of hnn. Due to compute
constraints, we instead employ a reduction in dimensionality during the upward projection, where
WUK,WUV ∈ R(nkv+1)×hnn/2, and the outward projection matrix WO projects back to the full
dimensionality of the input with WO ∈ Rhn(n/2+1)×hnn.

For the ∼ 1B sized model, we use 16 total layers, 14 heads (nh = 14) each with n = 64, and we
set nkv = 256, nr = 64. For MICE layers, we employ 4 experts with 2 active experts per token
(Nr = 8,Kr = 2). We use one shared expert (Ns = 1). For the curvatures of the routed experts, we
set them to be uniform from −0.1 to 2.0. The curvature of the shared expert is set to be −1. The
curvature of the entire model is set to −1 as well. We do not use the same reduction in dimensionality
during upward projection as we did in the ∼ 100M case to enable for more expressive attention
modules.

HELM-D model setup. For the HELM-D model, we only train the 100M sized model. Here, we
use 6 layers, 6 heads each with dimension 64, and we set the intermediate dimension of the HFNNSG
feedforward networks to be 4 times the total model dimension. We set the overall curvature of the
model to −1. All hyperbolic models are built on top of HyperCore He et al. [22].

Baseline models setup. For the baseline models, we set them up to have identical dimensionality
as the HELM models. In particular, for the LLaMA model we train, we use the same number of
layers, heads, and dimensionality per head as the feedforward network. For the DeepSeek models
we train, we use the same number of layers, heads, dimensionality per head, dimensionality for the
feedforward network, dimensionality for the MoE modules, number of routed and shared experts,
and the same dimensionality in the MLA layers.

Hyperbolic work embeddings. For the smaller HELM models, we map the input tokens directly
to Lorentz hyperbolic vectors, which are then trained as hyperbolic parameters via Riemannian
optimizers. The parameters are initialized via wrapped Gaussian normal distribution on the manifold.
However, when training the ∼ 1B HELM-MICE model, we found this to cause training instability.
As a result, for the larger model, we first map the tokens to the space-like dimension of Lorentz
hyperbolic vectors, and then compute the time-like dimension of the vectors afterwards. We found
this to stabilize model training.

C.2 Training Details

Dataset. For the training dataset, we use the English portion of the Wikipedia dataset [14]. This
dataset consists of ∼ 6.4M rows of data. We download the dataset directly from Huggingface. The
raw text data is then passed through the LLaMA3.1-8B tokenizer [18], which has a vocabulary size
of ∼ 128K. We use a sequence length of 2048 for all models. Samples longer than 2048 tokens were
broken up into multiple samples, with the trailing tailed dropped. The tokenized dataset consist of
roughly 4.5B ∼ 5B tokens. For training efficiency, as we measured the average number of tokens
per sample is ∼ 700 across the dataset, we used sample packing with a packing ratio of 3.0. Then
packed samples shorted than 2048 tokens are then padded on the right.

22

Table 4: Runtime and peak memory usage per iteration comparison between HELM variants and
Euclidean counterparts. HELM models are within 1.55X in runtime and 1.11X in memory usage of
the Euclidean counterparts for both the 100M and 1B models.

Model # Params Runtime Memory Usage
LLaMA 100M 8.4s 23.8GB
HELM-D 100M 13.1s 24.9GB
DEEPSEEKV3 100M 11.0s 23.5GB
HELM-MICE 100M 16.9s 26.3GB
DEEPSEEKV3 1B 83.5s 33.1GB
HELM-MICE 1B 119.4s 35.8GB

Table 5: Performance comparison between a 115M Hypformer model and HELM-D, where HELM-
D consistently outperforms the baseline.
Model # Params CommonsenseQA HellaSwag OpenbookQA MMLU ARC-Challenging Avg

0-Shot 0-Shot 0-Shot 5-Shot 5-Shot -

HYPFORMER 115M 19.4 25.1 26.6 22.9 23.6 23.5
HELM-D 115M 20.3± 0.2 25.9± 0.1 27.1± 0.4 25.6± 0.2 21.4± 0.3 24.1± 0.1

Pipeline setup. For training, we set up data-parallelism with Hugginface Accelerate. We use an
effective batch size of ∼ 2M tokens (including padding). To ensure a fair comparison between
the hyperbolic and Euclidean models, we use a learning rate of 2e-4 for all dense models and a
learning rate of 4e-4 for the MoE and MICE models. A weight decay rate of 0.01 was used for
all models. For the HELM-MICE models and the DeepSeek models, in order to balance the load
between each expert, we utilize the auxiliary-loss-free load balancing strategy and the complementary
sequence-wise auxiliary loss during training. The former punishes extreme load imbalance among
the experts by dynamically updating a bias term during the gating module, while not needing an
explicit auxiliary loss computation for better training efficiency. The latter punishes extreme load
imbalance for any particular sequence. All training used a cosine annealing learning rate scheduler
with a final target learning rate of 0.1× the initial learning rate, with 3% of the gradient update steps
used as warmup steps.

Runtime. We empirically observe that HELM models take roughly 1.5 to 1.8 times the training of
their Euclidean counterparts. For example, the larger ∼ 1B HELM-MICE model takes roughly 72
hours to train on 4 NVIDIA A800s while the similarly sized DeepSeekV3 model takes roughly 40
hours on the same machine.

C.3 Evaluation Details

We use the Language Model Evaluation Harness library (github.com/EleutherAI/lm-evaluation-
harness) for all evaluations, where the framework prompts the models with the answers choices to
each question and picks the one with the highest likelihood value. For OpenbookQA, we convert
the answer choices from full sentences to letter choices for all models, to make up for the relatively
smaller model and training dataset sizes.

D Ablation Studies and Additional Experiments

In this section, we perform additional experiments such as computational cost analysis, ablation
studies to access the effectiveness of HOPE and HMLA, and comparisons with prior works of
hyperbolic language models.

D.1 Runtime and memory usage analysis

While HELM inevitably introduces computational overhead from operations that respect the curvature
of the embedding space, our proposed methods are efficient in both runtime and memory usage.
HELM models are within 1.55X in runtime and 1.11X in memory usage of the Euclidean counterparts
for both the 100M and 1B models. In Table 4, we show that runtime and peak memory usage

23

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

Table 7: Ablation accuracy, where we compare HELM-MICE with a variant using hyperbolic Multi-
Head self-Attention instead of HMLA, denoted as MICE-HMHA. Bolding denotes the highest
accuracy and underline denotes the second-highest. Euclidean DEEPSEEKV3 results are shown for
reference. Overall, HELM-MICE consistently achieves the highest accuracy, while both hyperbolic
models still outperform the Euclidean counterpart.
Model # Params CommonsenseQA HellaSwag OpenbookQA MMLU ARC-Challenging Avg

0-Shot 0-Shot 0-Shot 5-Shot 5-Shot -

DEEPSEEKV3 120M 19.2 25.2 23.4 24.2 21.8 22.8
MICE-HMHA 120M 19.3 25.7 26.0 23.8 25.3 23.7
textbfHELM-MICE 120M 19.7± 0.3 25.9± 0.2 27.7± 0.4 24.4± 0.2 23.2± 0.5 24.1± 0.1

Table 8: Ablation accuracy, where we compare HELM with a variants using learned relative
positional encoding instead of HOPE, denoted as HELM-D-L and HELM-MICE-L. Bolding
denotes the highest accuracy and underline denotes the second-highest. Euclidean results are shown
for reference. Overall, HELM-MICE and HELM-D consistently achieves the higher accuracy, while
both hyperbolic models still outperform the Euclidean counterpart.
Model # Params CommonsenseQA HellaSwag OpenbookQA MMLU ARC-Challenging Avg

0-Shot 0-Shot 0-Shot 5-Shot 5-Shot -

LLAMA 115M 21.1 25.3 25.3 23.8 21.0 23.3
HELM-D-L 115M 19.7 25.5 28.6 23.0 21.8 23.7
HELM-D 115M 20.3± 0.2 25.9± 0.1 27.1± 0.4 25.6± 0.2 21.4± 0.3 24.1± 0.1
DEEPSEEKV3 120M 19.2 25.2 23.4 24.2 21.8 22.8
HELM-MICE-L 120M 19.0 25.5 27.0 23.0 25.7 24.0
HELM-MICE 120M 19.7± 0.3 25.9± 0.2 27.7± 0.4 24.4± 0.2 23.2± 0.5 24.1± 0.1

comparisons between HELM and the Euclidean baselines for one training iteration (roughly 2M
tokens). The results shown are for our exact experimental setup ran on 4 A100 GPUs, where we show
the worst runtime and memory usage across the ranks. The results are averaged over 10 runs, and
standard deviations are not shown since they are within 0.2 of the results.

D.2 Comparison with Prior Hyperbolic Language Models

Table 6: Machine translation BLEU score.
HELM-D outperforms prior works of hyper-
bolic Transformers.

Model IWSLT’14 WMT’14
HAT Gulcehre et al. [19] 23.7 21.8
HNN++ Shimizu et al. [39] 22.0 25.5
HyboNet Chen et al. [5] 25.9 26.2
HELM-D 26.3 26.5

We performance additional experiments to com-
pare the HELM architecture against prior works
of hyperbolic language models and Transformers.
As the majority of prior hyperbolic Transformers
lacked essential components common in modern
LLMs such as LayerNorm or positional encoding,
we train a small version of HELM-D and com-
pare the performance against these models in the
machine translation task. The setup of our exper-
iment is identical to that of Chen et al. [5]. Hyp-
former Yang et al. [48], on the other hand, does
possess all components. As a result, we compare the performance of HELM-D with Hypformer by
training a 100M model on the same setup.

D.3 Ablation for HMLA

Past works have found that in the Euclidean case, Multi-Head Latent Attention can achieve comparable
and in some cases even superior performance compared to regular Multi-Head Attention [10]. Here
we assess the effectiveness of HMLA against hyperbolic Multi-Head self-Attention. We train
HELM-MICE with the same setup, where we replace the HMLA layers with a hyperbolic Multi-
Head self-Attention layer as given in Equation (3). We denote the this model as MICE-HMHA. The
results are shown in Table 7. HELM-MICE outperforms MICE-HMHA in 3 out of the 5 tasks,
achieving the same accuracy for 1 task, with the MICE-HMHA achieving better accuracy in the last
task. The results demonstrate the effectiveness of HELM-MICE while significantly reducing the
memory footprint of the KV-cache. Both hyperbolic models still outperform the Euclidean model,
demonstrating the effectiveness of HELM in general.

24

Table 9: Multi-choice answer accuracy for HELM-MICE 1B and DeepSeekV3 1B across training
stages. HELM-MICE demonstrates consistent improvement over its Euclidean counter part.

Model Token Count CommonsenseQA HellaSwag OpenbookQA MMLU ARC-Challenging Avg

DeepseekV3 (1B) 4B 18.8 25.1 26.4 23.5 22.1 23.2
HELM-MiCE (1B) 4B 19.5 26.0 27.0 25.6 22.9 24.3
DeepseekV3 (1B) 4.5B 19.0 26.2 27.2 23.6 22.6 23.7
HELM-MiCE (1B) 4.5B 19.7 26.4 27.6 25.5 23.1 24.5
DeepseekV3 (1B) 5B 19.5 26.2 27.4 23.6 22.7 23.9
HELM-MiCE (1B) 5B 19.8 26.5 28.4 25.9 23.7 24.9

D.4 Ablation for HOPE

In this section we assess the effectiveness of HOPE against other hyperbolic positional encoding
methods, namely the learned relative positional encoding from Hypformer [48]. We devise a variant
of HELM-D, denoted as HELM-D-L and a variant of HELM-MICE, denoted as HELM-MICE-L,
where each model uses the learned positional encoding instead of HOPE. The results are shown
in Table 8. Overall both HELM-MICE and HELM-D outperform their counterparts that use
learned positional encoding instead of HOPE. Interestly, however, HELM-MICE-L and HELM-D-
L outperformed HELM-MICE and HELM-D respectively on the ARC-Challenging benchmark,
possibly due to better alignment with reasoning prompts with non-uniform encodings. Nevertheless,
the results demonstrate the effectiveness of HOPE over learned positional encodings in 4 out of the 5
tasks.

D.5 Performance over Training Stages

While we don’t provide standard deviation from multiple runs for the 1B models as is typical for
model of this size, we provide the model performance of HELM-MICE and DeepSeekV3 1B
in Table 9. HELM-MICE demonstrates consistent improvement over its Euclidean counter part,
suggesting this improvement could sustain when the training corpus scales.

25

	Introduction
	Related Work
	Preliminary
	Lorentz Hyperbolic Geometry
	Hyperbolic Neural Network Modules

	Method
	Hyperbolic Rotary Positional Encoding
	Hyperbolic Mixture-of-Curvature Module
	Efficiency via Hyperbolic Multi-Head Latent Attention
	Hyperbolic RMSNorm
	Overall Architecture for Hyperbolic Large Language Models (HELM)

	Experiments
	Multichoice Benchmarking
	Ablating Distinct Curvature Learning with HELM-MiCE
	Qualitative Studies on Semantic Hierarchy Modeling

	Conclusion
	Proofs and Details of Theoretical Results
	Ollivier-Ricci Curvature
	HoPE is a Lorentz Rotation
	Proposition 4.1: HoPE is a function of embeddings and relative position only
	Proposition 4.2: HoPE decays with increasing relative position
	Proposition 4.3: HoPE enables tokens to attend across distances
	Proposition 4.4: Attention heads with HoPE learn special positional patterns
	Proposition 4.5: Invariance guarantees of Hyperbolic RMSNorm

	Additional Details
	MiCE as a Lorentzian Module
	Hyperbolic Multi-Head Latent Attention
	Hyperbolic SwiGLU Feedforward Network

	Training and Evaluation Details
	Models Setup
	Training Details
	Evaluation Details

	Ablation Studies and Additional Experiments
	Runtime and memory usage analysis
	Comparison with Prior Hyperbolic Language Models
	Ablation for HMLA
	Ablation for HoPE
	Performance over Training Stages

