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Abstract

As federated learning (FL) matures, privacy attacks against FL systems in turn
become more numerous and complex. Attacks on language models have pro-
gressed from recovering single sentences in simple classification tasks to recov-
ering larger parts of user data. Current attacks against federated language models
are sequence-agnostic and aim to extract as much data as possible from an FL
update - often at the expense of fidelity for any particular sequence. Because of
this, current attacks fail to extract any meaningful data under large-scale aggre-
gation. In realistic settings, an attacker cares most about a small portion of user
data that contains sensitive personal information, for example sequences contain-
ing the phrase “my credit card number is ...”. In this work, we propose the first
attack on FL that achieves targeted extraction of sequences that contain privacy-
critical phrases, whereby we employ maliciously modified parameters to allow
the transformer itself to filter relevant sequences from aggregated user data and
encode them in the gradient update. Our attack can effectively extract sequences
of interest even against extremely large-scale aggregation.

1 Introduction

Machine learning models continuously grow in size and require ever more data to improve. This
paradigm of scaling has lead to significant improvements in a multitude of applications, but it also
exerts an ever increasing toll on privacy. To train large models, data has to be collected and central-
ized by single parties, for example, tech companies with large enough user bases. As such, these
entities are interested in collecting as much data as possible and in this way extract value from their
users. Moreover, once data is collected, it is rarely erased. This is fundamentally in conflict with
commonly held notions of privacy.

Against this backdrop, federated learning has emerged as the field of core technologies aiming to
train machine learning models with decentralized data, that is without the need for a central party
to collect all data. By exchanging model updates instead of data, user devices update a centralized
model without ever giving up control of their data. In reality, however, the privacy guarantee offered
by federated learning systems actually depends on a large number of factors and parameters such
as architectures and aggregation amounts. Attacks against privacy in federated learning probe this
boundary, empirically discovering which federated learning scenarios are unsafe (Phong et al., 2017;
Melis et al., 2019; Geiping et al., 2020).

In this work, we are particularly interested in federated learning systems involving transformer ar-
chitectures (Vaswani et al., 2017) and its applications in text, which represent a key point of interest
in many modern applications of federated learning (Paulik et al., 2021; Dimitriadis et al., 2022).
Our main threat models of interest here are untrusted server scenarios, also known as malicious
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server scenarios, in which we investigate the extent of user privacy breaches a malicious server can
achieve. We note that the untrusted server threat model can also be viewed as a worst-case scenario
from user perspective, where the server is potentially compromised (Bagdasaryan et al., 2019) and
forced to act maliciously.

Under this threat model, we discuss a novel attack threat where a malicious server is able to extract
key fragments of private information even from industrial-sized streams of data. This novel attack,
which we dub “panning” as it sifts through large amounts of text, is capable of targeting key phrases,
such as credit card or social security number and extracting all tokens of user data that
follow the occurrence of this trigger. Existing attacks only recover user data - no matter how private
or benign - in scenarios where the number of model parameters is significantly smaller than the
number of tokens in a user update (Fowl et al., 2022; Gupta et al., 2022; Dimitrov et al., 2022;
Pasquini et al., 2021). In contrast, the discussed attack has the capability to target key phrases of
private user data and recover sensitive text, e.g. credit card or social security numbers, or any other
secrets, following these triggers. In comparison to existing attacks, this attack is also effectively
independent of the amount of user data contained in an update and does not degrade as many user
updates are securely aggregated (Bonawitz et al., 2017).

2 Background and application examples

Applications in text have been among the first systems where federated learning has seen use in
industrial settings (Hard et al., 2019; Ramaswamy et al., 2019; Bonawitz et al., 2019; Paulik et al.,
2021; Google, 2022). For example, according to the supporting documentation1, the FL system
applied in Google (2022) only protects user conversations through secure aggregation (Bonawitz
et al., 2017), which “can’t reveal your conversations or content to Google or anyone else [...],
grouping many similar adjustments together so that Google can’t inspect an adjustment from a
single device”. In this work, we argue that this system of protecting privacy leaves users open to
targeted extraction attacks from a malicious server update sent to the user, if the system uses a
transformer-based machine learning model.

Previous attacks against transformers in federated learning with language models, in comparison,
are not capable of breaking this application (Zhu et al., 2019b; Deng et al., 2021; Gupta et al., 2022;
Pasquini et al., 2021; Fowl et al., 2022; Dimitrov et al., 2022). Recent works (Pasquini et al., 2021;
Fowl et al., 2022) can identify or respectively reconstruct from aggregates of hundreds of sequences,
but the reconstruction quality falls off as the number of sequences increases. Remarkably, these
attacks all attempt to recover every piece of user data used to compute the aggregated model update,
putting equal emphasis on the fidelity of each reconstructed sequence. This strategy inevitably
decreases the capability of previous attacks to recover accurate individual sequences as the number
of sequences and tokens increases.

Yet, in a real-life scenario, among all data a user computes and aggregates model updates with, often
only a few of them contain information valuable to a potential attacker. This poses the question of
whether it is possible for an attacker to dedicate the entire capacity of their breaching algorithm to
only a limited number of target sequences with a specific set of keywords or triggers.

Threat Model - Untrusted Server Our threat model contains two parties. First, a user (or group
of aggregated users) that owns text, which contains private information following a set of keywords
K = {k1, . . . , kn}. Second, a malicious server that aims to “pan”, to perform targeted extraction
of all tokens of user data following that same set of keywords K. We assume that the number of
aggregated sequences may be unlimited, but the number of sequences matching the combination
of keywords is limited. We assume that the federated learning exchange is otherwise secure: Both
parties agree beforehand on a transparent implementation for both model architecture and user-side
protocol that is vetted by public examination. The only attack vector for the server is the model
update sent indiscriminately to all users in the group. We also note that the role of the attacker
needs not be played by the party that owns the server, and any individual/party that has access to
the model update anywhere in the pipeline can assume the role.

1https://support.google.com/messages/answer/932790
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Figure 1: An overview of our proposed panning attack. An attacker reprograms the encoder block
with a tagging module and a filter module to encode keyword-specific information into model gradi-
ent. The information enables the attacker to pan for individual relevant tokens from aggregated user
update. The attacker can then post-process the retrieved tokens to recover original sequences.

3 Method

Here we discuss “panning” attack that performs targeted extraction of “relevant” sequences that
contain a specific set of keywords. For simplicity we describe our approach with one keyword k,
and note that extension to multiple keywords is straightforward. An overview of our attack algorithm
is presented in Figure 4. and we provide complete details of our attack in Appendix B

Overview. Given sequence length ℓ, number of sequences B, and the earliest linear layer in trans-
former parameterized by (W,b), examining the aggregated gradient
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Here m corresponds to any row of W and related entry of b, ei,j is the embedding of the j-th token
in the i-th sequence, pj is the j-th positional embedding, MHA({ei,j′ + pj′}ℓj′=1, j) is the j-th entry
after applying MHA on sequence i, and ⊘ represents element-wise division. Previous attack (Fowl
et al., 2022) attempts to recover and post-process every individual fi,j into meaningful sequences,
which fails as the number of sequences increases. On the other hand, our attack only recovers
individual fi,j in relevant sequences, leading to more effective post-processing.

Tagging module. We reprogram the MHA block in transformer to “tag” the relevant individual
fi,j . In particular, the relevant fi,j after going through the tagging module becomes

fj = ej + pj +Td′(e(k) + pj′) (1)

where e(k) is the embedding of the target keyword k and Td′ shifts the entries d′ to 2d′ of the mul-
tiplied vector to the first d′ positions, and masks out the remaining entries. For irrelevant fi,j , a
random ei,j in the corresponding sequence is imprinted instead. We provide detail of our construc-
tion in the Appendix B.2.

Filtering module. The construction of our filtering module is inspired by Fowl et al. (2021). In
particular, if a linear layer (W,b) is followed by ReLU, and W contains identical rows w and
bm < bm+1 for each entry bm, we can recover an individual fi,j if w⊤fi,j uniquely falls between
any bin of (bm, bm+1). Modifying this approach, we set w as

w[q] =

{
e(k)[q + d′], q ≤d’
N(0, I), q >d’.

The construction of w leads to a mean shift between measurement distributions of w⊤fi,j for rel-
evant and irrelevant fi,j , and we can accordingly set bm = −Φ−1(m

M ), where Φ(·) is the CDF of
Gaussian fit to the distribution of relevant fi,j . The reprogrammed (W,b) effectively condenses ir-
relevant fi,j into a small number of bins, and the majority of bins can then be dedicated to retrieving
individual relevant fi,j . We provide further detail and illustration of distribution in Appendix B.3.

Post-processing. To recover meaningful sequence from the individual fi,j an attacker needs to (1)
relate fi,j to the sequence i, (2) recover position j and match fi,j to the actual words. We show that
(1) can be achieved by augmenting our tagging module to perform positional imprinting, and (2)
can be achieved by solving two sets of linear-sum-assignment problems. We provide further detail
in Appendix B.4.
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Figure 2: Comparison of our method with Decepticons, a recent Transformer-based attack, for
different architectures across various batch sizes. We fix the sequence length to 32. Our attack
constantly outperforms Decepticons, and the performance remains stable as batch size increases.

Figure 3: Experiment on our attack across different architectures for large batch size. The sequence
length is fixed to 32. Our attack steadily obtains high fidelity recovery even against extreme-scale
aggregation. Attack success remains basically constant as batch sizes increases.

4 Empirical evaluation of the attack

We evaluate our attack on GPT-2 (Radford et al., 2019) and BERT (Devlin et al., 2019), and we
perform experiments on wikitext dataset (Merity et al., 2016). We perform quantitative evaluation
with BLEU score (Papineni et al., 2002), the ROUGE-L (Lin, 2004), and total accuracy (Fowl et al.,
2022). We select the first 3 sequences from each user and replace one of the tokens of each sequence
with the token of a target keyword. The quantitative results are then evaluated only on these target
sequences. We provide full details and additional experiments in Appendix C.

Comparing with transformer-based attacks for malicious servers. We compare our proposed
method with Decepticons (Fowl et al., 2022), a recent transformer-based attack for the malicious
server threat model, across various batch size. The results are summarized in Figure 2. We see
that the performance of Decepticons drops significantly as the batch size increases. In contrast, our
attack consistently recovers relevant sequences accurately even when the batch size increases.

Experiments with large-Scale aggregation Next, we evaluate our method under extremely large-
scale aggregation. We fix the sequence length to 32, and experiments with batch size up to 2048,
and summarize the results in Figure 3. As demonstrated in the figure, the fidelity of our recovered
relevant sequences remains high and is largely agnostic to batch size. The observation validates the
design of our proposed tagging and filtering module. We note that the results of Decepticons are not
included as it becomes computationally expensive to handle this number of sequences under their
method.

5 Conclusion

In this paper, we describe a vulnerability of transformers used in a federated setting. This vulnera-
bility opens the door to an attack that can “pan” for sequences that contain private information based
on specified keywords. The attack allows an adversary to accurately capture sentences that contain
the keywords out of aggregated updates from thousands of sequences. The attack injects malicious
parameters into the transformer whereby sensitive sequences are “tagged” with a unique signature,
and filtered to recover these targeted sequences. This attack reflects a notable shift in the capabilities
of data reconstruction attacks in federated learning as the attack succeeds under seemingly arbitrary
amounts of aggregation.
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Hughes, Omid Javidbakht, Fei Dong, Rehan Rishi, and Stanley Hung. Federated Evaluation and
Tuning for On-Device Personalization: System Design & Applications. arXiv.2102.08503, Febru-
ary 2021. doi: 10.48550/arXiv.2102.08503. URL https://arxiv.org/abs/2102.08503v1.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-
Preserving Deep Learning: Revisited and Enhanced. In Lynn Batten, Dong Seong Kim, Xuyun
Zhang, and Gang Li (eds.), Applications and Techniques in Information Security, Communica-
tions in Computer and Information Science, pp. 100–110, Singapore, 2017. Springer. ISBN
978-981-10-5421-1. doi: 10.1007/978-981-10-5421-1 9.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. OpenAI, pp. 24, 2019.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated Learning
for Emoji Prediction in a Mobile Keyboard. arXiv:1906.04329 [cs], June 2019. URL http:
//arxiv.org/abs/1906.04329.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. arXiv:1706.03762 [cs], De-
cember 2017. URL http://arxiv.org/abs/1706.03762.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-
mation processing systems, 32, 2019a.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep Leakage from Gradients. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
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A X-Risk Sheet

Individual question responses do not decisively imply relevance or irrelevance to existential risk
reduction. Do not check a box if it is not applicable.

A.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced AI systems
and how it steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced AI systems?
Answer: Data privacy underpins societal trust in technology. This work reveals just how vulner-
able our private data is by demonstrating the capabilities of a company using federated learning to
breach user privacy by secretly sending users reprogrammed model parameters. Specifically, the
server can perform targeted text extraction on transformer language models to capture whatever
data they desire, and the success is effectively guaranteed against any level of secure aggrega-
tion. We hope that by revealing the capability shift of a malicious server, the community will
investigate general strategies beyond secure aggregation to further protect user privacy.

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards, vulner-
abilities, or failure modes that it directly affects?
Answer: We do not directly reduce existential risk and instead point out how existential risk
already exists where many might think it does not.

3. Diffuse Effects. If this work reduces existential risks indirectly or diffusely, what are the main
contributing factors that it affects?
Answer: This work attempts to call for community attention to develop more advanced privacy-
protection.

4. What’s at Stake? What is a future scenario in which this research direction could prevent the
sudden, large-scale loss of life? If not applicable, what is a future scenario in which this research
direction be highly beneficial?
Answer: The types of data stealing we demonstrate are possible could be used for mass surveil-
lance and therefore for a catastrophic loss of rights or oppression, for example by governments.
Federated learning is considered the standard for user-cooperative training of large-scale model,
and in fact has already seen industrial applications in different settings. With the proliferation
of this framework comes immense risk. Revealing the capability of servers to breach user pri-
vacy and pushing the community to develop advanced protection algorithms could prevent such
catastrophes.

5. Result Fragility. Do the findings rest on strong theoretical assumptions; are they not demon-
strated using leading-edge tasks or models; or are the findings highly sensitive to hyperparam-
eters? Our work uses real text data and transformer models. We do not rely on any strong
theoretical assumptions.

6. Problem Difficulty. Is it implausible that any practical system could ever markedly outperform
humans at this task? □

7. Human Unreliability. Does this approach strongly depend on handcrafted features, expert su-
pervision, or human reliability? □

8. Competitive Pressures. Does work towards this approach strongly trade off against raw intelli-
gence, other general capabilities, or economic utility? □

A.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the
balance between safety and hazards from general capabilities.

9. Overview. How does this improve safety more than it improves general capabilities?
Answer: The work calls for attention to the extended capability of an attacker to breach user
privacy in federated learning. Remedy to the discussed attack directly improves AI safety.

10. Red Teaming. What is a way in which this hastens general capabilities or the onset of x-risks?
Answer: This paper illustrates a scenario where the attacker can realistically breach user privacy
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Figure 4: An overview of our proposed panning attack. In particular, an attacker reprograms the en-
coder block with a tagging module and a filter module, which encodes keyword-specific information
into model gradient. The information enables the attacker to pan for individual relevant tokens from
aggregated user update. The attacker can then post-process the retrieved tokens to recover original
sequences.

in federated learning. Future developments of protection algorithms can increase their credibility
by showing the ability to address the scenario and the discussed attack.

11. General Tasks. Does this work advance progress on tasks that have been previously considered
the subject of usual capabilities research? ⊠

12. General Goals. Does this improve or facilitate research towards general prediction, classifi-
cation, state estimation, efficiency, scalability, generation, data compression, executing clear
instructions, helpfulness, informativeness, reasoning, planning, researching, optimization, (self-
)supervised learning, sequential decision making, recursive self-improvement, open-ended goals,
models accessing the Internet, or similar capabilities? □

13. Correlation With General Aptitude. Is the analyzed capability known to be highly predicted
by general cognitive ability or educational attainment? ⊠

14. Safety via Capabilities. Does this advance safety along with, or as a consequence of, advancing
other capabilities or the study of AI? ⊠

A.3 Elaborations and Other Considerations

15. Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?
Answer:

For Q6, we remark that recovering individual user data from model update in federated learning
is beyond human capability, and this is why Q6 is not checked. This however does not reflect the
inherent difficulty of the problem. For Q12, we note that while we do not check the box, general pri-
vacy protection algorithms come with the cost of model performance. Achieving privacy protection
while also maintaining the utility of the model remains an important question to the community.

B Complete Method

Here we describe our “panning” attack that performs targeted extraction of “relevant” sequences that
contain a specific set of keywords in full detail. These attacks are motivated by previous unstructured
attacks on transformer architectures (Fowl et al., 2022), and the key ideas are:

1. Modification of multi-head attention blocks (MHA) to “tag” the tokens of a sequence that
contains specific keywords, as in Appendix B.2.

2. Modification of linear layers to “filter out” tokens in irrelevant (i.e. non-target) sequences,
as in Appendix B.3.

3. Leveraging the tag produced by the tagging module to capture tokens embedding belonging
to target sequences, as in Appendix B.3.

4. Post-processing the relevant embeddings into target sequences, as in Appendix B.4.

An overview of our attack algorithm is presented in Figure 4.
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Figure 5: An illustration of our key modifica-
tions. We maliciously modify the query, key
and value layer in the MHA block to tag the
mixed embedding of relevant sequences. We
also modify the feed-forward layers to encode
statistically distinguishable signatures to each
token based on the tag. The signature is then
used to filter out irrelevant mixed embedding.
Note that the ⊕ represents add-and-norm oper-
ation in transformer.

Figure 6: The measurement distributions of
mixed embedding by w + w′ from Ap-
pendix B.3 on GPT-2. The measurement dis-
tribution of irrelevant mixed embedding (blue)
exhibits clear separation from the measurement
distribution of relevant mixed embedding (or-
ange). We set β = 2.5 here.

B.1 Overview

As discussed in Phong et al. (2017); Geiping et al. (2020); Fowl et al. (2021), given a linear layer
parameterized by (W,b) whose forward pass is y = W⊤x + b, an attacker can recover inputs to
this layer from the aggregated gradient as∑

j

xj =
∑
j

∇WmLj ⊘
∑
j

∂bm

∂Lj
, (2)

where Lj = L(xj ;W,b), ⊘ stands for element-wise division, and Wm, bm stands for any m-th
row and m-th entry of W and b respectively. Based on this observation, Fowl et al. (2021) proposed
malicious modifications of W,b, which together with ReLU activation, allows an attacker to recover
individual xj - even from update averaged over many users. This technique was employed in the
domain of image classification.

However, as laid out in the following equation, adapting this trick to transformer presents additional
challenges. In particular, transformer mixes token embedding and positional embedding, and adds
the results of multi-head self-attention (MHA) on top of the mixed embedding before forwarding
through the earliest linear layer. In fact, given sequence length ℓ and number of sequences B,
examining the aggregated gradient of the earliest linear layer reveals that

B∑
i=1

ℓ∑
j=1

∇Wm
Lj ⊘

B∑
i=1

B∑
j=1

∂bm
∂Lj

=

B∑
i=1

ℓ∑
j=1

fi,j =

B∑
i=1

ℓ∑
j=1

ei,j + pj + MHA({ei,j′ + pj′}ℓj′=1; j)

Here ei,j is the embedding of the j-th token in the i-th sequence, pj is the j-th positional embed-
ding, and MHA({ei,j′ + pj′}ℓj′=1, j) is the j-th entry after applying MHA on sequence i. To recover
meaningful sequence from the aggregated mixed embedding

∑
i

∑
j fi,j , an attacker needs to (1)

isolate out individual mixed embedding fi,j , (2) relate fi,j to the sequence i and position j, and (3)
match ei,j to the most probable word.

Previous work (Fowl et al., 2022) proposed an attacking algorithm that attempts to overcome these
challenges. However, their attack focuses on recovering as much data as possible, and therefore the
fidelity of individual recovered sequences degrades as the number of sequences increases. On the
other hand, attackers often only care about the few sequences that contain privacy-critical informa-
tion, and are happy to forego fidelity of irrelevant sequences in exchange for accurate recovery of
valuable sequences. Based on this philosophy, we propose a novel attacking algorithm that filters
out irrelevant mixed embedding, enabling an attacker to pan for privacy-relevant sequences even out
of extremely large-scale aggregation.
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B.2 Tagging target sequences

In this section, we describe how our attack employs malicious modifications of transformers to
“tag” the mixed embedding that belongs to a sequence that contains the selected keywords K =
{k1, . . . , kN}. We illustrate the modification in Figure 5. For simplicity, we start by detailing this
construction with only one keyword k.

To facilitate the construction, we assume the norm of token embedding e(k) associated with the
target word k to be larger than the norm of all other token and positional embeddings. The server
can easily meet this assumption as both embedding matrices are also part of the model parameters
under their control. By inspecting the transformer architecture, it is immediately clear that tokens
in the same sequence interact with each other only in the MHA block. Therefore, we design a self-
attention mechanism that tags the target sequences by imprinting e(k) into every mixed embedding
in relevant sequences. To be more specific, let (WQ,bQ), (WK ,bK), (WV ,bV ) be the weight
matrices and biases of query, key, and value layers respectively. We set each of the parameters as
follows, 

WQ = 0, bQ = αe(k),

WK = Id, bK = 0,

WV = Td′ , bV = 0,

Td′ [q, r] =

{
1 q + d′ = r, q ≤ d′,

0 otherwise.
(3)

where α is a large positive value (e.g. 108) and Td′ is the truncated shift matrix with pre-defined
dimension d′. The construction of WK and bK leaves the key K unaltered. The construction of
WQ and bQ produces the query Q with exactly the same rows e(k). Finally, the construction of
WV and bV “shifts” the entries block indexed by [d′ : 2d′] of each input embedding to the first d′
positions, and sets all other positions to zeros.

Next, we evaluate the results of the MHA computation based on this construction. If a length-ℓ
sequence {ej}ℓj=1 contains the target word k at position j′, then the attention weight calculated by

softmax(QK⊤
√
d
) will favor attending every single word in the sequence to the target word. In fact,

when α is large enough, the softmax transforms the attention weight into a Dirac-delta function,
making attention to the target word absolute. Consequently, the resulting mixed embedding after the
MHA block becomes:

fj = ej + pj +Td′(e(k) + pj′) (4)

Or, in plain language, the entries d′ to 2d′ of the target embedding are imprinted to the first d′
position of every embedding in the sequence. Interestingly, in the case of causal language model,
applying construction in Equation (3) on masked MHA turns the keyword into a trigger, where the
module only imprints e(k) to tokens that appear after the keyword in the relevant sequences. Cou-
pling with filter module introduced later in Section B.3, one can instead perform targeted extraction
of sub-sequences that start with k. On the other hand, if the sequence does not contain the keyword
k, or in the case of masked MHA, if the mixed embedding appears before k, then the imprinted em-
bedding will be randomly picked from e1 to eℓ. The difference allows our malicious modification
to tag the mixed embedding in target sequences by a unique imprint, and we will discuss in the next
section how we filter out irrelevant sequences (not containing k) based on this imprint.

We note that extending the above construction to multiple keywords is straightforward. In particu-
lar, for N keywords k1, . . . , kN , one can simply repeat the above constructions on different head in
MHA block for different keywords, and imprint each keyword-specific signature to different posi-
tions of the mixed embedding. We also note that Fowl et al. (2022) employed a related construction
technique, with the goal of imprinting a part of e1 onto every token e1, . . . , eℓ in the same sequence.
This position imprinting enables grouping tokens into sentences and can easily be used as conjunc-
tion with our tagging module.

B.3 Filter out irrelevant tokens

Next, we discuss our approach to filter out irrelevant sequences based on the tag of each token, and
provide an illustration of the key idea in Figure 5. Our approach draws inspiration from Fowl et al.
(2021), which attempted to perform gradient separation on input uncovered in Eq. 2. The authors
construct a malicious linear layer by assigning to each row of W identical copies of a measurement
vector w, and setting each entry of b such that every bm < bm+1. The authors then observe that if
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the linear layer is followed by a ReLU activation, one has

(
∑
j

∇WmLj −
∑
j

∇Wm−1Lj)⊘ (
∑
j

∂bm

∂Lj
−
∑
j

∂bm−1

∂Lj
) =

∑
j

gm(w⊤xj)xj ,

where gm(z) = 1 if bm−1 ≤ z < bm and gm(z) = 0 otherwise. The observation implies that xj

can be recovered exactly if only xj satisfies gm(w⊤xj) = 1, Therefore, if the attacker can accu-
rately estimate the distribution of w⊤xj , they can then pick b1, . . . , bM accordingly to maximize the
chance for every xj to fall uniquely in one of the bin (bm−1, bm).

To apply the idea from Fowl et al. (2021) to transformer-based attack, Fowl et al. (2022) discovered
that modeling the distribution of w⊤(ei,j + pj) as Gaussian works well empirically if every entry
of w is a random sample from standard Gaussian. Fowl et al. (2022) therefore proposes to set
bm = −Φ−1(m

M ) where Φ−1(·) is the inverse of estimated Gaussian distribution, by which each
bin (bm−1, bm) approximately contains the same probably mass. However, observe that the number
of bins upper-bound the capability of an attacker to recover user data. Therefore, the algorithm
proposed in (Fowl et al., 2022) fails to recover meaningful sequences from large-scale aggregation
as they attempt to separate an increasing number of mixed embeddings using a fixed number of bins.

To address the issue, we propose a set of malicious modifications to pan for relevant mixed embed-
dings. To be more concrete, we scale the norm of all embedding to 1, except for e(k), the embedding
of the given keyword, to β > 1, and set the first d′ entries of each embedding to 0. β controls the
”signal strength” of relevant mixed embedding, and helps the differentiation with irrelevant embed-
ding as detailed later. We also sample the random measurement vecotr w from standard Gaussian
and mask out the first d′ entries. Finally, we construct w′ as

w′[q] =

{
e(k)[q + d′], q ≤d’
0, q >d’.

By instead setting each row of W to (w +w′), we have

(w +w′)⊤fj = w⊤(ej + pj) + (w′)⊤Td′(ej′ + pj′) (5)

by Eq. 4 where j′ is the position the MHA attends to. As a consequence, the distribution of
measurement of the mixed embedding in irrelevant sequences remains zero-mean, while a mean
shift of (β∥w′∥)2 can be observed in the measurement distribution of mixed embedding in relevant
sequences. We also empirically verify the distinction between two distributions, and present the
results in Figure 6. The distinction allows us to apply the binning strategy from Fowl et al. (2022)
but instead on the relevant distribution, which effectively condenses irrelevant mixed embedding
into a small number of bins. The majority of bins can then be dedicated to retrieving individual
relevant mixed embedding, greatly improving the effectiveness of downstream post-processing.

B.4 Post-process mixed embeddings into meaningful sequences

With individual mixed embedding fi,j isolated out from user update, we then need to associate each
fi,j with the corresponding sequence index i, position index j and the actual word.

To associate a mixed embedding fi,j with the corresponding sequence index i, we utilize the position
imprinting module proposed by Fowl et al. (2022), which shares similar construction techniques with
our tagging module as discussed in Appendix B.2. To be more concrete, we construct a positional
imprinting module using a different head in the MHA block as follows,

WQ = O, bQ = αp0,

WK = Id, bK = 0,

WV = Td′ , bV = 0,

Td′ [q, r] =

{
1 q + d′ = r, 2d′ < q ≤ 3d′,

0 otherwise.

For a given sequence of embedding {ej}ℓj=1, the resulting {fj}ℓj=1 after going through the positional
imprinting module is calculated as

fj = ej + pj +Td′(e1 + p1), (6)

where sentence-specific information is imprinted to entries 2d+ 1 to 3d of each mixed embedding.
We then perform constrained K-means clustering (Bradley et al., 2000) over all recovered fi,j based
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on the sentence-specific entries, where the number of centers is the same as the number of total
sequences, and each center can at most be associated with ℓ mixed embedding.

After grouping mixed embeddings into sequences, the next step is to recover the position. As mixed
embeddings in the same sequences are guaranteed to have distinct positions, we perform position
recovery on a sequence-by-sequence basis. For a set of mixed embedding {fj′} grouped into the
same sequence, identifying the most suitable unique position j of each fj′ can be viewed as a
maximum weight bipartite matching problem, where we define the weight of a potential match
(fj′ , j) to be the correlation between fj′ and pj . The problem can equivalently be transformed into
a linear assignment problem (Kuhn, 1955), which is identical to the formulation discussed in Fowl
et al. (2022), and solved efficiently. We can then obtain the pure token embedding ei,j by subtracting
the recovered positional embedding from fi,j .

The final step is to associate each recovered token embedding ei,j with the actual words. Ideally,
for each ei,j one can greedily search over every actual token embedding {e1, . . . , eV } to find the
word whose associated token correlates with ei,j the most. On the other hand, Fowl et al. (2022)
discovered that the frequency of tokens presented in user updates can be estimated accurately. The
estimated frequency dictates the maximum number of ei,j a specific word can be associated with,
which can be used as a constraint to formulate another maximum weight bipartite matching problem,
where the weight of a potential match (ei,j , ev) is again the correlation between two embeddings.
Compared to greedy search, the additional constraint allows some imperfectly recovered token em-
bedding to still be matched with correct words.

C Additional Experiments

C.1 Additional experiment details

In this section we provide additional details of our experiments. In all our experiments, We focus on
fedSGD, where each user performs a single gradient step and sends the model update to sever.

We start by providing details of our transformer architecture. We consider the smallest variant
of GPT-2 (Radford et al., 2019) with 124 million parameters, which is a causal language model
with masked self-attention. We also consider a variant of BERT (Devlin et al., 2019) with 110
million parameters, which is used in previous works (Deng et al., 2021; Zhu et al., 2019a) for attack
evaluation. Unlike GPT-2, BERT is trained as a masked language model which allows bidirectional
self-attention.

Then, we describe our procedure to process articles into sequences of tokens for each user. For
experiments on GPT-2, the articles are tokenized with GPT-2 (BPE) tokenizer. For experiments on
BERT, we tokenize the articles with the original BERT tokenizer. Then, given a sequence length
ℓ, we concatenate all the words in an article into one array, and partition the array into sequences
of length ℓ. The left-over words are discarded. Then, given the batch size B, we keep the first B
sequences for each user and discard the rest. The user then computes their model update based on
the remaining B sequences.

Next, we describe the details of quantitative evaluation. To simulate the scenario where only a
small number of sequences contain privacy-critical information, we select the first 3 sequences from
each batch and replace one of the tokens of each sequence with the token of a target keyword.
For experiments on BERT, the replaced token is randomly selected. For experiments on GPT-2,
we instead replace one of the first four tokens with trigger keyword, which allows us to assess the
impact of imperfect imprints created by masked self-attention. We note as GPT-2 performs causal
language inference, an attacker targeting related tasks generally cares less about tokens that appear
before the trigger, and hence placing the keyword further back in the sequence is unnecessary. The
quantitative results are then evaluated only on these target sequences. For each quantitative metric,
the reported result is obtained over the average over the first 10 users with enough data. That is, for
a given combination of batch size and sequence length, a user only contributes to the final result if
his/her data is enough to fill in the required number of tokens.

Finally, we detail parameters. We set α = 1012 for GPT-2 and α = 108 for BERT across all
experiments. For GPT-2, we set β = 10 for GPT-2 if batch size is smaller than 256 and β = 3
for GPT-2 if otherwise. For BERT, we set β = 10 for all single keyword experiments, and we set
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Figure 7: Comparison of our method with Decepticons for different architectures across various
sequence lengths. The batch size is fixed to 32. We evaluate both methods only on the target
sequences. Our attack remains agnostic to sequence length, and outperforms Decepticons in all
metrics on target sequences.

Figure 8: Experiment on our attack across different architectures for target phrases with different
length. We fix the sequence length to 32 and batch size to 64 respectively. Our method is able
to accurately capture relevant sequences given target phrases of various lengths. Attack success
remains constant as batch sizes increase.

β = 5
K for experiments on multiple keywords, where K is the number of keywords. We set d′, the

block size to be truncated and shifted as described in Appendix B.2, to 32.

C.2 Additional comparison with transformer-based attacks for malicious servers

We additionally compare our proposed method with Decepticons (Fowl et al., 2022) when the batch
size is fixed. The results across different sequence length is summarized in in Figure 7. The figure
shows that our proposed attack also outperforms Decepticons across all combinations of model and
sequence length (although the performance of Decepticons is less sensitive to the change of sequence
length).

C.3 Experiments with multiple keywords

Additionally, we investigate how the number of keywords K impacts the performance of our at-
tack. We perform experiments on K ∈ {1, 2, 3, 4, 5, 6}, For each K we create K-word-long target
phrases, and replace K consecutive tokens in each of the first 3 sentences. The result is presented in
Figure 8, and demonstrates that our attack is able to recover sequences relevant to a large number of
keywords. We note that the number of keywords our attack can target is only limited by the number
of heads in the MHA blocks, and both GPT-2 and BERT come with 12 heads, which is more than
enough to cover most privacy-sensitive phrases in real world.
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